N
N

N

HAL

open science

Adaptive policy-driven attack mitigation in SDN

Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, Khalifa Toumi, Hervé Debar

» To cite this version:

Rishikesh Sahay, Gregory Blanc, Zonghua Zhang, Khalifa Toumi, Hervé Debar.
driven attack mitigation in SDN. XDOMO 2017: the 1st International Workshop on Security and
Dependability of Multi-Domain Infrastructures (XDOMO), Apr 2017, Belgrade, Serbia.

10.1145/3071064.3071068 . hal-01649980

HAL Id: hal-01649980
https://hal.science/hal-01649980v1
Submitted on 21 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Adaptive policy-

pp.-1-6,

https://hal.science/hal-01649980v1
https://hal.archives-ouvertes.fr

Check for
Updates

Adaptive Policy-driven Attack Mitigation in SDN

Rishikesh Sahay
Gregory Blanc

SAMOVAR, Télécom SudParis,
Institut Mines-Tél¢om, CNRS,
Université Paris-Saclay

{rishikesh.sahay,gregory.blanc}®@telecom-
sudparis.eu

Abstract

This paper presents a dynamic policy enforcement mecha-
nism that allows ISPs to specify security policies to mitigate
the impact of network attacks by taking into account the spe-
cific requirements of their customers. The proposed policy-
based management framework leverages the central network
view provided by the Software-Defined Networking (SDN)
paradigm. One of the major objectives of such a framework
is to achieve fine-grained and automated attack mitigation
in the ISP network, ultimately reducing the impact of attack
and collateral damage to the customer networks. To evaluate
the feasibility and effectiveness of framework, we develop
a prototype that serves for one ISP and three customers.
The experimental results demonstrate that our framework
can successfully reduce the collateral damage on a customer
network caused by the attack traffic targeting another cus-
tomer network. More interestingly, the framework can pro-
vide rapid response and mitigate the attack in a very short
time.

Keywords Security policy, Policy management, SDN

CCS Concepts o Networks — Programmable networks;
Network management; e Security and privacy — Denial-
of-service attacks

1. Introduction

In today’s Internet, traffic engineering is mainly performed
by the Internet Service Providers (ISP), while the customers
are usually passive. As we know, one of the major objectives
of traffic engineering is to mitigate traffic congestion, which
can be caused, among others, by attacks. The lack of collabo-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

XDOMO’17 April 23, 2017, Belgrade, Serbia

(© 2017 ACM. ISBN 978-1-4503-4937-6/17/04. .. $15.00

DOI: http://dx.doi.org/10.1145/3071064.3071068

Zonghua Zhang

SAMOVAR, IMT Lille Douai,
Institut Mines-Tél¢om, CNRS,
Université de Lille

zonghua.zhang@imt-lille-douai.fr

Khalifa Toumi
Hervé Debar

SAMOVAR, Télécom SudParis,
Institut Mines-Télcom, CNRS,
Université Paris-Saclay

{khalifa.toumi,herve.debar}@telecom-
sudparis.eu

ration between an ISP and its customers may eventually lead
to dissatisfaction among its customers, as legitimate traffic
may get dropped. For example, when defending against Dis-
tributed Denial of Service (DDoS) attacks that attempt to
deplete an ISP’s bandwidth, simply prioritizing legitimate
traffic or redirecting suspicious traffic for one customer may
impact other customers of the same ISP, considering the fact
that the same path can be shared between different customers
in an ISP network.

As a matter of fact, without collaboration with their ISPs,
customers do not have much control over the incoming traf-
fic, apart from blocking the attack traffic at their border
router. Therefore, it is in the interest of both the victim net-
work and its ISP to collaborate for traffic engineering to mit-
igate the effect of congestion. In this case, the customer can
express finer requirements that can be addressed as differ-
entiated services by the ISP. Despite a large number of so-
lutions (Lee et al. 2013; Mahimkar et al. 2007) proposed
for traffic engineering, they have not been considered for
widespread deployment, chiefly due to the complexity in-
volved in the network management task, such as configur-
ing switches and routers for policy enforcement. Accord-
ing to a report from Juniper (Open Networking Foundation
2008), human error is the cause for 80% of the total net-
work downtime. Additionally, manual configuration hinders
the dynamic deployment of network services, further down-
grading the Quality of Service (QoS) level for the customers
of an ISP.

Another fact is that service providers statically provision
security devices with the dedicated network devices, and de-
fine the ordering constraints that must be applied to the pack-
ets (Nadeau and Quinn 2015). These security and network
devices are generally distributed in the network through sep-
arate VLANSs, while network policy is usually applied per
VLAN. This essentially leads to static service chaining with
the deployment of static policies for steering network traf-
fic to the security and network devices. This topological de-
pendency with the deployment of middleboxes makes ISPs
reluctant to deploy new security functions in their networks

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3071064.3071068&domain=pdf&date_stamp=2017-04-23

for providing security services to their customers. Further-
more, all the traffic, whether it needs to be processed through
the security devices or not, eventually traverse these devices,
which causes them processing overhead. Therefore, a dy-
namic and automated policy management system is required
to overcome these issues.

Software-Defined Networking (SDN) recently emerges
as a novel networking paradigm that can simplify net-
work administration and management by centralizing the
decision-making process (Open Networking Foundation
2013). It also provides the administrator with a global view
of the network and enables programmability in the data
plane. By leveraging the features of SDN, we develop an
automated policy management system in which the ISP can
express high-level policies that can be enforced dynamically
as the network environment changes. Specifically, our policy
management system provides collaborative and user-centric
automated response for mitigating the attack traffic and pro-
viding the QoS service to the customers of the ISP. Cus-
tomers can express their requirements, from which the ISP
decides on the policies to deploy. Our policy management
system leverages the global view of the network to assess
the impact of a policy deployed for one customer, in order to
minimize the impact on the other customers.

In this paper, we implement our proposed framework for
a specific use case, where the ISP and their customers col-
laborate with each other to mitigate the effect of congestion
caused by DDoS attack. We also experimentally demonstrate
that the framework can help an ISP to provide good QoS to
legitimate traffic, while reducing the impact on other cus-
tomers’ traffic.

The remainder of this paper is organized as follows: Sec-
tion 2 provides some insights on related work. Section 3 de-
scribes our policy framework, its workflow and functional
components. Section 4 reports our experiments and results.
Section 5 concludes the paper.

2. Related work

To the best of our knowledge, there is a number of works
dealing with policy-based network management leveraging
the SDN paradigm (Bari et al. 2013; Ben-Itzhak et al. 2015;
Machado et al. 2015; Lara and Ramamurthy 2016). They
usually exploit key features such as data plane programma-
bility and network visibility to ease the network manage-
ment process. In this section, we will discuss existing policy-
based frameworks, the policy languages that inspired them,
and earlier proposals in traffic steering.

Traffic steering is an exemplary instance of how to take
advantage of SDN switches to enforce routing policies in an
efficient manner for middlebox-specific networks. One such
effort, SIMPLE (Qazi et al. 2013), alleviates manual opera-
tion from administrators by allowing them to specify a log-
ical routing policy and translates it into forwarding rules, in
compliance with physical resource constraints. Additionally,

FlowTags (Fayazbakhsh et al. 2013) provide a technique to
enforce network-wide policies in spite of packet modifica-
tions imposed by middleboxes.

At a higher level, policy languages have been proposed to
specifically program software-defined networks. Languages,
such as Frenetic (Foster et al. 2011), free programmers from
reasoning with low-level details of the switches and allow
them to describe high-level packet forwarding policies on
top of the control plane. Another example, Procera (Voellmy
et al. 2012), extends policy design into event-driven network
control, which is not permitted by configuration languages
exposed by controllers. These languages usually offer the
ability to specify routing policies, in terms that are close
to network operations, while we are interested in specifying
higher-level policies to enforce security or quality of service
operations.

Policy management frameworks would often rely on
the above-mentioned technological building blocks to sat-
isfy user-centric requirements. EnforSDN (Ben-Itzhak et al.
2015) proposes to simplify network service management
by decoupling policy resolution (computing concrete rules)
from policy enforcement (pushing low-level rules) by re-
marking that the former deals with flows, e.g., security poli-
cies, while the latter forwards packets at the data plane. It
tackles middlebox-induced problems but fails to accommo-
date other contexts than the network. PolicyCop (Bari et al.
2013) is such a QoS policy enforcement framework that pro-
vides an autonomic management of user-centric policies by
monitoring and enforcing the users’ Service-Level Agree-
ments (SLAs). It relies on common data plane interfaces
exposed by OpenFlow (OF) forwarding devices for statis-
tics collection and flow information retrieval, and includes
a number of controller applications to support policy moni-
toring and enforcement. Our work is interested in extending
the inputs to the policy engine with security events. Addi-
tionally, the computation of policy routes do not take into
account the availability of security services. Business-level
goals are also taken into account in a policy authoring frame-
work proposed by Machado et al. (Machado et al. 2015).
Their framework matches these requirements with the ca-
pacities provided by the network infrastructure in order to
decide on an appropriate policy, through abductive reason-
ing. It is however unclear how network elements are re-
quested and configured beyond the policy path computation
(referred to as Analysis Phase in their work). OpenSec (Lara
and Ramamurthy 2016) is close to our proposal in that this
framework provides a language that blends security services
within the autonomic reaction process. However, it seems
to focus the deployment on edge switches, while we are in-
terested in distributing the policies across the controller’s
network domain.

Our work aims at accommodating multiple customer ser-
vices sharing a network service provider, who doubles as a
security service provider. Going beyond routing and QoS

Monitoring Plane

Policy Plane

IE:: g::i;ﬂ'e‘ﬁt] Disi%z%.. L Or:i}rl%zznur ! Control Plane
Implementer

‘ Data Plane

Figure 1. Workflow of the Policy Management System

requirements, we aim at reacting to security events, with
the collaboration of the customers, and offer network-status-
aware security reaction policies. The presence of multiple
competing customers raises a supplementary challenge in
that the reactive policy targeted at a given customer should
cause little to no impact on other customer services. It is
important to consider the whole network then, and not only
the edge switches, in order to distribute the rules along the
policy path. This path traverses a number of forwarding
switches and security services (either static middleboxes,
or virtualized network functions) in a fashion similar to
OpenSec (Lara and Ramamurthy 2016) and SIMPLE (Qazi
et al. 2013).

3. Policy Management and Enforcement
System

Our previous analysis indicates that most of existing pol-
icy management frameworks can not support real-time col-
laborations between ISPs and customers, thereby leading to
heavy latency on attack detection and response. To tackle
the issue, the ISP should consider multiple factors, e.g., the
current network status and service-level agreements with its
customers. Also, it should be adaptive to the requests of par-
ticular customers, so that traffic engineering performed for
one customer will not impact the traffic going to other cus-
tomers. Our purpose is therefore to develop a policy manage-
ment and enforcement framework which can dynamically
and automatically configure and enforce security policies in
the ISP network, allowing the administrator to simply spec-
ify policies at a high level.

3.1 Design Overview

The design overview of our framework is shown in Fig. 1,
consisting of several functional components: a Monitoring
Component (MC), a Policy DataBase (PDB), a Policy De-
cision Point (PDP), and a Policy Orchestrator and Imple-
menter (POI). As most of the operations are carried out
within the ISP domain, the customer network is not shown
here. The operational workflow is given as follows:

1. an event is triggered at the ISP controller when a noti-
fication, which can be a security alert sent from a cus-
tomer controller or a network status update raised by the

ISP controller, is received by the MC. We assume that the
customer uses some detection mechanism to flag whether
it is under attack or not (Mahimkar et al. 2007) !.

2. The MC module analyzes the notification and extract the
information of concern, such as the flow information, its
impact severity, its security class and the attack type. The
extracted information is then sent to the PDP.

3. The PDP selects the high-level action from the policy
database based on the event and its corresponding condi-
tions. The high-level action, bandwidth request, and flow
information are then forwarded to the POL.

4. Based on the high-level action, the POI identifies the Pol-
icy Enforcement Points (PEPs) and computes the paths.

5. The resulting path(s) is then deployed via POI by trans-
lating the chosen actions into a set of OF rules, which can
be enforced by the OF switches along the path.

3.2 Design Components

The functional components of the policy management sys-
tem are discussed as follows.

Monitoring Component (MC) handles the security
alerts and notifications from different customers. Specifi-
cally, it parses them and extract the information of concern
for the PDP, including flow information (source and destina-
tion IP addresses, protocol), the security class (suspicious,
malicious, legitimate), the type of attack, and the impact
severity of suspicious traffic detected at the customer net-
work. On the other hand, MC monitors the status of the
switches and paths in the ISP network and assesses the net-
work status (congested, normal) for the PDP. To monitor the
ISP network, a tool like OpenNetMon (van Adrichem et al.
2014) can be used as it allows to maintain the traffic matrix
for different paths and switches in the network.

Policy Decision Point (PDP) is in charge of the global
policy decisions. It firstly activates the context? based on the
status of the networks and/or the received alerts. Then based
on the activated context, the extracted information from the
alert and the policy database (PDB), PDP decides which
actions to take (e.g, redirect, drop, forward). The resulting
actions, together with the flow information, are finally sent
to the POI module to be enforced.

Policy Database (PDB) is essentially a repository con-
taining the high-level security policies specified by the net-
work administrator, without detailing the specific deploy-
ment strategy.

A detection mechanism is out of scope of this paper.

2 The context allows to fine-tune the policy that should be enforced, so as to
minimize the side effects of policy enforcement.

Listing 1. Syntax of high-level security policy

1 | Event = {UDP_Flood | TCP.SYN | ICMP_Flood |
DNS_Amplification | QoS-_request}

2 | Condition = {Security Class | Impact_Severity |
ISP_Network_Status}

3 Security Class = {Suspicious | Malicious |
Legitimate }

4 Impact_Severity = {Low | Medium | High}

5 ISP_Network_Status = {Normal | Congested}

6 | Action = {Redirect | Block | Forward}

Listing 2. A Sample Policy for suspicious traffic redi-

rection
1 |<Policy PolicyName = ”Security_policy”>
2 <Event event="UDP-Flood”>
3 </Event>
4 <Condition>
5 <security class = ”suspicious”/>
6 <Impact severity= "medium”/>
7 <ISP_Network_Status status = “normal
7>
8 </Condition>
9 <Action action="redirect”/>
10 </Action>

11 | </Policy>

Specifically, security policies are structured using the
Event-Condition-Action (ECA) model which we believe is
suitable for dynamic policy management. In particular, each
Event refers to a specific attack or incident and is associated
with a set of rules. The rules are described as a set of Condi-
tions that match the context in which the attack or incident
occurs. At last, the Action, is essentially a high-level action
to be applied to the identified flows.

Formally, we provide a syntax about DDoS mitigation, as
shown in Listing 1, in which an Event may indicate one of
several types of DDoS attacks or QoS requests, a Condition
set includes the security class — Malicious labels the flows
certain to be from attacker; Legitimate represents the flows
that are benign in nature; and Suspicious denotes the mixture
of malicious and legitimate traffic — as well as the impact
severity, of the attack traffic on the customer network (low,
medium or high) and the status of the ISP network status
(i.e., either normal or congested). Action may be either of
the three following: redirection, blocking, and forwarding.

To illustrate the specification of the policy according to
the given syntax, a sample policy addressing UDP flood at-
tack is given in Listing 2, which shows that the flows iden-
tified as UDP flood are labeled with a suspicious security
class, resulting in a medium impact on the customer network.
If the ISP network is in a normal status, the flows will redi-
rected elsewhere in the network.

Policy Orchestrator and Implementer (POI) is mainly
used for path computation and distributing the rules to the
switches along the computed path. It also considers the se-
curity middleboxes to traverse, in order to steer the flows in
the network. For instance, the suspicious traffic may be redi-

rected to a firewall and then a NAT device. Flow informa-
tion (source IP, destination IP), policy action, and requested
bandwidth are taken as inputs from the PDP for path com-
putation, as detailed in Algorithm 1, which is essentially a
policy-aware shortest path algorithm (Cao et al. 2014). As
a result of path computation, POI distributes the rules in the
switches along the computed path and inserts a Network Ser-
vice Header (NSH) (Quinn and Elzur 2016) in the packets
for processing. In particular, NSH helps to steer the flows in
the core network with only labels, so the core switches do
not need to check the whole packet header for forwarding. It
also significantly reduces the number of flow entries in the
core switches.

Algorithm 1 Path_Computation
1: procedure PATH_COMPUTE(flow,bw_req,action,step,Max_rate)
2 hop + 0

3: path « [|

4

5

for Flow F and each path p do
: p < compute_Bandwidth(mazx(all_links)) /I-
Takes the maximum bandwidth in the path
d < Hop_Count(step[i] + step[i + 1])
hop_count < hop + d // Computes the hop count in
the path
8: path.addList(p)

2o

9: if (C'—bw_req) > Max_rate then //New flow should
not impact other flows traversing the link.
10: return hop_count, path
11: else
12: No path is available

4. Experiment

The purpose of our experiments is to demonstrate, in a multi-
customer scenario, the effectiveness of our proposed policy
engine on mitigating traffic congestion and collateral dam-
age in the presence of DDoS attacks.

4.1 Settings

The policy enforcement framework is implemented in Python
and run as an OF application on the Ryu SDN controller. The
experiments were carried out in Mininet, which provides a
simulated OF switching environment. The experimental sce-
nario is shown in Fig. 2, in which we assume the ISP network
contains 14 OF switches and 6 paths, and the bandwidth and
link loss probability of different paths are assumed to be as
in Table 1. Also, the security alerts received by the ISP are
represented in the IDMEF format (Feinstein et al. 2015).

4.2 Results and Discussions

We use throughput and network jitter, two well accepted
QoS metrics, to evaluate the effectiveness of our approach.
Throughput of legitimate traffic. Throughput was mea-
sured in the presence of DDoS attacks. As shown in Figure 2,
we used H, to generate DDoS attack traffic, and observed
the impact on the legitimate traffic going to the customers

Customer
I5P Controller Controller
a

v g

Figure 2. Experimental scenario: one ISP with three cus-
tomers.

Table 1. Traffic paths in terms of bandwidth and link loss

probability.
Paths [Bandwidth [Link Loss Percentage
P 400 Mbps 0
P 400 Mbps 0
Ps 400 Mbps 0
Py 200 Mbps 3
Ps 100 Mbps 5
Ps 50 Mbps 7

C1, C5 and C5. As we can see in Figure 3, the throughput
of all the legitimate traffic dropped sharply as soon as Hy
started to attack. As a result, the SDN controller of customer
C5 sends an alert, which contains the FlowID (source IP,
destination IP) and security class (legitimate), to MC at the
ISP controller, making PDP decide on redirecting the flow.
Subsequently, POI computes the best path, i.e., P3, and in-
serts the NSH in the packets to redirect them. Finally, the
corresponding OF rules are loaded to PEPs, namely the OF
switches. As shown in Figure 3, the legitimate traffic head-
ing to C'3 was thus able to quickly return to its normal level.

Similarly, the traffic flow going to C; was redirected
through path P, upon the request of customer Cy, in or-
der to restore its throughput to the normal level. Afterwards,
the alert of customer C; reached the ISP controller, which
interestingly redirected the traffic originating from host H;
(which has the higher throughput) to path P as well, push-
ing the throughput of the traffic (originating from host Hs)
to customer C'y down to zero, as shown in Figure 3. This in-
dicates that, due to the limited availability of high QoS paths
in the ISP network, ensuring the QoS for one customer may
incur negative impact on other customers.

QoS provisioning for legitimate traffic. Following the
previous experiment, we examine how the QoS of legiti-

Legitimate traffic throughput(Mbps)

b 20740 T80 80 106 120
Time(sec)

Figure 3. Throughput of legitimate traffic going towards
customer network after redirection.

<]

<=C1
=C2

50 +C3 1

Legitimate traffic throughput(Mbps)

6 _ 60 80 100 120
Time(sec)

Figure 4. Throughput of legitimate traffic in the case traffic
going towards C' is redirected through low suspicious path.

mate traffic can be provisioned if all the paths with high
bandwidth are congested. In this experiment, we assume that
customer C; requests for getting better QoS of the traffic
sent from H;. As shown in Figure 4, since the legitimate
traffic going towards customer Cs and C3 were protected
from collateral damage, the traffic from H; was redirected
to the lower bandwidth path P, ensuring that the QoS was
not heavily impacted despite the congestion of the legitimate
path LP;.

Network Jitter of legitimate traffic. Finally, we test how
the network jitter of legitimate traffic varies in the presence
of congestion. As Fig. 5 shows, the network jitter of legiti-
mate traffic going towards customers C, Cs, and Cj started
to increase when the attack traffic from Hy congested the
network. However, all of them immediately decreased when
the ISP controller redirected the traffic flows upon receiv-
ing the mitigation requests from the customers. Despite the
similar changing pattern, the network jitter of the traffic go-
ing to C3 decreased earlier compared to those of Cs and C'.
This is simply because customer C3 sent alert earlier than
customers Cy and C did.

5. Conclusion

This paper proposed an automated and dynamic policy en-
forcement mechanism for mitigating DDoS attacks in a sce-
nario where a single ISP is serving multiple customers. One

Request for redirections

= C1| |
= C2
> C3| A

Network Jitter(ms

0 40 60 80 100 120
Time(sec)

Figure 5. Network jitter of legitimate traffic.

of the major advantages of the mechanism is that it allows
high-level security policies to be dynamically instantiated
based on the security alerts sent from the customers, and
adapted upon network changes. The policies are then en-
forced at OF switches with an objective to achieve dynamic
security service chaining, which is enabled by the network
service header, positioned in the packets by the SDN con-
troller. Our future work will be focused on resolving the
conflicts of reaction policies due to simultaneous enforce-
ments for different customers. We will also enrich the policy
attributes and survey the associated complexity.

Acknowledgments

This research has been partially supported by the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 643964 (SUPERCLOUD). The
authors would also like to thank the anonymous referees for
their valuable comments and helpful suggestions.

References

M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. 2013.
PolicyCop: An Autonomic QoS Policy Enforcement Framework
for Software Defined Networks. In 2013 IEEE SDN for Future
Networks and Services (SDN4FNS). 1-7. DOI:http://dx.
doi.org/10.1109/SDN4FNS.2013.6702548

Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin, and E. Raichstein.
2015. EnforSDN: Network policies enforcement with SDN. In
2015 IFIP/IEEE International Symposium on Integrated Net-
work Management (IM). 80-88. DOI:http://dx.doi.org/
10.1109/INM.2015.7140279

Zizhong Cao, Murali Kodialam, and T. V. Lakshman. 2014. Traf-
fic Steering in Software Defined Networks: Planning and Online
Routing. In Proceedings of the 2014 ACM SIGCOMM Work-
shop on Distributed Cloud Computing (DCC ’14). ACM, New
York, NY, USA, 65-70. DOI:http://dx.doi.org/10.1145/
2627566.2627574

Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeftrey C.
Mogul. 2013. FlowTags: Enforcing Network-wide Policies in
the Presence of Dynamic Middlebox Actions. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking. ACM, New York, NY, USA, 19—
24. DOI:http://dx.doi.org/10.1145/2491185.2491203

Benjamin Feinstein, David Curry, and Herve Debar. 2015. The
Intrusion Detection Message Exchange Format (IDMEF). RFC
4765. (14 Oct. 2015). DOI:http://dx.doi.org/10.17487/
rfc4765

Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. 2011.
Frenetic: A Network Programming Language. SIGPLAN Not.
46, 9 (Sept. 2011), 279-291.

Adrian Lara and Byrav Ramamurthy. 2016. OpenSec: Policy-based
security using software-defined networking. IEEE Transactions
on Network and Service Management 13, 1 (2016), 30-42.

Soo Bum Lee, Min Suk Kang, and Virgil D. Gligor. 2013. CoDef:
Collaborative Defense Against Large-scale Link-flooding At-
tacks. In Proceedings of the Ninth ACM Conference on Emerg-
ing Networking Experiments and Technologies (CoNEXT ’13).
ACM, New York, NY, USA, 417-428. DOI:http://dx.doi.
org/10.1145/2535372.2535398

C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-
Filho. 2015. Policy authoring for software-defined networking
management. In 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM). 216-224. DOI:http:
//dx.doi.org/10.1109/INM.2015.7140295

Ajay Mahimkar, Jasraj Dange, Vitaly Shmatikov, Harrick Vin, and
Yin Zhang. 2007. dFence: Transparent Network-based Denial
of Service Mitigation. In Proceedings of the 4th USENIX Con-
ference on Networked Systems Design Implementation (NSDI).
USENIX Association, Berkeley, CA, USA, 24-24.

Thomas Nadeau and Paul Quinn. 2015. Problem Statement for
Service Function Chaining. RFC 7498. (10 Nov. 2015). DOI:
http://dx.doi.org/10.17487/rfc7498

Open Networking Foundation. 2008. What’s Behind Network
Downtime? Technical Report. Juniper Networks.

Open Networking Foundation. 2013. SDN Security Considerations
in the Data Center. Technical Report. ONF.

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas
Sekar, and Minlan Yu. 2013. SIMPLE-fying Middlebox Pol-
icy Enforcement Using SDN. SIGCOMM Comput. Commun.
Rev. 43,4 (Aug. 2013),27-38. DOI:http://dx.doi.org/10.
1145/2534169.2486022

Paul Quinn and Uri Elzur. 2016. Network Service Header.
Internet-Draft draft-ietf-sfc-nsh-05. Internet Engineer-
ing Task Force. https://tools.ietf.org/html/
draft-ietf-sfc-nsh-05 Work in Progress.

N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers. 2014. Open-
NetMon: Network monitoring in OpenFlow Software-Defined
Networks. In 2014 IEEE Network Operations and Management
Symposium (NOMS). 1-8.

Andreas Voellmy, Hyojoon Kim, and Nick Feamster. 2012. Pro-
cera: A Language for High-level Reactive Network Control. In
Proceedings of the First Workshop on Hot Topics in Software
Defined Networks (HotSDN ’12). ACM, New York, NY, USA,
43-48.

