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A simple skew-symmetric Nitsche's formulation is introduced into the framework of isogeometric analysis (IGA) to deal with various problems in small strain elasticity: essential boundary conditions, symmetry conditions for Kirchhoff plates, patch coupling in statics and in modal analysis as well as Signorini contact conditions. For linear boundary or interface conditions, the skew-symmetric formulation is parameter-free.

For contact conditions, it remains stable and accurate for a wide range of the stabilization parameter.

Several numerical tests are performed to illustrate its accuracy, stability and convergence performance. We investigate particularly the effects introduced by Nitsche's coupling, including the convergence performance and condition numbers in statics as well as the extra "outlier" frequencies and corresponding eigenmodes in structural dynamics. We present the Hertz test, the block test, and a 3D self-contact example showing that the skew-symmetric Nitsche's formulation is a suitable approach to simulate contact problems in IGA.

Introduction

The key concept in isogeometric analysis (IGA) [START_REF] Hughes | Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement[END_REF] consists in using non-uniform rational B-splines (NURBS) as basis functions to approximate both the geometry and the unknown physical fields. The mathematical foundations of IGA are developed in [START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF], and a recent overview is given in [START_REF] Nguyen | Isogeometric analysis: an overview and computer implementation aspects[END_REF]. Contrary to classical Lagrange basis functions usually adopted in the finite element method (FEM), NURBS in IGA have the ability to exactly describe geometries: thus, no geometrical approximation error is introduced.

Moreover NURBS are widely adopted in commercial computer-aided design (CAD) packages, and this CAD data can directly be used to construct approximations. In boundary element method (BEM), this translates into the ability to solve directly from the field variables at the control points defining the geometry [START_REF] Simpson | A two-dimensional isogeometric boundary element method for elastostatic analysis[END_REF][START_REF] Simpson | An isogeometric boundary element method for elastostatic analysis: 2d implementation aspects[END_REF][START_REF] Scott | Isogeometric boundary element analysis using unstructured T-splines[END_REF][START_REF] Lian | Stress analysis without meshing: Isogeometric boundary-element method[END_REF][START_REF] Beer | Isogeometric boundary element method for the simulation of underground excavations[END_REF][START_REF] Marussig | Fast isogeometric boundary element method based on independent field approximation[END_REF][START_REF] Lian | Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity[END_REF][START_REF] Peng | Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth[END_REF]. In FEM, a 3D parameterization of the volume is still necessary [START_REF] Xu | Parameterization of computational domain in isogeometric analysis: methods and comparison[END_REF][START_REF] Xu | Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis[END_REF], except when solving shell-like problems [START_REF] Kiendl | Isogeometric shell analysis with Kirchhoff-Love elements[END_REF][START_REF] Benson | Isogeometric shell analysis: the Reissner-Mindlin shell[END_REF][START_REF] Benson | A large deformation, rotation-free, isogeometric shell[END_REF][START_REF] Echter | A hierarchic family of isogeometric shell finite elements[END_REF][START_REF] Hu | Isogeometric analysis of thin reissner-mindlin plates and shells: Locking phenomena and generalized local B method[END_REF]. The present paper focuses on two following issues. One first issue in IGA is related to boundary conditions, especially essential boundary conditions. Indeed, since NURBS are non-interpolatory, enforcing boundary conditions and constraints cannot be done as simply as in Lagrange FEM: they require tackling difficulties which are similar to those encountered in meshless methods [START_REF] Nguyen | Meshless methods: a review and computer implementation aspects[END_REF] and implicit/immersed boundary methods [START_REF] Dunant | Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software[END_REF][START_REF] Harari | Analysis of an efficient finite element method for embedded interface problems[END_REF]. One second issue in IGA comes from interface conditions and patch coupling: for complex geometries, patch-wise CAD modeling is necessary, and transmission conditions need to be satisfied. The same also arises when gluing heterogeneous materials.

Various methods already exist to treat boundary or interface conditions weakly, that have been firstly designed for instance in the FEM context. They are applicable, or have already been applied, for IGA.

The most widespread ones are the penalty method, mixed/mortar methods and Nitsche's method. The penalty method [START_REF] Babuška | The finite element method with penalty[END_REF][START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF] is simple but not consistent. Therefore the value of the penalty parameter has to be chosen with great care to achieve the best balance between accuracy and stability. As a matter of fact, if the penalty parameter is chosen too small the boundary or interface conditions are imposed inaccurately, whereas if it is chosen much larger than needed the penalized problem becomes ill-conditioned. Mixed methods for boundary conditions [START_REF] Babuška | The finite element method with Lagrangian multipliers[END_REF] introduce a Lagrange multiplier, which is an additional variable that represents the boundary stress, and that allows to take into account weakly the essential boundary conditions in a consistent way. This leads to a weak problem that has a saddle-point structure. For patch-coupling, the original mortar method [START_REF] Bernardi | Asymptotic and numerical methods for partial differential equations with critical parameters[END_REF][START_REF] Bernardi | A new nonconforming approach to domain decomposition: the mortar element method[END_REF] has been reformulated later as a mixed/dual Lagrange multiplier method (see, e.g., [START_REF] Ben Belgacem | The mortar finite element method with Lagrange multipliers[END_REF][START_REF] Wohlmuth | A mortar finite element method using dual spaces for the lagrange multiplier[END_REF] for FEM and [START_REF] Brivadis | Isogeometric mortar methods[END_REF] for IGA). Mortar methods, when carefully designed, are consistent, stable and optimally accurate (see, e.g., [START_REF] Wohlmuth | A mortar finite element method using dual spaces for the lagrange multiplier[END_REF] in the FEM context or [START_REF] Brivadis | Isogeometric mortar methods[END_REF] in the IGA context). Moreover the newly introduced Lagrange multipliers have a clear meaning: they are the stresses needed to enforce the continuity of the displacements. Mortar techniques have been applied as well with success to contact problems [START_REF] Temizer | Contact treatment in isogeometric analysis with NURBS[END_REF][START_REF] Temizer | Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with nurbs[END_REF][START_REF] De Lorenzis | A mortar formulation for 3D large deformation contact using nurbs-based isogeometric analysis and the augmented lagrangian method[END_REF][START_REF] Kim | Isogeometric contact analysis using mortar method[END_REF][START_REF] Seitz | Isogeometric dual mortar methods for computational contact mechanics[END_REF][START_REF] Antolin | A priori error for unilateral contact problems with lagrange multiplier and isogeometric analysis[END_REF]. However extra degrees of freedoms (DoFs) are introduced and an inf-sup condition must be fulfilled in order to ensure stability and optimal convergence, for which care is needed to build the dual space of Lagrange multipliers.

Nitsche's method was originally proposed by J. Nitsche [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF][START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF] to impose weakly essential boundary conditions and more recently has regained popularity to deal with interface conditions with non-conforming discretizations (see, e.g., [START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF][START_REF] Hansbo | s method for interface problems in computational mechanics[END_REF][START_REF] Annavarapu | A robust Nitsches formulation for interface problems[END_REF]). Nowadays Nitsche's method has also found a number of natural applications in IGA [START_REF] Embar | Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements[END_REF][START_REF] Nguyen | Nitsche's method for two and three dimensional nurbs patch coupling[END_REF][START_REF] Apostolatos | A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis[END_REF][START_REF] Ruess | Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries[END_REF][START_REF] Guo | Nitsche's method for a coupling of isogeometric thin shells and blended shell structures[END_REF][START_REF] Du | Nitsche method for isogeometric analysis of Reissner-Mindlin plate with non-conforming multi-patches[END_REF]]. Nitsche's formulation makes use of an appropriate conjugate pair such as displacement-force or rotation-moment, in such a way that the method remains both primal (no extra DoFs) and consistent. By the way, there is no need to fulfill an inf-sup condition. However, standard (symmetric) Nitsche's method includes an extra term that penalizes the boundary/interface conditions and allows to recover stability and optimal accuracy. For this purpose, this extra term makes use of an additional numerical parameter, the stabilization parameter, that needs to be fixed above a given threshold. For simple problems and numerical methods, such as piecewise linear or quadratic Lagrange FEM, a direct and accurate estimation of the aforementioned threshold can be effectuated (see, e.g., [START_REF] Hansbo | Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method[END_REF][START_REF] Hansbo | s method for interface problems in computational mechanics[END_REF] for a discussion on this topic), but for more realistic problems and less standard numerical methods, this can be harder to achieve. Indeed this threshold for the stabilization will depend upon many parameters, related to the physical constants (Young's modulus) and to the discretization (polynomial order of basis functions, shape of the cells in the grid): see, e.g., [START_REF] Annavarapu | A robust Nitsches formulation for interface problems[END_REF][START_REF] Jiang | A robust Nitsche's formulation for interface problems with spline-based finite elements[END_REF][START_REF] Shahbazi | An explicit expression for the penalty parameter of the interior penalty method[END_REF]. In such situations an alternative to estimate this threshold consists in solving a generalized eigenvalue problem along the target boundary/interface: see, e.g., [START_REF] Hansbo | Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method[END_REF][START_REF] Hansbo | s method for interface problems in computational mechanics[END_REF] for FEM and [START_REF] Embar | Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements[END_REF][START_REF] Nguyen | Nitsche's method for two and three dimensional nurbs patch coupling[END_REF][START_REF] Apostolatos | A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis[END_REF] for IGA. Nevertheless, the difficulties associated to this issue can be circumvented by using the penalty-free (skew-symmetric) variant of Nitsche's method, such as in [START_REF] Burman | A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions[END_REF][START_REF] Kollmannsberger | Parameter-free, weak imposition of Dirichlet boundary conditions and coupling of trimmed and non-conforming patches[END_REF][START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF][START_REF] Burman | The penalty free Nitsche method and nonconforming finite elements for the Signorini problem[END_REF][START_REF] Schillinger | The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements[END_REF].

In this paper we present a simple and systematic procedure to derive, for various boundary and interface conditions, a family of Nitsche's formulations that have different symmetry properties and different degrees of dependency on the stabilization parameter. This family is indexed by the Nitsche parameter θ. We then focus on the variant known as the skew-symmetric Nitsche's method, that corresponds to the value θ = -1. This method can be parameter-free when dealing with linear boundary or interface conditions, and reveals to be very robust with respect to the stabilization parameter for non-linear boundary conditions such as contact. Let us mention that in the context of standard FEM, the skew-symmetric method has been successfully applied to contact [START_REF] Chouly | A Nitsche-based method for unilateral contact problems: numerical[END_REF][START_REF] Chouly | An adaptation of Nitsche's method to the tresca friction problem[END_REF][START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF][START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF]. Furthermore in IGA there is already one contribution dealing with the skew-symmetric Nitsche's method for enforcing Dirichlet boundary conditions and patch coupling in the context of thin shell problems [START_REF] Guo | A parameter-free variational coupling approach for trimmed isogeometric thin shells[END_REF]. In this contribution we perform numerical experiments for different situations, particularly we study how Nitsche's multi-patch coupling can affect the accuracy, the convergence rates, and the condition numbers. Moreover, in modal analysis, literature [START_REF] Cottrell | Isogeometric analysis of structural vibrations[END_REF][START_REF] Cazzani | An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams[END_REF] shows that some outlier frequencies appear due to the discretization of the continuous problem. This "outlier" phenomenon is also captured in multi-patch cases using the mortar method [START_REF] Horger | Improved approximation of eigenvalues in isogeometric methods for multi-patch geometries and neumann boundaries[END_REF]. Here we study this issue of the "outlier" frequencies and corresponding eigenmodes, in the context of Nitsche's method. Finally to our knowledge Nitsche's method has never been applied in IGA for contact conditions, and we show how to implement Nitsche's formulation for contact problems, and how it performs in these cases.

The outline of this paper is as follows. In Section 2 the concept and notations of IGA are introduced, the critical differences between Lagrange-based FEM and NURBS-based IGA are also explained. In Section 3 we introduce the Nitsche-based formulations for boundary/interface conditions, starting from an abstract setting. In Section 4 various numerical tests are performed and we reach conclusions in Section 5.

Brief introduction to isogeometric analysis

Bivariate NURBS basis functions R A (ξ, η), (A = 1, • • • , nm) are often adopted in IGA to generate surfaces. They are constructed using appropriate weights w A and the tensor product of two sets of univariate B-spline basis functions N i,p (ξ), (i = 1, • • • , n) and N j,q (η), (j = 1, • • • , m), where p and q are orders of the B-spline basis functions in directions ξ and η respectively. One set of B-spline basis functions can be calculated from one given knot vector recursively [START_REF] Cottrell | Isogeometric analysis: toward integration of CAD and FEA[END_REF]. By the help of NURBS basis functions, the desired surface is represented as the set Ω of points

x(ξ, η) = nm A=1 R A (ξ, η) x A ,
where x A (x, y, z) denote positions of the control points. Following the "iso" concept, any (discrete) physical field u h defined on the surface (domain) Ω is represented using the same set of NURBS basis functions as

u h (ξ, η) = nm A=1 R A (ξ, η) u A ,
where u A are the control point variables, as well as the degrees of freedom associated to u h . In the following we will denote by V h the finite dimensional space of such discrete fields u h constructed using IGA (see, e.g., [START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF] for the detailed construction of such a space). The notation h will stand for the size of the cells associated to such a discretization. Note that no essential boundary or interface conditions are prescribed in the definition of V h . According to [START_REF] Xu | Geometry-independent field approximation for spline-based finite element methods[END_REF] the spline spaces used for the geometry and the physical field can be chosen and adapted independently, which is known as the Geometry-Independent Field approximaTion (GIFT) and brings more flexibility in the field approximation when preserving geometric exactness and tight CAD integration. However the present research is restricted to IGA.

In Figure [START_REF] Adam | Improved numerical integration for locking treatment in isogeometric structural elements. part II: Plates and shells[END_REF] some differences between FEM and IGA are illustrated. Consider a contact problem in the left of the figure, and for simplicity we just consider the discretization of a portion of the boundaries that are going into contact. For Lagrange basis function based FEM, discrete errors are introduced by the FEM meshes. For NURBS basis functions based IGA, the curved domain is parametrized exactly. The NURBS basis functions of order p allow to represent fields up to continuity C p-1 , however (most) control points that define the boundary/interface are not interpolated, which is owing to the corresponding non-interpolating basis functions. This brings difficulties in directly manipulating the control variables attached to these control points when dealing with boundary and interface conditions. In the next section we are going to introduce Nitsche's formulation to impose various boundary/interface conditions weakly.

IGA: control points and control nets FEM: nodes and meshes 

Nitsche's formulation for boundary/interface conditions

We first present Nitsche's method within an abstract setting, and then show how this framework can be applied to recover various well-known Nitsche-based discretizations, for a wide range of problems in computational mechanics. Note that for linear boundary and interface conditions, discretized with finite elements, a general presentation can be found in, e.g., [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF][START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF][START_REF] Hansbo | s method for interface problems in computational mechanics[END_REF]. We will consider a whole family of Nitsche's methods indexed by a real value, that we will call the Nitsche parameter θ ∈ R, and we will pay particular attention to the skew-symmetric variant, i.e. to the case θ = -1.

Abstract setting

Consider the domain Ω as the open set associated to the surface Ω defined in previous Section 2. We will denote by Γ either a portion of the boundary of Ω or an interface that subdivides Ω into two subdomains.

Our aim is to compute a field u : Ω → R d (d ≥ 1), for instance a displacement field, that is a solution to a given set of partial differential equations with prescribed boundary/interface conditions. To simplify the presentation we consider a linear partial differential equation (but not necessarily linear boundary or interface conditions). We will denote by v an arbitrary test function, that can represent the virtual displacement.

Two main ingredients are necessary to build a Nitsche-based formulation.

The first ingredient is a Green formula (inspired by Theorem 5.8 in [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF]), that allows to rewrite weakly the partial differential equation satisfied by u, and that we provide below in an abstract setting:

Find u ∈ V : a(u, v) -τ (u), B(v) Γ = L(v), ∀ v ∈ V, (1) 
where V is a functional space of admissible fields, a( 

τ (u) : Γ → R k , B(v) : Γ → R k .
The second ingredient is a reformulation of the boundary/interface conditions as follows:

τ (u) = τ (u) -γ(B(u) -B) S . (2) 
In the above formula, B is a known, prescribed, quantity associated to the trace. The notation [•] S stands for the projection onto S, a closed subset of R k of admissible values. The set S can depend on u in some situations (S = S(u)), for instance in the case of Coulomb friction [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF][START_REF] Chouly | Nitsche-based finite element method for contact with Coulomb friction[END_REF][START_REF] Renard | Generalized Newton's methods for the approximation and resolution of frictional contact problems in elasticity[END_REF], but we omit this dependence to simplify our notations. For simple problems, as those studied in this paper, S is generally a closed convex set, a closed convex cone, or a subspace of R k . Finally γ is an arbitrary positive and one-to-one Schur operator (interface or boundary stiffness), that transforms a trace into a flux.

Nitsche-based discretizations can be obtained by following the steps we describe below in more detail and which are mathematically valid only for sufficiently smooth fields u and v:

1. Apply the following decomposition

B(v) = -γ -1 (θτ (v) -γB(v)) + θγ -1 τ (v).
2. Insert it into (1), which yields

a(u , v) -θ τ (u), γ -1 τ (v) Γ + τ (u), γ -1 (θτ (v) -γB(v)) Γ = L(v).
3. Inject condition (2) into the above formula, so as to impose it weakly

a(u , v) -θ τ (u), γ -1 τ (v) Γ + [τ (u) -γ(B(u) -B)] S , γ -1 (θτ (v) -γB(v)) Γ = L(v). (3) 
The above formula may have no meaning at the continuous level. Nevertheless it becomes meaningful once all the fields are discretized. For this purpose, consider V h , a discrete space, built from any Galerkin approximation, such as finite elements or IGA (see Section 2 above). For discrete fields the duality pairing

•, • Γ becomes simply the scalar product in L 2 (Γ) , and we will denote by

• L 2 (Γ) (= •, • 1 2 
Γ ) the corresponding norm. Let us consider

γ h : L 2 (Γ) → L 2 (Γ)
a discrete Schur operator, positive and one-to-one. Consider u h (resp. v h ) a discrete approximation to u (resp. to v). To simplify the notations, we introduce also the modified discrete weak form

A θ (u h , v h ) := a(u h , v h ) -θ τ (u h ), γ -1 h τ (v h ) Γ ,
and the linear operator

P θ (v h ) := θτ (v h ) -γ h B(v h ).
Then we obtain the Nitsche-based formulation below

Find u h ∈ V h : A θ (u h , v h ) + [P 1 (u h ) + γ h B] S , γ -1 h P θ (v h ) Γ = L(v h ), ∀ v h ∈ V h . (4) 
Remark that the way the method is built ensures its consistency with respect to the partial differential equation being solved.

An important particular case is that of linear boundary/interface conditions, which means that S = R k in (2) and so the projection operator is merely the identity. Then (4) reads

A θ (u h , v h ) + P 1 (u h ) + γ h B, γ -1 h P θ (v h ) Γ = L(v h ),
and, after re-ordering and simplifications we arrive at

a(u h , v h ) -τ (u h ), B(v h ) Γ -θ τ (v h ), B(u h ) Γ + γ h B(u h ), B(v h ) Γ = L(v h ) -θτ (v h ) -γ h B(v h ), B Γ . (5) 
When θ = 1, we recover the well-known formulation presented for instance in [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF][START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF][START_REF] Hansbo | s method for interface problems in computational mechanics[END_REF].

Remark 1. The Nitsche parameter θ allows to select some variants of Nitsche's formulation, that yield different theoretical properties and different degrees of dependency w.r.t. the operator γ h :

• for θ = 1, the standard symmetric Nitsche's method [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF] is obtained. If, a(•, •) is symmetric, and under appropriate assumptions on S (for instance if k = 1 and S = R, S = R -or S = R + ), it can be derived as the first order optimality condition of the energy functional [START_REF] Nitsche | Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind[END_REF][START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF][START_REF] Chouly | An unbiased Nitsche's approximation of the frictional contact between two elastic structures[END_REF]:

J N (u h ) := 1 2 A 1 (u h , u h ) -L(u h ) + 1 2 [P 1 (u h ) + γ h B] S , γ -1 h [P 1 (u h ) + γ h B] S Γ .
Moreover a suitable choice for γ h is necessary in order to recover well-posedness and optimal accuracy (see Section 3.2 below);

• for θ = 0, some terms cancel out and we obtain the simple formulation

a(u h , v h ) -[P 1 (u h ) + γ h B] S , B(v h ) Γ = L(v h ),
which is close to an augmented lagrangian formulation and easier to extend to the large strain framework [START_REF] Mlika | An unbiased Nitsche's formulation of large deformation frictional contact and self-contact[END_REF];

• for θ = -1, the skew-symmetric Nitsche's method is obtained, see e.g., [START_REF] Freund | On weakly imposed boundary conditions for second order problems[END_REF][START_REF] Burman | A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions[END_REF][START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF] for linear boundary conditions and [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF][START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] for contact conditions. Stability and optimal convergence are ensured whatever γ h . Note that for linear boundary/interface conditions, we can even choose γ h = 0, resulting in the parameter-free formulation:

a(u h , v h ) -τ (u h ), B(v h ) Γ + τ (v h ), B(u h ) Γ = L(v h ) + τ (v h ), B Γ . (6) 

The discrete Schur operator, well-posedness and optimal accuracy

When θ = -1, the discrete Schur operator γ h needs to be designed so as to preserve well-posedness of Problem (4) as well as optimal accuracy. Let us first consider a linear setting, i.e. Problem ( 5) and θ = 1:

the key issue in the mathematical analysis (see, e.g., [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF][START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF]) is to ensure the V h -ellipticity of the bilinear form A 1 (• , •) in the energy norm. To this purpose, we define

C TI (h) := sup v h ∈V h τ (v h ) 2 L 2 (Γ) a(v h , v h ) (7) 
the trace-inverse constant associated to [START_REF] Auliac | Quadratic finite elements with non-matching grids for the unilateral boundary contact[END_REF], that depends on the size h of the cells, but also on the other features of the discrete space V h , such as the polynomial order of basis functions. This constant depends also upon the partial differential equation under consideration (for instance it depends on the Young's modulus in isotropic linear elasticity). Suppose that, for instance, γ h is such that

γ -1 h C TI (h) ≤ 1 2 (8) with γ -1 h = sup τ ∈L 2 (Γ), τ L 2 (Γ) =1 γ -1 h τ L 2 (Γ) . For any v h ∈ V h , we can write A 1 (v h , v h ) ≥ a(v h , v h ) -γ -1 h τ (v h ) 2 L 2 (Γ) ≥ 1 -γ -1 h C TI (h) a(v h , v h ) ≥ 1 2 a(v h , v h ).
The same kind of argument holds for the general formulation (4) and for any value of θ = -1 (see, e.g., [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] in the case of small strain elasticity with contact). For simple situations, as considered in this paper, where the coefficients of the partial differential equation are constant, and where the mesh is quasi-uniform, the simplest choice is to define the Schur operator globally as

γ h := γ 0 Id
where γ 0 > 0 is a real parameter, the stabilization parameter, and Id is the identity in L 2 (Γ). Then condition ( 8) is reformulated as

γ 0 ≥ 2C TI (h).
As in [START_REF] Embar | Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements[END_REF][START_REF] Nguyen | Nitsche's method for two and three dimensional nurbs patch coupling[END_REF][START_REF] Apostolatos | A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis[END_REF] the constant C TI (h) can be estimated as the maximum eigenvalue λ h,MAX associated to the problem

Find (λ h , u h ) ∈ R × V h : τ (u h ), τ (v h ) Γ = λ h a(u h , v h ) ∀ v h ∈ V h , (9) 
and then one can choose γ 0 = 2λ h,MAX . This is actually what we do in the numerical experiments of Section 4.

Of course, if more general situations need to be considered, such as more general (non quasi-uniform) meshes or partial differential equations with spatially variable coefficients, it is much better to consider a local, cell-wise, definition of γ h : in this case it is chosen piecewise constant on each mesh cell K and a local counterpart of ( 9) can be solved to recover the value of γ h | K (see, e.g., [START_REF] Hansbo | Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method[END_REF][START_REF] Hansbo | s method for interface problems in computational mechanics[END_REF] in the context of FEM).

In case where θ = -1, and in the context of Lagrange FEM, provided that a condition such as ( 8) is satisfied, both stability and optimal accuracy in the energy norm can be established: see, e.g., [START_REF] Stenberg | On some techniques for approximating boundary conditions in the finite element method[END_REF][START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF][START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF][START_REF] Hansbo | s method for interface problems in computational mechanics[END_REF] for the complete mathematical analysis in the linear setting, and [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF][START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] for unilateral contact with Tresca Friction. Moreover standard scaling arguments show that the constant C TI (h) scales as O(h -1 ), irrespectively of the polynomial order of the FEM [START_REF] Thomée | Galerkin finite element methods for parabolic problems[END_REF]. In the skew-symmetric case θ = -1, the condition (8) can be relaxed, and it suffices to take γ 0 > 0, or even γ 0 = 0 for linear boundary/interface conditions ("penalty-free" variant). A complete mathematical analysis for (θ, γ 0 ) = (-1, 0) can be found in, e.g., [START_REF] Burman | A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions[END_REF] for Poisson's problem and in [START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF] for compressible and incompressible elasticity. The same results as above can be expected for the IGA setting though no numerical analysis has been provided to the best of our knowledge.

In the remaining part of this paper, we will focus on the skew-symmetric variant θ = -1, but numerical tests with the symmetric variant θ = 1 are also performed for comparison purposes.

Nitsche's formulation for linear boundary conditions

We first illustrate how the above framework can be applied to deal with some linear boundary conditions, thus we consider the case where Γ is a subset of ∂Ω. The unit normal vector on Γ pointing outward of Ω is denoted by n.

Dirichlet boundary conditions in small strain elasticity

Consider a linear elastic body described by a small strain constitutive model, that is subjected to body forces b, and surface loads t along a Neumann boundary Γ N ⊂ ∂Ω. The corresponding governing equations read

-∇ • σ(u) = b in Ω, σ(u)n = t on Γ N , ( 10 
)
where u is the unknown displacement field, ∇• is the divergence operator for vector-valued functions, and σ is the Cauchy stress tensor. For the sake of simplicity, we choose to model the elastic behavior using Hooke's law and we denote by E the Young's modulus and by ν the Poisson's ratio. The corresponding weak form reads

a(u , v) - Γ σ(u)n • v ds = L(v), (11) 
where

a(u , v) := Ω σ(u) : (v) dx, L(v) := Ω b • v dx + Γ N t • v ds, (12) 
and where (•) is the small strain tensor. The above formula [START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF] matches with the general Green formula [START_REF] Adam | Improved numerical integration for locking treatment in isogeometric structural elements. part II: Plates and shells[END_REF]. As illustrated Figure 2, we impose an essential boundary condition on Γ:

u = ū on Γ,
where ū is the prescribed displacement. With the choice

B(u) = u, τ (u) = σ(u)n, B = ū, S = R d ,
we obtain from (5) the following Nitsche-based formulation

Find u h ∈ V h : a(u h , v h ) - Γ σ(u h )n • v h ds -θ Γ u h • σ(v h )n ds + Γ γ h u h • v h ds (13) = L(v h ) -θ Γ ū • σ(v h )n ds + Γ γ h ū • v h ds, ∀ v h ∈ V h .
Setting θ = -1 and γ h = 0, the penalty-free variant [START_REF] Burman | A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions[END_REF][START_REF] Ruess | Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries[END_REF][START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF] is recovered.

3.3.2. Symmetry conditions for Kirchhoff-Love plate x y n t M xx M xy M xy M xx M yy M yx M nt M nn M yy M yx Figure 3:
The directions of bending moments in Cartesian coordinate system (x, y) and local system (n, t).

Thanks to the higher order continuity properties of NURBS basis functions, there is a regained interest to discretize thin-walled structures using Kirchhoff-Love theory. However due to the absence of rotational degrees of freedom, additional effort is needed to apply rotational boundary conditions. For this fourth-order problem, it is convenient to express the variables in local coordinates, as illustrated in Figure [START_REF] Antolin | A priori error for unilateral contact problems with lagrange multiplier and isogeometric analysis[END_REF]. Also, the corresponding weak form for Kirchhoff-Love plates reads

a(u, v) - Γ M nn (u)(-v ,n ) ds = L(v), ( 14 
)
where u is the deflection and v the corresponding virtual quantity, n and t indicate the outward normal direction and tangential direction respectively, M nn (u) is the normal component of the moment tensor (M (u) := -C : ∇ 2 u, where C is the constitutive fourth-order tensor) and v ,n := (∇v) • n. In this case the bilinear and linear form read (see, e.g., [START_REF] Harari | Embedded kinematic boundary conditions for thin plate bending by Nitsche's approach[END_REF] for a more general formulation)

a(u, v) := - Ω M (u) : (∇ 2 v) dx, L(v) := Ω f v dx,
with f a distributed load. The symmetry condition on the boundary Γ is formulated using the normal derivative of the mid-surface deflection u. More specifically, we impose:

-u ,n = θt on Γ,
where θt is a prescribed rotation. Recall that Nitsche's contributions use conjugate pairs: in this case these are the rotation and the corresponding bending moment. In order to form the Nitsche's contribution the rotation direction should be consistent with the direction of the corresponding bending moment (see Figure

With the choice

B(u) = -u ,n , τ (u) = M nn (u), B = θt , S = R,
the Nitsche-based formulation is derived from (5) (see as well [START_REF] Embar | Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements[END_REF][START_REF] Harari | Embedded kinematic boundary conditions for thin plate bending by Nitsche's approach[END_REF][START_REF] Schillinger | The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements[END_REF]):

Find u h ∈ V h : a(u h , v h ) - Γ M nn (u h ) -v h ,n ds -θ Γ -u h ,n M nn (v h ) ds + Γ γ h -u h ,n -v h ,n ds = L(v h ) -θ Γ θt M nn (v h ) ds + Γ γ h θt v h ,n ds, ∀ v h ∈ V h . (15) 
As previously, we recover a penalty-free method by setting θ = -1, γ h = 0.

Nitsche's formulation for interface conditions and patch coupling

Consider now an interface problem in which the domain Ω is decomposed into two sub-domains Ω m (see

Figure (4))
, where the superscript m = 1, 2 is used to mark the partitioned domain and the corresponding variables. The shared boundary between Ω 1 and Ω 2 is denoted by Γ, and n m is the unit normal along the interface Γ, pointing out of Ω m . We still consider elasticity equations in small strains, and search for a displacement field u = (u 1 , u 2 ) solution to

Ω 1 Γ n 2 Ω 2 n 1
-∇ • σ(u m ) = b m in Ω m , σ(u m )n m = tm on Γ m N , u m = 0 on Γ m D ,
If Dirichlet boundary conditions on Γ m D are non-homogeneous, they can be, for instance, treated as in Section 3.3.1 (but we omit this point to simplify notations). In addition, there holds the following interface conditions

u 1 -u 2 = 0 on Γ, σ(u 1 )n 1 + σ(u 2 )n 2 = 0 on Γ.
The first equation corresponds to the continuity of the displacement along the interface, while the second one is the action-reaction principle. Note that this situation corresponds both to interface problems (when, for instance, material properties are different in Ω 1 and Ω 2 ) and to patch coupling (where the interface between subdomains is artificial, as in [START_REF] Nguyen | Nitsche's method for two and three dimensional nurbs patch coupling[END_REF]).

Let us define the jump and average operators along the interface Γ

u := u 1 -u 2 , σ(u) := 1 2 (σ(u 1 )n 1 -σ(u 2 )n 2 ).
Let us introduce also

a(u , v) := 2 m=1 Ω m σ m (u m ) : m (v m ) dx, L(v) := 2 m=1 Ω m b m • v m dx + 2 m=1 Γ m N tm • v m ds. (16) 
Green formula for elasticity equations yields

a(u , v) - Γ (σ(u 1 )n 1 ) • v 1 ds - Γ (σ(u 2 )n 2 ) • v 2 ds = L(v).
Remark now that the action-reaction principle implies the following identity

σ(u 1 )n 1 = 1 2 σ(u 1 )n 1 + 1 2 σ(u 1 )n 1 = 1 2 σ(u 1 )n 1 - 1 2 σ(u 2 )n 2 = σ = -σ(u 2 )n 2 .
This allows to impose weakly the action-reaction principle, as an essential interface condition, and we obtain the appropriate Green formula in this context, as a particular form of (1):

a(u , v) - Γ σ(u) v ds = L(v). ( 17 
)
With the choice

B(u) = u , τ (u) = σ(u) , B = 0, S = R d , formulation (5) reads: 
Find

u h ∈ V h : a(u h , v h ) - Γ σ(u h ) v h ds -θ Γ u h σ(v h ) ds + Γ γ h u h v h ds = L(v h ), ∀ v h ∈ V h . (18) 
Once again we recover a penalty-free formulation with θ = -1, γ h = 0. Note as well that the same technique can be applied for patch coupling between other models, such as plates or rods, with the appropriate changes of notations [START_REF] Nguyen | s method method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling[END_REF].

Nitsche's formulation for frictionless contact conditions

In this section we get back to the general (non-linear) formulation (4) and illustrate it in the case of frictionless contact, following [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF]. In 3.5.1 we first present Signorini contact and biased (master-slave) contact, in which the contact conditions are imposed on the boundary of one unique elastic body, in the same fashion as in Section 3.3. For contact between two bodies (or multi-body contact and self-contact), it is more convenient to impose contact conditions on both contact surfaces, using an unbiased formalism, as in, e.g., [START_REF] Sauer | An unbiased computational contact formulation for 3d friction[END_REF][START_REF] Chouly | An unbiased Nitsche's approximation of the frictional contact between two elastic structures[END_REF][START_REF] Mlika | An unbiased Nitsche's formulation of large deformation frictional contact and self-contact[END_REF]. So we present in 3.5.2 an unbiased Nitsche's method, that can be derived in the same manner as presented in 3.4 for interface conditions.

We still consider elastic bodies undergoing small strain and governed by Hooke's law, so we keep the same notations as in the previous sections, especially 3.3.1. Consider a contact problem between an elastic body Ω := Ω 1 and a rigid support Ω 2 as depicted in Figure [START_REF] Auliac | Quadratic finite elements with non-matching grids for the unilateral boundary contact[END_REF]. Surfaces for potential contact are denoted by Γ := Γ 1 and Γ 2 . To formulate the non-penetration condition, the normalized vector is introduced

Biased frictionless contact conditions

Ω 1 Ω 2 x 1 x 2 Γ 2 n 1 σ n g Γ 1
n 1 := x 2 -x 1 ||x 2 -x 1 ||
, where x 1 and x 2 are two mapped points on the corresponding boundary of each body Ω 1 and Ω 2 , for instance

x 2 is the orthogonal projection of x 1 on Γ 2 . Then the gap function is defined as

g := (x 2 -x 1 ) • n 1 .
We deal with frictionless contact on Γ, so we impose weakly the essential condition σ t (u) = 0, where σ t denotes the tangential stress. We start from equations [START_REF] Beer | Isogeometric boundary element method for the simulation of underground excavations[END_REF] and we obtain the following Green formula, which is the counterpart of [START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF] for Dirichlet boundary conditions:

a(u , v) - Γ σ n (u)v n ds = L(v), (19) 
with the expression of a(•, •) and L(•) provided in [START_REF] Ben Belgacem | The mortar finite element method with Lagrange multipliers[END_REF], and where σ n (u) (resp. v n ) is the normal component of the Cauchy stress on the boundary (resp. the normal component of the virtual displacement). The Signorini-type contact conditions (Karush-Kuhn-Tucker conditions) are expressed as (see, e.g., [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF])

u n -g ≤ 0 on Γ, ( 20a 
)
σ n (u) ≤ 0 on Γ, (20b) 
σ n (u) (u n -g) = 0 on Γ. ( 20c 
)
Equation ( 20a) is the non-penetration condition, whereas Equation (20b) means the contact is non-adhesive, and Equation (20c) is the complementarity condition.

With the choice

B(u) = u n , τ (u) = σ n (u), B = g, S = R -, formulation (4) 

reads

Find

u h ∈ V h : A θ (u h , v h ) + Γ γ -1 h [P 1 (u h ) + γ h g] R -P θ (v h ) ds = L(v h ), ∀ v h ∈ V h , (21) 
which is exactly the formulation presented in [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF][START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF].

Remark 2. The contact formulation is not parameter-free, and the choice γ h = 0 ("penalty-free") is not permitted for contact. However see for instance [START_REF] Burman | The penalty free Nitsche method and nonconforming finite elements for the Signorini problem[END_REF] for a first attempt at deriving a penalty-free method for Signorini contact.

The adaptation of the above formulation [START_REF] Cazzani | An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams[END_REF] for biased (master-slave) contact between two elastic bodies (see, e.g., [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF]), reads:

B(u) = u sl n , τ (u) = σ sl n (u), B = g, S = R -,
where u sl n := (u 1 (x 1 ) -u 2 (x 2 )) • n 1 is the relative displacement written on the slave surface, and σ sl n (u)(=

σ n (u 1 )
) is the contact pressure on the slave surface. Also the bilinear form a(• , •) and the linear form L(•)

should incorporate the virtual work of both the master and slave elastic bodies, i.e. they should be defined as in [START_REF] Bernardi | A new nonconforming approach to domain decomposition: the mortar element method[END_REF] (see, e.g., [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] and references therein for more details).

Remark 3. The same methodology can be extended to other problems, involving for instance friction, dynamics and large deformations, please refer to [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] for a (non-restrictive) overview of possible extensions.

Remark 4. It is generally considered that the Sobolev regularity of contact problems is lower than

H 5 2 (Ω)
in two dimensions, due to weak singularities associated to transitions between binding and non-binding (see, e.g., [START_REF] Moussaoui | Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan[END_REF]). This means that, in general, FEM or IGA approximations of order higher than two do not improve the convergence rate in the energy norm, which remains limited to O(h

2 ) (see, e.g., [START_REF] Auliac | Quadratic finite elements with non-matching grids for the unilateral boundary contact[END_REF] in case of quadratic finite elements and, e.g., [START_REF] Antolin | A priori error for unilateral contact problems with lagrange multiplier and isogeometric analysis[END_REF] for IGA). Nevertheless, as discussed in [START_REF] Antolin | A priori error for unilateral contact problems with lagrange multiplier and isogeometric analysis[END_REF] the interest of the IGA approximation for contact is to obtain easily smooth gap functions g, which makes the numerical method more robust. As well, higher order approximations allow to recover smoother contact pressures. To perform better in terms of convergence, higher order approximations need to be combined with adaptive refinement, as in [START_REF] Dimitri | Isogeometric large deformation frictionless contact using t-splines[END_REF][START_REF] Dörsek | Adaptive hp-FEM for the contact problem with Tresca friction in linear elasticity: the primal-dual formulation and a posteriori error estimation[END_REF][START_REF] Lee | A posteriori error estimation of h-p finite element approximations of frictional contact problems[END_REF].

Unbiased frictionless contact

Consider now the same situation as in the previous section 3.5.1 and depicted Figure [START_REF] Auliac | Quadratic finite elements with non-matching grids for the unilateral boundary contact[END_REF], but this time with Ω 1 and Ω 2 that represent both two elastic bodies in frictionless contact. Assume also, for simplicity, that there is no initial gap (g = 0). We proceed first the same way as in Section 3.4 and obtain the Green formula [START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF]. We apply the frictionless condition, use the definition of σ(u) , and separate the contributions on the two sides Γ 1 and Γ 2 of the interface, so the Green formula ( 17) can be re-written equivalently as

a(u , v) - 1 2 Γ 1 σ 1 n (u 1 ) v 1 n ds - 1 2 Γ 2 σ 2 n (u 2 ) v 2 n ds = L(v), (22) 
with the notations

v 1 n := (v 1 -v 2 ) • n 1 and v 2 n := (v 2 -v 1 )
• n 2 . We now apply frictionless contact conditions on the product set Γ 1 × Γ 2 :

B(u) = ( u 1 n , u 2 n ), τ (u) = (σ n (u 1 ), σ n (u 2 )), B = (0, 0), S = R -× R -.
The following unbiased formulation for contact is obtained

Find u h ∈ V h : A θ (u h , v h ) + 1 2 2 m=1 Γ m (γ m h ) -1 [P m 1 (u h )] R -P m θ (v h ) ds = L(v h ), ∀ v h ∈ V h , (23) 
where

A θ (u h , v h ) := a(u h , v h ) - θ 2 2 m=1 Γ m (γ m h ) -1 σ n (u h,m )σ n (v h,m ) ds,
with a(•, •) defined as in [START_REF] Bernardi | A new nonconforming approach to domain decomposition: the mortar element method[END_REF], and, for m = 1, 2,

P m θ (v h ) := θσ n (v h,m ) -γ m h v h m n .
This is a special case of [START_REF] Chouly | An unbiased Nitsche's approximation of the frictional contact between two elastic structures[END_REF] (see [START_REF] Mlika | An unbiased Nitsche's formulation of large deformation frictional contact and self-contact[END_REF][START_REF] Chouly | An unbiased Nitsche's approximation of the frictional contact between two elastic structures[END_REF] for the detailed derivation in a more general setting). Remark that this formulation does not indeed differentiate between a master and a slave surface.

Numerical studies

To study the performance of the proposed skew-symmetric Nitsche's method, we present some numerical tests. We consider the IGA setting described in Section 2 with equal order of approximation in all directions, and carry out tests for different orders. To avoid additional errors due to numerical integration, unless otherwise specified, elements with C p-1 continuity are adopted for order p, and p + 1 Gauss quadrature points are used for each element (and the same applies for other directions). All the methods are implemented within the open source C++ IGA library Gismo 1 [START_REF] Juettler | Geometry + simulation modules: Implementing isogeometric analysis[END_REF].

We recall that the skew-symmetric Nitsche's method corresponds to the Nitsche parameter θ = -1. For most of the numerical tests, we compare the performance of this method to the symmetric variant, that corresponds to θ = 1, and that will be denominated standard Nitsche's method. In this case the stabilization parameter is determined as γ 0 = 2λ h,MAX where λ h,MAX is obtained from [START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF].

In order to evaluate the performances numerically, the relative errors on the displacement field u within the domain Ω is computed, in the L 2 -norm, denoted by • L 2 (Ω) , and in the energy norm, denoted by domain Ω of length L = 20 (resp. radius R = 10), with a Young's modulus E = 1000 and a Poisson's ratio

• E(Ω) (= Ω σ(•) : (•) dx).
ν = 0.25.
The patch test is traditionally adopted to verify the consistency of a newly proposed element. However, in the following, another type of patch test, i.e. the B-type patch test [START_REF] Zienkiewicz | 9-The patch test, reduced integration, and non-conforming elements[END_REF], is used to test the effectiveness of In order to fulfill the equilibrium strain condition, an exact solution of displacement field up to fourth order is set up as in [START_REF] Chen | A family of spline finite elements[END_REF]: where u x (resp. u y ) is the x-component (resp y-component) of u ref , truncated to the appropriate order. For example, if the patch test of order one is performed, then the exact solution is truncated as

     ux(x, y) = 1 4 + x + 3y -2x 2 -4xy + 5 2 y 2 -2x 3 + x 2 y -4xy 2 -
       u x (x, y) = 1 4 + x + 3y, u y (x, y) = 1 + 1 2 x + 2y.
The results of the rectangular patch tests are presented in Table 1, showing that the skew-symmetric Nitsche's method is able to pass the appropriate patch tests of order up to p for p = 2, 3, 4. The circular patch tests cannot be passed exactly, because Nitsche's method imposes the boundary constraints weakly.

However according to Figure [START_REF] Babuška | The finite element method with penalty[END_REF] the error in the energy norm is reduced with an optimal convergence rate Patch test order 1 2 3 4 

IGA p = q = 2 Y Y N N IGA p = q = 3 Y Y Y N IGA p = q = 4 Y Y Y Y

Number of elements per side

||u h -u ref || E(Ω) /||u ref || E(Ω)
Nitsche p = q = 2 2nd order patch test Nitsche p = q = 3 3rd order patch test Nitsche p = q = 4 4th order patch test 2.08 3.01 4.00 of order p, as predicted theoretically for IGA and a conformal setting (i.e. strong imposition of Dirichlet boundary conditions) [START_REF] Bazilevs | Isogeometric analysis: approximation, stability and error estimates for h-refined meshes[END_REF]. This is also in agreement with the observed behavior of skew-symmetric Nitsche's formulation with FEM: see for instance [START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF] where the same rates are obtained numerically for quadratic finite elements. As regarding the convergence in L 2 (Ω)-norm, a sub-optimality of order O(h

1 2
) is predicted by the theory, due to the lack of adjoint-consistency of skew-symmetric Nitsche's method, but this behavior seems difficult to observe in practical situations (see [START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF]).

Symmetry conditions for Kirchhoff plates

In this section we illustrate the effectiveness of Nitsche's formulation to handle rotational boundary conditions for Kirchhoff plates, as described in 3.3.2. Figure ( 8) describes a simply supported thin square plate of thickness t, made of an isotropic elastic material, and subjected to a distributed transverse load f . other two require symmetric constraints:

θt = 0 on y = L 2 and x = L 2 .
For a sinusoidally distributed transverse load f (x, y) = -10 sin(πx) sin(πy), the analytical solution of the deflection is given by [69]

u ref (x, y) = -10 4π 4 D sin(πx) sin(πy), in which D = Et 3 12(1-ν 2 )
is the flexural rigidity. We firstly implement the 'second row' strategy [START_REF] Kiendl | Isogeometric shell analysis with Kirchhoff-Love elements[END_REF] by penalty method for comparison. As illustrated in Figure [START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF], the idea of the 'second row' strategy consists in enforcing the displacements of the control points along the symmetric boundary and the neighboring row to be equal. This is achieved by adding a penalty coefficient W in the stiffness matrix2 . However in this way, the convergence results depend significantly on the penalty parameters, and the constraints of the four control points are penalized twice (see Figure (9)) 1 2 spring stiffness W A symmetric symmetric For instance, to enforce u 1 = u 2 , the system is modified as

   K 11 + W K 12 -W . . . K 21 -W K 22 + W . . . . . . . . . . . .       u 1 u 2 . . .    =    f 1 f 2 . . .   
where K is the stiffness matrix, W is the penalty coefficient. for the standard (symmetric) Nitsche's formulation is acquired by solving the generalized eigenvalue problem [START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF]. Remember that the Kirchhoff problem results in a fourth order system with respect to the deflection u, the strain consists of second order derivatives of u, thus the "energy norm" in this situation is equivalent to the H 2 semi-norm on the deflection, and the optimal convergence rate is expected to be p -1 in the energy norm for approximation order p 

Number of elements per side

||u h -u ref || E(Ω) /||u ref || E(Ω)
penalty = 1 × 10 10 , p = q = 2 penalty = 1 × 10 10 , p = q = 3 penalty = 1 × 10 13 , p = q = 2 penalty = 1 × 10 13 , p = q = 3 1 2 1.00

2.01

(a) The 'second row' strategy using penalty method 

Number of elements per side

||u h -u ref || E(Ω) /||u ref || E(Ω)
skew-symmetric Nitsche, p = q = 2 skew-symmetric Nitsche, p = q = 3 standard Nitsche, p = q = 2 standard Nitsche, p = q = 3 1 2 1.00 

(b) Nitsche's method

L = 1 t = 10 -1 f = -1 × 10 5
Figure 11: Plate model with four simply supported edges. On the left, one patch model is adopted as the control group. On the right, the plate is artificially broken into two conforming patches and the interface is coupled by Nitsche's method.

in which only the mid-surface of the plate has to be modeled [START_REF] Adam | Improved numerical integration for locking treatment in isogeometric structural elements. part II: Plates and shells[END_REF]. The deflection field approximated with (conforming) IGA using one patch of 1,024 elements of order p(= q) = 5 is adopted as the reference.

We compare symmetric and skew-symmetric variants of Nitsche's method, and for the symmetric variant, we still compute γ 0 by solving the generalized eigenvalue problem [START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF]. The convergence performance is plotted in Figure [START_REF] Ben Belgacem | The mortar finite element method with Lagrange multipliers[END_REF]. In this test the meshes of the left patch and the right patch are equal (for instance, for conforming patch the mesh is 8 × 8, then for two patch coupling the meshes are 4 × 8 and 4 × 8 for the left patch and right patch respectively), in order to evaluate the coupling influence on the approximation of the displacement. By artificially breaking the patch into two patches and couple them by Nitsche's method, the obtained errors is to some degrees different from the one patch case. Skew-symmetric and standard formulations perform very similarly, and as we refine the mesh, both converge with nearly optimal rates.

The condition numbers of the obtained stiffness matrix are given in Table [START_REF] Annavarapu | A robust Nitsches formulation for interface problems[END_REF]. From a general viewpoint, h-refinement of the mesh, which means that using more control points, increases the corresponding condition number. It is noticed that the condition number obtained from Nitsche's coupling is larger than one patch IGA. This is inferred to be related to the coupling effects. Specifically, the skew-symmetric Nitsche's formulation slightly increases the condition number compared to conforming IGA because there are more control points along the coupled interface, moreover the condition numbers are almost independent of the mesh size h and basis functions orders p and q. The standard Nitsche's formulation increases the condition number significantly, because of the large value of the stabilization parameter γ 0 .

The element-wise relative errors in L 2 norm for the displacement field are plotted in Figure [START_REF] Benson | Isogeometric shell analysis: the Reissner-Mindlin shell[END_REF] for specific choices of the meshes: for conforming IGA we use a 8 × 8 mesh as before, whereas for Nitsche's 

Number of elements per side

||u h -u ref || L 2 (Ω) /||u ref || L 2 (Ω)
1 patch, IGA 2 patches, standard Nitsche 2 patches, skew-symmetric Nitsche Table 2: Patch coupling of two plates: condition numbers (×10 10 ) of the obtained stiffness matrix. The standard Nitsche's formulation increases the condition number significantly.

Method

Number of elements per side p = q = 2 p = q = 3 p = q = 4 p = q = 5 

Patch coupling of an annular plate

In this subsection we show that for several curved interfaces that needed to be glued, Nitsche's formulation is accurate regarding the smoothness and errors of the coupled physical field. is still computed by solving the generalized eigenvalue problem [START_REF] Becker | A finite element method for domain decomposition with non-matching grids[END_REF]. The analytical solution for the transverse deflection can be found in [START_REF] Young | Roark's formulas for stress and strain[END_REF], and the largest deflection is w ref r=b = -0.10409.

The results obtained with standard and the skew-symmetric Nitsche's formulations are plotted in Figure [START_REF] Bernardi | A new nonconforming approach to domain decomposition: the mortar element method[END_REF] and Figure [START_REF] Boiveau | A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity[END_REF], respectively. Although the model is discretized with different meshes, the deflection field is quite smooth, implying that Nitsche's method is effective to glue curved patches with non-conforming meshes. Visible errors are noticed at patch 0 and patch 4, which makes sense because the mesh for patch 0 is relatively coarse. The errors of the largest deflection for the skew-symmetric and the standard Nitsche's formulations are -0.58% and -0.12%, respectively. showing that Nitsche's coupled model is almost as accurate as conforming IGA for lower frequencies, specifically n/N < 0.2 for p = 2 and n/N < 0.5 for p > 2. For higher frequencies, the skew-symmetric Nitsche's formulation leads to oscillations when p = 2, and the solutions from both standard and skew-symmetric Nitsche's formulations are oscillatory when p = 3, 4, 5.

At the very end of the spectra, the sudden jumps of the frequencies are known as the "outliers" [START_REF] Cottrell | Isogeometric analysis of structural vibrations[END_REF][START_REF] Cazzani | An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams[END_REF][START_REF] Horger | Improved approximation of eigenvalues in isogeometric methods for multi-patch geometries and neumann boundaries[END_REF], as shown in the enlarged figure on the right side of Figure [START_REF] Burman | A penalty-free nonsymmetric Nitsche-type method for the weak imposition of boundary conditions[END_REF]. These "outlier" frequencies are drawn in Figure [START_REF] Burman | The penalty free Nitsche method and nonconforming finite elements for the Signorini problem[END_REF], and the number of outliers is also counted. The "outlier" frequencies are captured near n/N = 1 by the conforming IGA, and the model coupled by Nitsche's formulation leads to a larger number of "outliers". The corresponding outlier eigenmodes of p = 2 are plotted in Figure [START_REF] Cazzani | An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams[END_REF] for the standard Nitsche's formulation and in Figure [START_REF] Chen | A family of spline finite elements[END_REF] for the skew-symmetric Nitsche's formulation. To achieve a better demonstration of the eigenmodes, we plot the longitudinal deformation along the vertical axis. For the skew-symmetric formulation, there exist 3 pairs of symmetrical eigenmodes, i.e. no. 510 and no. 511, no. 512 and no. 513, no. 514 and no. 515. These results imply that the action of coupling the interfaces by Nitsche's method increases the number of "outliers", and the eigenmodes correspond to these "outliers" are highly localized at these coupled interfaces. 

Frictionless contact

In the following examples only NURBS basis functions of order p = q = 2 are employed, since this approximation order is sufficient for the wide majority of contact problems (see Remark 4). Note that for contact problems the skew-symmetric Nitsche's formulation can not be parameter-free anymore (see Remark In this section we show that the proposed contact formulation described in Section 3.5 is able to predict the contact pressure distribution versus contact width to some degree of accuracy, and the skew-symmetric formulation is robust w.r.t. the choice of the stabilization parameter γ 0 . The Hertz contact assumes an elastic frictionless contact without adhesive forces between two cylinders with the same height, radii and elasticity moduli. To simplify, one cylinder (master body) is fixed, its material is set to be rigid, and its contact surface is flat. More precisely we study a contact problem as shown in Figure [START_REF] Chouly | An adaptation of Nitsche's method to the tresca friction problem[END_REF], which analytical solution was provided by Hertz [START_REF] Zavarise | A guide for engineers to computational contact mechanics[END_REF]. Thus we consider the setting 3.5.1 and a Signorini-type problem (with a rigid support). The boundary conditions are the following: the bottom of the disc is specified as the potential contact boundary, and the whole disc is subjected to a vertical gravity force g z . To prevent rigid body motions we fix the horizontal displacement at several control points along axis x = 0.

To begin with we draw the results for one case in Figure [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] as an illustration, using the skew-symmetric Nitsche's contact formulation with 8 × 8 elements. The displacement magnitude field shows that the rigid fixed plane has successfully prevented the disc from dropping down, and the contact surface of the elastic disc adjusts itself to match the rigid fixed plane, resulting in a straight contact surface. The pressure distribution with respect to the contact width is plotted and compared with the analytical solution in Figure [START_REF] Chouly | A Nitsche-based method for unilateral contact problems: numerical[END_REF], according to the fact that the stress on the contact surface reaches balance with the contact pressure. Both standard and skew-symmetric contact formulations are employed. The contact stresses in blue and red dots are calculated at quadrature points. Nitsche's method can properly predict the pressure distribution with respect to the contact width as the mesh is refined. analytical solution, the standard Nitsche's method, the skew-symmetric Nitsche's method. The contact stresses are calculated at quadrature points.

The number of semi-smooth Newton iterations for various values of the stabilization parameter γ 0 are displayed in Table (3 with the standard formulation, especially for finer meshes, because these small values of γ 0 can not ensure well-posedness anymore. These results are coherent with the behavior observed for FEM in [START_REF] Mlika | An unbiased Nitsche's formulation of large deformation frictional contact and self-contact[END_REF].

The convergence performance is studied, compared to a reference solution using 128 × 128 elements.

For γ ref 0 , the convergence curves for standard and skew-symmetric Nitsche's formulations are similar and we recover a rate of 1.41, close to what is expected for such a problem and a discretization of order 2 (see Remark 4 and [27]). For γ ref 0 /100000, as displayed in Figure [START_REF] Chouly | Nitsche-based finite element method for contact with Coulomb friction[END_REF], the convergence curves for standard Nitsche's method are perturbed and the convergence rate is lower. This is in agreement with the theory that standard Nitsche's formulation requires γ 0 large enough to ensure well-posedness and optimal convergence, see 3.2. Conversely, the convergence performance for skew-symmetric Nitsche's method is not affected by the choice of γ 0 . All this is in agreement with the theory and previous observations for FEM discretization, see, e.g., [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF].

Contact between two blocks

The goal of this section is to test whether the proposed formulation can properly impose the contact conditions through non-matching elements, and preliminarily investigate the performance of both biased and The upper block is subjected to a uniform pressure load f on its top. Both blocks have the same material properties. On the left and at the bottom of the structure, we impose a sliding condition, while on the right we impose no traction. Remark that the problem setup is not symmetric.

unbiased variants of the standard and skew-symmetric contact formulations. The corresponding framework is described in 3.5.1. The classical contact patch test proposed by Taylor [START_REF] Taylor | On a patch test for contact problems in two dimensions[END_REF] is used to examine the contact algorithm and investigate whether it transfers the constant contact pressure through the contact surface even for non-matching meshes [START_REF] De Lorenzis | Isogeometric collocation: Neumann boundary conditions and contact[END_REF]. In order to enforce a uniform pressure on the top surface easily, we adopt a modified patch test [START_REF] Crisfield | Re-visiting the contact patch test[END_REF][START_REF] El-Abbasi | Stability and patch test performance of contact discretizations and a new solution algorithm[END_REF] as shown in Figure [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF], where the material properties and the boundary conditions are provided. The resulting test setup is similar as in [START_REF] Wriggers | A formulation for frictionless contact problems using a weak form introduced by Nitsche[END_REF]. Because of the boundary conditions along both sides of the two blocks, this problem setup is not symmetric. The reference solution of this (plane stress) problem is given by u x (x, y) = 0.03x, u y (x, y) = -0.1y, σ xx (x, y) = 0, σ yy (x, y) = -100, σ xy (x, y) = 0, [START_REF] Chouly | An overview of recent results on Nitsche's method for contact problems[END_REF] where u x and u y are the components of the displacement u and where σ xx , σ xy and σ yy are the components of σ(u).

We use and compare both the biased Nitsche's contact formulation, which corresponds to subsection 3.5.1, and the unbiased one, which corresponds to subsection 3.5.2. Bi-quadratic basis functions are employed, and only γ 0 = 2λ h,MAX is used. Figure [START_REF] Chouly | An unbiased Nitsche's approximation of the frictional contact between two elastic structures[END_REF] and Figure [START_REF] Cottrell | Isogeometric analysis: toward integration of CAD and FEA[END_REF] demonstrate the distribution of the relative errors for biased and unbiased skew-symmetric formulation, respectively. For the biased formulation visible errors appear on the slave patch (the upper patch), while for the unbiased formulation they appear on both patches. We list the relative errors for u y and σ yy in Table [START_REF] Apostolatos | A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis[END_REF], showing that for both biased and unbiased versions the accuracy is comparable, which supports the conclusion in [START_REF] Mlika | An unbiased Nitsche's formulation of large deformation frictional contact and self-contact[END_REF]. contact formulation is in good agreement with the solution provided by ABAQUS. The relative errors of the maximum positive and negative vertical displacements are 0.196% and -3.042% respectively.

Conclusions

We presented a systematic way to derive Nitsche's formulations for different kind of boundary and interface conditions, and studied this technique in the context of isogeometric analysis (IGA) discretization.

We recover different variants of Nitsche's method, for different values of the Nitsche parameter θ, and then focused on the skew-symmetric variant, namely θ = -1. This variant is appealing because it does not need a stabilization term for linear boundary/interface conditions, and is robust w.r.t. the stabilization parameter for non-linear boundary/interface conditions. Several numerical studies were performed to illustrate the behavior of Nitsche's method, especially the skew-symmetric variant. From the numerical results we can state the observations below:

• The skew-symmetric formulation is effective to impose Dirichlet displacement boundary conditions in small strain elasticity as well as the symmetric rotational boundary conditions for Kirchhoff-Love plates. The skew-symmetric formulation is parameter-free in this context and achieves good accuracy: for the circular patch test (Figure [START_REF] Babuška | The finite element method with penalty[END_REF]) and the Kirchhoff plate (Figure [START_REF] Beer | Isogeometric boundary element method for the simulation of underground excavations[END_REF]) we observe the predicted optimal convergence rates in the energy norm.

• For patch coupling in statics, the skew-symmetric Nitsche's formulation is still parameter-free. Condition numbers for the global stiffness matrix are far better than for standard Nitsche, and only slightly above the conforming setting. They are also almost independent of the mesh size, and basis functions orders: see Table (2) in Section 4.2.1.

• For patch coupling in modal analysis, Nitsche's formulation increases the number of "outlier" frequencies. The reason is believed to be that Nitsche's formulation introduces additional highly localized eigenmodes, and the positions of these newly added eigenmodes just locate at the coupled interfaces.

• For contact problems in linear elasticity, the skew-symmetric Nitsche's formulation behaves more robustly than the standard Nische formulation regarding the value of the stabilization parameter. Nitsche's method can properly impose the contact conditions, and predict the pressure distribution with respect to the contact width. Moreover, it allows an unbiased variant that can be more appealing for self-body and multi-body contact.

Figure 1 :

 1 Figure 1: Boundary discretization: Lagrange basis function based FEM and NURBS basis functions based IGA.

Figure 2 :

 2 Figure 2: Dirichlet boundary condition: the displacement is equal to ū on Γ.

Figure 4 :

 4 Figure 4: Problem with decomposed continuum domain. Domain Ω is decomposed into two sub-domains Ω 1 and Ω 2 . The shared boundary is denoted by Γ along which the outward unit normals are denoted by n m , m = 1, 2.

Figure 5 :

 5 Figure 5: Contact problem setup, the contact slave surface is colored in red.

Figure 6 :

 6 Figure 6: Patch test problems.

  the skew-symmetric Nitsche's method in imposing Dirichlet boundary conditions. Firstly we set the exact solution as u ref , and impose the value ū = u ref | Γ D on the whole boundary Γ D := ∂Ω in (10). No external force is imposed: b = 0. Finally problem (5) is solved and the corresponding solution u h is compared against the exact solution u ref .

Figure 7 :

 7 Figure 7: Circular patch test: relative errors of displacement field in energy norm. Skew-symmetric Nitsche's method is used.

Figure ( 8 )

 8 Figure (8) provides also the values of the model parameters. Due to the symmetry of this problem, only one quarter of the geometry is modeled, where two of the model boundaries are simply supported, and the

Figure 8 :

 8 Figure 8: Square thin plate under distributed transverse load, only 1/4 of the plate (blue area) is modeled.

Figure 9 :

 9 Figure 9: The 'second row' strategy with penalty method to impose the symmetry boundary conditions. The four control points near point A are penalized twice.

4 . 2 .

 42 [START_REF] Embar | Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements[END_REF]. As indicated in Figure[START_REF] Beer | Isogeometric boundary element method for the simulation of underground excavations[END_REF] (b), for relative errors in energy norm the skew-symmetric Nitsche's method and the standard one are similar, and both standard and skew-symmetric Nitsche's formulations converge optimally with the expected orders associated to Kirchhoff plate theory. Linear interface conditions and patch coupling4.2.1. Patch coupling effects: staticsIn this section, we study whether additional effects are introduced into the accuracy, convergence performance and condition numbers when a patch coupling in statics is performed by Nitsche's method. The problem setup is shown in Figure[START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF]: in the left figure we present a plate model with thickness t = 10 -1 , Young's modulus E = 200 × 10 9 and Poisson's ratio ν = 0.3. The plate is subjected to uniform pressure f with four edges being simply supported. In the right figure the domain Ω is artificially broken into two identical patches Ω 1 and Ω 2 . It corresponds then to the setting described in 3.4 with the value of the parameters provided in Figure[START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF], and with an approximation using degenerate Reissner-Mindlin elements,

Figure 10 :

 10 Figure 10: Kirchhoff plate: relative errors of deflection field in energy norm. Symmetric rotational boundary conditions are imposed by the 'second row' strategy using penalty method (a), and Nitsche's method (b).

Figure 12 :

 12 Figure 12: Patch coupling of two plates: relative errors of displacement field in L 2 norm (a) and energy norm (b).

formulations a 4

 4 × 8 mesh in the left patch and a 5 × 5 mesh in the right patch. Generally the errors due to Nitsche's patch coupling, though acceptable, are larger than conforming IGA, and the results of the standard and skew-symmetric Nitsche's coupling are comparable.

Figure 13 :

 13 Figure 13: Patch coupling of two plates: element-wise relative errors of displacement field in L 2 norm ||u hu ref || L 2 (Ω e ) /||u ref || L 2 (Ω e ) . For conforming IGA the mesh is 8 × 8, for two patch coupling the meshes are 4 × 8 and 5 × 5.

Figure ( 14 )

 14 shows an annular plate subjected to a uniformly distributed load f , with thickness t = 10 -1 , Young's modulus E = 200 × 10 9 and Poisson's ratio ν = 0.3, The outer edge of the plate is fixed and inner edge is free. The model is divided into 8 patches with different meshes, then it leads to 4 curved interfaces and 8 straight interfaces as shown in Figure[START_REF] Bernardi | Asymptotic and numerical methods for partial differential equations with critical parameters[END_REF], thus this problem still corresponds to setting described in 3.4. We make use of an IGA approximation with bi-quadratic degenerated Reissner-Mindlin elements[START_REF] Adam | Improved numerical integration for locking treatment in isogeometric structural elements. part II: Plates and shells[END_REF]. The stabilization parameter γ 0

Figure 14 :

 14 Figure 14: An annular plate under uniformly distributed load f , the outer edge is fixed.

Figure 15 :Figure 16 :Figure 19 :

 151619 Figure 15: The annular plate is divided into 8 non-matching patches with 4 curved interfaces and 8 straight interfaces.

Figure 20 :

 20 Figure 20: Normalized outlier frequencies. The model coupled by Nitsche's leads to a larger number of "outliers". The corresponding outlier eigenmodes of p = 2 are plotted in Figure (21) for the standard Nitsche's formulation and in Figure (22) for the skew-symmetric Nitsche's formulation.

Figure 21 :

 21 Figure 21: "Outlier" (last 6 out of 518) eigenmodes obtained by the standard Nitsche's formulation with p = 2. The longitudinal deformations are plotted along the vertical axis. The eigenmodes that correspond to the "outlier" are highly localized at the coupled interfaces.

Figure 22 :

 22 Figure22: "Outlier" (last 9 out of 518) eigenmodes obtained by the skew-symmetric Nitsche's formulation with p = 2. The longitudinal deformations are plotted along the vertical axis. The eigenmodes that correspond to the "outlier" are highly localized at the coupled interfaces.
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 912 z = -1.3 × 10 6

Figure 23 :

 23 Figure 23: Hertz contact example, the contact between a linear elastic disc under a vertical gravity force and a rigid fixed plane. Values for the Young modulus E, Poisson ratio ν, radius r and gravity load gz are provided.

Figure 24 :

 24 Figure 24: Contour plot of displacement magnitude field obtained by the skew-symmetric Nitsche's method with 8 × 8 elements.

Figure 25 :

 25 Figure 25: Pressure distribution for Hertz contact. Horizontal axis: contact surface. Vertical axis: contact pressure p.analytical solution, the standard Nitsche's method, the skew-symmetric Nitsche's method. The contact stresses are calculated at quadrature points.

  ). We define γ ref 0 := 2λ h,MAX , and then study the influence of γ 0 by choosing γ 0 = γ ref 0 ,γ 0 = γ ref 0 /10000, and γ 0 = γ ref 0 /100000. For γ 0 = γ ref 0 the standard Nitsche's formulation and the skewsymmetric one behave similarly, and the number of iterations increases as the mesh is refined, since the problem becomes stiffer. For γ 0 = γ ref 0 /10000 and γ 0 = γ ref 0 /100000 the skew-symmetric formulation remains remarkably robust and converges faster than for γ 0 = γ ref 0 . Conversely, convergence is harder to achieve

100000 Figure 26 :

 10000026 Figure 26: Hertz contact: relative errors of displacement field in energy norm.

Figure 27 :

 27 Figure27: Two blocks with non-matching meshes. The upper block is subjected to a uniform pressure load f on its top. Both blocks have the same material properties. On the left and at the bottom of the structure, we impose a sliding condition, while on the right we impose no traction. Remark that the problem setup is not symmetric.

( a )

 a Relative error for uy (b) Relative error for σyy

Figure 28 :

 28 Figure 28: Contact between two blocks: relative errors for the displacement field uy and for the stress field σyy. The biased skew-symmetric Nitsche's method is employed with the mesh given in Figure (27).

Figure 30 :

 30 Figure 30: A 3D clip model with thickness t and a small gap g. Its initial control points and control net are also shown. The values of the physical parameters are provided.

Table 1 :

 1 The skew-symmetric Nitsche's formulation passes (Y) the rectangular patch tests.

Table 3 :

 3 Hertz contact: number of semi-smooth Newton iterations for various γ 0 .

	Method	γ 0 =	Mesh 4 × 4 Mesh 8 × 8 Mesh 16 × 16 Mesh 32 × 32 Mesh 64 × 64
	Standard	γ ref 0	8	13	21	41	52
	Nitsche	γ ref 0 /10000	6	9	11	> 100	> 100
		γ ref 0 /100000	7	22	9	52	45
	Skew-symmetric	γ ref 0	8	13	21	42	52
	Nitsche	γ ref 0 /10000	6	7	10	9	11
		γ ref 0 /100000	7	7	9	9	10

In this section we focus on the setting presented in 3.3.1 and illustrate the skew-symmetric Nitsche's formulation is able to pass the rectangular patch tests and has optimal convergence rate in energy norm for circular shaped patch tests. In Figure[START_REF] Babuška | The finite element method with Lagrangian multipliers[END_REF] we consider a linear elastic media in a square (resp. circular) 1 https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch09.d/IFEM.Ch09.pdf
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To study whether additional effects are introduced in modal analysis by Nitsche's coupling, the longitudinal vibration of a rod [START_REF] Cottrell | Isogeometric analysis of structural vibrations[END_REF] is considered in Figure [START_REF] Brivadis | Isogeometric mortar methods[END_REF]. On the right side of the figure, the rod model is broken into four identical patches and they are coupled by Nitsche's method. We adapt the framework presented in 3.4 to this simpler model and to a vibration setting. So we find u : (0, 1) → R and ω 2 > 0 that solve:

and we know the exact natural frequencies are

with N being the total number of DoFs.

The discrete spectra is normalized by N , and the normalized discrete spectra is given in Figure ( 19), Here we present a clip model to illustrate the skew-symmetric Nitsche's formulation for self-contact in 3D, see 3.5.2. The model in shown in Figure [START_REF] Cottrell | Isogeometric analysis of structural vibrations[END_REF]. It is subjected to a uniform surface traction f on its end.

The surface colored in red is defined as the potential contact surface, the gap between the contact surface is g = 0.01. The control mesh in 3D is also shown below, from which it is noticed that the contact surface is actually the top-surface itself, thus this is a top-surface to top-surface self-contact problem. Once again we adopt quadratic NURBS basis functions for the model and for the displacement field as well, and use 3 quadrature points for each element boundary along the contact surface. The value of γ 0 = 2λ h,MAX comes from the generalized eigenvalue problem (Eq. ( 9)).

The contour plot of the vertical displacement field u z is shown in Figure [START_REF] Crisfield | Re-visiting the contact patch test[END_REF]. When the iterative solving starts, the contact surface is penetrated, the largest vertical displacement is u z = -0.09413 while the contact gap is g = 0.01, see