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Abstract

A simple skew-symmetric Nitsche’s formulation is introduced into the framework of isogeometric analysis

(IGA) to deal with various problems in small strain elasticity: essential boundary conditions, symmetry

conditions for Kirchhoff plates, patch coupling in statics and in modal analysis as well as Signorini contact

conditions. For linear boundary or interface conditions, the method is parameter-free. For contact condi-

tions, skew-symmetric Nitsche remains stable and accurate for a wide range of the stabilization parameter.

Several numerical tests are performed to illustrate its accuracy, stability and convergence performance. We

investigate particularly the effects introduced by Nitsche’s coupling, including the convergence performance

and condition numbers in statics as well as the extra “outlier” frequencies and corresponding eigenmodes

in structural dynamics. We present the block test and Hertz test showing that skew-symmetric Nitsche’s

formulation is a suitable approach to simulate contact problems in IGA.

Keywords: isogeometric, Nitsche, parameter-free, contact, patch coupling, boundary condition.

1. Introduction

The key concept in isogeometric analysis (IGA) [1] consists in using non-uniform rational B-splines

(NURBS) as basis functions to approximate both the geometry and the unknown physical fields. The

mathematical foundations of IGA are developed in [2], and a recent overview is given in [3]. Contrary to

classical Lagrange basis functions usually adopted in the finite element method (FEM), NURBS in IGA

have the ability to exactly describe geometries: thus, no geometrical approximation error is introduced.
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Moreover NURBS are widely adopted in commercial computer-aided design (CAD) packages, and this

CAD data can directly be used to construct approximations. In boundary element method (BEM), this

translates into the ability to solve directly from the field variables at the control points defining the geometry

[4, 5, 6, 7, 8, 9, 10, 11]. In FEM, a 3D parameterization of the volume is still necessary [12, 13], except

when solving shell-like problems [14, 15, 16, 17, 18]. The present paper focuses on two following issues. One

first issue in IGA is related to boundary conditions, especially essential boundary conditions. Indeed, since

NURBS are non-interpolatory, enforcing boundary conditions and constraints cannot be done as simply as in

Lagrange FEM: they require tackling difficulties which are similar to those encountered in meshless methods

[19] and implicit/immersed boundary methods [20, 21]. One second issue in IGA comes from patch coupling

and interface conditions: for complex geometries, patch-wise CAD modeling is necessary, and transmission

conditions need to be satisfied. The same also arises when gluing heterogeneous materials.

Various methods already exist to treat boundary or interface conditions weakly, that have been firstly

designed for instance in the FEM context, and that are applicable, or have already been applied, for IGA.

The most widespread ones are the penalty method, mixed/mortar methods and Nitsche’s method. The

penalty method [22, 23] is simple but not consistent, and the value of the penalty parameter has to be

chosen with great care to achieve the best balance between accuracy and stability. As a matter of fact, if

the penalty parameter is chosen too small the boundary or interface conditions are imposed inaccurately,

whereas if it is chosen much larger than needed the penalized problem becomes ill-conditioned. Mixed

methods for boundary conditions [24] introduce a Lagrange multiplier, which is an additional variable that

represents the boundary stress, and that allows to take into account weakly the essential boundary condition

in a consistent way. This leads to a weak problem that has a saddle-point structure. For patch-coupling, the

original mortar method [25, 26] has been reformulated later as a mixed/dual Lagrange multiplier method

(see, e.g., [27, 28] for FEM and [29] for IGA). Mortar methods, when carefully designed, are consistent,

stable and optimally accurate. Moreover the newly introduced Lagrange multipliers have a clear meaning:

they are the stresses needed to enforce the continuity of the displacements. Mortar techniques have been

applied as well with success to contact problems [30, 31, 32, 33, 34, 35]. However extra degrees of freedoms

(DoFs) are introduced and an inf-sup condition must be fulfilled in order to ensure stability and optimal

convergence, for which care is needed to build the dual space of Lagrange multipliers.

Nitsche’s method was originally proposed by J. Nitsche [36, 37] to impose weakly essential boundary

conditions and more recently has regained popularity to deal with interface conditions with non-conforming

discretizations (see, e.g., [38, 39, 40]). Nowadays Nitsche’s method has also found a number of natural
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applications in IGA [41, 42, 43, 44, 45, 46]. Nitsche’s formulation makes use of appropriate conjugate pair

such as displacement–force or rotation–moment, in such a way that the method remains both primal (no

extra DoFs) and consistent. By the way, there is no need to fulfill an inf-sup condition. However, standard

(symmetric) Nitsche’s method includes an extra term that penalizes the boundary/interface conditions, and

which is necessary for stability and optimal accuracy. In this term an additional numerical parameter, the

stabilization parameter, needs to be fixed above a given threshold for this purpose. For simple problems

and numerical methods (such as Lagrange FEM of low-order), a direct estimation of the aforementioned

threshold can be effectuated, but for more realistic problems and less standard numerical methods, an

a priori knowledge of this threshold is harder to achieve. Then one common approach to estimate the

stabilization parameter is to solve a generalized eigenvalue problem along the target boundary/interface:

see, e.g., [41, 42, 43]. Of course, an alternative technique remains to estimate the stabilization parameter,

based on e.g. Young’s modulus, mesh sizes and other problem-dependent parameters [40, 47, 48]. This

difficulty can be circumvented by using the penalty-free (skew-symmetric) variant of Nitsche’s method, such

as in [49, 50, 51, 52, 53].

In this paper we present a simple and systematic procedure to derive, for various boundary and interface

conditions, a family of Nitsche’s formulations that have different symmetry properties and different degrees

of dependency. This family is indexed by the Nitsche parameter θ. We then focus on the variant known as

the skew-symmetric Nitsche method, that corresponds to the value θ = −1. This method can be parameter-

free when dealing with linear boundary or interface conditions, and reveals to be very robust with respect

to the Nitsche parameter for non-linear boundary conditions such as contact. Let us mention that in the

context of standard FEM, the skew-symmetric method has been successfully applied to contact [54, 55, 56].

Furthermore in IGA there is already one contribution on the skew-symmetric Nitsche method for enforcing

Dirichlet boundary conditions and patch coupling for thin shell problems [57]. In this contribution we

perform numerical experiments for different situations, particularly we study how Nitsche’s multi-patch

coupling can affect the accuracy, the convergence rates, and the condition numbers. Moreover, in modal

analysis, literature [58, 59] shows that some outlier frequencies appear due to the discretization of the

continuous problem. This “outlier” phenomenon is also captured in multi-patch cases using the mortar

method [60]. Here we study this issue of the “outlier” frequencies and corresponding eigenmodes, in the

context of Nitsche’s method. Finally to our knowledge Nitsche’s method has never been applied in IGA for

contact conditions, and we show how to implement Nitsche’s formulation for contact problems, and how it

performs in this case.
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The outline of this paper is as follows. In Section 2 the concept and notations of IGA are introduced,

the critical differences between Lagrange-based FEM and NURBS-based IGA are also explained. In Section

3 we introduce the Nitsche-based formulations for boundary/interface conditions, starting from an abstract

setting. In Section 4 various numerical tests are performed and we reach conclusions in Section 5.

2. Brief introduction to isogeometric analysis

Bivariate NURBS basis functions RA(ξ, η), (A = 1, · · · , nm) are often adopted in IGA to generate sur-

faces, they are constructed by weights wA and the tensor product of two sets of univariate B-spline basis

functions Ni,p(ξ), (i = 1, · · · , n) and Nj,q(η), (j = 1, · · · ,m), where p and q are orders of the B-spline basis

functions in direction ξ and η respectively. One set of B-spline basis functions can be calculated from one

given knot vector recursively [61]. By the help of NURBS basis functions, the desired surface is modeled as

x =

nm∑
A

RAxA,

where xA(x, y, z) denote positions of the control points. Following the “iso” concept, the physical field is

interpolated by the same set of NURBS basis functions as

u =

nm∑
A

RAuA,

where uA are the control point variables. According to [62] the spline spaces used for the geometry and the

physical field can be chosen and adapted independently, which is known as the Geometry-Independent Field

approximaTion (GIFT) and brings more flexibility in the field approximation when preserving geometric

exactness and tight CAD integration. However this research is restricted to IGA.

In Figure (1) some differences between Lagrange FEM and IGA are illustrated. On the left side the

curved model is discretized into four traditional finite elements, all these four elements use the same set of

Lagrange basis functions from the parent coordinate. Since the Lagrange basis functions are interpolated at

both ends, the FEM node are located at the geometry, and it is clear that discrete errors are introduced in

the FEM mesh. On the right side, the curved model is described exactly by only one isogeometric element

of order p = 2 with three control points. The adopted NURBS basis functions could have a desired higher

order derivatives up to Cp−1. It is noticed that except for the two control points on both ends, the middle

control point is not located at the model, which is owing to its corresponding non-interpolated basis function.

In more general cases, we may consider that the control points that define the boundary/interface are not
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interpolated, this brings difficulties in directly manipulating the control variables attached to these control

points when dealing with boundary and interface conditions. In the next section we are going to introduce

Nitsche’s formulation to impose various boundary/interface conditions weekly.

IGA NURBS basis funtionsFEM Lagrange basis functions

element node control net control point

Figure 1: 1D element discretization: Lagrange basis function based FEM (left) and NURBS basis functions based IGA (right).
In IGA due to the non-interpolated NURBS basis function (yellow), the middle control point is not located at the geometry.

3. Nitsche’s formulation for boundary/interface conditions

We present first Nitsche’s method within an abstract setting, and then apply this framework to recover

various well-known Nitsche-based discretizations, for a wide range of problems in computational mechanics.

Note that for linear boundary and interface conditions, discretized with finite elements, a general presentation

can be found in, e.g., [37, 38, 39]. We will consider a whole family of Nitsche’s methods indexed by a real

value, that we will call the Nitsche parameter θ ∈ R, and we will pay attention to the skew-symmetric

variant, recovered when θ = −1.

3.1. Abstract setting

Consider in the following we want to compute a field u : Ω → Rd (d ≥ 1), for instance a displacement,

that is solution to a given set of partial differential equations with prescribed boundary/interface conditions.

We will denote by v an arbitrary test function, that can represent the virtual displacement. We will denote
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by Γ either a portion of the boundary of Ω or an interface that subdivides Ω into two subdomains. Two

main ingredients are necessary to build a Nitsche-based formulation.

The first ingredient is a Green formula (inspired by Theorem 5.8 in [23]), that we provide below in an

abstract setting:

a(u,v)− 〈τ (u),Bv〉Γ = L(v), (1)

where a(·, ·) is a bilinear form (the internal work), 〈·, ·〉Γ is an appropriate duality product for functions on

Γ (the boundary/interface work), and L(·) a linear form (the work of external loads). The linear operator B

is a trace-like operator: for instance Bv can be the value of v on the boundary, or of its normal component

if v is a vector field. The dual quantity τ (u) is to be defined for each application, and is generaly related

to the boundary/interface stress (if u is a displacement). We can call τ (u) and Bv a conjugate pair. We

suppose that both τ (u) and Bv can be represented at almost every point of the boundary as vectors of

dimension k (1 ≤ k ≤ d), τ (u) : Γ→ Rk, Bv : Γ→ Rk.

The second ingredient is a reformulation of the boundary/interface conditions as follows:

τ (u) = [τ (u)− γ(Bu− B̄)]S , (2)

where γ > 0 is a stabilization parameter, B̄ is a known quantity, and [·]S is the projection onto S, a closed

convex set of Rk.

The path to follow to get a Nitsche-based discretization is then provided by application of the steps

described below (which are mathematical valid only for sufficiently smooth fields u and v):

1. Apply the following decomposition

Bv = − 1

γ
(θτ (v)− γBv) +

θ

γ
τ (v).

2. Insert it into (1), which yields

a(u,v)− θ

γ
〈τ (u), τ (v)〉Γ +

1

γ
〈τ (u), (θτ (v)− γBv)〉Γ = L(v).

3. Inject condition (2) into the above formula, so as to impose it weakly

a(u,v)− θ

γ
〈τ (u), τ (v)〉Γ +

1

γ
〈[τ (u)− γ(Bu− B̄)]S , (θτ (v)− γBv)〉Γ = L(v).
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The above formula may have no meaning at the continuous level, but becomes meaningful once all the fields

are discretized, and then we obtain the Nitsche-based formulation below

Aθ(u
h,vh) +

1

γ
〈[P1(uh) + γB̄]S , Pθ(v

h)〉Γ = L(vh), (3)

with the notations

Aθ(u
h,vh) := a(uh,vh)− θ

γ
〈τ (uh), τ (vh)〉Γ,

and

Pθ(v
h) := θτ (vh)− γBvh.

An important case to consider is when boundary/interface conditions are linear, which means that S = Rk

in (2) and so the projection operator is merely the identity. Then (3) reads

Aθ(u
h,vh) +

1

γ
〈P1(uh) + γB̄, Pθ(v

h)〉Γ = L(vh),

and, after re-ordering and simplifications we arrive at

a(uh,vh)− θ〈Buh, τ (vh)〉Γ − 〈τ (uh),Bvh〉Γ + γ〈Buh,Bvh〉Γ = L(vh)− 〈B̄, θτ (vh)− γBvh〉Γ. (4)

When θ = 1, we recover the well-known formulation presented for instance in [37, 38, 39].

Remark 1. The Nitsche parameter θ allows to select some variants of the Nitsche formulation, that yield

different theoretical properties and different degrees of dependency w.r.t. the stabilization parameter γ:

• for θ = 1, the standard symmetric Nitsche’s method is obtained, that can be derived from an energy

functional, and in which a suitable choice for γ is necessary in order to recover well-posedness and

optimal accuracy;

• for θ = 0, some terms are canceled and we obtain the simple formulation

a(uh,vh)− 〈[P1(uh) + γB̄]S ,Bvh〉Γ = L(vh),

that is prone to extensions for large elastic transformations [63];

• for θ = −1, the skew-symmetric Nitsche method is obtained, see e.g., [64, 49, 51] for linear boundary
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conditions and [56, 65] for contact conditions. Stability and optimal convergence are ensured whatever

is the value of γ > 0. It is highlighted that for linear boundary/interface conditions, the stability

parameter can even be chosen as γ = 0, resulting in a parameter-free formulation.

When Nitsche formulation is combined with finite elements, stability and optimal accuracy can be proved:

see, e.g., [37, 66, 38, 39] for the complete mathematical analysis in the linear setting, and [56] for contact.

For this purpose, the stabilization parameter γ should scale as h−1, where h is the size of the elements, and

be chosen above a given threshold Ch−1 > 0. The constant C in this threshold comes from the application of

a trace-inverse inequality that allows to bound locally the boundary/interface flux by the energy norm. This

constant C depends on 1) some physical constants such as the Young modulus and 2) the polynomial order

of the finite element space. In the skew-symmetric case θ = −1, the condition γ ≥ Ch−1 can be relaxed,

and it suffices to take γ > 0, or even γ = 0 for linear boundary/interface conditions (“penalty-free” variant).

A complete mathematical analysis for (θ, γ) = (−1, 0) can be found in, e.g., [49] for Poisson’s problem and

FEM setting. The same results as above can be expected for the IGA setting though no numerical analysis

has been provided to the best of our knowledge. See however [43] for an heuristics to set γ in the symmetric

case θ = 1.

In the remaining part of this paper, we will focus on the skew-symmetric variant θ = −1, but numerical

tests with the symmetric variant θ = 1 are also performed for comparison purposes.

3.2. Nitsche for boundary conditions

We illustrate how the above framework can be applied to deal with various boundary conditions, thus

the case Γ ⊂ ∂Ω. The unit normal vector on Γ pointing outward of Ω is denoted by n.

3.2.1. Dirichlet boundary conditions in small strain elasticity

Consider an elastic body, with the small strain assumption, that is is subjected to body forces b, and

surface loads t̄ along a Neumann boundary ΓN ⊂ ∂Ω. The corresponding governing equations read

−∇ · σ(u) = b in Ω,

σ(u)n = t̄ on ΓN ,

where ∇· is the divergence operator for vector-valued functions, and σ is the Cauchy stress tensor. The

corresponding weak form reads

a(u,v)−
∫

Γ

σ(u)n · v ds = L(v), (5)
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where

a(u,v) :=

∫
Ω

σ(u) : ε(v) dx, L(v) :=

∫
Ω

b · v dx +

∫
ΓN

t̄ · v ds, (6)

and where ε(·) is the small strain tensor. As a result we recover a particular case of (1). Suppose one needs

to impose in (5) an essential boundary condition on Γ as illustrated in Figure 2

u = ū on Γ.

Ω
Γ

ū

n

Figure 2: Dirichlet boundary condition: the displacement is equal to ū on Γ.

With the choice

Bu = u, τ (u) = σ(u)n, B̄ = ū, S = Rd,

we obtain from (4) the following Nitsche-based formulation

a(uh,vh)− θ
∫

Γ

uh ·
(
σ(vh)n

)
ds−

∫
Γ

(
σ(uh)n

)
· vh ds+ γ

∫
Γ

uh · vh ds (7)

= L(vh)− θ
∫

Γ

ū ·
(
σ(vh)n

)
ds+ γ

∫
Γ

ū · vh ds.

Setting θ = −1 and γ = 0, the penalty-free variant [49, 44, 51] is recovered.

3.2.2. Symmetry conditions for Kirchhoff-Love plate

Thanks to the higher order continuity properties of NURBS basis functions, there is a regained interest

to discretize thin-walled structures using Kirchhoff-Love theory. However due to the absence of rotational

DoFs, additional effort is needed to apply rotational boundary conditions. For this fourth-order problem, it

is convenient to express the boundary conditions in local coordinates, as illustrated in Figure (3). Also, the
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Figure 3: The directions of bending moments in Cartesian coordinate system (x, y) and local system (n, t).

corresponding weak form for Kirchhoff-Love plate reads

a(u, v)−
∫

Γ

Mnn(u)(−v,n) ds = L(v), (8)

where u is the deflection and v the corresponding virtual quantity, n and t indicate the outward normal

direction and tangential direction respectively, Mnn(u) is the normal component of the moment tensor

(M(u) = −C : ∇2u, where C is the constitutive fourth-order tensor) and v,n = (∇v) · n. In this case the

bilinear and linear form read (see, e.g., [67] for a more general formulation)

a(u, v) := −
∫

Ω

M(u) : (∇2v) dx, L(v) :=

∫
Ω

F v dx,

with F a distributed load. The symmetrical boundary condition is expressed by the normal derivative of

the mid-surface deflection u as

−u,n = θ̄t on Γ.

Recall that Nitsche’s contributions are made by conjugate pairs: in this case these are the rotation and the

corresponding bending moment. In order to form the Nitsche contribution the direction of rotation should

be consistent with the direction of corresponding bending moment (see Figure (3)).
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With the choice

Bu = −u,n, τ (u) = Mnn(u), B̄ = θ̄t, S = R,

the Nitsche-based formulation is derived from (4) (see as well [41, 67, 53]):

a(uh, vh)− θ
∫

Γ

(
−uh,n

)
Mnn(vh) ds−

∫
Γ

Mnn(uh)
(
−vh,n

)
ds+ γ

∫
Γ

(
−uh,n

) (
−vh,n

)
ds

= L(vh)− θ
∫

Γ

θ̄tMnn(vh) ds+ γ

∫
Γ

θ̄t
(
vh,n
)
ds.

(9)

As previously we recover a penalty-free method by setting θ = −1, γ = 0.

3.2.3. Biased frictionless contact conditions

Ω1

Ω2

x1

x2Γ2

n1

σn
g

Γ1

Figure 4: Contact problem setup, the contact slave surface is colored in red.

Consider a contact problem between an elastic body Ω := Ω1 and a rigid support Ω2 as depicted in

Figure (4). Surfaces for potential contact are denoted by Γ := Γ1 and Γ2. To formulate the non-penetration

condition, the normalized vector is introduced

n1 :=
x2 − x1

||x2 − x1||
,

where x1 and x2 are two mapped points on the corresponding boundary of each body Ω1 and Ω2, for instance

x2 is the orthogonal projection of x1 on Γ2. Then the gap function is defined as

g := (x2 − x1) · n1.
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We consider frictionless contact on Γ, which corresponds to the condition σt(u) = 0, with σt the tangential

stress, thus the formula (5) becomes

a(u,v)−
∫

Γ

σn(u)vn ds = L(v), (10)

with the expression of a(·, ·) and L(·) provided in (6), and where σn(u) (resp. vn) is the normal component

of the Cauchy stress on the boundary (resp. the normal component of the virtual displacement). The

Signorini-type contact conditions (Karush-Kuhn-Tucker conditions) are expressed as (see, e.g., [23])

un − g ≤ 0 on Γ, (11a)

σn(u) ≤ 0 on Γ, (11b)

σn(u) (un − g) = 0 on Γ. (11c)

Equation (11a) is the non-penetration condition, whereas Equation (11b) means the contact is non-adhesive,

and Equation (11c) is the complementarity condition.

With the choice

Bu = un, τ (u) = σn(u), B̄ = g, S = R−,

formulation (3) reads

Aθ(u
h,vh) +

1

γ

∫
Γ

[P1(uh) + γg]R− Pθ(v
h) ds = L(vh). (12)

Remark 2. The contact formulation is not parameter-free: for θ 6= −1 the value of γ should be sufficiently

large to ensure well-posedness and convergence [56, 68]. In our experience, γ = E/h is a suitable value. For

the skew-symmetric variant θ = −1, the condition γ > 0 suffices to ensure the same theoretical properties,

which is assessed numerically, see, e.g., [56]. Note however that the choice γ = 0 (“penalty-free”) is not

permitted for contact, and see for instance [52] for a first attempt at deriving a penalty-free method for

Signorini contact.

Remark 3. When γ is extremely large, the contact detection term [P1(uh) + γg]R− is dominated by the

displacement gap un − g, and the whole formulation behaves similarly to the penalty method. But one

advantage of Nitsche’s formulation is that when the current displacement gap is zero, the remaining contact

normal stress term σn is activated to enforce contact conditions. This means that penetration in the final
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configuration, after convergence, is not necessary, and is in practice of the same order as the discretization

scheme for the bulk equation.

The formulation (12) can be straightforwardly extended for biased (master-slave) contact between two

elastic bodies (see, e.g., [65]), with the following modifications

Bu = JuKsln , τ (u) = σsln (u), B̄ = g, S = R−,

where JuKsln := (u1(x1) − u2(x2)) · n1 is the relative displacement written on the slave surface, and σsln

is the contact pressure on the slave surface. Also the bilinear form a(·, ·) and the linear form L(·) should

incorporate the virtual works of both the master and slave elastic bodies (see, e.g., [65] and references therein

for details).

Remark 4. The same methodology can be extended to other problems, involving for instance friction,

dynamics and large deformations, please refer to [65] for a (non-restrictive) overview of possible extensions.

3.3. Nitsche for interface conditions

3.3.1. Interface conditions and patch coupling

Ω1 Γ

n2

Ω2

n1

Figure 5: Problem with decomposed continuum domain. Domain Ω is decomposed into two sub-domains Ω1 and Ω2. The
shared boundary is denoted by Γ along which the nm, m = 1, 2, stand for the outward unit normals.

Consider now an interface problem in which the domain Ω is decomposed into two sub-domains Ωm (see

Figure (5)), where the superscript m = 1, 2 is used to mark the partitioned domain and the corresponding

variables. The shared boundary between Ω1 and Ω2 is denoted by Γ, and nm is the unit normal along the

interface Γ, pointing out of Ωm. We still consider elasticity equations in small strains

−∇ · σm = bm in Ωm,
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with, in addition, the following interface conditions

u1 − u2 = 0 on Γ,

σ1n1 + σ2n2 = 0 on Γ.

The first equation corresponds to the continuity of the displacement along the interface, while the second

one is the action-reaction principle. Note that this situation corresponds both to interface problems (when,

for instance, material properties are different in Ω1 and Ω2) and to patch coupling (where the interface

between subdomains is artificial). The above equations are complemented by some essential and natural

conditions on the external boundary ∂Ω.

Let us define the jump and average operators along the interface Γ

JuK := u1 − u2,

〈σ(u)〉 :=
1

2
(σ1(u)n1 − σ2(u)n2).

Let us introduce also

a(u,v) :=

2∑
m=1

∫
Ωm

σm(um) : εm (vm) dx,

L(v) :=

2∑
m=1

∫
Ωm

bm · vm dx +

2∑
m=1

∫
Γm
N

t̄
m · vm ds.

Green formula for elasticity equations yields

a(u,v)−
∫

Γ

(σ1(u)n1) · v1 ds−
∫

Γ

(σ2(u)n2) · v2 ds = L(v).

Remark now that the action-reaction principle implies the following identity

σ1n1 =
1

2
σ1n1 +

1

2
σ1n1 =

1

2
σ1n1 − 1

2
σ2n2 = 〈σ〉 = −σ2n2.

It results that the appropriate Green formula in this context, which is the particular form of (1), reads

a(u,v)−
∫

Γ

〈σ(u)〉JvK ds = L(v). (13)
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With the choice

Bu = JuK, τ (u) = 〈σ(u)〉, B̄ = 0, S = Rd,

formulation (4) reads:

a(uh,vh)− θ
∫

Γ

JuK〈σ(v)〉 ds−
∫

Γ

〈σ(u)〉JvK ds+ γ

∫
Γ

JuKJvK ds = L(vh). (14)

Once again we recover a penalty-free formulation with θ = −1, γ = 0. Note as well that the same formulation

can be straightforwardly applied for patch coupling between plates or rods, with the appropriate changes of

notations.

3.3.2. Unbiased frictionless contact

Consider that Ω1 and Ω2 represent two elastic bodies in frictionless contact, with no initial gap (g = 0).

The Green formula (13) can be re-written equivalently

a(u,v)− 1

2

∫
Γ1

σ1
n(u1)JvK1

n ds−
1

2

∫
Γ2

σ2
n(u2)JvK2

n ds = L(v), (15)

with the notations JvK1
n := (v1 − v2) · n1 and JvK2

n := (v2 − v1) · n2. We now apply frictionless contact

conditions on each contact surface Γm, m = 1, 2, with

Bu = JuKmn , τ (u) = σmn (um), B̄ = 0, S = R−.

The following unbiased formulation for contact (see [63]) is obtained

Aθ(u
h,vh) +

1

2

2∑
m=1

∫
Γm

1

γ
[Pm1 (uh) + γg]R− Pmθ (vh) ds = L(vh). (16)

Note that this formulation does not differentiate between a master and a slave surface, and is particularly

suitable for multi-body contact and self-contact (see [63, 69] for details).

4. Numerical studies

To study the performance of the proposed skew-symmetric Nitsche method, we present some numerical

tests. To avoid the effects of quadrature strategies, unless otherwise specified, elements with Cp−1 continuity

are adopted for order p, and p+ 1 Gauss quadrature points are used in this direction for each element. All
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the methods are implemented by the help of the open source C++ IGA framework Gismo 1 [70].

4.1. Linear boundary conditions

4.1.1. Dirichlet boundary conditions patch test

ΓD

ΓD

ΓD ΓD

E = 1000

ν = 0.25

L = 20

x

y

O

L

L

(a) Rectangular patch

ΓD

ΓD

ΓD ΓDx

y

O

R
E = 1000

ν = 0.25

R = 10

(b) Circular patch

Figure 6: Patch test problems.

In this section we illustrate the skew-symmetric Nitsche formulation is able to pass the rectangular patch

test and has optimal convergence rate for circular shaped patch test. The B-type patch test [71] is adopted

to verify the effectiveness of the introduced skew-symmetric Nitsche method: in Figure (6) we consider a

linear elastic media in a square (resp. circular) domain of length L = 20 (resp. radius R = 10), with a

Young modulus E = 1000 and a Poisson’s ratio ν = 0.25. The B-type patch test implies that we restrict

all the boundaries according to the given displacement field, then after solving the system of equations we

check the internal displacement field to inquire whether it matches the given displacement field. In order to

fulfill the an equilibrium strain condition, a displacement field up to fourth order is set up as in [72]:u(x, y) = 1
4
+ x+ 3y − 2x2 − 4xy + 5

2
y2 − 2x3 + x2y − 4xy2 − 1

3
y3 − 7

32
x4 − 19

24
x3y + x2y2 + xy3 − 11

96
y4,

v(x, y) = 1 + 1
2
x+ 2y − 2

3
x2 + 17

5
xy + 3

2
y2 + 1

3
x3 + 12x2y − xy2 − 2

3
y3 − 11

96
x4 + x3y + x2y2 − 19

24
xy3 − 7

32
y4.

For example, if the patch test of order one is performed, then the displacement field is truncated as


u(x, y) = 1

4 + x+ 3y,

v(x, y) = 1 + 1
2x+ 2y.

1https://ricamsvn.ricam.oeaw.ac.at/trac/gismo/wiki/WikiStart

16



The relative error of displacement u in L2 norm are used to evaluate the performances numerically

‖uh − uref‖L2(Ω)

‖uref‖L2(Ω)
,

in which

‖u‖L2(Ω :=

√∫
Ω

u · u dx .

Table 1: The rectangular patch test is passed (Y) by the skew-symmetric Nitsche formulation.

Patch test order 1 2 3 4

IGA p = q = 2 Y Y N N
IGA p = q = 3 Y Y Y N
IGA p = q = 4 Y Y Y Y
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Number of elements per side

||u
h
−
u

re
f ||

L
2
/|
|u

re
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L
2

Nitsche p = q = 2
2nd order patch test
Nitsche p = q = 3
3rd order patch test
Nitsche p = q = 4
4th order patch test
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5.15

4.13

4.03

3.31

3.09

3.00

Figure 7: Optimal convergence rate is obtained for the circular patch test by the skew-symmetric Nitsche method.

The results of the rectangular patch test are given in Table 1, showing that with the Dirichlet boundary

conditions being applied by the skew-symmetric Nitsche method, IGA with basis functions of a certain

order is able to pass the same order patch test. The circular patch test cannot be passed exactly, because

Nitsche’s method imposes the boundary constraints weakly for curved boundaries. However according to

Figure (7) the errors of circular patch tests become smaller as the mesh is refined, because for more refined

mesh there are more elements along the boundaries to perform boundary integrations. It is observed that

optimal convergence rate [73] is obtained for the circular patch test by the skew-symmetric Nitsche method,

i.e. rate of min(p, q) + 1 in L2 norm.
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Figure 8: Square thin plate under uniform load, only 1/4 of the plate (blue area) is modeled.

4.1.2. Symmetry conditions for Kirchhoff plates

In this section we illustrate the effectiveness of the skew-symmetric Nitsche formulation to handle rota-

tional boundary conditions for Kirchhoff plates. Figure (8) describes a simply supported thin square plate

subjected to a uniform pressure. The analytical solution [74] is taken as the reference solution, which is

wA = −2.21804 × 10−6 [75] at point A. Due to the symmetry of this problem, only one quarter of the

geometry is modeled, where two of the model boundaries are simply supported, and the other two require

symmetric constraints:

θx(x, y) = 0 on y =
L

2
,

θy(x, y) = 0 on x =
L

2
,

meaning that along the boundary y = L
2 (resp. x = L

2 ) the rotation along x (resp. y) axis is zero. The

symmetric boundary conditions can be also expressed in the local coordinate form as

θ̄t = 0 on y =
L

2
and x =

L

2
,

in which the subscript t denotes the tangential direction of the boundary.

We firstly implement the ‘second row’ strategy by penalty method for comparison [14]. As illustrated in

Figure (9), the idea of the ‘second row’ strategy consists in enforcing the displacements of the control points
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For instance, to enforce u1 = u2,
the system is modified asK11 +W K12 −W . . .
K21 −W K22 +W . . .

...
...

...


u1

u2

...

 =

f1

f2

...


where K is the stiffness matrix,
W is the penalty coefficient.

Figure 9: The ‘second row’ strategy with penalty method to impose the symmetry boundary conditions. The four control
points near point A are penalized twice.
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Figure 10: Results for the 1/4 Kirchhoff plate. Symmetric rotational boundary conditions are imposed by the ‘second row’
strategy using penalty method. The results are highly sensitive to the penalty parameter.
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along the symmetric boundary and the neighboring row to be equal, this is achieved by adding a penalty

coefficient W in the stiffness matrix 2. In the second row penalty method, the convergence results depend

significantly on the penalty parameters, and near the Dirichlet boundary corner point A, the constraints of

the four control points are penalized twice (see Figure (9)), which makes the corner deflection even more

sensitive to the penalty coefficient. The results using different penalty parameters are shown in Figure (10).

It is concluded that a suitable value of penalty parameter should be chosen carefully for different meshes

and orders.
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Figure 11: Results for the 1/4 Kirchhoff plate. Symmetric rotational boundary conditions are imposed by the standard and
skew-symmetric Nitsche methods, and the obtained results converge to the reference.

The results obtained by Nitsche’s method are shown in Figure (11). The stabilization parameter for the

standard Nitsche formulation is acquired by solving the generalized eigenvalue problem along the boundary

[41]. Note that for p = q = 2 convergence of the standard and skew-symmetric Nitsche formulations are

not monotonous, which is due to the deflection wA passes through the reference solution for coarse mesh

as shown in the left figure. For p = q = 3 this behavior disappears, and the corresponding convergence

rates are slightly higher than p = q = 2. Finally both standard and skew-symmetric Nitsche formulations

converge to the reference solution.
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one patch break the patch into 2 patches, and couple them by Nitsche
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Figure 12: Plate model. On the left, one patch model is adopted as the control group. On the right, the plate is artificially
broken into two conforming patches and the interface is coupled by Nitsche’s method.

4.2. Linear interface conditions and patch coupling effects

4.2.1. Statics

In this section, we study whether additional effects are introduced into the accuracy, convergence per-

formance and condition numbers when a patch coupling in statics is performed by Nitsche’s method. The

problem setup is shown in Figure (12), in the right figure the model is artificially broken into two identical

patches. The deflection at point A at the parameter center (ξ = 0.5, η = 0.5) is denoted by wA. The result

obtained by IGA using one patch with 1,024 elements of p = q = 5 is wA = −2.52083 × 10−5, and this is

adopted as the reference value.

The convergence performance is plotted in Figure (13). By artificially breaking the patch into two

patches and couple them by Nitsche’s method, the obtained errors is to some degrees different from the one

patch case. For higher order elements the skew-symmetric formulation performs more accurately than the

standard formulation. As we refine the mesh both the standard and the skew-symmetric Nitsche formulations

converge to the reference.

The deflection w along the interface (ξ = 0.5, η = 0.45−0.55) is shown in Figure (14) for different meshes

and orders, including the solutions from the left patch and the right patch coupled by Nitsche’s method.

It can be seen that for this example, in which the meshes from either side of the interface are perfectly

matched, the interfaces from the left patch and the right patch can be fully coupled by the standard Nitsche

and the skew-symmetric Nitsce formulations, i.e. the results from the left patch and the right patch are

identical. For coarse mesh of 4× 4 elements, there are visible errors for Nitsche’s methods, but their results

2http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch09.d/IFEM.Ch09.pdf
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Figure 13: Relative errors of wA. Both the standard and the skew-symmetric Nitsche formulations converge to the reference.
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Figure 14: w along interface (ξ = 0.5, η = 0.45− 0.55). By coupling the interface by Nitsche’s method, the results from the left
patch and the right patch are identical, and their results tend to the reference as the mesh is refined.
Horizontal axis: η. Vertical axis: wh × 10−5. 1 patch IGA.

2 patches standard Nitsche, the left patch. 2 patches standard Nitsche, the right patch.
2 patches skew-symmetric Nitsche, the left patch. 2 patches skew-symmetric Nitsche, the right patch.
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tend to the reference as the mesh is h-refined (from left to right), p-refined (from top to bottom) or k-refined

(diagonal, from the upper left corner to the lower right corner).

Table 2: Condition numbers (×1010) of the obtained stiffness matrix. The standard Nitsche formulation increases the condition
number significantly.

Method Number of elements per side p = q = 2 p = q = 3 p = q = 4 p = q = 5

IGA 4 0.926 0.884 0.858 0.850
8 0.958 0.979 1.103 1.238
16 0.959 1.002 1.161 1.347

standard 4 8.942 15.033 21.711 28.011
Nitsche 8 11.963 18.104 23.693 29.033

16 13.301 21.680 29.204 35.938
skew-symmetric 4 1.919 1.340 1.285 1.256

Nitsche 8 2.118 2.055 2.039 2.035
16 2.174 2.487 2.723 2.887

The condition numbers of the obtained stiffness matrix are given in Table (2). From a general point of

view, h-refinement of the mesh, which means that using more control points, increases the corresponding

condition number. It is noticed that the condition number obtained from Nitsche’s coupling is larger than

one patch IGA, this is inferred to be related to the coupling effects. Specifically, the skew-symmetric Nitsche

formulation slightly increases the condition number compared to IGA because there are more control points

along the coupled interface. The stabilization parameter for the standard Nitsche formulation and it is

usually a large value, which is acquired by solving the generalized eigenvalue problem along the boundary

[41, 43]. The standard Nitsche formulation increases the condition number significantly, which is inferred to

be attributed to the adopted stabilization parameter.

4.2.2. Modal analysis

one patch break the patch into 4 patches, and couple them by Nitsche

Figure 15: Rod model. On the left, one patch rod model is adopted as the control group. On the right, the rod is artificially
broken into four patches and the additional three interfaces are coupled by Nitsche’s method.

To study whether additional effects are introduced in modal analysis by Nitsche’s coupling, the longitu-

dinal vibration of a rod [58] is considered (Figure (15)). In the right figure the rod model is broken into four
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identical patches and they are coupled by Nitsche’s method. The governing equations of this problem are

u,xx + ω2u = 0,

u(0) = u(1) = 0,

where x ∈ [0, 1] denotes the rod’s length, and the exact natural frequencies are

ωn = nπ, n = 1, 2, . . . .
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Figure 16: Normalized discrete spectra. As shown in the right figure, the sudden jump of the frequencies identify the ‘outliers’.
More details are shown in Figure (17).

The discrete spectra is independent of the total number of DoFs N if it is normalized by N . Nevertheless

to get a relatively smooth spectra the mesh should be very well refined, here more than 500 control points

are used. The normalized discrete spectra is given in Figure (16), showing that Nitsche’s coupled model is

almost as accurate as conforming IGA for lower frequencies, specifically n < 0.2 for p = 2 and n < 0.5 for

higher orders. For higher order frequencies, the skew-symmetric Nitsche leads to oscillations when p = 2,

and both standard and skew-symmetric Nitsche solutions are oscillatory when p = 3, 4, 5.

At the very end of the spectra, the sudden jump of the frequencies are known as the ‘outliers’ [58, 59, 60],

as shown in the enlarged figure on the right side of Figure (16). These ‘outlier’ frequencies are drawn in Figure

(17), and the number of outliers is also counted. The ‘outlier’ frequencies are captured near n = 1 by the

24



0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n/N

ω
h n
/ω

re
f

n

IGA p = 2
standard Nitsche p = 2
skew-symmetric Nitsche p = 2
IGA p = 3
standard Nitsche p = 3
skew-symmetric Nitsche p = 3
IGA p = 4
standard Nitsche p = 4
skew-symmetric Nitsche p = 4
IGA p = 5
standard Nitsche p = 5
skew-symmetric Nitsche p = 5

2 3 4 5
0

5

10

15

20

order p

N
u

m
b

er
of

ou
tl

ie
rs

IGA
standard Nitsche
skew-symmetric Nitsche

0

6

9

2

11
11

2

14
14

4

19
19

Figure 17: Normalized outlier frequencies. The model coupled by Nitsche’s leads to a larger number of ‘outliers’. The
corresponding outlier eigenmodes of p = 2 are plotted in Figure (18) for the standard Nitsche formulation and in Figure (19)
for the skew-symmetric Nitsche formulation.
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Figure 18: ‘Outlier’ (last 6 out of 518) eigenmodes obtained by the standard Nitsche formulation with p = 2. The longitudinal
deformations are plotted along the vertical axis. The eigenmodes that correspond to the ‘outliers’ are highly localized at the
coupled interfaces.
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Figure 19: ‘Outlier’ (last 9 out of 518) eigenmodes obtained by the skew-symmetric Nitsche formulation with p = 2. The
longitudinal deformations are plotted along the vertical axis. The eigenmodes that correspond to the ‘outliers’ are highly
localized at the coupled interfaces.
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conforming IGA, and the model coupled by Nitsche’s formulation leads to a larger number of ‘outliers’. The

corresponding outlier eigenmodes of p = 2 are plotted in Figure (18) for the standard Nitsche formulation

and in Figure (19) for the skew-symmetric Nitsche formulation. To achieve a better demonstration of the

eigenmodes, we plot the longitudinal deformation along the vertical axis. The number of ‘outliers’ obtained

by the skew-symmetric Nitsche formulation is three more than the standard Nitsche when p = 2, because

there exist 3 pairs of symmetrical eigenmodes, i.e. no.510 and no.511, no.512 and no.513, no.514 and no.515.

These results imply that the action that coupling the artificially broken interfaces by Nitsche’s method

increases the number of ‘outliers’, and the eigenmodes correspond to the ‘outliers’ are highly localized at

these coupled interfaces.

4.3. Contact

4.3.1. Contact between two blocks
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1

x

y
p

E = 1000

ν = 0.3

p = −100

Figure 20: Two blocks with non-matching meshes. The upper block is subjected to uniformed pressure p. Both blocks have
the same material property. The problem setup is not symmetric due to the boundary conditions along the left sides of the
two blocks.

The objective of this section is to test whether the proposed formulation can properly impose the contact

conditions through matching and non-matching elements, and preliminarily investigate the robustness of the

skew-symmetric Nitsche formulation with respect to the contact interface element length ratio, the number

of quadrature points and the value of γ. The classical contact patch test proposed by Taylor [76] is used

to examine the contact algorithm and investigate whether it transfer the constant contact pressure through

27



h1

h2

h2/h1 = 1 h2/h1 = 2

h1

h2

Figure 21: Two blocks with matching meshes. The boundary conditions and materials are the same as in Figure (20). We
refine the upper block to get various interface element length ratios h2/h1 = 1, 2, 4, 8, 16.

the contact surface even for non-matching meshes [77]. In order to enforce a uniform pressure on the top

surface more easily, we adopt a modified patch test [78, 79] as shown in Figure (20). The resulting test setup

is similar as in [80]. Because of the boundary conditions along the left sides of the two blocks, this problem

setup is not symmetric. The reference solution of the (plane stress) problem is that

uy(x, y) = −0.1y,

σy(x, y) = −100.

(17)

Table 3: The number of Gauss quadrature points (#GP) per slave element and the corresponding number of Newton-Raphson
iterations (#NR) to achieve convergence (tolerance threshold for the residual 1×10−4). (p, q) are basis function orders. h2/h1
denotes element length ratio. γ = E. The ‘FAIL’ denotes that the convergence is not achieved after trying from 1 to 10
quadrature points in 100 Newton-Raphson iterations.

p = q = 2 h2/h1 1 2 4 8 16
standard Nitsche #GP 2 2 2 2 2

#NR 3 4 4 4 3
skew-symmetric Nitsche #GP 2 2 2 2 2

#NR 3 4 4 4 3

p = q = 3 h2/h1 1 2 4 8 16
standard Nitsche #GP 5 5 - - -

#NR 35 27 FAIL FAIL FAIL
skew-symmetric Nitsche #GP 5 5 5 5 -

#NR 34 26 25 26 FAIL

p = q = 4 h2/h1 1 2 4 8 16
standard Nitsche #GP 3 3 3 3 3

#NR 3 6 8 6 5
skew-symmetric Nitsche #GP 3 3 3 3 3

#NR 3 6 8 7 6

This problem is calculated by the biased Nitsche contact formulation, however [63] shows that for both
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biased and unbiased versions the accuracy is comparable. Firstly we investigate the influence of the number

of quadrature points with respect to various element size ratios and basis function orders. From the matching

meshes as illustrated in Figure (21), we refine the upper block in order to obtain various interface element

length ratios, specifically h2/h1 = 1, 2, 4, 8, 16. Here we fix γ = E and adopt a criteria of the residual

tolerance 1 × 10−4. We try to find a unified number of Gauss quadrature points for certain basis function

orders (p, q) such that the problem converges for as many ratio cases as possible. The results are given in

Table (3), where the ‘FAIL’ denotes that the convergence is not achieved after trying from 1 to 10 quadrature

points per slave boundary element in 100 Newton-Raphson iterations. It is deduced that for p = q = 3 the

problem is hard to converge, there is no theoretical explanation for the failure yet, but to our computational

experience, in these cases the top block moves back and forth drastically from current iteration to the next

iteration. While for p = q = 2 and p = q = 4 it is feasible to use 2 and 3 quadrature points per slave

boundary element respectively.

Table 4: Newton-Raphson iterations and the max vertical displacement for various γ and various numbers of quadrature points
(#GP). p = q = 2. h2/h1 = 1.2. max(u)ref = −0.1. The ‘FAIL’ means that the convergence is not achieved within 100
Newton-Raphson iterations. The skew-symmetric Nitsche formulation behaves robust with respect to the value of γ. Using
more quadrature points could achieve better accuracy.

γ
standard Nitsche skew-symmetric Nitsche

#GP=2 #GP=3 #GP=5 #GP=2 #GP=3 #GP=5
1/100 25 -0.10007 23 -0.10006 FAIL - 21 -0.10008 18 -0.10006 29 -0.1
1/10 26 -0.10007 23 -0.10006 FAIL - 21 -0.10008 18 -0.10006 26 -0.1

1 24 -0.10007 23 -0.10006 FAIL - 21 -0.10008 18 -0.10006 13 -0.1
10 23 -0.10007 18 -0.10006 FAIL - 15 -0.10008 18 -0.10006 13 -0.1
100 17 -0.10007 18 -0.10006 13 -0.1 15 -0.10008 19 -0.10006 13 -0.1
E 17 -0.10007 18 -0.10006 13 -0.1 15 -0.10008 19 -0.10006 13 -0.1

10000 19 -0.10007 19 -0.10006 14 -0.1 16 -0.10008 20 -0.10006 14 -0.1

The following test is performed by non-matching meshes with p = q = 2. The meshes are given in

Figure (20) and the interface element length ratio is h2/h1 = 1.2. The performances of standard and

skew-symmetric Nitsche formulations using various values of γ are tested. The number of Newton-Raphson

iterations and the max vertical displacement for various γ are given in Figure (4). According to Table (3),

we test 2, 3 and 5 quadrature points respectively per slave element. The convergence criteria of the residual

tolerance is 1 × 10−4. The results are given in Table (4). The ‘FAIL’ means that the convergence is not

achieved within 100 Newton-Raphson iterations. Using the standard Nitsche formulation with E = 1000,

convergence is achieved for all γ = E/10, E, 10E. The skew-symmetric Nitsche formulation behaves robust

with respect to the value of γ, and convergence is achieved for all the cases. Even for small values such as

γ = 1/10 and γ = 1/100, the convergence is achieved by the skew-symmetric Nitsche formulation, by taking
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more Newton-Raphson iterations. It is noticed that when using 2 quadrature points or 3 quadrature points

per slave boundary element, the max vertical displacement does not match the reference max(u)ref = −0.1.

It is inferred that using more quadrature points (e.g. #GP=5) could achieve better accuracy. However for

#GP=5 the price to pay is that the nonlinear system behaves more difficult to converge for the standard

Nitsche formulation, as it fails for cases when γ is not large enough.

(a) 5 quadrature points (b) 15 quadrature points

Figure 22: Relative errors in stress σy obtained by the skew-symmetric Nitsche method, plotted on the deformed geometry.
p = q = 2. γ = E. σref

y = −100. For the left figure, the relative errors range from −0.082% to 0.115%. For the right figure,
the relative errors range from −0.007% to 0.004%. Better accuracy can be achieved using more quadrature points per slave
boundary element.
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(b) 15 quadrature points

Figure 23: Vertical displacement jumps JunK between the contact interface y = 0.5. p = q = 2. γ = E. Positive values mean
there are gaps, and negative values mean there are overlaps. Better accuracy can be achieved using more quadrature points
per slave boundary element.

The relative errors in stress σy, the vertical displacement jumps JunK and the contact stress σ1
n(u) are

given in Figure (22), Figure (23) and Figure (24) respectively. Here we fix γ = E, use 5 quadrature points
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(b) 15 quadrature points

Figure 24: Contact stress σ1
n(u) at quadrature points along the contact elements. p = q = 2. γ = E. Better accuracy can be

achieved using more quadrature points per slave boundary element.

per slave boundary element, and set the convergence criteria of the residual tolerance as 1× 10−4. In order

to get solutions with lower errors, we also use 15 quadrature points per slave boundary element, and set the

convergence criteria of the residual tolerance as 1× 10−10. From these results it is shown that lower errors

can be achieved by using more quadrature points per slave boundary element along with smaller convergence

criteria.

4.3.2. Hertz contact

In this section we show that the proposed skew-symmetric Nitsche contact formulation is robust w.r.t.

the choice of Nitsche’s parameter γ, and it is able to predict the contact pressure distribution versus contact

width to some degrees of accuracy. Here we study a contact problem as shown in Figure (25) with analytical

solution provided by Hertz [81]. The Hertz contact assumes an elastic frictionless contact without adhesive

forces between two cylinders with the same height, radii R1, R2 and elasticity moduli E1, E2. To simplify,

the master body is fixed, its material is set to be rigid, and its contact surface is flat. In this special case,

since E2 →∞ and R2 →∞, the contact modulus and equivalent radius become

E∗ =
E1E2

E2(1− ν2
1) + E1(1− ν2

2)
=

E1

1− ν2
1

, R∗ =
R1R2

R1 +R2
= R1.

With the total exerted normal force being Fn = g× πr2, the maximum pressure and the half contact width

are given by

pmax =

√
FnE∗

πR∗ = 2.2918× 106, a =

√
4FnR∗

πE∗ = 0.0454,
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Figure 25: Hertz contact example, the contact between a linear elastic disc under a vertical gravity force and a rigid fixed
plane.

and the pressure distribution is

p(x) = pmax

√
1−

(x
a

)2

, x ∈ [−a, a].

To prevent rigid body motion along the horizontal direction, we fix the horizontal displacement at four

control points along axis of x = 0, in parameter space they locate near the positions (ξ = 0.5, η = 0) and

(ξ = 0.5, η = 1). The geometry is modeled using NURBS basis functions of order p = q = 2, and we

only h-refine the elements hereafter. To achieve a balance between accuracy of results and assurance of

convergence, we adopt 5 quadrature points per contact boundary element. The update norm 1 × 10−10 is

employed as the tolerance threshold to control the Newton-Raphson iterations.

To begin with we draw the results for one case in Figure (26) as an illustration, with 16 × 16 elements

and γ = 100E. The von Mises stress field is plotted using 500×500 sample points that uniformly located at

the parameter space. The contour plot shows that the rigid fixed plane has successfully prevented the disc

from dropping down, and the contact surface of the elastic disc adjusts itself to match the rigid fixed plane,

resulting in a straight contact surface. Notice that at the four corners of the patch, the Jacobian matrix
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(a) displacement magnitude (b) von Mises stress

Figure 26: Contour plot of displacement magnitude field and von Mises stress field obtained by the skew-symmetric Nitsche
method using 16 × 16 elements and γ = 100E. The rigid fixed plane has successfully prevented the disc from dropping down,
and the contact surface of the elastic disc adjust itself to match the rigid fixed plane, resulting in a straight contact surface.

Table 5: Results for Hertz contact. Convergence is not achieved for the standard Nitsche method when γ = E/100 is employed.
The skew-symmetric method is robust to the choice of γ.

Nitsche’s γ mesh max pressure relative half contact width relative Newton-Raphson

type prefmax = 2.2918 × 106 error % aref = 0.0454 error % residual norm

8 × 8 2.8737 × 106 25.39 0.0391 -13.88 9.91 × 10−9

standard 100E 16 × 16 2.3416 × 106 2.17 0.0456 0.42 3.08 × 10−7

64 × 64 2.3976 × 106 4.62 0.0460 1.27 1.86 × 10−6

8 × 8 2.2349 × 106 -2.48 0.0502 10.50 2.63 × 10−6

standard E 16 × 16 2.3525 × 106 2.65 0.0509 12.17 1.81 × 10−5

64 × 64 2.3832 × 106 3.99 0.0460 1.27 1.04 × 10−4

8 × 8 2.8334 × 106 23.63 0.0391 -13.88 6.37 × 10−9

skew-symmetric 100E 16 × 16 2.3126 × 106 0.91 0.0456 0.42 1.51 × 10−7

64 × 64 2.3564 × 106 2.82 0.0460 1.27 2.45 × 10−6

8 × 8 2.3588 × 106 2.92 0.0502 10.50 2.58 × 10−6

skew-symmetric E 16 × 16 2.3312 × 106 1.72 0.0509 12.17 1.11 × 10−5

64 × 64 2.3417 × 106 2.18 0.0460 1.27 1.12 × 10−4

8 × 8 2.1940 × 106 -4.27 0.0607 33.63 2.79 × 10−4

skew-symmetric E
100

16 × 16 2.3529 × 106 2.67 0.0509 12.17 1.90 × 10−3

64 × 64 2.3362 × 106 1.94 0.0460 1.27 1.38 × 10−2
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Figure 27: Convergence of Hertz contact example. The results converge to the analytical solution as the mesh is refined, with
the relative errors of max pressure ranging from 1.94% to 4.62% and half contact width being 1.27%.
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Figure 28: Pressure distribution for Hertz contact. Horizontal axis: contact surface y = 0. Vertical axis: contact pressure p.
analytical solution, the standard Nitsche method, the skew-symmetric Nitsche method.

The contact stresses shown in blue and red dots are calculated at quadrature points. The Nitsche formulations can properly
predict the pressure distribution with respect to the contact width as the mesh is refined.
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is nearly non-inversible, which leads to four areas with abnormal errors along the boundary. The results

of max pressure and half contact width using different meshes and values of γ are given in Table (5). The

results for standard Nitsche’s method with γ = E/100 is not shown because convergence is not achieved. The

skew-symmetric version of the method is very robust to the choice of γ: from 100E to E/100, i.e. four orders

of magnitude. Focusing on the Newton-Raphson residual norm, it is concluded that as the mesh is refined,

or smaller value of γ is used such as γ = E/100, the converged residual norm decreases gradually, while

the accuracy of the results of max pressure and half contact width remains acceptable. This explains the

reason that in this example we use the update norm as the criteria to control the Newton-Raphson iterations

instead of the residual norm. As shown in Figure (27), the results converge to the analytical solution as

the mesh is refined, with the relative errors of max pressure ranging from 1.94% to 4.62% and half contact

width being 1.27%. Note that the relative error is not becoming smaller because the Nitsche formulation is

performed at quadrature points, meaning that the reaction force is applying to these quadrature points that

are actually in contact with the rigid support, and there is no reaction force if the quadrature point is not in

contact, therefore the converged results and hence the errors depend on the distribution of the quadrature

points. Finally the pressure distribution with respect to the contact width is plotted comparing with the

analytical solution in Figure (28), according to the fact that the stress on the contact surface reaches balance

with the contact pressure. The contact stresses shown in blue and red dots are calculated at quadrature

points. The Nitsche’s method can properly predict the pressure distribution with respect to the contact

width as the mesh is refined.

5. Conclusions

We presented a systematic way to derive a Nitsche formulation for different kind of boundary and

interface conditions, and studied this technique in the context of isogeometric analysis (IGA) discretization.

We recover different variants of Nitsche’s method, for different values of the Nitsche parameter θ, and then

focused on the skew-symmetric variant, namely θ = −1. This variant is appealing because it does not need a

stabilization term for linear boundary/interface conditions, and is robust w.r.t. the stabilization parameter

for non-linear boundary/interface conditions. Several numerical studies were performed to illustrate the

behavior of Nitsche’s method, especially the skew-symmetric variant. From the numerical results we can

state the observations below:

• The skew-symmetric formulation is effective to impose Dirichlet displacement boundary conditions in

small strain elasticity as well as the symmetric rotational boundary conditions for Kirchhoff-Love plates. The
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skew-symmetric formulation is parameter-free in this context and achieves good accuracy: for the circular

patch test we observe the predicted optimal convergence rates (Figure (7)).

• For patch coupling in statics, the skew-symmetric Nitsche formulation is still parameter-free. Condition

numbers for the global stiffness matrix are far better than for standard Nitsche, and only slightly above the

conforming setting. They are also almost independent of h, p and q: see Table (2) in Section 4.2.1.

• For patch coupling in modal analysis, Nitsche’s formulation increases the number of ‘outlier’ frequencies.

The reason is believed to be that Nitsche’s formulation introduces additional highly localized eigenmodes,

and the positions of these newly added eigenmodes just locate at the coupled interfaces.

• For contact problems in linear elasticity, the skew-symmetric Nitsche formulation behaves more robustly

than the standard Nische formulation regarding the contact surface element length ratio, the number of

quadrature points per element, and the value of γ. The Nitsche’s method can properly impose the contact

conditions, and predict the pressure distribution with respect to the contact width as the mesh is refined.
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