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Abstract

A simple skew-symmetric Nitsche’s formulation is introduced into the framework of isogeometric analysis

(IGA) to deal with various problems in small strain elasticity: essential boundary conditions, symmetry

conditions for Kirchhoff plates, patch coupling in statics and in modal analysis as well as Signorini contact

conditions. For linear boundary or interface conditions, the skew-symmetric formulation is parameter-free.

For contact conditions, it remains stable and accurate for a wide range of the stabilization parameter.

Several numerical tests are performed to illustrate its accuracy, stability and convergence performance. We

investigate particularly the effects introduced by Nitsche’s coupling, including the convergence performance

and condition numbers in statics as well as the extra “outlier” frequencies and corresponding eigenmodes in

structural dynamics. We present the Hertz test, the block test, and a 3D self-contact example showing that

the skew-symmetric Nitsche’s formulation is a suitable approach to simulate contact problems in IGA.
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1. Introduction

The key concept in isogeometric analysis (IGA) [50] consists in using non-uniform rational B-splines

(NURBS) as basis functions to approximate both the geometry and the unknown physical fields. The

mathematical foundations of IGA are developed in [11], and a recent overview is given in [63]. Contrary

to classical Lagrange basis functions usually adopted in the finite element method (FEM), NURBS in IGA
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have the ability to exactly describe geometries: thus, no geometrical approximation error is introduced.

Moreover NURBS are widely adopted in commercial computer-aided design (CAD) packages, and this

CAD data can directly be used to construct approximations. In boundary element method (BEM), this

translates into the ability to solve directly from the field variables at the control points defining the geometry

[78, 77, 74, 59, 10, 60, 58, 68]. In FEM, a 3D parameterization of the volume is still necessary [87, 88], except

when solving shell-like problems [53, 13, 14, 38, 49]. The present paper focuses on two following issues. One

first issue in IGA is related to boundary conditions, especially essential boundary conditions. Indeed, since

NURBS are non-interpolatory, enforcing boundary conditions and constraints cannot be done as simply

as in Lagrange FEM: they require tackling difficulties which are similar to those encountered in meshless

methods [66] and implicit/immersed boundary methods [37, 46]. One second issue in IGA comes from

interface conditions and patch coupling: for complex geometries, patch-wise CAD modeling is necessary,

and transmission conditions need to be satisfied. The same also arises when gluing heterogeneous materials.

Various methods already exist to treat boundary or interface conditions weakly, that have been firstly

designed for instance in the FEM context. They are applicable, or have already been applied, for IGA.

The most widespread ones are the penalty method, mixed/mortar methods and Nitsche’s method. The

penalty method [7, 54] is simple but not consistent. Therefore the value of the penalty parameter has to be

chosen with great care to achieve the best balance between accuracy and stability. As a matter of fact, if

the penalty parameter is chosen too small the boundary or interface conditions are imposed inaccurately,

whereas if it is chosen much larger than needed the penalized problem becomes ill-conditioned. Mixed

methods for boundary conditions [6] introduce a Lagrange multiplier, which is an additional variable that

represents the boundary stress, and that allows to take into account weakly the essential boundary conditions

in a consistent way. This leads to a weak problem that has a saddle-point structure. For patch-coupling, the

original mortar method [15, 16] has been reformulated later as a mixed/dual Lagrange multiplier method

(see, e.g., [12, 84] for FEM and [18] for IGA). Mortar methods, when carefully designed, are consistent,

stable and optimally accurate (see, e.g., [84] in the FEM context or [18] in the IGA context). Moreover

the newly introduced Lagrange multipliers have a clear meaning: they are the stresses needed to enforce

the continuity of the displacements. Mortar techniques have been applied as well with success to contact

problems [81, 82, 33, 55, 75, 3]. However extra degrees of freedoms (DoFs) are introduced and an inf-sup

condition must be fulfilled in order to ensure stability and optimal convergence, for which care is needed to

build the dual space of Lagrange multipliers.

Nitsche’s method was originally proposed by J. Nitsche [67, 79] to impose weakly essential boundary
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conditions and more recently has regained popularity to deal with interface conditions with non-conforming

discretizations (see, e.g., [9, 44, 2]). Nowadays Nitsche’s method has also found a number of natural ap-

plications in IGA [40, 64, 4, 71, 42, 36]. Nitsche’s formulation makes use of an appropriate conjugate pair

such as displacement–force or rotation–moment, in such a way that the method remains both primal (no

extra DoFs) and consistent. By the way, there is no need to fulfill an inf-sup condition. However, standard

(symmetric) Nitsche’s method includes an extra term that penalizes the boundary/interface conditions and

allows to recover stability and optimal accuracy. For this purpose, this extra term makes use of an addi-

tional numerical parameter, the stabilization parameter, that needs to be fixed above a given threshold. For

simple problems and numerical methods, such as piecewise linear or quadratic Lagrange FEM, a direct and

accurate estimation of the aforementioned threshold can be effectuated (see, e.g., [45, 44] for a discussion

on this topic), but for more realistic problems and less standard numerical methods, this can be harder

to achieve. Indeed this threshold for the stabilization will depend upon many parameters, related to the

physical constants (Young’s modulus) and to the discretization (polynomial order of basis functions, shape

of the cells in the grid): see, e.g., [2, 51, 76]. In such situations an alternative to estimate this threshold

consists in solving a generalized eigenvalue problem along the target boundary/interface: see, e.g., [45, 44]

for FEM and [40, 64, 4] for IGA. Nevertheless, the difficulties associated to this issue can be circumvented

by using the penalty-free (skew-symmetric) variant of Nitsche’s method, such as in [19, 56, 17, 20, 73].

In this paper we present a simple and systematic procedure to derive, for various boundary and interface

conditions, a family of Nitsche’s formulations that have different symmetry properties and different degrees

of dependency on the stabilization parameter. This family is indexed by the Nitsche parameter θ. We

then focus on the variant known as the skew-symmetric Nitsche’s method, that corresponds to the value

θ = −1. This method can be parameter-free when dealing with linear boundary or interface conditions,

and reveals to be very robust with respect to the stabilization parameter for non-linear boundary conditions

such as contact. Let us mention that in the context of standard FEM, the skew-symmetric method has

been successfully applied to contact [25, 23, 27, 24]. Furthermore in IGA there is already one contribution

dealing with the skew-symmetric Nitsche’s method for enforcing Dirichlet boundary conditions and patch

coupling in the context of thin shell problems [43]. In this contribution we perform numerical experiments

for different situations, particularly we study how Nitsche’s multi-patch coupling can affect the accuracy,

the convergence rates, and the condition numbers. Moreover, in modal analysis, literature [30, 21] shows

that some outlier frequencies appear due to the discretization of the continuous problem. This “outlier”

phenomenon is also captured in multi-patch cases using the mortar method [48]. Here we study this issue
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of the “outlier” frequencies and corresponding eigenmodes, in the context of Nitsche’s method. Finally to

our knowledge Nitsche’s method has never been applied in IGA for contact conditions, and we show how to

implement Nitsche’s formulation for contact problems, and how it performs in these cases.

The outline of this paper is as follows. In Section 2 the concept and notations of IGA are introduced,

the critical differences between Lagrange-based FEM and NURBS-based IGA are also explained. In Section

3 we introduce the Nitsche-based formulations for boundary/interface conditions, starting from an abstract

setting. In Section 4 various numerical tests are performed and we reach conclusions in Section 5.

2. Brief introduction to isogeometric analysis

Bivariate NURBS basis functions RA(ξ, η), (A = 1, · · · , nm) are often adopted in IGA to generate sur-

faces. They are constructed using appropriate weights wA and the tensor product of two sets of univariate

B-spline basis functions Ni,p(ξ), (i = 1, · · · , n) and Nj,q(η), (j = 1, · · · ,m), where p and q are orders of

the B-spline basis functions in directions ξ and η respectively. One set of B-spline basis functions can be

calculated from one given knot vector recursively [29]. By the help of NURBS basis functions, the desired

surface is represented as the set Ω of points

x(ξ, η) =

nm∑
A=1

RA(ξ, η)xA,

where xA(x, y, z) denote positions of the control points. Following the “iso” concept, any (discrete) physical

field uh defined on the surface (domain) Ω is represented using the same set of NURBS basis functions as

uh(ξ, η) =

nm∑
A=1

RA(ξ, η) uA,

where uA are the control point variables, as well as the degrees of freedom associated to uh. In the following

we will denote by Vh the finite dimensional space of such discrete fields uh constructed using IGA (see,

e.g., [11] for the detailed construction of such a space). The notation h will stand for the size of the cells

associated to such a discretization. Note that no essential boundary or interface conditions are prescribed

in the definition of Vh. According to [86] the spline spaces used for the geometry and the physical field can

be chosen and adapted independently, which is known as the Geometry-Independent Field approximaTion

(GIFT) and brings more flexibility in the field approximation when preserving geometric exactness and tight

CAD integration. However the present research is restricted to IGA.
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In Figure (1) some differences between FEM and IGA are illustrated. Consider a contact problem in the

left of the figure, and for simplicity we just consider the discretization of a portion of the boundaries that

are going into contact. For Lagrange basis function based FEM, discrete errors are introduced by the FEM

meshes. For NURBS basis functions based IGA, the curved domain is parametrized exactly. The NURBS

basis functions of order p allow to represent fields up to continuity Cp−1, however (most) control points that

define the boundary/interface are not interpolated, which is owing to the corresponding non-interpolating

basis functions. This brings difficulties in directly manipulating the control variables attached to these

control points when dealing with boundary and interface conditions. In the next section we are going to

introduce Nitsche’s formulation to impose various boundary/interface conditions weakly.

IGA: control points and control nets

FEM: nodes and meshes

Figure 1: Boundary discretization: Lagrange basis function based FEM and NURBS basis functions based IGA.

3. Nitsche’s formulation for boundary/interface conditions

We first present Nitsche’s method within an abstract setting, and then show how this framework can

be applied to recover various well-known Nitsche-based discretizations, for a wide range of problems in

computational mechanics. Note that for linear boundary and interface conditions, discretized with finite

elements, a general presentation can be found in, e.g., [79, 9, 44]. We will consider a whole family of Nitsche’s

methods indexed by a real value, that we will call the Nitsche parameter θ ∈ R, and we will pay particular

attention to the skew-symmetric variant, i.e. to the case θ = −1.

3.1. Abstract setting

Consider the domain Ω as the open set associated to the surface Ω defined in previous Section 2. We will

denote by Γ either a portion of the boundary of Ω or an interface that subdivides Ω into two subdomains.
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Our aim is to compute a field u : Ω → Rd (d ≥ 1), for instance a displacement field, that is a solution to

a given set of partial differential equations with prescribed boundary/interface conditions. To simplify the

presentation we consider a linear partial differential equation (but not necessarily linear boundary or interface

conditions). We will denote by v an arbitrary test function, that can represent the virtual displacement.

Two main ingredients are necessary to build a Nitsche-based formulation.

The first ingredient is a Green formula (inspired by Theorem 5.8 in [54]), that allows to rewrite weakly

the partial differential equation satisfied by u, and that we provide below in an abstract setting:

Find u ∈ V : a(u,v)− 〈τ (u),B(v)〉Γ = L(v), ∀v ∈ V, (1)

where V is a functional space of admissible fields, a(· , ·) is a bilinear form (the internal work), 〈· , ·〉Γ is an

appropriate duality product for functions on Γ (the boundary/interface work), and L(·) a linear form (the

work of external loads). The linear operator B is a trace-like operator: for instance B(v) can be the value

of v on Γ, or of its normal component if v is a vector field. The dual quantity τ (u), where τ is a flux-like

operator, is to be defined for each situation. It is generaly related to the boundary/interface stress, if u is

a displacement (generalized stress vector in elasticity). We can call τ (u) and B(v) a conjugate pair. We

suppose that both τ (u) and B(v) can be represented at almost every point of the boundary as vectors of

dimension k (1 ≤ k ≤ d):

τ (u) : Γ→ Rk, B(v) : Γ→ Rk.

The second ingredient is a reformulation of the boundary/interface conditions as follows:

τ (u) =
[
τ (u)− γ(B(u)− B̄)

]
S
. (2)

In the above formula, B̄ is a known, prescribed, quantity associated to the trace. The notation [·]S stands

for the projection onto S, a closed subset of Rk of admissible values. The set S can depend on u in some

situations (S = S(u)), for instance in the case of Coulomb friction [24, 26, 70], but we omit this dependence

to simplify our notations. For simple problems, as those studied in this paper, S is generally a closed convex

set, a closed convex cone, or a subspace of Rk. Finally γ is an arbitrary positive and one-to-one Schur

operator (interface or boundary stiffness), that transforms a trace into a flux.

Nitsche-based discretizations can be obtained by following the steps we describe below in more detail

and which are mathematically valid only for sufficiently smooth fields u and v:
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1. Apply the following decomposition

B(v) = −γ−1 (θτ (v)− γB(v)) + θγ−1τ (v).

2. Insert it into (1), which yields

a(u ,v)− θ〈τ (u), γ−1τ (v)〉Γ + 〈τ (u), γ−1(θτ (v)− γB(v))〉Γ = L(v).

3. Inject condition (2) into the above formula, so as to impose it weakly

a(u ,v)− θ〈τ (u), γ−1τ (v)〉Γ + 〈[τ (u)− γ(B(u)− B̄)]S , γ
−1(θτ (v)− γB(v))〉Γ = L(v). (3)

The above formula may have no meaning at the continuous level. Nevertheless it becomes meaningful

once all the fields are discretized. For this purpose, consider Vh, a discrete space, built from any Galerkin

approximation, such as finite elements or IGA (see Section 2 above). For discrete fields the duality pairing

〈·, ·〉Γ becomes simply the scalar product in L2(Γ) , and we will denote by ‖·‖L2(Γ)(= 〈·, ·〉
1
2

Γ ) the corresponding

norm. Let us consider

γh : L2(Γ)→ L2(Γ)

a discrete Schur operator, positive and one-to-one. Consider uh (resp. vh) a discrete approximation to u

(resp. to v). To simplify the notations, we introduce also the modified discrete weak form

Aθ(u
h,vh) := a(uh,vh)− θ〈τ (uh), γ−1

h τ (vh)〉Γ,

and the linear operator

Pθ(v
h) := θτ (vh)− γhB(vh).

Then we obtain the Nitsche-based formulation below

Find uh ∈ Vh : Aθ(u
h,vh) + 〈[P1(uh) + γhB̄]S , γ

−1
h Pθ(v

h)〉Γ = L(vh), ∀vh ∈ Vh. (4)

Remark that the way the method is built ensures its consistency with respect to the partial differential

equation being solved.

An important particular case is that of linear boundary/interface conditions, which means that S = Rk
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in (2) and so the projection operator is merely the identity. Then (4) reads

Aθ(u
h,vh) + 〈P1(uh) + γhB̄, γ

−1
h Pθ(v

h)〉Γ = L(vh),

and, after re-ordering and simplifications we arrive at

a(uh,vh)− 〈τ (uh),B(vh)〉Γ − θ〈τ (vh),B(uh)〉Γ + 〈γhB(uh),B(vh)〉Γ

= L(vh)− 〈θτ (vh)− γhB(vh), B̄〉Γ. (5)

When θ = 1, we recover the well-known formulation presented for instance in [79, 9, 44].

Remark 1. The Nitsche parameter θ allows to select some variants of Nitsche’s formulation, that yield

different theoretical properties and different degrees of dependency w.r.t. the operator γh:

• for θ = 1, the standard symmetric Nitsche’s method [67] is obtained. If, a(·, ·) is symmetric, and under

appropriate assumptions on S (for instance if k = 1 and S = R, S = R− or S = R+), it can be derived

as the first order optimality condition of the energy functional [67, 24, 28]:

JN(uh) :=
1

2
A1(uh,uh)− L(uh) +

1

2
〈[P1(uh) + γhB̄]S , γ

−1
h [P1(uh) + γhB̄]S〉Γ.

Moreover a suitable choice for γh is necessary in order to recover well-posedness and optimal accuracy

(see Section 3.2 below);

• for θ = 0, some terms cancel out and we obtain the simple formulation

a(uh,vh)− 〈[P1(uh) + γhB̄]S ,B(vh)〉Γ = L(vh),

which is close to an augmented lagrangian formulation and easier to extend to the large strain frame-

work [61];

• for θ = −1, the skew-symmetric Nitsche’s method is obtained, see e.g., [41, 19, 17] for linear boundary

conditions and [27, 24] for contact conditions. Stability and optimal convergence are ensured whatever

γh. Note that for linear boundary/interface conditions, we can even choose γh = 0, resulting in the

8



parameter-free formulation:

a(uh,vh)− 〈τ (uh),B(vh)〉Γ + 〈τ (vh),B(uh)〉Γ = L(vh) + 〈τ (vh), B̄〉Γ. (6)

3.2. The discrete Schur operator, well-posedness and optimal accuracy

When θ 6= −1, the discrete Schur operator γh needs to be designed so as to preserve well-posedness of

Problem (4) as well as optimal accuracy. Let us first consider a linear setting, i.e. Problem (5) and θ = 1:

the key issue in the mathematical analysis (see, e.g., [83, 24]) is to ensure the Vh-ellipticity of the bilinear

form A1(· , ·) in the energy norm. To this purpose, we define

CTI(h) := sup
vh∈Vh

‖τ (vh)‖2L2(Γ)

a(vh,vh)
(7)

the trace-inverse constant associated to (5), that depends on the size h of the cells, but also on the other

features of the discrete space Vh, such as the polynomial order of basis functions. This constant depends also

upon the partial differential equation under consideration (for instance it depends on the Young’s modulus

in isotropic linear elasticity). Suppose that, for instance, γh is such that

‖γ−1
h ‖CTI(h) ≤ 1

2
(8)

with ‖γ−1
h ‖ = supτ∈L2(Γ),‖τ‖L2(Γ)=1 ‖γ−1

h τ‖L2(Γ). For any vh ∈ Vh, we can write

A1(vh,vh) ≥ a(vh,vh)− ‖γ−1
h ‖‖τ (vh)‖2L2(Γ)

≥
(
1− ‖γ−1

h ‖CTI(h)
)
a(vh,vh) ≥ 1

2
a(vh,vh).

The same kind of argument holds for the general formulation (4) and for any value of θ 6= −1 (see, e.g., [24]

in the case of small strain elasticity with contact). For simple situations, as considered in this paper, where

the coefficients of the partial differential equation are constant, and where the mesh is quasi-uniform, the

simplest choice is to define the Schur operator globally as

γh := γ0 Id
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where γ0 > 0 is a real parameter, the stabilization parameter, and Id is the identity in L2(Γ). Then condition

(8) is reformulated as

γ0 ≥ 2CTI(h).

As in [40, 64, 4] the constant CTI(h) can be estimated as the maximum eigenvalue λh,MAX associated to the

problem

Find (λh,uh) ∈ R×Vh : 〈τ (uh), τ (vh)〉Γ = λh a(uh,vh) ∀vh ∈ Vh, (9)

and then one can choose γ0 = 2λh,MAX. This is actually what we do in the numerical experiments of Section

4.

Of course, if more general situations need to be considered, such as more general (non quasi-uniform)

meshes or partial differential equations with spatially variable coefficients, it is much better to consider a

local, cell-wise, definition of γh: in this case it is chosen piecewise constant on each mesh cell K and a local

counterpart of (9) can be solved to recover the value of γh|K (see, e.g., [45, 44] in the context of FEM).

In case where θ 6= −1, and in the context of Lagrange FEM, provided that a condition such as (8) is

satisfied, both stability and optimal accuracy in the energy norm can be established: see, e.g., [79, 83, 9,

44] for the complete mathematical analysis in the linear setting, and [27, 24] for unilateral contact with

Tresca Friction. Moreover standard scaling arguments show that the constant CTI(h) scales as O(h−1),

irrespectively of the polynomial order of the FEM [83]. In the skew-symmetric case θ = −1, the condition

(8) can be relaxed, and it suffices to take γ0 > 0, or even γ0 = 0 for linear boundary/interface conditions

(“penalty-free” variant). A complete mathematical analysis for (θ, γ0) = (−1, 0) can be found in, e.g., [19]

for Poisson’s problem and in [17] for compressible and incompressible elasticity. The same results as above

can be expected for the IGA setting though no numerical analysis has been provided to the best of our

knowledge.

In the remaining part of this paper, we will focus on the skew-symmetric variant θ = −1, but numerical

tests with the symmetric variant θ = 1 are also performed for comparison purposes.

3.3. Nitsche’s formulation for linear boundary conditions

We first illustrate how the above framework can be applied to deal with some linear boundary conditions,

thus we consider the case where Γ is a subset of ∂Ω. The unit normal vector on Γ pointing outward of Ω is

denoted by n.
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3.3.1. Dirichlet boundary conditions in small strain elasticity

Consider a linear elastic body described by a small strain constitutive model, that is subjected to body

forces b, and surface loads t̄ along a Neumann boundary ΓN ⊂ ∂Ω. The corresponding governing equations

read

−∇ · σ(u) = b in Ω,

σ(u)n = t̄ on ΓN ,

(10)

where u is the unknown displacement field, ∇· is the divergence operator for vector-valued functions, and σ

is the Cauchy stress tensor. For the sake of simplicity, we choose to model the elastic behavior using Hooke’s

law and we denote by E the Young’s modulus and by ν the Poisson’s ratio. The corresponding weak form

reads

a(u ,v)−
∫

Γ

σ(u)n · v ds = L(v), (11)

where

a(u ,v) :=

∫
Ω

σ(u) : ε(v) dx, L(v) :=

∫
Ω

b · v dx +

∫
ΓN

t̄ · v ds, (12)

and where ε(·) is the small strain tensor. The above formula (11) matches with the general Green formula

(1). As illustrated Figure 2, we impose an essential boundary condition on Γ:

u = ū on Γ,

where ū is the prescribed displacement.

Ω
Γ

ū

n

Figure 2: Dirichlet boundary condition: the displacement is equal to ū on Γ.

With the choice

B(u) = u, τ (u) = σ(u)n, B̄ = ū, S = Rd,
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we obtain from (5) the following Nitsche-based formulation

Find uh ∈ Vh :

a(uh,vh)−
∫

Γ

(
σ(uh)n

)
· vh ds− θ

∫
Γ

uh ·
(
σ(vh)n

)
ds+

∫
Γ

γh uh · vh ds (13)

= L(vh)− θ
∫

Γ

ū ·
(
σ(vh)n

)
ds+

∫
Γ

γh ū · vh ds, ∀vh ∈ Vh.

Setting θ = −1 and γh = 0, the penalty-free variant [19, 71, 17] is recovered.

3.3.2. Symmetry conditions for Kirchhoff-Love plate

x

y

n
t

Mxx

Mxy

Mxy

Mxx

Myy

Myx

Mnt

Mnn

Myy

Myx

Figure 3: The directions of bending moments in Cartesian coordinate system (x,y) and local system (n, t).

Thanks to the higher order continuity properties of NURBS basis functions, there is a regained interest

to discretize thin-walled structures using Kirchhoff-Love theory. However due to the absence of rotational

degrees of freedom, additional effort is needed to apply rotational boundary conditions. For this fourth-order

problem, it is convenient to express the variables in local coordinates, as illustrated in Figure (3). Also, the

corresponding weak form for Kirchhoff-Love plates reads

a(u, v)−
∫

Γ

Mnn(u)(−v,n) ds = L(v), (14)

where u is the deflection and v the corresponding virtual quantity, n and t indicate the outward normal
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direction and tangential direction respectively, Mnn(u) is the normal component of the moment tensor

(M(u) := −C : ∇2u, where C is the constitutive fourth-order tensor) and v,n := (∇v) · n. In this case the

bilinear and linear form read (see, e.g., [47] for a more general formulation)

a(u, v) := −
∫

Ω

M(u) : (∇2v) dx, L(v) :=

∫
Ω

f v dx,

with f a distributed load. The symmetry condition on the boundary Γ is formulated using the normal

derivative of the mid-surface deflection u. More specifically, we impose:

−u,n = θ̄t on Γ,

where θ̄t is a prescribed rotation. Recall that Nitsche’s contributions use conjugate pairs: in this case these

are the rotation and the corresponding bending moment. In order to form the Nitsche’s contribution the

rotation direction should be consistent with the direction of the corresponding bending moment (see Figure

(3)).

With the choice

B(u) = −u,n, τ (u) = Mnn(u), B̄ = θ̄t, S = R,

the Nitsche-based formulation is derived from (5) (see as well [40, 47, 73]):

Find uh ∈ V h :

a(uh, vh)−
∫

Γ

Mnn(uh)
(
−vh,n

)
ds− θ

∫
Γ

(
−uh,n

)
Mnn(vh) ds+

∫
Γ

γh
(
−uh,n

) (
−vh,n

)
ds

= L(vh)− θ
∫

Γ

θ̄tMnn(vh) ds+

∫
Γ

γhθ̄t
(
vh,n
)
ds, ∀ vh ∈ V h.

(15)

As previously, we recover a penalty-free method by setting θ = −1, γh = 0.

3.4. Nitsche’s formulation for interface conditions and patch coupling

Consider now an interface problem in which the domain Ω is decomposed into two sub-domains Ωm (see

Figure (4)), where the superscript m = 1, 2 is used to mark the partitioned domain and the corresponding

variables. The shared boundary between Ω1 and Ω2 is denoted by Γ, and nm is the unit normal along the

interface Γ, pointing out of Ωm. We still consider elasticity equations in small strains, and search for a

13



Ω1 Γ

n2

Ω2

n1

Figure 4: Problem with decomposed continuum domain. Domain Ω is decomposed into two sub-domains Ω1 and Ω2. The
shared boundary is denoted by Γ along which the outward unit normals are denoted by nm, m = 1, 2.

displacement field u = (u1,u2) solution to

−∇ · σ(um) = bm in Ωm,

σ(um)nm = t̄
m

on ΓmN ,

um = 0 on ΓmD ,

If Dirichlet boundary conditions on ΓmD are non-homogeneous, they can be, for instance, treated as in

Section 3.3.1 (but we omit this point to simplify notations). In addition, there holds the following interface

conditions

u1 − u2 = 0 on Γ,

σ(u1)n1 + σ(u2)n2 = 0 on Γ.

The first equation corresponds to the continuity of the displacement along the interface, while the second

one is the action-reaction principle. Note that this situation corresponds both to interface problems (when,

for instance, material properties are different in Ω1 and Ω2) and to patch coupling (where the interface

between subdomains is artificial, as in [64]).

Let us define the jump and average operators along the interface Γ

JuK := u1 − u2,

〈σ(u)〉 :=
1

2
(σ(u1)n1 − σ(u2)n2).

14



Let us introduce also

a(u ,v) :=

2∑
m=1

∫
Ωm

σm(um) : εm (vm) dx,

L(v) :=

2∑
m=1

∫
Ωm

bm · vm dx +

2∑
m=1

∫
Γm
N

t̄
m · vm ds.

(16)

Green formula for elasticity equations yields

a(u ,v)−
∫

Γ

(σ(u1)n1) · v1 ds−
∫

Γ

(σ(u2)n2) · v2 ds = L(v).

Remark now that the action-reaction principle implies the following identity

σ(u1)n1 =
1

2
σ(u1)n1 +

1

2
σ(u1)n1 =

1

2
σ(u1)n1 − 1

2
σ(u2)n2 = 〈σ〉 = −σ(u2)n2.

This allows to impose weakly the action-reaction principle, as an essential interface condition, and we obtain

the appropriate Green formula in this context, as a particular form of (1):

a(u ,v)−
∫

Γ

〈σ(u)〉JvK ds = L(v). (17)

With the choice

B(u) = JuK, τ (u) = 〈σ(u)〉, B̄ = 0, S = Rd,

formulation (5) reads:

Find uh ∈ Vh :

a(uh,vh)−
∫

Γ

〈σ(uh)〉JvhK ds− θ
∫

Γ

JuhK〈σ(vh)〉 ds+

∫
Γ

γh JuhKJvhK ds = L(vh), ∀vh ∈ Vh.
(18)

Once again we recover a penalty-free formulation with θ = −1, γh = 0. Note as well that the same technique

can be applied for patch coupling between other models, such as plates or rods, with the appropriate changes

of notations [65].

3.5. Nitsche’s formulation for frictionless contact conditions

In this section we get back to the general (non-linear) formulation (4) and illustrate it in the case of

frictionless contact, following [24]. In 3.5.1 we first present Signorini contact and biased (master-slave)
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contact, in which the contact conditions are imposed on the boundary of one unique elastic body, in the

same fashion as in Section 3.3. For contact between two bodies (or multi-body contact and self-contact), it

is more convenient to impose contact conditions on both contact surfaces, using an unbiased formalism, as

in, e.g., [72, 28, 61]. So we present in 3.5.2 an unbiased Nitsche’s method, that can be derived in the same

manner as presented in 3.4 for interface conditions.

We still consider elastic bodies undergoing small strain and governed by Hooke’s law, so we keep the

same notations as in the previous sections, especially 3.3.1.

3.5.1. Biased frictionless contact conditions

Ω1

Ω2

x1

x2Γ2

n1

σn
g

Γ1

Figure 5: Contact problem setup, the contact slave surface is colored in red.

Consider a contact problem between an elastic body Ω := Ω1 and a rigid support Ω2 as depicted in

Figure (5). Surfaces for potential contact are denoted by Γ := Γ1 and Γ2. To formulate the non-penetration

condition, the normalized vector is introduced

n1 :=
x2 − x1

||x2 − x1||
,

where x1 and x2 are two mapped points on the corresponding boundary of each body Ω1 and Ω2, for instance

x2 is the orthogonal projection of x1 on Γ2. Then the gap function is defined as

g := (x2 − x1) · n1.

We deal with frictionless contact on Γ, so we impose weakly the essential condition σt(u) = 0, where σt

denotes the tangential stress. We start from equations (10) and we obtain the following Green formula,

16



which is the counterpart of (11) for Dirichlet boundary conditions:

a(u ,v)−
∫

Γ

σn(u)vn ds = L(v), (19)

with the expression of a(·, ·) and L(·) provided in (12), and where σn(u) (resp. vn) is the normal component

of the Cauchy stress on the boundary (resp. the normal component of the virtual displacement). The

Signorini-type contact conditions (Karush-Kuhn-Tucker conditions) are expressed as (see, e.g., [54])

un − g ≤ 0 on Γ, (20a)

σn(u) ≤ 0 on Γ, (20b)

σn(u) (un − g) = 0 on Γ. (20c)

Equation (20a) is the non-penetration condition, whereas Equation (20b) means the contact is non-adhesive,

and Equation (20c) is the complementarity condition.

With the choice

B(u) = un, τ (u) = σn(u), B̄ = g, S = R−,

formulation (4) reads

Find uh ∈ Vh : Aθ(u
h,vh) +

∫
Γ

γ−1
h [P1(uh) + γhg]R− Pθ(v

h) ds = L(vh), ∀vh ∈ Vh, (21)

which is exactly the formulation presented in [27, 24].

Remark 2. The contact formulation is not parameter-free, and the choice γh = 0 (“penalty-free”) is not

permitted for contact. However see for instance [20] for a first attempt at deriving a penalty-free method for

Signorini contact.

The adaptation of the above formulation (21) for biased (master-slave) contact between two elastic bodies

(see, e.g., [24]), reads:

B(u) = JuKsln , τ (u) = σsln (u), B̄ = g, S = R−,

where JuKsln := (u1(x1)−u2(x2)) ·n1 is the relative displacement written on the slave surface, and σsln (u)(=

σn(u1)) is the contact pressure on the slave surface. Also the bilinear form a(· , ·) and the linear form L(·)

should incorporate the virtual work of both the master and slave elastic bodies, i.e. they should be defined

17



as in (16) (see, e.g., [24] and references therein for more details).

Remark 3. The same methodology can be extended to other problems, involving for instance friction,

dynamics and large deformations, please refer to [24] for a (non-restrictive) overview of possible extensions.

Remark 4. It is generally considered that the Sobolev regularity of contact problems is lower than H
5
2 (Ω)

in two dimensions, due to weak singularities associated to transitions between binding and non-binding (see,

e.g., [62]). This means that, in general, FEM or IGA approximations of order higher than two do not

improve the convergence rate in the energy norm, which remains limited to O(h
3
2 ) (see, e.g., [5] in case of

quadratic finite elements and, e.g., [3] for IGA). Nevertheless, as discussed in [3] the interest of the IGA

approximation for contact is to obtain easily smooth gap functions g, which makes the numerical method

more robust. As well, higher order approximations allow to recover smoother contact pressures. To perform

better in terms of convergence, higher order approximations need to be combined with adaptive refinement,

as in [34, 35, 57].

3.5.2. Unbiased frictionless contact

Consider now the same situation as in the previous section 3.5.1 and depicted Figure (5), but this time

with Ω1 and Ω2 that represent both two elastic bodies in frictionless contact. Assume also, for simplicity,

that there is no initial gap (g = 0). We proceed first the same way as in Section 3.4 and obtain the Green

formula (17). We apply the frictionless condition, use the definition of 〈σ(u)〉, and separate the contributions

on the two sides Γ1 and Γ2 of the interface, so the Green formula (17) can be re-written equivalently as

a(u ,v)− 1

2

∫
Γ1

σ1
n(u1)JvK1

n ds−
1

2

∫
Γ2

σ2
n(u2)JvK2

n ds = L(v), (22)

with the notations JvK1
n := (v1 − v2) · n1 and JvK2

n := (v2 − v1) · n2. We now apply frictionless contact

conditions on the product set Γ1 × Γ2:

B(u) = (JuK1
n, JuK

2
n), τ (u) = (σn(u1), σn(u2)), B̄ = (0, 0), S = R− × R−.

The following unbiased formulation for contact is obtained

Find uh ∈ Vh : Aθ(u
h,vh) +

1

2

2∑
m=1

∫
Γm

(γmh )
−1

[Pm1 (uh)]R− Pmθ (vh) ds = L(vh), ∀vh ∈ Vh, (23)
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where

Aθ(u
h,vh) := a(uh,vh)− θ

2

2∑
m=1

∫
Γm

(γmh )
−1
σn(uh,m)σn(vh,m) ds,

with a(·, ·) defined as in (16), and, for m = 1, 2,

Pmθ (vh) := θσn(vh,m)− γmh JvhKmn .

This is a special case of [28] (see [61, 28] for the detailed derivation in a more general setting). Remark that

this formulation does not indeed differentiate between a master and a slave surface.

4. Numerical studies

To study the performance of the proposed skew-symmetric Nitsche’s method, we present some numerical

tests. We consider the IGA setting described in Section 2 with equal order of approximation in all directions,

and carry out tests for different orders. To avoid additional errors due to numerical integration, unless

otherwise specified, elements with Cp−1 continuity are adopted for order p, and p + 1 Gauss quadrature

points are used for each element (and the same applies for other directions). All the methods are implemented

within the open source C++ IGA library Gismo 1 [52].

We recall that the skew-symmetric Nitsche’s method corresponds to the Nitsche parameter θ = −1. For

most of the numerical tests, we compare the performance of this method to the symmetric variant, that

corresponds to θ = 1, and that will be denominated standard Nitsche’s method. In this case the stabilization

parameter is determined as γ0 = 2λh,MAX where λh,MAX is obtained from (9).

In order to evaluate the performances numerically, the relative errors on the displacement field u within

the domain Ω is computed, in the L2-norm, denoted by ‖ · ‖L2(Ω), and in the energy norm, denoted by

‖ · ‖E(Ω)(=
√∫

Ω
σ(·) : ε(·) dx).

4.1. Linear boundary conditions

4.1.1. Dirichlet boundary conditions patch test

In this section we focus on the setting presented in 3.3.1 and illustrate the skew-symmetric Nitsche’s

formulation is able to pass the rectangular patch tests and has optimal convergence rate in energy norm

for circular shaped patch tests. In Figure (6) we consider a linear elastic media in a square (resp. circular)

1https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart
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Figure 6: Patch test problems.

domain Ω of length L = 20 (resp. radius R = 10), with a Young’s modulus E = 1000 and a Poisson’s ratio

ν = 0.25.

The patch test is traditionally adopted to verify the consistency of a newly proposed element. However,

in the following, another type of patch test, i.e. the B-type patch test [91], is used to test the effectiveness of

the skew-symmetric Nitsche’s method in imposing Dirichlet boundary conditions. Firstly we set the exact

solution as uref, and impose the value ū = uref|ΓD
on the whole boundary ΓD := ∂Ω in (10). No external

force is imposed: b = 0. Finally problem (5) is solved and the corresponding solution uh is compared against

the exact solution uref. In order to fulfill the equilibrium strain condition, an exact solution of displacement

field up to fourth order is set up as in [22]:ux(x, y) =
1
4
+ x+ 3y − 2x2 − 4xy + 5

2
y2 − 2x3 + x2y − 4xy2 − 1

3
y3 − 7

32
x4 − 19

24
x3y + x2y2 + xy3 − 11

96
y4,

uy(x, y) = 1 + 1
2
x+ 2y − 2

3
x2 + 17

5
xy + 3

2
y2 + 1

3
x3 + 12x2y − xy2 − 2

3
y3 − 11

96
x4 + x3y + x2y2 − 19

24
xy3 − 7

32
y4,

where ux (resp. uy) is the x-component (resp y-component) of uref, truncated to the appropriate order. For

example, if the patch test of order one is performed, then the exact solution is truncated as


ux(x, y) = 1

4 + x+ 3y,

uy(x, y) = 1 + 1
2x+ 2y.

The results of the rectangular patch tests are presented in Table 1, showing that the skew-symmetric

Nitsche’s method is able to pass the appropriate patch tests of order up to p for p = 2, 3, 4. The circular

patch tests cannot be passed exactly, because Nitsche’s method imposes the boundary constraints weakly.

However according to Figure (7) the error in the energy norm is reduced with an optimal convergence rate
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Table 1: The skew-symmetric Nitsche’s formulation passes (Y) the rectangular patch tests.

Patch test order 1 2 3 4

IGA p = q = 2 Y Y N N
IGA p = q = 3 Y Y Y N
IGA p = q = 4 Y Y Y Y
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Figure 7: Circular patch test: relative errors of displacement field in energy norm. Skew-symmetric Nitsche’s method is used.

of order p, as predicted theoretically for IGA and a conformal setting (i.e. strong imposition of Dirichlet

boundary conditions) [8]. This is also in agreement with the observed behavior of skew-symmetric Nitsche’s

formulation with FEM: see for instance [17] where the same rates are obtained numerically for quadratic

finite elements. As regarding the convergence in L2(Ω)-norm, a sub-optimality of order O(h
1
2 ) is predicted

by the theory, due to the lack of adjoint-consistency of skew-symmetric Nitsche’s method, but this behavior

seems difficult to observe in practical situations (see [17]).

4.1.2. Symmetry conditions for Kirchhoff plates

In this section we illustrate the effectiveness of Nitsche’s formulation to handle rotational boundary

conditions for Kirchhoff plates, as described in 3.3.2. Figure (8) describes a simply supported thin square

plate of thickness t, made of an isotropic elastic material, and subjected to a distributed transverse load f .

Figure (8) provides also the values of the model parameters. Due to the symmetry of this problem, only

one quarter of the geometry is modeled, where two of the model boundaries are simply supported, and the
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Figure 8: Square thin plate under distributed transverse load, only 1/4 of the plate (blue area) is modeled.

other two require symmetric constraints:

θ̄t = 0 on y =
L

2
and x =

L

2
.

For a sinusoidally distributed transverse load

f(x, y) = −10 sin(πx) sin(πy),

the analytical solution of the deflection is given by [69]

uref(x, y) =
−10

4π4D
sin(πx) sin(πy),

in which D = Et3

12(1−ν2) is the flexural rigidity.

We firstly implement the ‘second row’ strategy [53] by penalty method for comparison. As illustrated in

Figure (9), the idea of the ‘second row’ strategy consists in enforcing the displacements of the control points

along the symmetric boundary and the neighboring row to be equal. This is achieved by adding a penalty

coefficient W in the stiffness matrix 2. However in this way, the convergence results depend significantly on

the penalty parameters, and the constraints of the four control points are penalized twice (see Figure (9))

2http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch09.d/IFEM.Ch09.pdf
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the system is modified asK11 +W K12 −W . . .
K21 −W K22 +W . . .

...
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u1

u2

...

 =

f1

f2
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where K is the stiffness matrix,
W is the penalty coefficient.

Figure 9: The ‘second row’ strategy with penalty method to impose the symmetry boundary conditions. The four control
points near point A are penalized twice.

near the corner point A, which makes the corner deflection even more sensitive to the penalty coefficient.

The results using different penalty parameters are shown in Figure (10) (a). It is concluded that a suitable

value of the penalty parameter W should be chosen carefully for different meshes and orders.

The results obtained by Nitsche’s method are shown in Figure (10) (b). The stabilization parameter γ0

for the standard (symmetric) Nitsche’s formulation is acquired by solving the generalized eigenvalue problem

(9). Remember that the Kirchhoff problem results in a fourth order system with respect to the deflection u,

the strain ε consists of second order derivatives of u, thus the ”energy norm” in this situation is equivalent to

the H2 semi-norm on the deflection, and the optimal convergence rate is expected to be p− 1 in the energy

norm for approximation order p [40]. As indicated in Figure (10) (b), for relative errors in energy norm the

skew-symmetric Nitsche’s method and the standard one are similar, and both standard and skew-symmetric

Nitsche’s formulations converge optimally with the expected orders associated to Kirchhoff plate theory.

4.2. Linear interface conditions and patch coupling

4.2.1. Patch coupling effects: statics

In this section, we study whether additional effects are introduced into the accuracy, convergence per-

formance and condition numbers when a patch coupling in statics is performed by Nitsche’s method. The

problem setup is shown in Figure (11): in the left figure we present a plate model with thickness t = 10−1,

Young’s modulus E = 200 × 109 and Poisson’s ratio ν = 0.3. The plate is subjected to uniform pressure

f with four edges being simply supported. In the right figure the domain Ω is artificially broken into two

identical patches Ω1 and Ω2. It corresponds then to the setting described in 3.4 with the value of the pa-

rameters provided in Figure (11), and with an approximation using degenerate Reissner-Mindlin elements,
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Figure 10: Kirchhoff plate: relative errors of deflection field in energy norm. Symmetric rotational boundary conditions are
imposed by the ‘second row’ strategy using penalty method (a), and Nitsche’s method (b).
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Figure 11: Plate model with four simply supported edges. On the left, one patch model is adopted as the control group. On
the right, the plate is artificially broken into two conforming patches and the interface is coupled by Nitsche’s method.

in which only the mid-surface of the plate has to be modeled [1]. The deflection field approximated with

(conforming) IGA using one patch of 1,024 elements of order p(= q) = 5 is adopted as the reference.

We compare symmetric and skew-symmetric variants of Nitsche’s method, and for the symmetric variant,

we still compute γ0 by solving the generalized eigenvalue problem (9). The convergence performance is

plotted in Figure (12). In this test the meshes of the left patch and the right patch are equal (for instance,

for conforming patch the mesh is 8× 8, then for two patch coupling the meshes are 4× 8 and 4× 8 for the

left patch and right patch respectively), in order to evaluate the coupling influence on the approximation of

the displacement. By artificially breaking the patch into two patches and couple them by Nitsche’s method,

the obtained errors is to some degrees different from the one patch case. Skew-symmetric and standard

formulations perform very similarly, and as we refine the mesh, both converge with nearly optimal rates.

The condition numbers of the obtained stiffness matrix are given in Table (2). From a general viewpoint,

h-refinement of the mesh, which means that using more control points, increases the corresponding condition

number. It is noticed that the condition number obtained from Nitsche’s coupling is larger than one patch

IGA. This is inferred to be related to the coupling effects. Specifically, the skew-symmetric Nitsche’s

formulation slightly increases the condition number compared to conforming IGA because there are more

control points along the coupled interface, moreover the condition numbers are almost independent of the

mesh size h and basis functions orders p and q. The standard Nitsche’s formulation increases the condition

number significantly, because of the large value of the stabilization parameter γ0.

The element-wise relative errors in L2 norm for the displacement field are plotted in Figure (13) for

specific choices of the meshes: for conforming IGA we use a 8 × 8 mesh as before, whereas for Nitsche’s
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Figure 12: Patch coupling of two plates: relative errors of displacement field in L2 norm (a) and energy norm (b).
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Table 2: Patch coupling of two plates: condition numbers (×1010) of the obtained stiffness matrix. The standard Nitsche’s
formulation increases the condition number significantly.

Method Number of elements per side p = q = 2 p = q = 3 p = q = 4 p = q = 5

Conforming 4 0.926 0.884 0.858 0.850
IGA 8 0.958 0.979 1.103 1.238

16 0.959 1.002 1.161 1.347
Standard 4 8.942 15.033 21.711 28.011
Nitsche 8 11.963 18.104 23.693 29.033

16 13.301 21.680 29.204 35.938
Skew-symmetric 4 1.919 1.340 1.285 1.256

Nitsche 8 2.118 2.055 2.039 2.035
16 2.174 2.487 2.723 2.887

formulations a 4 × 8 mesh in the left patch and a 5 × 5 mesh in the right patch. Generally the errors

due to Nitsche’s patch coupling, though acceptable, are larger than conforming IGA, and the results of the

standard and skew-symmetric Nitsche’s coupling are comparable.

(a) Conforming IGA (b) Standard Nitsche’s coupling (c) Skew-symmetric Nitsche’s coupling

Figure 13: Patch coupling of two plates: element-wise relative errors of displacement field in L2 norm ||uh −
uref||L2(Ωe)/||uref||L2(Ωe). For conforming IGA the mesh is 8× 8, for two patch coupling the meshes are 4× 8 and 5× 5.

4.2.2. Patch coupling of an annular plate

In this subsection we show that for several curved interfaces that needed to be glued, Nitsche’s formulation

is accurate regarding the smoothness and errors of the coupled physical field. Figure (14) shows an annular

plate subjected to a uniformly distributed load f , with thickness t = 10−1, Young’s modulus E = 200× 109

and Poisson’s ratio ν = 0.3, The outer edge of the plate is fixed and inner edge is free. The model is divided

into 8 patches with different meshes, then it leads to 4 curved interfaces and 8 straight interfaces as shown

in Figure (15), thus this problem still corresponds to setting described in 3.4. We make use of an IGA

approximation with bi-quadratic degenerated Reissner-Mindlin elements [1]. The stabilization parameter γ0

27



a
f

r

t

b

E = 200× 109

ν = 0.3

a = 7

b = 3

t = 10−1

f = 105

Figure 14: An annular plate under uniformly distributed load f , the outer edge is fixed.

is still computed by solving the generalized eigenvalue problem (9). The analytical solution for the transverse

deflection can be found in [89], and the largest deflection is wref
r=b = −0.10409.

The results obtained with standard and the skew-symmetric Nitsche’s formulations are plotted in Figure

(16) and Figure (17), respectively. Although the model is discretized with different meshes, the deflection

field is quite smooth, implying that Nitsche’s method is effective to glue curved patches with non-conforming

meshes. Visible errors are noticed at patch 0 and patch 4, which makes sense because the mesh for patch 0

is relatively coarse. The errors of the largest deflection for the skew-symmetric and the standard Nitsche’s

formulations are −0.58% and −0.12%, respectively.

28



patch 0 patch 1

patch 2patch 3

patch 4 patch 5

patch 6patch 7

Patch Mesh Control
no. ξ × η points
0 2× 2 4× 4
1 3× 3 5× 5
2 4× 4 6× 6
3 5× 5 7× 7
4 6× 6 8× 8
5 7× 7 9× 9
6 8× 8 10× 10
7 9× 9 11× 11

Figure 15: The annular plate is divided into 8 non-matching patches with 4 curved interfaces and 8 straight interfaces.

(a) Deflection field uh (b) Absolute error |uh − uref|

Figure 16: Results of the annular plate, using standard Nitsche’s formulation and the mesh given in Figure (15).
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(a) Deflection field uh (b) Absolute error |uh − uref|

Figure 17: Results of the annular plate, using skew-symmetric Nitsche’s formulation and the mesh given in Figure (15).

4.2.3. Patch coupling effects: modal analysis

one patch break the patch into 4 patches, and couple them by Nitsche

Figure 18: Rod model. On the left, one patch rod model is adopted for comparison. On the right, the rod is artificially broken
into four patches and the additional three interfaces are coupled by Nitsche’s method.

To study whether additional effects are introduced in modal analysis by Nitsche’s coupling, the longi-

tudinal vibration of a rod [30] is considered in Figure (18). On the right side of the figure, the rod model

is broken into four identical patches and they are coupled by Nitsche’s method. We adapt the framework

presented in 3.4 to this simpler model and to a vibration setting. So we find u : (0, 1)→ R and ω2 > 0 that

solve:

u,xx + ω2u = 0, on (0, 1),

u(0) = u(1) = 0,

and we know the exact natural frequencies are

ωn = nπ, n = 1, . . . , N,

with N being the total number of DoFs.

The discrete spectra is normalized by N , and the normalized discrete spectra is given in Figure (19),
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Figure 19: Normalized discrete spectra. As shown in the right figure, the sudden jump of the frequencies identify the “outliers”.
More details are shown in Figure (20).
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Figure 20: Normalized outlier frequencies. The model coupled by Nitsche’s leads to a larger number of “outliers”. The
corresponding outlier eigenmodes of p = 2 are plotted in Figure (21) for the standard Nitsche’s formulation and in Figure (22)
for the skew-symmetric Nitsche’s formulation.
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showing that Nitsche’s coupled model is almost as accurate as conforming IGA for lower frequencies, specif-

ically n/N < 0.2 for p = 2 and n/N < 0.5 for p > 2. For higher frequencies, the skew-symmetric Nitsche’s

formulation leads to oscillations when p = 2, and the solutions from both standard and skew-symmetric

Nitsche’s formulations are oscillatory when p = 3, 4, 5.

At the very end of the spectra, the sudden jumps of the frequencies are known as the “outliers” [30, 21, 48],

as shown in the enlarged figure on the right side of Figure (19). These “outlier” frequencies are drawn

in Figure (20), and the number of outliers is also counted. The “outlier” frequencies are captured near

n/N = 1 by the conforming IGA, and the model coupled by Nitsche’s formulation leads to a larger number

of “outliers”. The corresponding outlier eigenmodes of p = 2 are plotted in Figure (21) for the standard

Nitsche’s formulation and in Figure (22) for the skew-symmetric Nitsche’s formulation. To achieve a better

demonstration of the eigenmodes, we plot the longitudinal deformation along the vertical axis. For the

skew-symmetric formulation, there exist 3 pairs of symmetrical eigenmodes, i.e. no. 510 and no. 511, no.

512 and no. 513, no. 514 and no. 515. These results imply that the action of coupling the interfaces by

Nitsche’s method increases the number of “outliers”, and the eigenmodes correspond to these “outliers” are

highly localized at these coupled interfaces.
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Figure 21: “Outlier” (last 6 out of 518) eigenmodes obtained by the standard Nitsche’s formulation with p = 2. The longitudinal
deformations are plotted along the vertical axis. The eigenmodes that correspond to the “outlier” are highly localized at the
coupled interfaces.
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Figure 22: “Outlier” (last 9 out of 518) eigenmodes obtained by the skew-symmetric Nitsche’s formulation with p = 2. The
longitudinal deformations are plotted along the vertical axis. The eigenmodes that correspond to the “outlier” are highly
localized at the coupled interfaces.
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4.3. Frictionless contact

In the following examples only NURBS basis functions of order p = q = 2 are employed, since this

approximation order is sufficient for the wide majority of contact problems (see Remark 4). Note that for

contact problems the skew-symmetric Nitsche’s formulation can not be parameter-free anymore (see Remark

2).

4.3.1. Hertz contact

0-0.2 0.2

0

0.2

0.4

x

y

rigid fixed plane

E = 0.02× 109

ν = 0.1

r = 0.2

gz = −1.3× 106

Figure 23: Hertz contact example, the contact between a linear elastic disc under a vertical gravity force and a rigid fixed
plane. Values for the Young modulus E, Poisson ratio ν, radius r and gravity load gz are provided.

In this section we show that the proposed contact formulation described in Section 3.5 is able to predict

the contact pressure distribution versus contact width to some degree of accuracy, and the skew-symmetric

formulation is robust w.r.t. the choice of the stabilization parameter γ0. The Hertz contact assumes an

elastic frictionless contact without adhesive forces between two cylinders with the same height, radii and

elasticity moduli. To simplify, one cylinder (master body) is fixed, its material is set to be rigid, and its

contact surface is flat. More precisely we study a contact problem as shown in Figure (23), which analytical

solution was provided by Hertz [90]. Thus we consider the setting 3.5.1 and a Signorini-type problem (with

a rigid support). The boundary conditions are the following: the bottom of the disc is specified as the
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potential contact boundary, and the whole disc is subjected to a vertical gravity force gz. To prevent rigid

body motions we fix the horizontal displacement at several control points along axis x = 0.

To begin with we draw the results for one case in Figure (24) as an illustration, using the skew-symmetric

Nitsche’s contact formulation with 8 × 8 elements. The displacement magnitude field shows that the rigid

fixed plane has successfully prevented the disc from dropping down, and the contact surface of the elastic

disc adjusts itself to match the rigid fixed plane, resulting in a straight contact surface.

Figure 24: Contour plot of displacement magnitude field obtained by the skew-symmetric Nitsche’s method with 8×8 elements.

The pressure distribution with respect to the contact width is plotted and compared with the analytical

solution in Figure (25), according to the fact that the stress on the contact surface reaches balance with

the contact pressure. Both standard and skew-symmetric contact formulations are employed. The contact

stresses in blue and red dots are calculated at quadrature points. Nitsche’s method can properly predict the

pressure distribution with respect to the contact width as the mesh is refined.

Table 3: Hertz contact: number of semi-smooth Newton iterations for various γ0.

Method γ0 = Mesh 4× 4 Mesh 8× 8 Mesh 16× 16 Mesh 32× 32 Mesh 64× 64

Standard γref
0 8 13 21 41 52

Nitsche γref
0 /10000 6 9 11 > 100 > 100

γref
0 /100000 7 22 9 52 45

Skew-symmetric γref
0 8 13 21 42 52

Nitsche γref
0 /10000 6 7 10 9 11

γref
0 /100000 7 7 9 9 10
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Figure 25: Pressure distribution for Hertz contact. Horizontal axis: contact surface. Vertical axis: contact pressure p.
analytical solution, the standard Nitsche’s method, the skew-symmetric Nitsche’s method.

The contact stresses are calculated at quadrature points.

The number of semi-smooth Newton iterations for various values of the stabilization parameter γ0 are

displayed in Table (3). We define γref
0 := 2λh,MAX, and then study the influence of γ0 by choosing γ0 = γref

0 ,

γ0 = γref
0 /10000, and γ0 = γref

0 /100000. For γ0 = γref
0 the standard Nitsche’s formulation and the skew-

symmetric one behave similarly, and the number of iterations increases as the mesh is refined, since the

problem becomes stiffer. For γ0 = γref
0 /10000 and γ0 = γref

0 /100000 the skew-symmetric formulation remains

remarkably robust and converges faster than for γ0 = γref
0 . Conversely, convergence is harder to achieve

with the standard formulation, especially for finer meshes, because these small values of γ0 can not ensure

well-posedness anymore. These results are coherent with the behavior observed for FEM in [61].

The convergence performance is studied, compared to a reference solution using 128 × 128 elements.

For γref
0 , the convergence curves for standard and skew-symmetric Nitsche’s formulations are similar and

we recover a rate of 1.41, close to what is expected for such a problem and a discretization of order 2

(see Remark 4 and [27]). For γref
0 /100000, as displayed in Figure (26), the convergence curves for standard

Nitsche’s method are perturbed and the convergence rate is lower. This is in agreement with the theory that

standard Nitsche’s formulation requires γ0 large enough to ensure well-posedness and optimal convergence,

see 3.2. Conversely, the convergence performance for skew-symmetric Nitsche’s method is not affected by

the choice of γ0. All this is in agreement with the theory and previous observations for FEM discretization,

see, e.g., [27].

4.3.2. Contact between two blocks

The goal of this section is to test whether the proposed formulation can properly impose the contact

conditions through non-matching elements, and preliminarily investigate the performance of both biased and
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Figure 26: Hertz contact: relative errors of displacement field in energy norm.

0 1

0

0.5

1

x

y
f

E = 1000

ν = 0.3

f = −100

Figure 27: Two blocks with non-matching meshes. The upper block is subjected to a uniform pressure load f on its top. Both
blocks have the same material properties. On the left and at the bottom of the structure, we impose a sliding condition, while
on the right we impose no traction. Remark that the problem setup is not symmetric.

37



unbiased variants of the standard and skew-symmetric contact formulations. The corresponding framework

is described in 3.5.1. The classical contact patch test proposed by Taylor [80] is used to examine the contact

algorithm and investigate whether it transfers the constant contact pressure through the contact surface even

for non-matching meshes [32]. In order to enforce a uniform pressure on the top surface easily, we adopt

a modified patch test [31, 39] as shown in Figure (27), where the material properties and the boundary

conditions are provided. The resulting test setup is similar as in [85]. Because of the boundary conditions

along both sides of the two blocks, this problem setup is not symmetric. The reference solution of this (plane

stress) problem is given by

ux(x, y) = 0.03x, uy(x, y) = −0.1y,

σxx(x, y) = 0, σyy(x, y) = −100, σxy(x, y) = 0,

(24)

where ux and uy are the components of the displacement u and where σxx, σxy and σyy are the components

of σ(u).

We use and compare both the biased Nitsche’s contact formulation, which corresponds to subsection 3.5.1,

and the unbiased one, which corresponds to subsection 3.5.2. Bi-quadratic basis functions are employed,

and only γ0 = 2λh,MAX is used. Figure (28) and Figure (29) demonstrate the distribution of the relative

errors for biased and unbiased skew-symmetric formulation, respectively. For the biased formulation visible

errors appear on the slave patch (the upper patch), while for the unbiased formulation they appear on both

patches. We list the relative errors for uy and σyy in Table (4), showing that for both biased and unbiased

versions the accuracy is comparable, which supports the conclusion in [61].

(a) Relative error for uy (b) Relative error for σyy

Figure 28: Contact between two blocks: relative errors for the displacement field uy and for the stress field σyy . The biased
skew-symmetric Nitsche’s method is employed with the mesh given in Figure (27).
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(a) Relative error for uy (b) Relative error for σyy

Figure 29: Contact between two blocks: relative errors for the displacement field uy and for the stress field σyy . The unbiased
skew-symmetric Nitsche’s method is employed with the mesh given in Figure (27).

Table 4: Contact between two blocks: ranges of relative errors for uy and σyy .

Formulation type Nitsche’s formulation type Relative errors for uy Relative errors for σyy

Biased Standard -0.416% ∼ 0.311% -1.141% ∼ 1.518%
Biased Skew-symmetric -0.422% ∼ 0.306% -1.157% ∼ 1.542%

Unbiased Standard -0.279% ∼ 0.384% -2.816% ∼ 3.083%
Unbiased Skew-symmetric -0.171% ∼ 0.097% -0.551% ∼ 0.636%

4.3.3. Self-contact of a 3D clip

Here we present a clip model to illustrate the skew-symmetric Nitsche’s formulation for self-contact in

3D, see 3.5.2. The model in shown in Figure (30). It is subjected to a uniform surface traction f on its end.

The surface colored in red is defined as the potential contact surface, the gap between the contact surface

is g = 0.01. The control mesh in 3D is also shown below, from which it is noticed that the contact surface

is actually the top-surface itself, thus this is a top-surface to top-surface self-contact problem. Once again

we adopt quadratic NURBS basis functions for the model and for the displacement field as well, and use 3

quadrature points for each element boundary along the contact surface. The value of γ0 = 2λh,MAX comes

from the generalized eigenvalue problem (Eq. (9)).

The contour plot of the vertical displacement field uz is shown in Figure (31). When the iterative

solving starts, the contact surface is penetrated, the largest vertical displacement is uz = −0.09413 while

the contact gap is g = 0.01, see Figure (31) (a) (this is what the deformation would be if no contact were

taken into account). When semi-smooth Newton procedure has converged, the largest vertical displacement

becomes uz = −0.01024, see Figure (31) (b). In Figure (31) (c) we adopt the results obtained by ABAQUS

using a sufficient number of 3D solid elements: the vertical displacement distribution obtained by Nitsche’s
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Figure 30: A 3D clip model with thickness t and a small gap g. Its initial control points and control net are also shown. The
values of the physical parameters are provided.

contact formulation is in good agreement with the solution provided by ABAQUS. The relative errors of the

maximum positive and negative vertical displacements are 0.196% and −3.042% respectively.

5. Conclusions

We presented a systematic way to derive Nitsche’s formulations for different kind of boundary and

interface conditions, and studied this technique in the context of isogeometric analysis (IGA) discretization.

We recover different variants of Nitsche’s method, for different values of the Nitsche parameter θ, and then

focused on the skew-symmetric variant, namely θ = −1. This variant is appealing because it does not need a

stabilization term for linear boundary/interface conditions, and is robust w.r.t. the stabilization parameter

for non-linear boundary/interface conditions. Several numerical studies were performed to illustrate the

behavior of Nitsche’s method, especially the skew-symmetric variant. From the numerical results we can

state the observations below:

• The skew-symmetric formulation is effective to impose Dirichlet displacement boundary conditions in

small strain elasticity as well as the symmetric rotational boundary conditions for Kirchhoff-Love plates. The

skew-symmetric formulation is parameter-free in this context and achieves good accuracy: for the circular

patch test (Figure (7)) and the Kirchhoff plate (Figure (10)) we observe the predicted optimal convergence

rates in the energy norm.
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(a) Skew-symmetric Nitsche’s self-contact formulation: 1st iteration

(b) Skew-symmetric Nitsche’s self-contact formulation: converged solution

(c) ABAQUS reference solution. uMAX
z = 2.991× 10−4, uMIN

z = −1.022× 10−2.

Figure 31: Contour plot of vertical displacement field uz .
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• For patch coupling in statics, the skew-symmetric Nitsche’s formulation is still parameter-free. Condi-

tion numbers for the global stiffness matrix are far better than for standard Nitsche, and only slightly above

the conforming setting. They are also almost independent of the mesh size, and basis functions orders: see

Table (2) in Section 4.2.1.

• For patch coupling in modal analysis, Nitsche’s formulation increases the number of “outlier” fre-

quencies. The reason is believed to be that Nitsche’s formulation introduces additional highly localized

eigenmodes, and the positions of these newly added eigenmodes just locate at the coupled interfaces.

• For contact problems in linear elasticity, the skew-symmetric Nitsche’s formulation behaves more

robustly than the standard Nische formulation regarding the value of the stabilization parameter. Nitsche’s

method can properly impose the contact conditions, and predict the pressure distribution with respect to

the contact width. Moreover, it allows an unbiased variant that can be more appealing for self-body and

multi-body contact.
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[67] Nitsche, J. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen
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