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1. Introduction

1.1. The diagonal embedding case. Let be X a complex manifold or a smooth algebraic variety over
a field of characteristic zero. Thanks to the celebrated result of Hochschild, Kostant and Rosenberg (cf.
[10]), the Hochschild homology and cohomology groups of the sheaf OX are given by HHi(OX) = Ωi

X
and HHi(OX) = ΛiTX . These isomorphisms can be upgraded at the level of derived categories, and
are called (geometric) HKR isomorphisms. For more history on this topic, we refer the reader to the
paper [8], as well as references therein. In the present paper, we will be especially interested in the
geometric HKR isomorphism involving Hochschild cohomology: this isomorphism is an additive sheaf
isomorphism between the sheaf of polyvector fields S(TX[−1]) =

⊕
i≥0Λ

iTX[i] and the derived Hom
sheaf of the diagonal p1∗RHomOX×X (OX ,OX). Here we view X as the diagonal inside X×X (which is the
geometric counterpart of looking at an algebra as a bimodule over itself) and p1 is the first projection.

Both members of this isomorphism have multiplicative structure: the wedge product on polyvector fields,
and the Yoneda product on the derived Hom complex. Taking the cohomology on both sides, for any
non-negative integer p, the corresponding isomorphism between the algebras

⊕p
i=0 Hp−i(X,ΛiTX) and

ExtiX×X(OX ,OX) is not multiplicative in general (contrarily to the homological geometric HKR). It has
been conjectured by Kontsevich [13] and later proved by Van den Bergh and the first author [2] that one
can use the square root of the Todd class Td (X) on

⊕
i Hi(X,Ωi

X) of the tangent sheaf TX to “twist” the
global cohomological HKR isomorphism in order to get an isomorphism of algebras.

The Todd class of X is also intimately related to the geometry of the diagonal of X in another way: it is
the correction term appearing on the Grothendieck-Riemann-Roch theorem, so thanks to the Lefschetz
formalism it can be interpreted as a restriction of the Grothendieck cycle class to the diagonal itself.
This has been hinted in the pioneering work of Toledo-Tong (see [17, §6]), and formalized using HKR
isomorphisms in an unpublished manuscript of Kashiwara around 1992. Kashiwara’s account can be
found in [7], where the second author proves in fact that the Todd class is the Euler class of OX , proving
a conjecture of Kaschiwara–Schapira [12].

The above results can be re-interpreted very naturally in Lie-theoretic terms after the works of Kapranov
[11] and Markarian [14]:

– The shifted tangent sheaf TX[−1] is a Lie algebra object in the derived category Db(X).
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– Thanks to results of Markarian [14] and Ramadoss [15], the universal enveloping algebra of this
Lie algebra object is indeed the derived Hom sheaf, and that the geometric HKR isomorphism
can be re-interpreted as the Poincaré-Birkhoff-Witt (PBW) isomorphism.

– Every element F in Db(X) is naturally a representation of TX[−1], and via the PBW isomorphism
the character of this representation (which is a central function on U(TX[−1])) can be identified
with the Chern character of F .

– The Todd class becomes the derivative of the multipication map in the universal enveloping
algebra, and is therefore the Duflo element of TX[−1].

– The isomorphism HKR ◦ ι√Td (X) from [13, 2] can be seen as a Duflo isomorphism (see [6]) for
the Lie algebra object TX[−1].

We refer to [4], [3] for further analogies between Lie theory and algebraic geometry.

1.2. More general embeddings: tame quantized cycles. In the present paper, we are interested in the
more general situation where we replace the diagonal embedding ∆X ↪→ X × X by an arbitrary closed
immersion X ↪→ Y , where X is a smooth closed subscheme of an ambiant smooth scheme Y .

In [1], Arinkin and Căldăraru gave a necessary and sufficient condition for an additive generalized geo-
metric HKR isomorphism to exist between RHomOY (OX ,OX) and S(NX/Y [−1]): the condition is that
NX/Y extends to a locally free sheaf on the first infinitesimal neighborhood of X in Y . The Lie theoretic
interpretation of the first order neighborhood and of the above geometric condition has been given in [3]
by Căldăraru, Tu, and the first author.

Earlier on, in Kashiwara’s 1992 unpublished manuscript, a more restrictive condition is introduced:
Kashiwara deals with subschemes with split conormal sequence, which means that the map from X to
its first infinitesimal neiborhood in Y admits a global retraction (in this case, any locally free sheaf on X
extends at order one in Y). On the Lie side, this corresponds to pairs h ⊂ g that split as h-modules, these
are usually called reductive pairs. In [8], the second author developed Kashiwara’s construction in this
framework. The data of a subscheme X of Y together with such a retraction σ is called a quantized cycle,
and to such a cycle it is possible to associate geometric HKR isomorphisms, as well as a quantized cycle
class qσ(X) living in

⊕
i≥0 Hi(X,ΛiN∗X/Y ) that generalizes the Todd class in the diagonal case. Recently,

answering a question raised by the second author in the article [8], Yu has shown in [18] the following
result: given a quantized cycle (X, σ) in Y such that σ∗NX/Y extends to a locally free sheaf on the second
infinitesimal neighborhood of X in Y ,

– The quantized cycle qσ(X) class is completely determined by the geometry of the second infini-
tesimal neighborhood of X in Y .

– It can be expressed by an explicit formula similar to that of the usual Todd class.
Yu’s proof is based on direct calculation using the dg Dolbeault complex as well as homological per-
turbation theory. In this paper we provide a Lie theoretic explanation of Yu’s results. We introduce
the notion of tame quantized cycle corresponding to Yu’s condition: a quantized cycle (X, σ) is tame
if σ∗NX/Y extends to a locally free sheaf at the second order. We can list all the conditions that can
be investigated on the cycle X (each condition being more restrictive than the previous one), and the
corresponding conditions for Lie algebra pairs:

cycles X ⊂ Y Lie pairs h ⊂ g
N∗X/Y extends at the first order delicate condition, cf. [4]

X admits a retraction at the first order in Y g = h ⊕m
i.e. X can be quantized as h-modules

X is a tame quantized cycle [πh([m,m]),m] = 0
X admits a retraction at the second order in Y g = h ⋊m

If one of the two last conditions is satisfied, the object NX/Y [−1] is naturally a Lie object in Db(X), but
this is no longer the case if we drop the tameness assumption. In full generality (that is without any
specific quantization conditions), the algebraic structure of NX/Y [−1] has been investigated in [4]: it is a
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derived Lie algebroid, whose anchor map is given by the extension class of the normal exact sequence of
the pair (X,Y). Hence, our setting can be understood as the weaker universal hypotheses for which this
derived algebroid is a true Lie object in the symmetric monoidal category Db(X).

1.3. The results. The two main geometric result we prove in this paper deals with tame quantized
analytic cycle. Both rely heavily on abstract result on Lie algebras in symmetric monoidal categories,
that we will discuss after the statements. The first result is the explicit computation of the enveloping
algebra of the Lie algebra object NX/Y [−1].

Theorem A. Let (X, σ) be a tame quantized cycle in Y. The class α defines a Lie coalgebra structure
on N∗X/Y [1], hence a Lie algebra structure on NX/Y [−1]. Besides, the objects RHomℓ

OY
(OX ,OX) and

RHomr
OY

(OX ,OX) are naturally algebra objects in the derived category Db(X), and there are commuta-
tive diagrams

σ∗RHomOS (OX ,OX) //

HKR

��

RHomℓ
OY

(OX ,OX)

HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])

and
σ∗RHomOS (OX ,OX) //

dual HKR

��

RHomr
OY

(OX ,OX)

dual HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])

where all horizontal arrows are algebra morphisms, and all vertical arrows are isomorphisms.

1.4. Plan of the paper. The paper is organized as follows:

– §2 is devoted to some recollection about Lie algebra objects in a categorical setting. We claim
no originality for this material, but we were not able to find the desired results in the form we
needed in the literature. For instance, most references are written for abelian categories while
we work in the slightly more general Karoubian framework.

– §3 deals with three different topics. §3.1 gives universal formulas for the multiplication map
U(g) ⊗ g → U(g) via the PBW isomorphism. Up to our knowledge, this result has never been
proved in this level of generality. In §3.2, we define an algebraic condition that characterizes
uniquely the Duflo element of a Lie object in a symmetric monoidal category. This will be
the key ingredient to our Lie-theoretic proof of Yu’s result. In §3.3, we introduce the “tame
condition” for pairs of Lie algebras, which is a Lie theoretic analog of Yu’s condition.

– §4 recollects previous results on (first and second order) infinitesimal neighborhoods, HKR iso-
morphisms and quantized cycles. This is were we state the geometric tameness condition, a-k-a
Yu’s condition.

– in §5 we explain that the geometric tameness condition coincides with the Lie theoretic tameness
condition for the pair

(
TX[−1],TY [−1]|X

)
of Lie algebra objects in Db(X). We get in particular

that in the tame case, NX/Y [−1] is a Lie algebra object in Db(X) and we describe its universal
enveloping algebra in geometric terms. Using the Lie-theoretic results of §2-3, we are able to
give enlightening and simple proofs of results of Ramadoss about Kapranov big Chern classes
(diagonal case), and Yu’s formula for the quantized cycle class.
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– In §6 we use the above to get a description of the Ext algebra of a tame quantized cycle. We show
in particular that it is completely determined by the second order infinitesimal neighborhood of
X in Y .

– We conclude the paper with a few perspectives in §7.

2. Universal enveloping algebras and the categorical PBW theorem

2.1. Preliminary results of linear algebra.

2.1.1. Partially antisymmetric tensors. Let k be a field of characteristic zero and let C be a k-linear
symmetric monoidal category that is Karoubian (i.e. every idempotent splits1) and such that countable
direct sums exist. We can assume without loss of generality that C is a strict monoidal category (i.e. it
is harmless to drop the parenthesizations of iterated tensor products from the notation). For any non-
negative integer n, the symmetric group Sn acts naturally on V⊗n, where V is an object of C. Let πn be
the element (n!)−1 ∑

g∈Sn g, considered as an idempotent element of the group algebra k[Sn]. It induces
a natural idempotent2 on V⊗n, whose kernel is denoted by Λ̃nV and whose image is denoted by SnV . We
therefore have a decomposition

V⊗n = SnV ⊕ Λ̃nV .

Assume that n is at least two and let

Ψn :
n−1⊕
i=1

(
V⊗i−1 ⊗ Λ2V ⊗ V⊗n−i−1

)
→ V⊗n

be the map obtained by embedding each Λ2V := Λ̃2V in V⊗2. We can provide a concrete description of
Λ̃nV via the map Ψn:

Lemma 2.1. The image of Ψn exits and is canonically isomorphic to Λ̃nV.

Proof. For i in ⟦1, n − 1⟧, let τi be the transposition in the group Sn that switches i and i + 1. We first
observe that (1 + τi)πn = πn(1 + τi) = πn. Hence the kernel of 1 + τi acting on V⊗n is a (split) sub-object
of the kernel of πn acting on V⊗n:

V⊗(i−1) ⊗ Λ2V ⊗ V⊗(n−i−1) ⊂ Λ̃nV .

In other words, the map Ψn factors through Λ̃nV . In order to conclude, it is then sufficient to prove
that

⊕n−1
i=1

(
V⊗i−1 ⊗ Λ2V ⊗ V⊗n−i−1

)
→ Λ̃nV admits a section. We claim that the right ideal in k[Sn]

generated by 1 − τi (1 ≤ i ≤ n − 1) contain all elements 1 − τ for arbitrary τ in Sn. Indeed, for any
elements g1, . . . , gd in the group algebra k[Sn], we have

1 − Πd
i=1gi = (1 − Πd−1

i=1 gi)gd + (1 − gd).

The claim follows again from the fact that the τi generate Sn. As a corollary, 1 − π sits in this ideal, so
that we can choose elements (ai)1≤i≤n−1 in the group algebra such that

n−1∑
i=1

(1 − τi) ai = 1 − πn

As a consequence we get that the map

Φn :=
n−1∏
i=1

(1 − τi) ai : V⊗n −→
n−1⊕
i=1

V⊗n

factors through
⊕n−1

i=1

(
V⊗i−1 ⊗ Λ2V ⊗ V⊗n−i−1

)
and Ψn ◦Φn is the projection onto the direct factor Λ̃nV

in V⊗n. □

1Therefore, every multiple of a projector has a kernel and an image; we will repeatedly use this property.
2Abusing notation, we will denote by the same symbol an element of k[Sn] and the induced endomorphism of V⊗n in C.
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Example 2.2. The simplest nontrivial case is n = 3. In this case we can take for instance6a1 = 31 + τ2 + τ2τ1

3a2 = 1 + τ1

2.1.2. Jacobi identity. Let us consider a morphism α : V⊗2 → V in C which vanishes on S2V (i.e. such
that α ◦ τ1 = −α).

Proposition 2.3. The pair (V, α) is a Lie algebra object if and only if there exists

β : Λ̃3V → V

such that β ◦ Ψ3 = (α ◦ (α ⊗ id), α ◦ (id ⊗ α)).

Proof. Let u = α ◦ (α ⊗ id). The Jacobi identity is equivalent to the identity

u − u ◦ τ2 + u ◦ τ2τ1 = 0 .

Remark now that α ◦ (id⊗α) = −u ◦ τ2τ1, and that u ◦ τ1 = −u. We now pre-compose (u,−u ◦ τ2τ1) with
the right inverse of Ψ3 given by Lemma 2.1. This gives a morphism β : Λ̃3V → V . Example 2.2 and a
short calculation provide the following explicit formula:

β =
1
3

(3u − u ◦ τ2 − u ◦ τ2τ1) .

This morphism β is the only possible candidate to fulfil the desired condition β ◦ Ψ3 = (u,−u ◦ τ2τ1).
Then we observe that β|Λ2V⊗V = u

β|V⊗Λ2V = −u ◦ τ2τ1 +
2
3

(2u + u ◦ τ2τ1)

Hence β ◦Ψ3 = (u,−u ◦ τ2τ1) if and only if 2u+ u ◦ τ2τ1 vanishes on V ⊗Λ2V . This condition is clearly
implied by the Jacobi identity, but it is in fact equivalent to it. Indeed, 2u+ u ◦ τ2τ1 vanishes on V ⊗Λ2V
if and only if (2u + u ◦ τ2τ1) ◦ (1 − τ2) = 0, and

(2u + u ◦ τ2τ1) ◦ (1 − τ2) = 2u + u ◦ τ2τ1 − 2u ◦ τ2 − u ◦ τ2τ1τ2

= 2u + u ◦ τ2τ1 − 2u ◦ τ2 + u ◦ τ2τ1

= 2(u − u ◦ τ2 + u ◦ τ2τ1).

□

2.2. Algebras satisfying the PBW isomorphism.

2.2.1. The morphisms ck
p. Let V be an object in C and let A be a unital augmented algebra object in C

together with an algebra morphism ∆ : T(V)→ A. From now on, we require

Assumption (A1) The composition ∆+ : S(V)→ T(V)→ A is an isomorphism3.

Here T(V) :=
⊕

n≥0 V⊗n is equipped with the concatenation product, S(V) :=
⊕

n≥0 SnV and the map
S(V) → T(V) is the direct sum of direct factor embeddings SnV ⊂ V⊗n. Note that A carries a split
increasing filtration: FpA := ∆+

(⊕p
i=0 SiV

)
. Moreover, ∆ is a filtered morphism for the obvious de-

gree filtration on T(V). We now consider the restriction ∆p of the filtered morphism ∆−1
+ ◦ ∆ on each

homogeneous component V⊗p; it decomposes as follows:

∆p := ∆−1
+ ◦ ∆|V⊗p =

p∑
k=0

ck
p ,

where ck
p ∈ HomC(V⊗p,SkV). Since A is augmented, c0

p vanishes. We further make the following

3Only as objects of C, not as algebras.
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Assumption (A2) For any non-negative integer p the morphism V⊗p → GrpA ≃ SpV
is the canonical projection πp.

Note that this morphism is nothing but ∆p followed by the projection onto SpV . This second assumption
on A ensures that the restriction of ck

p to SpV is zero if k ≤ p − 1, and cp
p is the canonical projection πp

from V⊗p to SpV . In particular, if 1 ≤ k ≤ p − 1, then ck
p lives naturally in HomC(Λ̃pV,SkV).

2.2.2. The Lie bracket. We define α = c1
2 : Λ2V → V . Since A is augmented, we can identify F1A with

1 ⊕ V (via ∆+), where 1 is the monoidal unit of C.

Lemma 2.4. Let m : A⊗2 → A be the associative product. Then the morphism V⊗2 → A defined by

m ◦ ∆⊗2
|V ◦ (1 − τ1)

factors through ∆+(V) ⊂ F1A, and coincides with 2∆+ ◦ α.

Proof. As ∆ is an algebra morphism, we have that

m ◦ ∆⊗2
|V ◦ (1 − τ1) = ∆|V⊗2 ◦ (1 − τ1) = ∆+ ◦ (c1

2 + π2) ◦ (1 − τ1) = 2∆+ ◦ c1
2 = 2∆+ ◦ α .

We are done. □

Corollary 2.5. The morphism α defines a Lie structure on V.

2.2.3. Induction formulæ for ck
p. We can now provide explicit induction formulæ for the morphisms ck

p.
Recall that for 0 ≤ k ≤ p − 1, we consider ck

p as an element of HomC(Λ̃pV,SkV).

Proposition 2.6. Given a pair (V,A) as above, the coefficients ck
p are determined as follows:{

cp
p = πp : V⊗p → SpV.

ck
p ◦ Ψp = {ck

p−1 ◦ (idV⊗i−1 ⊗ α ⊗ idV⊗p−i−1)}1≤i≤p−1 if 1 ≤ k ≤ p − 1.

Recall here that α = c1
2.

Proof. For 1 ≤ i ≤ p − 1 we have

∆|V⊗p ◦ 1
2

(1 − τi) = m(2) ◦ ∆|V⊗i−1 ⊗ (
∆|V⊗2 ◦ 1

2
(1 − τ1)

) ⊗ ∆|V⊗p−i−1

= m(2) ◦ ∆|V⊗i−1 ⊗ (∆ ◦ α) ⊗ ∆|V⊗p−i−1 (by Lemma 2.4)
= ∆|V⊗p−1 ◦ (idV⊗i−1 ⊗ α ⊗ idV⊗p−i−1) ,

where m(2) := m ◦ (m ⊗ id). Applying ∆−1
+ followed by the projection on the direct factor SkV we get

ck
p ◦

1
2

(1 − τi) = ck
p−1 ◦ (idV⊗i−1 ⊗ α ⊗ idV⊗p−i−1) .

Hence both members of the induction relation agree on V⊗i−1⊗Λ2V⊗V⊗p−i−1 for every 1 ≤ i ≤ p−1. □

2.3. Universal algebras in the categorical setting.

2.3.1. Reverse PBW theorem. We can now prove our first main result: assuming that the algebra A

satisfies the PBW theorem (i.e. Assumptions (A1) and (A2)), we prove that it is the universal enveloping
algebra of V endowed with the Lie bracket 2c1

2.

Proposition 2.7 (Reverse PBW). If A satisfies Assumptions (A1-A2) of §2.2.1, then A is a universal
enveloping algebra of the Lie algebra (V, 2α).

Proof. For any associative algebra object B in C, with product mB : B⊗2 → B, we denote by BLie =

(B, µB) the Lie algebra object which is B endowed with the Lie bracket µB = mB ◦ (1 − τ1). Lemma 2.4
tells us that the direct factor inclusion (∆+)|V : V ↪→ A is a morphism of Lie algebra objects from (V, 2α)
to ALie in C.

Assume now to be given a morphism f : V → B. By the universal property of the tensor algebra, it
defines an algebra morphism f̃ : T(V)→ B.
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Lemma 2.8. If f is a Lie algebra morphism (from (V, 2α) to BLie) then f̃ factors through a unique
morphism g : A→ B.

Proof of the Lemma. It is sufficient to prove that f̃ = f̃ ◦ s◦∆, where s is a section of ∆. Indeed, the only
possible choice is g = f̃ ◦ s. Here we use the section s given by ∆−1

+ : A→ S(V) ⊂ T(V).

We will prove by induction on p that f̃|V⊗p = f̃ ◦∆−1
+ ◦∆|V⊗p . Note that this identity is obviously satisfied

when restricted to SpV ⊂ V⊗p. The only thing left to prove is thus that f̃|Λ̃pV = f̃ ◦ s ◦ ∆|Λ̃pV .
– For p ∈ {0, 1} the result is obvious.
– For p = 2, we have

f̃|Λ2V =
1
2
µB ◦ ( f ⊗ f )|Λ2V = f ◦ α = f ◦ c1

2 = f̃ ◦ ∆−1
+ ◦ ∆|Λ2V .

– Let us now assume that the required equality holds for a given p ≥ 2. We compute

f̃ ◦ s ◦ ∆|V⊗i−1⊗Λ2V⊗V⊗p−i = f̃ ◦
 p∑

k=1

ck
p+1


|V⊗i−1⊗Λ2V⊗V⊗p−i

= f̃ ◦
 p∑

k=1

ck
p

 ◦ (idV⊗i−1 ⊗ α ⊗ idV⊗p−i) (by Proposition 2.6)

= f̃ ◦ (idV⊗i−1 ⊗ α ⊗ idV⊗p−i) (by induction) .

Finally one can prove that

f̃|V⊗i−1⊗Λ2V⊗V⊗p−i = f̃ ◦ (idV⊗i−1 ⊗ α ⊗ idV⊗p−i)

in the same way as for the case when p = 2.
□

End of the proof of Proposition 2.7. In order to conclude one has to prove that g is indeed a morphism of
algebras:

g ◦ m = f̃ ◦ s ◦ m = f̃ ◦ s ◦ m ◦ (∆ ◦ s)⊗2

= f̃ ◦ s ◦ ∆ ◦ m ◦ s⊗2 = f̃ ◦ m ◦ s⊗2

= m ◦ ( f̃ ◦ s)⊗2 = m ◦ g⊗2 .

□

2.3.2. Categorical construction of the product on S (V). In this section, we prove the following delicate
result:

Theorem 2.9. There exists an algebra A that satisfies Assumptions (A1-A2).

Remark 2.10. In [5, Lemma 1.3.7.5], the authors provide an explicit multiplication law m⋆ on S(V) in
the case when C is the category of graded vector spaces (or more generally any abelian category), and
prove that it is associative. Then the algebra A = (S(V),m⋆) satisfies all required properties. Their proof
should carry on as well for a general C, but the formulas defining m⋆ are daunting to write down in the
categorical setting. This is why we provide another approach, which is close in spirit of [5], but more
adapted to the categorical framework.

The proof is long and technical. Before starting, let us introduce some notation that will be used con-
stantly in the sequel:

– On S(V) we have an associative and commutative product m0 defined as the composition

S(V)⊗2 ⊂ T(V)⊗2 → T(V)↠ S(V) .

– We write τp,q for the transposition (p, q) in the symmetric group, as well as for the corresponding
action on V⊗n.



THE EXT ALGEBRA OF A QUANTIZED CYCLE 9

– We consider the morphism ω(V, µ) : SnV ⊗ V → Sn−1V ⊗ V defined as

ω(V, µ) := (idV⊗n−1 ⊗ µ) ◦
n∑

i=1

τi,n = n (idV⊗n−1 ⊗ µ) , (1)

where µ := 2α. We leave it as an exercise to check that the image of ω(V, µ) indeed factors through
Sn−1V ⊗ V ⊂ V⊗n. We often simply write ω as the choice of (V, µ) is clear from the context.

Proof of Theorem 2.9. Let (V, α) be a Lie algebra object in C. For any integer n ≥ 2, we are going to
construct a pair (m⋆, π) that satisfies the seven following properties:

A For i, j ≤ 0 with i + j ≤ n, m⋆ : Si(V) ⊗ S j(V)→ S≤i+ j(V).
B The product m⋆ is associative: if i + j + k ≤ n then m⋆(m⋆ ⊗ id) and m⋆(id ⊗ m⋆) agree on

Si(V)⊗S j(V)⊗Sk(V). And its unit is given by the canonical direct factor embedding 1 ⊂ S≤n(V).

C The action of the Lie algebra V on S≤n(V) respects the product m⋆: if i + j ≤ n then

ad(id ⊗ m⋆) = m⋆
(
ad ⊗ id + (id ⊗ ad)(τV,Si(V) ⊗ id)

)
on V ⊗ Si(V) ⊗ S j(V).

D The action of the Lie algebra V on S<n(V) is the commutator for m⋆ with degree one elements:

ad = m⋆(idV⊗Sn(V) − τV,S<n(V)).

E π is a filtered morphism from T≤n(V) to S≤n(V) that is multiplicative: if i + j ≤ n,

πm⋆ = m⋆(π ⊗ π)

on Si(V) ⊗ S j(V).
F The restriction of π to S≤n(V) is the identity map.
G On Sn−1(V) ⊗ V , the morphism m⋆ is given by the explicit formula

m0 +
1

n(n − 1)
π

n−1∑
k=1

kτk,n−1ω

 .
To see where condition (G) comes from, we refer the reader to Lemma 3.2. We argue by induction on n.

Initial step. The first interesting case is n = 2. Then m⋆ is defined by m0 + α and π is given by m⋆ itself
on V ⊗ V . It is easy to check that all properties are satisfied.

Inductive step: definitions. Assume that the induction hypotheses are satisfied at level n. We define the
product

“m⋆” : Sn−i(V) ⊗ Si+1(V)→ S≤n+1(V)

inductively for 1 ≤ i ≤ n − 1 as follows:

– For i = 1, “m⋆” is defined on Sn(V) ⊗ V as

“m⋆” = m0 +
1

n(n + 1)
π

 n∑
k=1

kτk,nω

 .
– Then “m⋆” is defined as “m⋆” ( m⋆ ⊗ idV ) on

Sn−i(V) ⊗ Si+1(V) ⊂ Sn−i(V) ⊗ Si(V) ⊗ V .

– Lastly we define “m⋆” = m⋆ for lower degrees.
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For the projection π, on Tn+1(V) = Tn(V) ⊗ V , we put

“π” = “m⋆” (π ⊗ id),

and “π” = π on T≤n(V).

Notation.

– Symbols in between quotes are the ones that we’ve just defined for the induction step. For these
ones we are not yet allowed to use properties (B–G), which we in fact have to prove. Note that
property (G) holds on the nose, as this is exactly how we defined “m⋆” .

– In the symmetric group Sℓ, we write τi,..., j for the permutation τ j−1 . . . τi+1τi (i < j).

Property (F) is satisfied.

If i + j ≤ n + 1 then “m⋆” = m0 = id on S≤i+ j(V) ⊂ S≤i(V) ⊗ S≤ j(V).

First of all, if i+ j ≤ n then “m⋆” = m⋆ and this is true because π preserves the product and is the identity
on S≤n(V) according to (F). Now, if i + j = n + 1, then it follows from the definition of “m⋆” and from
what we’ve just observed that the following diagram commutes4:

Sn+1(V) //

��

Si(V) ⊗ S j(V)

“m⋆”
��

Sn(V) ⊗ V
“m⋆”

// S≤n+1(V)

It is therefore sufficient to prove that “m⋆” coincides with m0 on Sn+1(V) ⊂ Sn(V)⊗V . This follows from
the fact that the restriction of ω to Sn+1(V) ⊂ Sn(V) ⊗ V vanishes.

A useful identity.

“m⋆” − “m⋆” ( m⋆ ⊗ idV )τn = m⋆ (idSn−1(V) ⊗ α) on Sn(V) ⊗ V (2)

“m⋆” ( m⋆ ⊗ idV )τn = “m⋆” ( m⋆ ⊗ idV − m0 ⊗ idV )τn + “m⋆” (m0 ⊗ idV )τn

= m⋆ ( m⋆ ⊗ idV − m0 ⊗ idV )τn + “m⋆” (m0 ⊗ idV )τn

=
1

n(n − 1)
m⋆

π
n−1∑

k=1

kτk,n−1ω

 ⊗ idV

 τn + “m⋆” (m0 ⊗ idV )τn

We will transform the second term. The first observation is that ω(m0 ⊗ idV )τn = −1
nω on Sn(V) ⊗ V ,

because the map

(m0 ⊗ idV )τn +
1
n

idSn(V)⊗V : Sn(V) ⊗ V → Sn(V) ⊗ V

4 Indeed, the vertical “m⋆” is defined as “m⋆”(m⋆ ⊗ idV ) on Si(V) ⊗ S j(V) ⊂ Si(V) ⊗ S j−1(V) ⊗ V , and m⋆ = m0 on
Si(V) ⊗ S j−1(V).
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factors through Sn+1(V)5. This gives

“m⋆” (m0 ⊗ idV )τn = m0(m0 ⊗ idV )τn +
1

n(n + 1)
π

 n∑
k=1

kτk,nω(m0 ⊗ idV )τn


= m0 −

1
n2(n + 1)

π

 n∑
k=1

kτk,nω


= m0 −

1
n

( “m⋆” − m0)

=
n + 1

n
m0 −

1
n

“m⋆” .

Hence we get

“m⋆”− “m⋆” ( m⋆ ⊗ idV )τn

= “m⋆” − 1
n(n − 1)

m⋆

π
n−1∑

k=1

kτk,n−1ω

 ⊗ idV

 τn − “m⋆” (m0 ⊗ idV )τn

=
n + 1

n
( “m⋆” − m0) − 1

n(n − 1)
m⋆

π
n−1∑

k=1

kτk,n−1ω

 ⊗ idV

 τn

=
1
n2 π

 n∑
k=1

kτk,nω

 − 1
n(n − 1)

m⋆

π
n−1∑

k=1

kτk,n−1ω

 ⊗ idV

 τn.

We claim that for 1 ≤ k ≤ n− 1, the two terms corresponding to the index k in the two sums cancel. This
follows from the identity

1
n
τk,nω =

1
n − 1

(
(τk,n−1ω) ⊗ idV

)
τn (3)

on Sn(V) ⊗ V that we prove as follows: ω acting on Sn(V) ⊗ V is the restriction of n × idSn−1(V) ⊗ α to
Sn(V) ⊗ V . Hence (3) is equivalent to

τk,n(idSn−1(V) ⊗ α) =
(
τk,n−1(idSn−2(V) ⊗ α) ⊗ idV

)
τn

on Sn(V) ⊗ V . Remark now that

(idSn−2(V) ⊗ α ⊗ idV )τn = τn(idSn−1(V) ⊗ α)

on Sn(V)⊗V . Hence (3) is equivalent to the fact that (idSn−1(V) ⊗α) is invariant by post-composition with
τk,nτk,n−1τn. But this element is τk,n−1, so it acts trivially on Sn−1(V). This gives (3). This being done, we
obtain that

“m⋆” − “m⋆” ( m⋆ ⊗ idV )τn =
1
n
πω,

which is nothing but m⋆ (idSn−1(V) ⊗ α). This finishes the proof of the identity.

Property (D) is satisfied □

2.3.3. Categorical PBW theorem.

Theorem 2.11. Let V be an object of C and α be an element of HomC(V,Λ2V).
– The system of equations

ck
p ∈ HomC(Λ̃pV,SkV) for 1 ≤ k ≤ p − 1

cp
p = πp : V⊗p → SpV

ck
p ◦ Ψp = {ck

p−1 ◦ (idV⊗i−1 ⊗ α ⊗ idV⊗p−i−1)}1≤i≤p−1 if 1 ≤ k ≤ p − 1
(4)

has a solution (ck
p)1≤k≤p if and only if α is a Lie bracket on V. If it exists, this solution is unique.

5This map is nothing but the morphism m0 : Sn(V) ⊗ V → Sn+1(V).
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– Given a Lie algebra object (V, α) in C, let (ck
p)1≤k≤p be coefficients satisfying (4). If we define a

product m⋆ on S(V) by the formula

(m⋆)|SpV⊗SqV :=

p+q∑
k=1

ck
p+q


|SpV⊗SqV

,

then m⋆ is associative and A = (S(V),m⋆) is a universal enveloping algebra of (V, 2α). Besides,
the PBW theorem holds.

Proof. Assume that α is a Lie bracket. Theorem 2.9 gives an algebra A satisfying Assumptions (A1-A2)
of §2.2.1. Hence Proposition 2.6 provides the existence of the ck

p. Uniqueness is clear. Conversely, if the
equations (4) are satisfied, then we have

c1
3 ◦ Ψ3 = (α ◦ (α ⊗ id), α ◦ (id ⊗ α)) .

Thanks to Proposition 2.3, α satisfies the Jacobi identity.

Now assume that α is a Lie bracket, and let A be an algebra satisfying Assumptions (A1-A2) of §2.2.1.
Then we can transport the algebra structure on S(V) via the isomorphism ∆+: we have

(m⋆)|SpV⊗SqV = ∆
−1
+ ◦ m ◦ (∆|SpV ⊗ ∆|SqV )

= ∆−1
+ ◦ ∆|SpV⊗SqV

=

p+q∑
k=1

ck
p+q


|SpV⊗SqV

.

This gives the result. □

3. Distinguished elements in the universal enveloping algebra

3.1. The derivative of the multiplication map. We borrow the notation from the previous Section:
(V, α) is a Lie algebra object in C and m⋆ is the associative product on S(V) from Proposition 2.11. Our
aim is to give a closed formula for the restriction φ of m⋆ to S(V)⊗V ⊂ S(V)⊗S(V). We use the notation
introduced in the beginning of §2.3.2, especially the morphism ω defined in (1).

We consider the morphism ϖV : SnV ⊗ V → Sn−1V ⊗ Λ2V ⊂ V⊗n+1 defined as the restriction of ωT(V)Lie

to SnV ⊗ V . In other words, since τi,n = id on SnV ⊗ V ,

ϖV = (1 − τn) ◦
n∑

i=1

τi,n = n (1 − τn) .

We often simply write ϖ as the choice of V is clear from the context.

Recall that the collection (Sn)n≥0 is a simplicial group: for every non-decreasing map f : {1, . . . , n} →
{1, . . . ,m} we have the corresponding morphism (−) f : Sm → Sn defined as follows: for any i in
{1, . . . ,m}, let us write f −1(i) = Ii. Then σ f is entirely characterized by the following properties:σ f acts by translation on each block Ik

σ f (Iσ−1(1)) < σ f (Iσ−1(2)) < . . . < σ f (Iσ−1(m))

We denote by f = (i) the only surjection {1, . . . , n + 1} → {1, . . . , n} that “hits” i twice.

Theorem 3.1. The map φ = m⋆|S(V)⊗V is the composition of
ω

1 − exp(−ω)
with the multiplication mor-

phism m0 of the symmetric algebra S(V).

We first need an intermediate result of categorical linear algebra.

Lemma 3.2. The restriction of τp+1, n+1 to SnV ⊗ V followed by the projection V⊗n+1 → Λ̃n+1V equals:

1
n(n + 1)

 p∑
i=1

iτ(n)
i, n −

n−p∑
j=1

jτ(n)
n+1− j, n

ϖ
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Note that τi,i = 1 by convention. Also remark that, if p ∈ {0, n}, then one of the two sums in the above
expression is empty and thus vanishes.

Proof. First recall that the projection V⊗n+1 → Λ̃n+1V is given by 1 − πn+1. Remark that the subgroup
Sn of Sn+1 corresponds to elements in Sn+1 fixing p + 1 act trivially on τp+1, n+1 (SnV ⊗ V). Besides,
Sn+1/Sn consists of the (n+1) left classes (τi,p+1Sn)1≤i≤n+1. Hence, restricted to τp+1, n+1 (SnV ⊗ V), we
have the identity

1 − πn+1 = 1 − 1
(n + 1)!

∑
σ∈Sn+1

σ

= 1 − 1
(n + 1)!

∑
σ∈Sn+1/Sn

n!σ

= 1 − 1
n + 1

n+1∑
i=1

τi, p+1 .

Then observe6 that on SnV ⊗ V ⊂ V⊗n+1, we have the following identities:

τ(n)
i,n = τ

(n)
i, nτi, n = τi+1, n+1 and similarly τ(n)

i, nτn = τi, n+1.

Using this, we compute:

1
n

 p∑
i=1

iτ(n)
i, n −

n−p∑
j=1

jτ(n)
n+1− j, n

ϖ
=

p∑
i=1

i(τi+1, n+1 − τi, n+1) −
n−p∑
j=1

j(τn+2− j, n+1 − τn+1− j, n+1)

=

p∑
i=1

iτi+1, n+1 −
p−1∑
i=0

(i + 1)τi+1, n+1 −
n−p−1∑

j=0

( j + 1)τn+1− j, n+1 +

n−p∑
j=1

jτn+1− j, n+1

= −
p−1∑
i=0

τi+1, n+1 + pτp+1, n+1 −
n−p−1∑

j=0

τn+1− j, n+1 + (n − p)τp+1, n+1

= −
n∑

i=0
i,p

τi+1, n+1 + nτp+1, n+1

= −
n∑

i=0

τi+1, n+1 + (n + 1)τp+1, n+1

= −
n∑

i=0

τi+1, p+1τp+1, n+1 + (n + 1)τp+1, n+1 (since τi+1, n+1 = τi+1, p+1τp+1, n+1 on SnV ⊗ V)

which is indeed (n + 1) times the desired map. □

Corollary 3.3. Let n, ℓ be non-negative integers with 0 ≤ ℓ ≤ n−1. For any p ∈ {1, . . . , n}, on Sn−1V ⊗V
we have

cn−ℓ
n ◦ τp,n = λ(n, ℓ, p) m0 ◦ ω◦ℓ

where λ(n, ℓ, p) are rational numbers satisfying the induction relations

λ(n + 1, ℓ, p + 1) =
1

n(n + 1)

 p∑
i=1

iλ(n, ℓ − 1, i) −
n−p∑
j=1

jλ(n, ℓ − 1, n + 1 − j)

 if 1 ≤ p ≤ n − 1

and λ(n, 0, p) = 1.
6It suffices to check that these permutations agree on the value n + 1.
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Proof. We proceed by induction. The case ℓ = 0 is easy: this amounts to observe that cn
n ◦τp,n = πn = m0

on Sn−1V ⊗ V . For the general case, on SnV ⊗ V we have

cn+1−ℓ
n+1 ◦ τp+1, n+1 =

1
n(n + 1)

cn+1−ℓ
n+1 ◦

 p∑
i=1

iτ(n)
i, n −

n−p∑
j=1

jτ(n)
n+1− j, n

ϖ
=

1
n(n + 1)

cn−(ℓ+1)
n ◦

 p∑
i=1

iτi, n −
n−p∑
j=1

jτn+1− j, n

ω
=

1
n(n + 1)

 p∑
i=1

iλ(n, ℓ − 1, i) −
n−p∑
j=1

jλ(n, ℓ − 1, j)

 m0 ◦ ω◦ℓ ,

where the first equality follows from Lemma 3.2, the second one from Corollary ??, and the last one
from the induction hypothesis. □

Example 3.4. We have

λ(n + 1, 1, p + 1) =
1

n(n + 1)

 p∑
i=1

i −
n−p∑
j=1

j


=

1
n(n + 1)

(
p(p + 1)

2
− (n − p)(n − p + 1)

2

)
= −1

2
+

p
n
·

In particular, λ(n, 1, n) =
1
2
·

In order to prove Theorem 3.1, it remains to show the following:

Lemma 3.5. For 0 ≤ ℓ ≤ n, λ(n + 1, ℓ, n + 1) =
Bℓ
ℓ!
·

Proof. We start by simplifying a little bit the induction relation given in Corollary 3.3. To do so, we
claim that for ℓ ≥ 1,

∑n
k=1 λ(n, ℓ, k) vanishes. This follows from a direct calculation:

n−1∑
k=1

λ(n + 1, ℓ, k + 1) =
1

n(n + 1)

n−1∑
k=1

 k∑
i=1

iλ(n, ℓ − 1, i) −
n−k∑
j=1

jλ(n, ℓ − 1, n + 1 − j)


=

1
n(n + 1)

n−1∑
k=1

 k∑
i=1

iλ(n, ℓ − 1, i) −
n∑

j=k+1

(n + 1 − j)λ(n, ℓ − 1, j)


=

1
n(n + 1)

n−1∑
i=1

n−1∑
k=i

iλ(n, ℓ − 1, i) −
n∑

j=2

j−1∑
k=1

(n + 1 − j)λ(n, ℓ − 1, j)


=

1
n(n + 1)

n−1∑
i=1

(n − i)iλ(n, ℓ − 1, i) −
n∑

j=2

( j − 1)(n + 1 − j)λ(n, ℓ − 1, j)


=

1
n(n + 1)

n−1∑
i=1

(n + 1 − 2i)λ(n, ℓ − 1, i) − (n − 1)λ(n, ℓ − 1, n)


=

1
n(n + 1)

− n∑
i=1

iλ(n, ℓ − 1, i) +
n∑

i=1

(n + 1 − i)λ(n, ℓ − 1, i)


= −λ(n + 1, ℓ, n + 1) − λ(n + 1, ℓ, 1).



THE EXT ALGEBRA OF A QUANTIZED CYCLE 15

Hence for ℓ ≥ 2, we see that

λ(n + 1, ℓ, 1) = − 1
n(n + 1)

n∑
j=1

jλ(n, ℓ − 1, n + 1 − j)

= − 1
n(n + 1)

n∑
i=1

(n + 1 − i)λ(n, ℓ − 1, i)

=
1

n(n + 1)

n∑
i=1

λ(n, ℓ − 1, i)

= λ(n + 1, ℓ, n + 1).

Besides,

λ(n + 1, ℓ, p + 1) =
1

n(n + 1)

 p∑
i=1

iλ(n, ℓ − 1, i) −
n−p∑
j=1

jλ(n, ℓ − 1, n + 1 − j)


=

1
n(n + 1)

 p∑
i=1

iλ(n, ℓ − 1, i) −
n∑

j=p+1

(n + 1 − j)λ(n, ℓ − 1, j)


=

1
n(n + 1)

n∑
i=1

iλ(n, ℓ − 1, i) − 1
n

n∑
j=p+1

λ(n, ℓ − 1, n + 1 − j)

= λ(n + 1, ℓ, 1) +
1
n

p∑
i=1

λ(n, ℓ − 1, i).

Remark that this relation is also valid for ℓ = 1.

Let us now show by induction on ℓ that λ(n, ℓ, n + 1) doesn’t depend on n, and equals to
Bℓ
ℓ!
· We have

already seen that it is true for ℓ = 1. We now assume that the induction hypothesis is true at rank ℓ. For

any i, we put ci =
Bi

i!
if i ≥ 2 and c1 = −

1
2
·We define modified power sums Tk(n) as follows:

Tk(n) = #{(i1, . . . , ik) such that 1 ≤ ik < ik−1 < . . . < i1 ≤ n}

Then Tk(n) is the number of subsets of cardinality k in {1, . . . , n}, which is
(
n
k

)
. We claim that for 1 ≤ s ≤

ℓ − 1 and 2 ≤ p ≤ n,

λ(n + 1, ℓ, p + 1) = λ(n + 1, ℓ, 1) +
s∑

k=1

{Tk−1(p − 1) + Tk(p − 1)} cℓ−k

n(n − 1) . . . (n − k + 1)

+
1

n(n − 1) . . . (n − s)

∑
1≤is≤is−1<is−2<...<i2<i1≤p−1

λ(n − s, ℓ − s − 1, is)

The proof of the claim is by induction on s. For s = 1, we have

λ(n + 1, ℓ, p + 1) = λ(n + 1, ℓ, 1) +
1
n

p∑
i=1

λ(n, ℓ − 1, i)

= λ(n + 1, ℓ, 1) +
cℓ−1

n
+

1
n

p−1∑
i=1

λ(n, ℓ − 1, i + 1)

= λ(n + 1, ℓ, 1) +
(1 + T1(p − 1))cℓ−1

n
+

1
n(n − 1)

p−1∑
i=1

i∑
j=1

λ(n − 1, ℓ − 2, j)
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The induction step follows from the fact that∑
1≤is≤is−1<is−2<...<i2<i1≤p−1

λ(n − s, ℓ − s − 1, is)

=
∑

0≤is<is−1<is−2<...<i2<i1≤p−1

λ(n − s, ℓ − s − 1, is + 1)

=
∑

1≤is−1<is−2<...<i2<i1≤p−1

cℓ−s−1,1 +
∑

1≤is<is−1<is−2<...<i2<i1≤p−1

λ(n − s, ℓ − s − 1, is + 1)

= Ts−1(p − 1)cℓ−s−1

+
∑

1≤is<is−1<is−2<...<i2<i1≤p−1

cℓ−s−1 +
1

n − s − 1

is∑
is+1=1

λ(n − s − 1, ℓ − s − 2, is+1)


= (Ts−1(p − 1) + Ts(p − 1))cℓ−s−1

+
1

n − s − 1

∑
1≤is+1≤is<is−1<is−2<...<i2<i1≤p−1

λ(n − s − 1, ℓ − s − 2, is+1)

We take s = ℓ − 1. We have

Tk−1(p − 1) + Tk(p − 1) =
(
p − 1
k − 1

)
+

(
p − 1

k

)
=

(
p
k

)
Hence

λ(n + 1, ℓ, p + 1) = λ(n + 1, ℓ, 1) +
ℓ∑

k=1

(
p
k

)
cℓ−k

n(n − 1) . . . (n − k + 1)

Now we have the formula
n∑

p=0

(
p
k

)
=

(n + 1)(n)(n − 1) . . . (n − k + 1)
(k + 1)!

so that
n∑

p=0

λ(n + 1, ℓ, p + 1) = (n + 1)λ(n + 1, ℓ, 1) +
ℓ∑

k=1

(n + 1)(n)(n − 1) . . . (n − k + 1)
(k + 1)!n(n − 1) . . . (n − k + 1)

cℓ−k

and therefore λ(n + 1, ℓ, 1) = −
ℓ∑

k=1

cℓ−k

(k + 1)!
· This proves that λ(n + 1, ℓ, 1) is independant of n. To

conclude, it suffices to prove the relation
ℓ∑

k=0

cℓ−k

(k + 1)!
= 0

which is straightforward, since this coefficient is the coefficient in xℓ in the power series+∞∑
n=0

cnxn

 × ex − 1
x

,

which is x. □

3.1.1. Linear algebra computations. All along this Subsection, we assume that V is a dualizable object
in C and we denote by V∗ its dual7: in particular, we have a coevaluation map ϵ : 1 → V∗ ⊗ V and an
evaluation map δ : V ⊗ V∗ → 1 that satisfy the “snake” identity

(δ ⊗ idV ) ◦ (idV ⊗ ϵ) = idV .

7The category being symmetric monoidal, every left dual is a right dual as well, so that we allow ourselves to simply speak
about duals.



THE EXT ALGEBRA OF A QUANTIZED CYCLE 17

– One shows easily that the restriction of idV⊗n−1 ⊗ δ to V⊗n ⊗ V∗ to SnV ⊗ V∗ factors through
Sn−1V . As a consequence the direct factor, inclusion SnV → Sn−1V ⊗ V can be re-written as the
restriction of

(idV⊗n−1 ⊗ δ ⊗ idV ) ◦ (idV⊗n ⊗ ϵ) .
to SnV . Therefore8 ω : SnV ⊗ V → Sn−1V ⊗ V equals n times(

idV⊗n−1 ⊗ (
µ ◦ (δ ⊗ idV⊗2)

)) ◦ (idV⊗n ⊗ ϵ ⊗ idV ) ,

which also equals(
idV⊗n−1 ⊗ (

(δ ⊗ idV ) ◦ (idV⊗V∗ ⊗ µ)
)) ◦ (idV⊗n ⊗ ϵ ⊗ idV ) .

– We have an adjunction between the functor V ⊗ − and the functor V∗ ⊗ −: for any two objects
Y,Z in C,

HomC(V ⊗ Y,Z) � HomC(Y,V∗ ⊗ Z) ,

where the bijection is given by sending ϕ ∈ HomC(V ⊗ Y,Z) to ϕ∗ := (idV∗ ⊗ ϕ) ◦ (ϵ ⊗ idY ). The
inverse bijection sends ψ ∈ HomC(Y,V∗ ⊗ Z) to (δ ⊗ idZ) ◦ (idV ⊗ ψ). For instance, the element
µ∗ in HomC(V,V∗ ⊗ V) is understood as the adjoint action, and we have

ω = n × idV⊗n−1 ⊗ (
(δ ⊗ idV ) ◦ (idV ⊗ µ∗)

)
. (5)

– We also have an adjunction in the reverse way between the functor −⊗V and the functor −⊗V∗:

HomC(Y ⊗ V∗,Z) � HomC(Y,Z ⊗ V) ,

where the bijection is given by sending ϕ ∈ HomC(Y ⊗ V∗,Z) to ϕ∗ := (ϕ ⊗ idV ) ◦ (idY ⊗ ϵ).
– Taking into account that Sp(V∗) is canonically isomorphic to Sp(V)∗, we get a canonical “con-

traction map” element cp ∈ HomC(SnV ⊗ SpV∗,Sn−pV) given as
n!

(n − p)!
times the adjoint to the

direct factor inclusion SnV ↪→ Sn−pV ⊗ SpV . More explicitly, on SnV ⊗ SpV∗

cp =
n!

(n − p)!
× (idV⊗n−p ⊗ δ) ◦ · · · ◦ (idV⊗n−1 ⊗ δ ⊗ id(V∗)⊗p−1) .

– Notice that cp = c1 ◦ (c1 ⊗ idV∗) ◦ · · · ◦ (c1 ⊗ id(V∗)⊗p−1). One the other hand, using (5), we obtain
that ω equals (c1 ⊗ idV ) ◦ (idV⊗n ⊗ µ∗) and thus

ω◦p = (c1 ⊗ idV ) ◦ (idV⊗n−p+1 ⊗ µ∗) ◦ · · · ◦ (c1 ⊗ idV ) ◦ (idV⊗n ⊗ µ∗) . (6)

We now introduce a convenient notation. Let X,Y,Z be three objects in C and let (A,mA) be an associative
algebra object in C. We then have a k-linear associative composition product

− • − : HomC(Y, A ⊗ Z) × HomC(X, A ⊗ Y)→ HomC(X, A ⊗ Z)

defined as follows: for every ϕ : Y → A ⊗ Z and every ψ : X → A ⊗ Y we set

ϕ • ψ := (mA ⊗ idZ) ◦ (idA ⊗ ϕ) ◦ ψ .

In particular, if X = Y = Z then we get that • turns HomC(Y, A ⊗ Y) into a k-linear associative algebra.
We are interested in the case (A,mA) = (S(V∗),m0).

Lemma 3.6. Let ϕ ∈ HomC(Y,SpV∗ ⊗ Z) and ψ ∈ HomC(X,SqV∗ ⊗ Y). Then

(cp ⊗ idZ) ◦ (cq ⊗ ϕ) ◦ (idSnV ⊗ ψ) = (cp+q ⊗ idZ) ◦ (idSnV ⊗ (ϕ • ψ)) ,

as morphisms from SnV ⊗ X to Sn−p−qV ⊗ Z.

8The morphism ω has been defined at the beginning of §3.1.
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Proof. First of all, in view of the expression for cp in terms of c1’s, it is sufficient to prove the Lemma for
p = 1. Then, in view of the definition of the product •, we have that the r.h.s.

(c1+q ⊗ idZ) ◦ (idSnV ⊗ (ϕ • ψ))

equals
(c1+q ⊗ idZ) ◦ (idSnV ⊗ m0 ⊗ idZ) ◦ (idSnV⊗SqV∗ ⊗ ϕ) ◦ (idSnV ⊗ ψ) .

Hence it is sufficient to show the following identity

(c1 ⊗ idZ) ◦ (cq ⊗ ϕ) = (c1+q ⊗ idV∗⊗Z) ◦ (idSnV ⊗ m0 ⊗ idZ) ◦ (idSnV⊗SqV∗ ⊗ ϕ)

in HomC(SnV ⊗ SqV∗ ⊗ Y,Sn−qV ⊗ Z). Then observe that, from the very definition c1+q, we have that

c1+q ◦ (idSnV ⊗ m0) = c1 ◦ (cq ⊗ idV∗)

in HomC(SnV ⊗ SqV∗ ⊗ V∗,Sn−qV) . As a consequence, it is sufficient to have that

cq ⊗ ϕ = (cq ⊗ idV∗⊗Z) ◦ (idSnV⊗SqV∗ ⊗ ϕ) ,

which is obvious. □

Corollary 3.7. If we consider µ∗ in HomC(V,V∗ ⊗ V), we have ω◦p = (cp ⊗ idV ) ◦ (idSnV ◦ (µ∗)•p) .
Proof. Setting Y = V , we get a family of maps (µ∗)•p ∈ HomC(V,SpV∗ ⊗ V). Lemma 3.6 gives the
result. □

Lemma 3.8. For every p ≥ 1, (µ∗)•p • ϵ = 0.

Proof. First observe that it is sufficient to prove it for p = 1 (using the associativity of •). Then note that
since µ : Λ2V → V then

(idV∗ ⊗ µ∗) ◦ ϵ = (µ∗)∗

lies in HomC(1,∧2V∗ ⊗ V). Therefore

µ∗ • ϵ = (τ1 ⊗ idV ) ◦ (µ∗ • ϵ) = (
(m0 ◦ τ1) ⊗ idV

) ⊗ (µ∗)∗ = −(m0 ⊗ idV
) ⊗ (µ∗)∗ = −µ∗ • ϵ .

Therefore µ∗ • ϵ = 0, and we are done. □

3.1.2. The trace identity. For every two objects Y,Z in C one has a linear map

Tr : HomC(Y ⊗ V,Z ⊗ V)→ HomC(Y,Z)

defined as follows:
Tr(ϕ) = (idZ ⊗ δ) ◦ (ϕ ⊗ idV∗) ◦ (idY ⊗ ϵ̄) ,

where ϵ̄ is given by ϵ followed by the symmetry morphism V∗ ⊗ V → V ⊗ V∗.

Proposition 3.9. For every p, we have that

c1 ◦
(
(m0 ◦ ω◦p) ⊗ idV∗

) ◦ (idSnV ⊗ ϵ̄) = cp ◦ (idSnV ⊗ Tr((µ∗)•p)) .

Proof. Using the fact that c1 defines an action of V∗ on S(V) by derivations, we get that the r.h.s. is

m0 ◦
(
(c1 ⊗ idV ) ◦ (ω◦p)∗ + Tr(ω◦p)

)
.

Then observe that we have

m0 ◦ (c1 ⊗ idV ) ◦ (ω◦p)∗ = (cp+1 ⊗ id) ◦ (id ⊗ (µ∗)•p • ϵ) = 0 .

Finally,
m0 ◦ Tr(ω◦p) = Tr(ω◦p) = cp ◦ (idSnV ⊗ Tr((µ∗)•p)) .

We are done. □

3.2. The Lie-theoretic cycle class.
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3.2.1. The Duflo element. We borrow the notation from the previous paragraphs and introduce the Duflo
element d =

∑+∞
n=0 dn ∈

∏
n HomC(1,SnV∗):

d := det
(

µ∗

1 − exp(−µ∗)

)
.

This has to be understood as a formal expression in terms of the “invariant polynomials” νk := Tr
(
(µ∗)•k

)
that live in HomC(1,SkV∗). For instance,

d = 1 +
ν1

2
+

3ν•21 − ν2

24

 + ν•31 − ν1 • ν2

48
+ · · ·

More formally, for any N ≥ 0, we write formally
N∏

n=1

xi

1 − exp(−xi)
=

∑
i≥0

Pi(y1, y2, . . . , yi)

where yi =

N∑
n=0

xi
n, and Pi is a polynomial independant from N, and of total degree i if each variable yk

has degree k. For instance, 

P0 = 1

P1(y1) =
y1

2

P2(y1, y2) =
3y2

1 − y2

24

P3(y1, y2, y3) =
y3

1 − y1y2

48
Then for any p ≥ 0, we have

dp = Pp(ν1, . . . , νp) .

3.2.2. Torsion morphisms. Let ℓ ∈ N and let a be a morphism from an arbitrary object X to S≤ℓV and
(an)0≤n≤ℓ be the graded components of a.

Definition 3.10. We say that such a morphism a is an ℓ-torsion morphism if m⋆◦(a⊗idV ) factors through
Sℓ+1V ⊂ S≤ℓ+1V .

Our main result is:

Theorem 3.11. If a is an ℓ-torsion morphism, then a = c(d ⊗ aℓ), where c(d ⊗ −) means
∑

p cp(dp ⊗ −),
the sum being in fact automatically finite.

Remark that this theorem tells nothing about the existence of ℓ-torsion morphisms.

Proof. Thanks to Theorem 3.1, a is an ℓ-torsion morphism if and only if the system of equations

ℓ∑
i=0

Bi

i!

{
m0 ◦ ω◦i

}
(aℓ−k+i ⊗ idV ) = 0 (7)

holds for 1 ≤ k ≤ ℓ. Each condition corresponds to the vanishing of the ℓ − k + 1th graded piece of the
element m⋆ ◦ (a ⊗ idV ). Thanks to Proposition 3.9, we get

kaℓ−k +

k∑
i=1

(−1)i Bi

i!
× ci(aℓ−k+i ⊗ νi) = 0.

Let us explain how it works on the first terms.
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– For k = 1, the first equation is

aℓ−1 −
1
2
c1(aℓ ⊗ ν1) = 0,

so
aℓ−1 = c1

(
aℓ ⊗

ν1

2

)
.

– For k = 2, the second equation is

2aℓ−2 −
1
2
c1(aℓ−1 ⊗ ν1) +

1
12
c2(aℓ ⊗ ν2) = 0

and we get

aℓ−2 =
1
4
c1(aℓ−1 ⊗ ν1) − 1

24
c2(aℓ ⊗ ν2)

=
1
8
c2(aℓ ⊗ ν•21 ) − 1

24
c2(aℓ ⊗ ν2)

= c2

aℓ ⊗ 3ν•21 − ν2

24

 .
– For k = 3, the third equation is

3aℓ−3 −
1
2
c1(aℓ−2 ⊗ ν1) +

1
12
c2(aℓ−1 ⊗ ν2) = 0

Hence

aℓ−3 =
1
3

(
1
2
c1

(
c2

(
1
8

aℓ ⊗ ν•21 −
1
24

ar ⊗ ν2

)
⊗ ν1

)
− 1

12
c2

(
c1

(
1
2

aℓ ⊗ ν1

))
⊗ ν2

)
= c3

aℓ ⊗ ν•31 − ν1 • ν2

48


To conclude, it suffices to prove the induction relation

kPk(y1 . . . , yk) +
k∑

i=1

(−1)i Bi

i!
× yiPk−i(y1 . . . , yk−i) = 0.

involving the polynomials Pi. For this we fix the variables x1, . . . , xk, and put yi =
∑k

n=0 xi
n. Since y0 = k,

the identity is equivalent to
k∑

i=0

(−1)i Bi

i!
× yiPk−i(y1 . . . , yk−i) = 0

The left-hand side is the homogeneous term of degree k (in the variables xi) in the product∑
i≥0

(−1)i Bi

i!
yi ×

∑
i≥0

Pi(y1, . . . , yi),

which is
k∑

p=1

xp

exp(xp) − 1
×

k∏
q=1

xq

1 − exp(−xq)

Let ϕ(x) =
x

1 − exp(−x)
· Then ϕ(−x)ϕ(x) = ϕ(x) − xϕ′(x) so that for any p with 1 ≤ p ≤ k, the

homogeneous coefficient of degree k in
xp

exp(xp) − 1
×

k∏
q=1

xq

1 − exp(−xq)
is

∑
α1+...+αk=k

Bα1

α1!
× . . . ×

Bαp−1

αp−1!
×

Bαp(1 − αp)

αp!
×

Bαp+1

αp+1!
× . . . × Bαk

αk!
·
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Taking the sum in p, we get ∑
α1+...+αk=k

Bα1

α1!
× . . . × Bαk

αk!
×

k∑
p=1

(1 − αp)


which is zero. □

3.3. Tameness for pairs of Lie algebras.

3.3.1. Setting. Assume to be given a triplet (g, h, n), where g is a Lie algebra, h is a Lie subalgebra of
g, and g = h ⊕ n as h-module. This makes perfect sense in any abstract k-linear symmetric monoidal
category C. We denote by µg and µh the Lie brackets on g and h respectively; and by πh and πn the two
projections from g to h and n respectively. We also define α and β in HomC(n⊗2, n) and HomC(n⊗2, h)
respectively by the formulas α = πn ◦ µg |n⊗2 and β = πh ◦ µg |n⊗2 .

Definition 3.12. The triplet (g, h, n) is called tame if the morphism

µg ◦ (β ⊗ idn) : n⊗3 → g
vanishes.

Lemma 3.13. Given a tame triplet (g, h, n), the morphism α defines a Lie structure on n. Besides, n
becomes a Lie object in the symmetric monoidal category of h-modules.

Proof. We claim that we have πn ◦ (µg ◦ (µg |n⊗2 ⊗ idn)) = α ◦ (α ⊗ idn). Indeed,

πn ◦ µg ◦ (µg |n⊗2 ⊗ idn) = πn ◦ µg ◦ (α ⊗ idn) + πn ◦ µg ◦ (β ⊗ idn)︸          ︷︷          ︸
0

= πn ◦ µg ◦ (α ⊗ idn)
= α ◦ (α ⊗ idn) .

Using this, the Jacobi identity for (g, µg) restricted to n⊗3 at the source, and projected to n at the target,
gives the Jacobi identity for (n, α). □

3.3.2. The envelopping algebra U(n). Since n is a Lie algebra object in the category of h-modules in
C, the algebra object U(n) is naturally endowed with an action by derivation of h. This action is simply
induced by the adjoint action of h on the tensor algebra T(n). We define a morphism g ⊗ U(n) → U(n)
componentwise as follows:

– The morphism p : n ⊗ U(n)→ U(n) is the multiplication in U(n).
– The morphism q : h ⊗ U(n)→ U(n) is the action of h on U(n).

Lemma 3.14. Given a tame triplet (g, h, n), the above morphism endows U(n) with a g-module structure.

Proof. For any elements x and y in C, be denote by τ the symmetry isomorphism x ⊗ y
∼−→ y ⊗ x. We

check componentwise (that is on n ⊗ n, n ⊗ h and on h ⊗ h) that the map (p, q) defines a g-action.
– We have on n ⊗ n ⊗ U(n)

p ◦ (idn ⊗ p) − p ◦ (idn ⊗ p) ◦ (τ ⊗ idU(n)) − p ◦ (α ◦ idU(n))︸                                                                         ︷︷                                                                         ︸
0 since n acts on U(n)

− q ◦ (β ◦ idU(n))︸            ︷︷            ︸
0 by tameness

= 0 .

– Since h acts by derivation on U(n), we have on n ⊗ h ⊗ U(n) the equality

q ◦ ((idh ⊗ p) ◦ (τ ⊗ idU(n))) = q ◦ (µg ◦ idU(n)) + p ◦ (idn ⊗ q),

that is
p ◦ (idn ⊗ q) − q ◦ (idh ⊗ p) ◦ (τ ⊗ idU(n)) − q ◦ (µg ◦ idU(n)) = 0 .

– Lastly, on h ⊗ h ⊗ U(n), we have

q ◦ (idh ⊗ q) − q ◦ (idh ⊗ q) ◦ (τ ⊗ idU(n)) − q ◦ (µg ◦ idU(n)) = 0

since h acts on U(n).
□



22 DAMIEN CALAQUE AND JULIEN GRIVAUX

3.3.3. The induced representation. The aim of this section is to prove the following theorem:

Theorem 3.15. Given a tame triplet (g, h, n), the induced g-module Indg
h

1C of the trivial h-module 1C
exists, and is naturally isomorphic to the g-module U(n)9.

Proof. The proof goes in several steps. We want to prove that U(n) satisfies the universal property of the
induced representation, that is that for any g-module V , Homh(1C,V) ≃ Homg(U(g),V).

First, we claim that the induced representation Ind g0 1C exists and is isomorphic to U(g). This means that
HomC(1C,V) ≃ Homg(U(g),V). The morphism is obtained by attaching to each φ in HomC(1C,V) the
map

U(g) ≃ U(g) ⊗ 1C
id⊗φ
−−−−→ U(g) ⊗ V → V.

Its inverse if simply the precomposition with the map 1C → U(g). Let us consider the following diagram:

1C

!!D
DD

DD
DD

D
//

��

*
,
/
2
5
8
;

V

U(n)

U(g)

KS

FN

The vertical arrow is simply given by the left action of U(g) on the unit element element 1 of U(n). Here
the dashed arrow is a morphism in C, the plain arrows are morphism of h-modules and the double arrows
are morphisms of g-modules. We have a diagram of morphism spaces

HomC(1C,V) ∼ // Homg(U(g),V)

Homh(1C,V)
� ?

OO

Homg(U(n),V)oo

OO

We now claim the following:
– The map U(g)→ U(n) admits a section, in particular it has a kernel N in the category C.
– The map U(g) ⊗ h → U(g) factors through the kernel N, and the induced map U(g) ⊗ h → N is

an isomorphism.
To prove the two claims, we make heavy use of the categorical PBW theorem (Proposition 2.11). If
we endow U(n) and U(g) with their natural filtrations, then the action of g on U(n) is of degree 1 with
respect to this filtration. The induced map g ⊗ GrpU(n) → Grp+1U(n) is simply given by the projection
g → n followed by the multiplication map n ⊗ Spn → Sp+1n. Therefore, we see that the natural map
U(g) → U(n) is a filtered map of degree zero, and that the induced graded map S(g) → S(n) is induced
by the projection from g to n. We can now consider the map

δ : U(n) ≃ S(n) ↪→ T(n)→ T(g)→ U(g)

Then the composite map U(n)
δ−→ U(g) → U(n) is an isomorphism, since the associated graded map is

the identity, and the filtration splits (as objects of C).

Let us prove the second claim. First we remark that the composite map

h ↪→ g .1−→ U(n)

vanishes. This gives the factorization of the map U(g) ⊗ h → U(g) by N. We can endow N with the
filtration induced by U(g). Since for each non-negative integer p the morphism FpU(g) → FpU(n)

9The g-module structure on U(n) has been introduced in §3.3.2.
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admits a section, the natural map from GrpN to the kernel of GrpU(g) → GrpU(n) is an isomorphism.
Thus, using the PBW isomorphism, we have a commutative diagram

Grp−1U(g) ⊗ h //

∼

��

GrpN

∼
��

Ker (GrpU(g)→ GrpU(n))

∼
��

Sp−1g ⊗ h Sp−1g ⊗ h

Hence the map U(g) ⊗ h → N is a degree one map whose associated graded map is an isomorphism.
Hence it is an isomorphism.

We now come back to the main proof. The only thing that remains to prove is that the composite
morphism

Homh(1C,V)→ HomC(1C,V) ≃ Homg(U(g),V)

factors through Homg(U(n),V). This is equivalent to prove that the composition

Homh(1C,V)→ HomC(1C,V) ≃ Homg(U(g),V)→ Homg(U(g) ⊗ h,V)

vanishes. The image of a map φ is the morphism

U(g) ⊗ h→ U(g) ≃ U(g) ⊗ 1C
idU(g) ⊗φ−−−−−−−→ U(g) ⊗ V → V

which can also be written as the composition

U(g) ⊗ h ≃ U(g) ⊗ h ⊗ 1C
idU(g)⊗ h ⊗φ−−−−−−−−→ U(g) ⊗ V → V

Now we have a commutative diagram

h ⊗ 1C
idh ⊗φ

//

zero map
��

h ⊗ V

��

1C
φ

// V

which allows to finish the proof. □

Remark now that we have a priori two algebra structures on the algebra U(n)h: the first one is the natural
one induced by the algebra structure on U(n), and the second one is obtained using Frobenius duality,
and Theorem 3.15, and the natural composition on Homg(U(n),U(n)):

U(n)h ≃ Homh(1C,Resg
h
U(n)) ≃ Homg(Indg

h
1C,U(n)) ≃ Homg(U(n),U(n)).

These two structure are in fact compatible, this is the content of the following:

Theorem 3.16. Given a tame triple (g, h, n), the natural isomorphism U(n)h ≃ Homg(U(n),U(n)) is a
morphism of algebra objects.

Proof. DAMIEN □

4. Generalities on formal neighbourhoods

4.1. Sheaves on split square zero extensions.
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4.1.1. Theta morphisms. In this section, we study some properties related to sheaves on a trivial first
order thickening of a smooth scheme. Let us fix the setting: X is a smooth k-scheme,V is a locally free
sheaf on X, and S is the (split) first order thickening of X by V; that is OS = V ⊕ OX andV is a square
zero ideal in OS . We denote by j : X → S and σ : S → X the natural morphisms. Let F be an element
of D−(X). Then the exact sequence

0 −→ V ⊗ F −→ σ∗F −→ F −→ 0 (8)

defines a morphism ΘF : F −→ V ⊗ F [1] in D−(S ).

Proposition 4.1. The following properties are valid:
(i) For any φ : F → G in D−(X), we have

ΘG ◦ φ = (idV ⊗ φ) ◦ ΘF .
(ii) For any F in D−(X), we have

ΘF = ΘOX

L
⊗OS idσ∗F .

(iii) For any F in D−(X), the composition

F atS (F )−−−−−→ Ω1
S
L
⊗OS F [1]→ Ω1

S ⊗OS F [1] ≃ V ⊗ F [1] ⊕Ω1
X ⊗ F [1]

is the couple (ΘF , atX(F )).

(iv) The morphism σ∗ΘF vanishes.

Proof. (i), (ii) and (iv) are straightforward. For (iii), ΘF is a special occurrence of a residual Atiyah
morphism, and we apply [9, Prop. 4.9]. □

4.1.2. Infinitesimal HKR isomorphism. In this section, we describe the infinitesimal cohomological
HKR isomorphism attached to a split square-zero extension of a smooth scheme.

For any non-negative integer p, we define a morphism ∆p : OX → Tp(V[1]) in the derived category
Db(S ) as follows: ∆0 = id and ∆p = −ΘTp−1(V[1]) ◦ ∆p−1 for p ≥ 1.

Proposition 4.2. For any vector bundles E1 and E2 on X, there is a canonical isomorphism

T(V[−1])
L
⊗RHom(E1,E2) ≃

⊕
p∈N
RHom(V⊗p ⊗ E1,E2)[−p]

→
⊕
p∈N

σ∗RHomOS (V⊗p[p] ⊗ E1,E2)

→
⊕
p∈N

σ∗RHomOS (E1,E2)

obtained by precomposing by ∆p ⊗ idσ∗E1 . Besides, this isomorphism is compatible with the Yoneda
product for the pair (E1,E2).

Proof. The first part of the proof is well known and follows from the existence of a canonical locally
OS -free resolution ofV on S (see [1]). The compatibility with the Yoneda product follows from routine
calculations using Proposition 4.1. □

It is also possible to derive the internal Hom with respect to the second variable instead of the first one:
this gives the infinitesimal counterpart of Kashiwara’s dual HKR isomorphism (see [8]). To do so, we
replace the morphism ∆1 by the dual Atiyah morphism ∆′1 : V∗[−1] → OX , which is obtained by the
composition

V∗[−1]
idV∗[−1]⊗∆1−−−−−−−−−→ V∗[−1] ⊗V[1]

ev−−→ OX .

Then for any integer p we construct the morphism ∆
′
p : Tp(V∗[−1]) → OX , as well as the symmetric

components ∆
′+
p : Sp(V∗[−1]) → OX and ∆

′−
p : Λ̃p(V∗[−1]) → OX as we did before. Then the dual

infinitesimal HKR isomorphism takes the following form:
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Proposition 4.3. For any vector bundles E1 and E2 on X, there is a canonical isomorphism

T(V[−1])
L
⊗RHom(E1,E2) ≃

⊕
p∈N
RHom(E1, (V∗)⊗p ⊗ E2)[−p]

→
⊕
p∈N

σ∗RHomOS (E1, (V∗)⊗p[−p] ⊗ E2)

→
⊕
p∈N

σ∗RHomOS (E1,E2)

obtained by postcomposing by ∆
′
p ⊗ idσ∗E2 . Besides, this isomorphism is compatible with the Yoneda

product for the pair (E1,E2).

Remark 4.4. The object σ∗RHomOS (OX ,OX) is a ring object in D+(X). Propositions 4.2 and 4.3 give
two a priori different isomorphisms between this ring object and TV∗[−1]. In the next Lemma, we will
provide an identity relating ∆p and ∆

′
p that shows that these two isomorphisms are in fact the same.

Lemma 4.5. LetW be any element in Db(X), letW∗ = RHomOX (W,OX) be the (naïve) derived dual
ofW, and let φ be in HomDb(X)(W,TkV∗[−k]). Then the following diagram

W φ
//

idW⊗∆k
��

TkV∗[−k]

∆
′
k

��

W⊗ TkV[k]
φ⊗idTkV[k]

// TkV∗[−k] ⊗ TkV[k] // OX

commutes in Db(X). In particular, the composition

OX
co−ev−−−−→W∗ ⊗W

idW∗⊗(∆′k◦φ)
−−−−−−−−−−→W∗

is φ ◦ ∆k, where we implicitly use the isomorphism

HomDb(X)(W,TkV∗[−k]) ≃ HomDb(X)(T
kV[k],W∗).

Proof. The first point follows directly from Proposition 4.1 (i). The second point follows from the fact
that for anyA, B in Db(X), the isomorphism

HomDb(X)(A,B) ≃ HomDb(X)(B∗,A∗).

makes the diagram

A co−ev //

��

B ⊗ B∗ ⊗A

��

B ⊗A∗ ⊗A
ev
��

B // B
commute. Details are left to the reader. □

4.1.3. Torsion and Atiyah class. For any locally free sheaf E on S , let E = j∗E. The exact sequence

0 −→ V ⊗ E −→ σ∗ E −→ E −→ 0

defines a morphism τE : E −→ V ⊗ E [1] in the derived category Db(X), we call it the torsion of E. It is
easy to see that the vector bundle E is entirely determined by the couple (E, τE). In particular, τE vanishes
if and only if E is isomorphic to σ∗E
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Proposition 4.6. For any locally free sheaf E on S , the components of the morphism

E
L j∗ atS (E)
−−−−−−−→ L j∗(Ω1

S ⊗ E[1]) −→ j∗(Ω1
S ⊗ E[1]) ≃ V ⊗ E [1] ⊕Ω1

X ⊗ E [1]

are τE and atX(E).

Proof. There is a natural morphism j∗P1
S (E)→ P1

X(E) making the diagram

0 // j∗Ω1
S ⊗ E //

��

j∗P1
S (E)

��

// E

��

// 0

0 // Ω1
X ⊗ E // P1

X(E) // E // 0

commutative. On the other hand, j∗P1
S (E)/(Ω1

X ⊗ E) is the cokernel of the map

V ⊗ E −→ (V ⊗ E) ⊕ E
which is the identity of the first factor and the natural inclusion on the second one. Hence it is isomorphic
to σ∗E (by taking the difference of the two factors). This gives a commutative diagram

0 // j∗Ω1
S ⊗ E //

��

j∗P1
S (E)

��

// E

��

// 0

0 // V ⊗ E // σ∗ E // E // 0

and the result follows. □

4.2. Sheaves on a second order thickening.

4.2.1. Setting and cohomological invariants. As before, let us fix a pair (X,V) whereV is a locally free
sheaf on X, and let S be the split first order thickening of X by V . We are interested by ring spaces W
which underlying topological space X satisfying the following conditions:OW is locally isomorphic to OX ⊕V ⊕ S2V.

There exists a map S → W which is locally the quotient by S2V.
(9)

Let k : X → W be the composite map, and let us denote by ⟨V⟩ the ideal sheaf of X in W, which is a
sheaf of OS -modules. We can attach to W two cohomology classes:

– The class α in Ext1(V,S2V) is the extension class of the exact sequence

0→ S2V → σ∗⟨V⟩ → V → 0

– The class β in Ext1(Ω1
X ,S

2V) is the obstruction of lifting σ to W. To see how this class is defined,
it suffices to remark that the sheaf of retractions of k inducing σ on S is an affine bundle directed
by the vector bundleDer(OX ,S2V), which isHom(Ω1

X ,S
2V).

Lemma 4.7. The map W → (α, β) is a bijection between isomorphism classes of ring spaces W satisfying
(9) and Ext1(V,S2V) ⊕ Ext1(Ω1

X ,S
2V).

Proof. The subsheaf of the sheaf of automorphisms of the ringed space {X,OX ⊕ V ⊕ S2V} that in-
duce the indentity morphism after taking the quotient by the square zero ideal S2V is isomorphic to
Der(OX ,S2V) ⊕Hom(V,S2V), a couple (D, φ) corresponding to the automorphism given by the 3 × 3
matrix id 0 0

0 id 0
D φ id

 .
This gives the required result. □
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4.2.2. The second order HKR class. Let E be a locally free sheaf on X. The functor that associates to any
open set of U the set of locallyOW-free extensions of σ∗E to W is an abelian gerbe, whose automorphism
sheaf isHom(E,S2V ⊗ E). Hence this gerbe is classified by a cohomology class in Ext2(E,S2V ⊗ E).

Definition 4.8. For any locally free sheaf E on X, the class of the gerbe of locally free extensions of σ∗E
on W is called the second order HKR class of E, and is denoted by γσ(E).

Remark 4.9. The terminology is justified as follows: in [1], the authors introduce the HKR class of a
vector bundle on X in the case S is not globally split, it mesures the obstruction to lift the bundle from X
to S . Here we are defining the same kind of obstruction classes when S is trivial, but W is not.

As in [1], the class γσ(E) can be computed explicitly:

Proposition 4.10. For any locally free sheaf E on X, the class γσ(E) is obtained (up to a nonzero scalar)
as the composition

E atX(E)−−−−→ Ω1
X ⊗ E[1]

β⊗ idE−−−−−→ S2V ⊗ E[2]

Proof. For the first HKR class, this is [1, Prop. 2.11]. We present an alternative and somehow more down
to earth proof. Let us assume that the map X → W admits two retractions β1 and β2, and let D = β1 − β2
be the corresponding element in Hom(Ω1

X ,V). Assume also that E admits a regular connexion ∇ on X.
We claim that the map Ξ : β∗1E → β∗2E defined by

Ξ( f ⊗ s) = f ⊗ s + f (D ⊗ idE)(∇s)

is a well-defined isomorphism. Since HomOW (β∗1E, β∗2E) ≃ HomOX (E, β1∗β∗2E), it suffices to show that
Ξ(1 ⊗ gs) = β∗1(g) .Ξ(s) for any section g of OX . We compute:

Ξ(1 ⊗ gs) = 1 ⊗ gs + (D ⊗ idE)(g∇s + dg ⊗ s)
= β2(g) ⊗ s + g(D ⊗ idE)(∇s) + D(dg) ⊗ s
= β1(g) ⊗ s + g(D ⊗ idE)(∇s) + D(dg) ⊗ s
= β1(g).(s + (D ⊗ idE)(∇s))

= β∗1(g) .Ξ(s).

Let us now fix a covering (Ui)i∈I of X, and assume that on each Ui, there is a retraction βi of the map
X → W and E admits a regular connexion ∇i. We put Di j = βi − β j. Then we have isomorphisms

Ξi : β∗i E|Ui j

∼−→ β∗jE|Ui j depending on ∇i

Ξ j : β∗jE|U jk

∼−→ β∗kE|U jk depending on ∇ j

Ξk : β∗kE|Uki

∼−→ β∗i E|Uki depending on ∇k

The composition Ξk
|Ui jk
◦ Ξ j
|Ui jk
◦ Ξi
|Ui jk

yields an automorphism of β∗i E|Ui jk , which corresponds to the
element

λ = (Di j ⊗ idE) ◦ ∇i + (D jk ⊗ idE) ◦ ∇ j + (Dki ⊗ idE) ◦ ∇k

of Γ(Ui jk,Hom(E,S2V⊗ E)). This element is a C̆hech representative of the class of the gerbe of locally
free extensions of σ∗E on W. If ci j = (Di j ⊗ idE) ◦ (∇i − ∇ j), then (ci j) defines a 1-cochain with values
inHom(E,S2V ⊗ E) and we have

λ = ci j + c jk + (Di j ⊗ idE) ◦ (∇ j − ∇k) =
2
3

(ci j + c jk + cki)

+
1
3

((Di j ⊗ idE) ◦ (∇ j − ∇k) + (D jk ⊗ idE) ◦ (∇k − ∇i) + (Dk j ⊗ idE) ◦ (∇i − ∇ j))

which can be split us to some nonzero constant factors as the sum of the boundary of the cochain (ci j)i, j
and the Yoneda product of the 1-cocycles (∇i − ∇ j)i, j and (Di j ⊗ idE)i, j that represent atX(E) and β ⊗ idE
respectively. This gives the required formula. □

4.3. Quantized cycles.
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4.3.1. Setting, and tameness condition. Let Y be a smooth k-scheme, and let X be a smooth and closed
subscheme of Y . We denote by i : X ↪→ Y the injection of X in Y .

Let S denote the first formal neighbourhood of X in Y . Let us assume that the closed immersion j : X ↪→
S admits a retraction σ : S → X (that is S is a globally trivial square zero extension of X by N∗X/Y ); this
is equivalent to say that the conormal sequence of the pair (X,Y) splits. In this case, we say that (X, σ) is
a quantized cycle in Y (see [8]).

Assume that (X, σ) is a quantized cycle, and let W be the second formal neighborhood of X in Y , and
let k : X ↪→ W be the corresponding inclusion. According to Lemma 4.7, the ringed space W is entirely
encoded by two classes α and β introduced in the previous section; α is the extension class of the exact
sequence

0→ σ∗
I2

X

I3
X

→ σ∗
IX

I3
X

→ σ∗
IX

I2
X

→ 0

that lives in Ext2(N∗X/Y ,S
2N∗X/Y ), and β in the class in Ext1(Ω1

X ,S
2N∗X/Y ) that measures the obstruction to

the existence of a retraction of k that extends σ.

Definition 4.11. A (X, σ) quantized cycle (X, σ) is tame if the locally free sheaf σ∗N∗X/Y on S extends
to a locally free sheaf on W.

Remark 4.12. If k admits a retraction q : W → X such that q|S = σ, that is if β vanishes, then (X, σ) is
automatically tame: the locally free sheaf q∗N∗X/Y on W extends σ∗N∗X/Y . In this case, we say that (X, σ)
is 2-split.

4.3.2. Restriction of the Atiyah class. The aim of this section is to describe another intrinsic description
of the classes α and β.

Proposition 4.13. The torsion of the locally free sheaf (Ω1
Y )|S is the morphism

N∗X/Y ⊕Ω1
X → N∗X/Y ⊗ (N∗X/Y ⊕Ω1

X) [1]

given by the 2 × 2 matrix
(
α β
0 0

)
.

Proof. The locally free sheaf (Ω1
Y )|S depends only on the second formal neighbourhood W of X in Y . Let

us consider an automorphism of the trivial ringed space OX ⊕ N∗X/Y ⊕ S2N∗X/Y given by a couple (d, φ),
where d is a derivation from OX to S2N∗X/Y and φ is a linear morphism from N∗X/Y to S2N∗X/Y . Assume
that we are in the local situation, so that we can take coordinates: X = U ⊂ kn and Y = U × V where
V ⊂ kr. Then we can represent the morphisms d and φ by sequences of regular maps (Zk

i, j(x))1≤k≤n,1≤i, j≤r

and (Λℓi, j(x))1≤i, j,ℓ≤r that are symmetric in the indices (i, j). The automorphism of W can be lifted to an
automorphism of Y given by the formula

(x, t)→

{xk +
∑
i, j

Zk
i, j(x)tit j)}1≤k≤n, {tℓ +

∑
i, j

Λℓi, j(x)tit j)}1≤ℓ≤r


The result follows by computing the pullback of the forms dxk, tidxk, dt j, tidt j restricted to S by the
above automorphism. □

Corollary 4.14. The composition

N∗X/Y ⊕Ω1
X ≃ Ω1

Y |X
Li∗atY (Ω1

Y )
−−−−−−−−→ S2Ω1

Y |X[1] ≃ S2N∗X/Y [1] ⊕Ω1
X ⊗ N∗X/Y [1] ⊕ S2Ω1

X[1]

is given by the matrix


α β

atX(N∗X/Y ) 0
0 atX(Ω1

X)

.
Proof. This is obtained by putting together Proposition 4.6 and Proposition 4.13, together with the func-
toriality of the Atiyah class. □
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4.3.3. Quantized HKR isomorphism. As noticed in [1], the composition

S(NX/Y [−1]) −→ T(NX/Y [−1]) ≃ RHomOS (OX ,OX) −→ RHomOY (OX ,OX) (10)

is an isomorphism in D+(Y), where the first map is the antisymetrization map. For quantized cycles, it is
also possible to produce a left resolution of the sheafOX (the Atiyah-Kashiwara resolution) that computes
directlyRHomOY (OX ,OX), this construction is done in [8]. Both constructions are in fact compatible (see
[8, Thm. 4.13]). Let us now give the corresponding HKR isomorphism. For any non-negative integer p,
we decompose the morphism ∆p as the sum ∆−p + ∆

+
p according to the decomposition

Tp(N∗X/Y [1]) ≃ Λ̃p(N∗X/Y [1]) ⊕ Sp(N∗X/Y [1]).

For any sheaf F on X, the functorHomOY (⋆ ,F ) : Mod(OY )→ Mod(OY ) factors through a functor

Homℓ
OY

(⋆ ,F ) : Mod(OY )→ Mod(OX).

Proposition 4.15. For any locally free sheaves E1, E2 on X, there is a canonical isomorphism

RHomℓ
OY

(E1,E2) ≃
⊕
p∈N
RHom(ΛpN∗X/Y ⊗ E1,E2)[−p] ≃ S(NX/Y [−1])

L
⊗RHom(E1,E2)

in Db(X) obtained by precomposing with ∆+p ⊗ idσ∗E1 .

We also give Kashiwara’s dual version:

Proposition 4.16. For any locally free sheaves E1, E2 on X, there is a canonical isomorphism

RHomr
OY

(E1,E2) ≃
⊕
p∈N
RHom(E1,Λ

pNX/Y ⊗ E2)[−p] ≃ S(NX/Y [−1])
L
⊗RHom(E1,E2)

in Db(X) obtained by postcomposing by ∆
′+
p ⊗ idσ∗E2 .

5. Tame quantized cycles

5.1. Structure constants.

5.1.1. Definition. We fix a quantized analytic cycle (X, σ) in Y . By Proposition 4.15, there exist unique
coefficients (c

′k
p )0≤k≤p such that:

– Each ck
p belongs to Hom (Sk(N∗X/Y [1]),Tp(N∗X/Y [1])), that is Extp−k(ΛkN∗X/Y ,T

pN∗X/Y ).
– The relation ∆p =

∑p
k=0 ck

p ◦ ∆+k holds in Db(Y).

Similarly, using Proposition 4.16, we can define dual coefficients: there exist unique coefficients (c
′k
p )0≤k≤p

such that:
– Each c

′k
p belongs to Hom (Tp(NX/Y [−1]),Sk(NX/Y [−1])), that is Extp−k(TpNX/Y ,Λ

kNX/Y ).
– The relation ∆′p =

∑p
k=0 ∆

′+
k ◦ c

′k
p holds in Db(Y).

Lemma 5.1. Via the isomorphism Extp−k(TpNX/Y ,Λ
kNX/Y ) ≃ Extp−k(ΛkN∗X/Y ,T

pN∗X/Y ), the coefficients
c
′k
p and ck

p are equal.

Proof. We take the relation ∆′p =
∑p

k=0 ∆
′+
k ◦ c

′k
p , take the tensor product by idTpNX/Y [−p], and pre-

compose with the co-evaluation map OX → idTpNX/Y [−p] ⊗ idTpN∗X/Y [p]. Applying Lemma 4.5 with
W = TpNX/Y [−p], we get ∆p =

∑p
k=0 c

′k
p ◦ ∆+k , so c

′k
p = cp

k . □

Lemma 5.2. Let p ≥ 1.
(i) The coefficient c0

p vanish.
(ii) If 1 ≤ k ≤ p − 1, the Sp(N∗X/Y [1]) component of ck

p vanishes, so ck
p factors through Λ̃p(N∗X/Y [1]).

(iii) The coefficient cp
p is the canonical inclusion of Sp(N∗X/Y [1]) in Tp(N∗X/Y [1]).
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Proof. For (i), we apply σ∗ to the relation defining the ck
p and use Proposition 4.1 (iv). To prove (ii), let

πp be the projection from T p(N∗X/Y [1]) to S p(N∗X/Y [1]). Then

∆+p =

p∑
k=0

πp ◦ ck
p ◦ ∆+k

so thanks to Proposition 4.15, πp ◦ ck
p = 0 if 0 ≤ k ≤ p − 1. For (iii) this is a purely local question, and

we can use the Koszul complex as in [8]. □

5.1.2. The decomposition lemma. Let us first compute the first nontrivial structure constant:

Proposition 5.3. The morphism ∆−2 − α ◦ ∆1 vanishes in Db(W). In particular, c1
2 = α.

Proof. Let us consider the exact sequence

0→
I2

X

I3
X

→ IX

I3
X

→ IX

I2
X

→ 0. (11)

It defines a morphism f from N∗X/Y to S2N∗X/Y [1] in Db(S ). Applying Proposition 4.2, f can be written
as u + v ◦ ΘN∗X/Y

where u is in Ext1(N∗X/Y ,S
2N∗X/Y ) and v is in Hom(T2N∗X/Y ,S

2N∗X/Y ). The morphism u
is the image under σ∗ of (11), so it is α. The morphism v can be computed locally, it is the the natural
symetrization map from T2N∗X/Y to S2N∗X/Y . Let us now consider the diagram

0

��

0 //
I2

X

I3
X

//

��

IX

I3
X

//

��

IX

I2
X

//

��

0

0 //
I2

X

I3
X

//
OY

I3
X

//
OY

I2
X

//

��

0

OY

IX

��

0

It gives a commutative diagram

OX
ΘOX // N∗X/Y [1]

f
//

��

S2N∗X/Y [2]

OS [1] // S2 N∗X/Y [2]

in Db(W). Since the composite arrow from OX to OS [1] vanishes, the morphism f ◦ ΘOX also vanishes.
But f ◦ ΘOX = (u + v ◦ ΘN∗X/Y

) ◦ ΘOX = α ◦ ∆1 − ∆−2 . This gives the result. □

As a corollary, we get our key technical result:
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Proposition 5.4 (Decomposition lemma). Assume that the quantized cycle (X, σ) is tame. For any non-
negative integer i, we can write

ΘTi+1N∗X/Y
◦ ΘTiN∗X/Y

= Ai − (α ⊗ idTiN∗X/Y
) ◦ ΘTiN∗X/Y

+ Ri

in the derived category Db(S ), where Ai factors through Λ2N∗X/Y ⊗ TiN∗X/Y [2], and Ri vanishes in the
derived category Db(W).

Proof. Denote by µ the natural map from S to W, and let S be a locally free extension of σ∗N∗X/Y on W.
Then

ΘTi+1N∗X/Y
◦ ΘTiN∗X/Y

= ∆2
L
⊗OS idσ∗TiN∗X/Y

= ∆+2
L
⊗OS idσ∗TiN∗X/Y

+ (α ◦ ∆1)
L
⊗OS idσ∗TiN∗X/Y

+ (∆−2 − α ◦ ∆1)
L
⊗OS idσ∗TiN∗X/Y

.

We claim that (∆−2 − α ◦ ∆1)
L
⊗OS idσ∗TiN∗X/Y

vanishes in Db(W). Indeed,

µ∗

(
(∆−2 − α ◦ ∆1)

L
⊗OS idσ∗TiN∗X/Y

)
= µ∗

(
(∆−2 − α ◦ ∆1)

L
⊗OS Lµ

∗idTiS

)
= µ∗

(
∆−2 − α ◦ ∆1

) L
⊗OW idTiS.

□

Remark 5.5. B Proposition 5.4 is false in general when the quantized cycle (X, σ) is not tame: the

morphism (∆−2 − α ◦ ∆1)
L
⊗OS idσ∗TiN∗X/Y

can be nonzero in Db(W).

For 1 ≤ p ≤ p − 1, let

Ψp : Tp(N∗X/Y [1])→
p−1⊕
i=1

Ti−1(N∗X/Y [1]) ⊗ Λ2(N∗X/Y [1]) ⊗ Tp−i−1(N∗X/Y [1])

be the map obtained by (graded) antisymetrization of two consecutive factors. We also denote by χp,i the
components of Ψp.

Corollary 5.6. Assume to be given a tame cycle (X, σ) in Y. Then

Ψp ◦ ck
p = {(idTi−1N∗X/Y

⊗ α ⊗ idTp−i−1N∗X/Y
) ◦ ck

p−1}1≤i≤p−1 if 1 ≤ k ≤ p − 1.

Proof. Using Proposition 5.4, we have in Db(S )

∆p = (−1)pΘTp−1N∗X/Y
◦ · · · ◦ (ΘTi+1N∗X/Y

◦ ΘTiN∗X/Y
) ◦ · · · ◦ ΘOX

= (idTp−i−1N∗X/Y
⊗ α ⊗ idTiN∗X/Y

) ◦ ∆p−1 + (−1)pΘTp−1N∗X/Y
◦ · · · ◦ (Ui + Ri) ◦ · · · ◦ ΘOX

It implies that in Db(W),

χp,i ◦ ∆p = (idTp−i−1N∗X/Y
⊗ α ⊗ idTiN∗X/Y

) ◦ ∆p−1

=

p−1∑
k=1

(idTp−i−1N∗X/Y
⊗ α ⊗ idTiN∗X/Y

) ◦ ck
p−1 ◦ ∆+k .

On the other hand

χp,i ◦ ∆p =

p−1∑
k=1

χp,i ◦ ck
p ◦ ∆+k .

We conclude using Proposition 4.15. □

Corollary 5.7. If (X, σ) is tame, ∆p =
∑p

k=1 ck
p ◦ ∆+k in Db(W).
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Proof. We argue by induction on p. For p = 2, this is Proposition 5.3. Assume that the property holds at
the order p− 1. The morphism ∆p −

∑p
k=1 ck

p ◦∆+k takes values in Λ̃p(N∗X/Y [1]). Hence it suffices to prove
that Ψp ◦ (∆p −

∑p
k=1 ck

p ◦ ∆+k ) vanishes in Db(W). Using the notation of the preceding proof,

χp,i ◦ (∆p −
p∑

k=1

ck
p ◦ ∆+k ) = (idTp−i−1N∗X/Y

⊗ α ⊗ idTiN∗X/Y
) ◦

∆p−1 −
p−1∑
k=1

ck
p−1 ◦ ∆+k


in Db(W). Then we use the induction hypothesis. □

5.1.3. Main result. We can come to our main result.

Theorem 5.8. Let (X, σ) be a tame quantized cycle in Y. The class α defines a Lie coalgebra structure
on N∗X/Y [1], hence a Lie algebra structure on NX/Y [−1]. Besides, the objects RHomℓ

OY
(OX ,OX) and

RHomr
OY

(OX ,OX) are naturally algebra objects in the derived category Db(X), and there are commuta-
tive diagrams

σ∗RHomOS (OX ,OX) //

HKR

��

RHomℓ
OY

(OX ,OX)

HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])

and
σ∗RHomOS (OX ,OX) //

dual HKR

��

RHomr
OY

(OX ,OX)

dual HKR
��

S(NX/Y [−1])

PBW
��

T(NX/Y [−1]) // U(NX/Y [−1])

where all horizontal arrows are algebra morphisms.

Strategy of proof. Let us first discuss the statement, as well as the main points involved in the proof.
The object RHomOY (OX ,OX) is always an algebra object in the category Db(Y), but this structure
doesn’t always come in full generality from an algebra object structure on RHomr

OY
(OX ,OX) or on

RHomℓ
OY

(OX ,OX) in D+(X). Indeed, if RHomℓ
OY

(OX ,OX) has such an algebra structure, the natural
morphism

NX/Y [−1]→ RHomℓ
OY

(N∗X/Y [1],OX)→ RHomℓ
OY

(OX ,OX)

obtained by precomposition with ∆1 yields a morphism T(NX/Y [−1]) → RHomℓ
OY

(OX ,OX), and the
composite morphism

S(NX/Y [−1]) ↪→ T(NX/Y [−1])→ RHomℓ
OY

(OX ,OX)

is an isomorphism in D+(X), which is not always the case.

Assuming that we have an algebra structure on RHomr
OY

(OX ,OX) and on RHomℓ
OY

(OX ,OX) making the
top row of each diagram if Theorem 5.8 multiplicative, the statement follows directly from Proposition
5.3 the reverse PBW Theorem (that is Theorem 2.7), without using the tameness condition at all: indeed,
condition (A1) is (10), and condition (A2) is Lemma 5.2. Therefore, the main difficulty lies in the
construction of this algebra structure on RHomr

OY
(OX ,OX) and on RHomℓ

OY
(OX ,OX). We will provide

three different proofs corresponding to different geometric contexts:
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Case A:∞-split Assume that X admits a global retract in Y that lifts σ. This is the easiest case, but
it covers the case of the diagonal injection and is therefore sufficient to prove the results of Kapranov,
Markarian and Ramadoss that are presented in the next section. The reader only interested in this can
skip the two other cases.

Case B: 2-split Assume that X admits a retract at order two that lifts σ (that is β = 0). In this case,
we can adapt the former proof to the second formal neighborhood, using the second Corollary of the
decomposition Lemma (Corollary 5.7).

Case C: tame The general case: (X, σ) is tame. This requires the first Corollary of the decomposition
Lemma (Corollary 5.6) as well as the full strength of the categorical PBW Theorem (Theorem 2.11). □

Proof of Theorem 5.8. We follow the aforementioned plan of proof, and discuss successively the three
cases A, B and C. We recall the following notation:

X
j

//

k
  
@@

@@
@@

@

i
��

S
σ

uu

��

Y Woo

Case A Let f : Y → X a retraction of X in Y . There is a natural morphism of algebra objects

jS/Y∗RHomOS (OX ,OX)→ RHomOY (OX ,OX)

in D+(Y), which gives a morphism of algebra objects

f∗ jS/Y∗RHomOS (OX ,OX)→ f∗RHomOY (OX ,OX) (12)

since f∗ is monoidal. Now it suffices to remark that

f∗RHomOY (OX ,OX) ≃ f∗i∗RHomℓ
OY

(OX ,OX) ≃ RHomℓ
OY

(OX ,OX),

so that RHomℓ
OY

(OX ,OX) inherits naturally from an algebra structure and the morphism (12) becomes
an algebra morphism

σ∗RHomOS (OX ,OX)→ RHomℓ
OY

(OX ,OX).

The same trick works for the functor RHomr. This settles Case A.

Case B Let us consider the map p : σ∗RHomOS (OX ,OX) → RHomℓ
OX

(OX ,OX). It admits a section,
given by the composition

RHomℓ
OX

(OX ,OX) ≃ S(N∗X/Y [1]) ↪→ T(NX/Y [−1]) ≃ σ∗RHomOS (OX ,OX).

Hence p admits a kernel K, which can be explicitly described as follows: K is isomorphic to Λ̃(NX/Y [−1]),
and the (split) embedding of K in σ∗RHomOS (OX ,OX) is obtained by applying σ∗ to the composition⊕

p≥0

j∗Λ̃p(NX/Y [−1])→
⊕
p≥0

RHomOS (Λ̃p(N∗X/Y [1]),OX)→ RHomOS (OX ,OX)

where the last map is obtained componentwise by precomposing with ∆p −
∑p

k=1 ck
p∆
+
k , which is a mor-

phism in HomDb(S )(OX , Λ̃
p(N∗X/Y [1]). Assume now that there exists a retraction q : W → X that extends

the first order retraction σ. Then the composition

K→ σ∗RHomOS (OX ,OX)→ q∗RHomOW (OX ,OX)

is obtained by applying q∗ to the map⊕
p≥0

jX/W∗ Λ̃
p(NX/Y [−1])→

⊕
p≥0

RHomOW (Λ̃p(N∗X/Y [1]),OX)→ RHomOW (OX ,OX).
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But this map is identically zero, since according to proposition 5.7, ∆p −
∑p

k=1 ck
p∆
+
k vanishes in the

derived category Db(W). We can now conclude: the map

σ∗RHomOS (OX ,OX)→ q∗RHomOW (OX ,OX)

is a morphism of algebra objects and K is a split sub-object that maps to zero, so that the composition

K
L
⊗OX σ∗RHomOS (OX ,OX)→ σ∗RHomOS (OX ,OX)→ q∗RHomOW (OX ,OX)

is zero. It follows that the composition

K
L
⊗OX σ∗RHomOS (OX ,OX)→ σ∗RHomOS (OX ,OX)→ RHomℓ

OY
(OX ,OX)

is zero. Therefore, in the decomposition

σ∗RHomOS (OX ,OX) ≃ K ⊕ RHomℓ
OY

(OX ,OX),

the object K is an ideal object, so that RHomℓ
OY

(OX ,OX) inherits of a natural algebra structure, for which
p is a multiplicative morphism. This finishes the proof. Again, the whole proof works in the same way
for the functor RHomr

OY
.

Case C If we consider α as a morphism from Λ2(N∗X/Y [1]) to N∗X/Y [1] in the opposite category of
Db(X), we notice that the induction relations provided by Corollary 5.6 are exactly the same as the ones
proved in Proposition 2.6 (this is why we took the same notation ck

p). Hence (N∗X/Y [1], α) is a Lie algebra
object in the opposite derived category of X. Now according to the second part of the categorical PBW
Theorem (Theorem 2.11), we can define an algebra structure on S(N∗X/Y [1]) using the coefficients ck

p and
there is a natural multiplicative morphism from T(N∗X/Y [1]) to S(N∗X/Y [1]) endowed with this structure.
To conclude, it suffices to notice that the following diagram

σ∗RHomOS (OX ,OX) //

∼
��

RHomℓ
OY

(OX ,OX)

∼
��

T(N∗X/Y [1]) // S(N∗X/Y [1])

is commutative, which is nothing but the fact that the “geometric” coefficients ck
p are the same as the

“algebraic” coefficients ck
p, that is Corollary 5.6. □

5.2. The results of Kapranov, Markarian, Ramadoss and Yu. In this section, we provide a new light
on the foundational result in this theory: the construction of the Lie algebra structure on TX[−1], due
to Kapranov [11] and Markarian [14], and the computation of its universal enveloping algebra, due to
Markarian [14], and Ramadoss [16]. Then we prove Ramadoss formula [15] that computes the big Chern
classes of a vector bundle introduced by Kapranov in [11].

5.2.1. The Lie algebra TX[−1]. Given a smooth scheme/manifold X, we consider the special case of the
quantized cycle (∆X , pr1) in the product X × X.

Theorem 5.9 ([11], [14], [16]).

– The object (Ω1
X[1], atΩ1

X[1]) is a Lie coalgebra in Db(X).

– The ring object pr1∗RHomOX×X (OX ,OX) is isomorphic to U(TX[−1]).
– The map pr1∗RHomOX

(OX ,OX) → pr1∗RHomOX×X (OX ,OX) identifies with the natural projec-
tion map T(TX[−1])→ U(TX[−1]).
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Proof. The only thing we must prove is that α identifies with the Atiyah class of Ω1
X , which is well-

known: this follows from looking at the diagram

0 // pr1∗
I2
∆X

I3
∆X

//

��

pr1∗
I∆X

I3
∆X

//

��

pr1∗
I∆X

I2
∆X

//

��

0

0 // pr1∗

I∆X

I2
∆X

⊗ pr∗2Ω
1
X

 // pr1∗

OX×X

I2
∆X

⊗ pr∗2Ω
1
X

 // pr1∗

(
OX×X

I∆X

⊗ pr∗2Ω
1
X

)
// 0

where the vertical maps are given by differentation with respect to the second variable (so that they are
all linear). The right vertical map is the isomorphism given by the quantization pr1, and the left vertical
map is the symetrization morphism. □

Remark 5.10. Any object F in Db(X) defines a representation of the Lie algebra TX[−1], which is
obtained by the chain of morphisms

TX[−1] ⊗ F
id⊗atF−−−−−→ TX[−1] ⊗Ω1

X[1] ⊗ F ev⊗id−−−−→ F
For any F , G in Db(X) viewed as representations of TX[−1], the naturality of Atiyah classes implies that

HomRep(TX[−1])(F ,G) = HomDb(X)(F ,G).

In other words, Db(X) embeds as a full subcategory of Rep (TX[−1]).

Theorem 5.9 allows to give a Lie-theoretic interpretation of the tameness condition (Definition 4.11) for
quantized cycles. To a quantized cycle (X, σ) in Y , we have an exact sequence

0→ TX[−1]→ TY[−1]|X → NX/Y [−1]→ 0

and σ provides a splitting of this sequence.

Theorem 5.11. The triplet (TX[−1],TY[−1]|X ,NX/Y [−1]) is a reductive pair of Lie objects, as defined
in §3.3. Besides this pair is tame in the sense of Definition 3.12 if and only if (X, σ) is tame in the sense
of Definition 4.11. In this case, the dual of α defines a Lie structure on NX/Y [−1].

Proof. We switch from Lie algebras objects to Lie coalgebras objects, so that we see Ω1
Y |X[1] as a Lie

coalgebra in Db(X). This Lie coalgebra is described by Corollary 4.14: first the diagram

Ω1
Y |X[1] //

��

Ω1
Y |X[1] ⊗Ω1

Y |X[1] // Ω1
X[1] ⊗Ω1

X[1]

Ω1
X[1] // Ω1

X[1] ⊗Ω1
X[1]

commutes, so the morphism Ω1
Y |X → Ω

1
X is a morphism of Lie coalgebras objects. Next the tameness of

the pair (in the sens of Definition 3.12) can be explicited as follows: if consider the morphism

Ω1
X[1]→ Ω1

Y |X[1]→ Ω1
Y |X[1] ⊗Ω1

Y |X[1]→ N∗X/Y [1] ⊗ N∗X/Y [1],

tameness means the vanishing of the composite morphism

N∗X/Y [1]→ Ω1
X[1] ⊗ N∗X/Y [1]→ (N∗X/Y [1] ⊗ N∗X/Y [1]) ⊗ N∗X/Y [1].

The first morphism is the class β, and the second one is (β ⊗ idN∗X/Y [1]) ◦ atN∗X/Y [1]. Thanks to Proposition
4.10, this is γσ(N∗X/Y ), and we are done. For the last point, we remark that the composition

N∗X/Y [1]→ Ω1
Y |X[1]→ Ω1

Y |X[1] ⊗Ω1
Y |X[1]→ N∗X/Y [1] ⊗ N∗X/Y [1]

is exactly α. □
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5.2.2. Big Chern classes. Let us recall that for any vector bundle E on X, the big Chern classes ĉp(E) of
E live in Hp(X,TpΩ1

X), they are obtained by composing the morphisms atE , idΩ1
X
⊗ atE , . . . , idΩp−1

X
⊗ atE

and then taking the trace on E (without antisymmetrizing on the factor TpΩ1
X).

Theorem 5.12. For any vector bundle E on X, we have ĉp(E) =
∑k

p=1 ck
p(X) ◦ ck(E) where ck

p are the
universal elements in Extp−k(ΛkX,TpX) associated to the Lie algebra TX[−1].

Proof. On X × X, we have ∆p =
∑p

k=1 ck
p ◦ ∆+k . This gives

pr2∗(∆p ⊗ idpr∗1E) =
p∑

k=1

(ck
p ⊗ idE) ◦ pr2∗(∆

+
k ⊗ idpr∗1E).

The result follows by taking the trace on E. □

Remark 5.13. As explained in [15], the total Chern class of a vector bundle E can be interpreted in terms
of the representation of the Lie algebra TX[−1]. Indeed E defines a representation of TX[−1], whith is
(the dual of) the Atiyah class of E, hence a map from U(TX[−1]) to End (E). Its trace defines a map from
U(TX[−1]) to OX , which is exactly

∑
p cp(E) via the isomorphism

HomDb(X)(U(TX[−1]),OX) ≃
⊕

p

Hp(X,Ωp
X).

5.2.3. The quantized cycle class. Let us recall the definition of the quantized cycle class introduced in
[8]. For any quantized analytic cycle (X, σ) in Y , we consider the composition

ωX/Y ≃ RHomr(OX ,OY )→ RHomr
OY

(OX ,OX) ≃ S(NX/Y [−1]) (13)
where the last isomorphism is the dual HKR isomorphism. Let d be the codimension of X in Y .

Proposition 5.14. Assume that (X, σ) is tame. Then the morphism (13) is a d-torsion morphism for the
Lie algebra NX/Y [−1].

Proof. We must prove that the composition

NX/Y [−1] ⊗ ωX/Y → NX/Y [−1] ⊗ S(NX/Y [−1]) ≃ NX/Y [−1] ⊗ U(NX/Y [−1])→ U(NX/Y [−1])

vanishes, where the last map is given the multiplication in the algebra U(NX/Y [−1]). We can rewrite
this map (using duality) as a morphism from U(NX/Y [−1]) to N∗X/Y [1] ⊗ U(NX/Y [−1]), and the question
reduces to the vanishing of the map

ωX/Y → S(NX/Y [−1]) ≃ U(NX/Y [−1])→ N∗X/Y [1] ⊗ U(NX/Y [−1])

Using Theorem 5.8, we have a commutative diagram

RHomr
OY

(OX ,OX)
∆1◦ //

∼
��

RHomr
OY

(OX ,N∗X/Y [1])

∼
��

U(NX/Y [−1]) // N∗X/Y [1] ⊗ U(NX/Y [−1])

Hence the morphism we want to look at is (modulo isomorphism on the target) the composition

ωX/Y ≃ RHomr(OX ,OY )→ RHomr(OX ,OX)→ RHomr(OX ,N∗X/Y [1]).

We can factor the first arrow through RHomr(OX ,OS ), and the composition

RHomr(OX ,OS )→ RHomr(OX ,OX)→ RHomr(OX ,N∗X/Y [1])

vanishes, since it is obtained by composing two successive arrows of a distinguished triangle. □

Theorem 5.15. [18] Let (X, σ) be a tame quantized cycle in Y. Via the isomorphism

RHomDb(Y)(ωX/Y ,S(NX/Y [1])) ≃ H0(X,S(N∗X/Y [1])) ≃ S(N∗X/Y [1])NX/Y [−1],

the image of the morphism (13) is the Duflo element of NX/Y [−1].
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Proof. Thanks to Proposition 5.14 and Theorem 3.11, the morphism (13) is obtained by contracting the
morphism

ωX/Y ≃ Sd(NX/Y [−1])→ S(NX/Y [−1])
by the Duflo element of NX/Y [−1]. This gives the result. □

6. The Ext algebras

6.1. Definitions. Let (X,Y, σ) be a fixed quantized cycle. For any k, we denote by X(k)
Y is the kth formal

neighborhood of X in Y .

Definition 6.1. A
(k)
X/Y is the algebra

⊕∞
n=0 Extn

X(k)
Y

(OX ,OX), the algebra structure being given by the

Yoneda product.

For any k, there are natural algebra morphisms

A
(0)
X/Y ↪→ A

(1)
X/Y −→ A

(2)
X/Y −→ · · · −→ A

(k)
X/Y −→ · · · −→ A

(∞)
X/Y

Note that all the algebras A
(k)
X/Y are naturally graded by the integer n, we call this grading the degree

grading. Thanks to the Proposition (4.15), the algebra A
(1)
X/Y is canonically isomorphic (as an algebra) to

the algebra
∞⊕

n=0

n⊕
p=0

Extn−p(TpN∗X/Y ,OX)

via the map that attaches to any φ in Extn−p(TpN∗X/Y ,OX) the element φ ◦ ∆p. As a corollary, the algebra

A
(1)
X/Y carries another natural grading given by the integer p, which is completely different from the degree

grading; we call this grading the Lie grading. Elements of depth zero correspond to the sub-algebra A(0)
X/Y .

Using the sequence (10), the composition
∞⊕

n=0

n⊕
p=0

Extn−p(ΛpN∗X/Y ,OX) −→
∞⊕

n=0

n⊕
p=0

Extn−p(TpN∗X/Y ,OX) ≃ A
(1)
X/Y −→ A

(∞)
X/Y

is an isomorphism of k-vector spaces. Hence the map A
(1)
X/Y −→ A

(∞)
X/Y is surjective, and there is an

isomorphism

A
(∞)
X/Y ≃

∞⊕
n=0

n⊕
p=0

Extn−p(ΛpN∗X/Y ,OX).

of k-vector spaces obtained by attaching to any φ in Extn−p(ΛpN∗X/Y ,OX) the push forward of the element

φ◦∆−p from S to Y . The integer p defines a grading on A
(∞)
X/Y but it no longer respects the algebra structure,

however the corresponding ascending filtration does. We call this filtration the Lie filtration.

6.2. Enrichment. For any scheme (or complex manifold) Z, the category Db(Z) is enriched over Db(k)
in the following way:

Db(Z)(F ,G) := RΓ(X,RHomDb(Z)(F ,G)) .

Remark 6.2.
– The enrichment is symmetric monoidal. In particular, the tensor product functor is an enriched

functor.
– As k is a field, we can replace Db(k) by the equivalent category kZ. Through this equivalence

we have
Db(Z)(F ,G) ≃

⊕
n∈Z

HomDb(Z)(F ,G[n]).

– The Ext algebras admit a very simple description using this formalism, they are given by the
formula

A
(k)
X/Y = Db

(
X(k)

Y

)
(OX ,OX) .
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Let E an object in Db(Z), which we view as a module over the Lie algebra object TX[−1] using the Atiyah
class. There are two possible definitions of the V-invariants EV of E:

(1) the standard one: EV := HomDb(Z)(OZ , E), where OZ is equipped with the trivial TX[−1]-module
structure.

(2) the enriched one: EV := Db(Z)(OZ , E).
Below we always use the enriched version.

6.3. Structure theorem. If (X, σ) is tame, we can explicitly describe the Ext algebra A(∞)
X/Y . We have an

exact sequence
0→ TX[−1]→ (TY [−1])|X → NX/Y [−1]→ 0.

Recall that NX/Y [−1] is naturally endowed with a Lie structure (given by α).

Theorem 6.3. Assume that (X, σ) is a tame quantized cycle in Y. Then using the corresponding Lie
structure on NX/Y [−1], the algebra A

(∞)
X/Y is naturally isomorphic to U(NX/Y [−1])TX[−1]. Besides, there is

a commutative diagram

A
(1)
X/Y

//

��

A
(∞)
X/Y

��(
T(NX/Y [−1])

)TX[−1] //
(
U(NX/Y [−1])

)TX[−1]

Proof. We have already proved that there is an isomorphism of algebra objects betweenRHomℓ
OY

(OX ,OX)
and U(NX/Y [−1]). Applying the derived global section functor we get an isomorphism of graded al-
gebras between A

(∞)
X/Y and RΓ

(
X,U(NX/Y [−1])

)
. Finally, observe that the TX[−1]-module structure

of U(NX/Y [−1]) � S(NX/Y [−1]) is given by the Atiyah class of S(NX/Y [−1]). Therefore the algebra
RΓ

(
X,U(NX/Y [−1])

)
is indeed U(NX/Y [−1])TX[−1]. □

6.4. The algebra A
(2)
X/Y . In this section, we describe completely the image of A(1)

X/Y in A
(2)
X/Y for tame

quantized cycles. The result, which seems quite surprising at first sight, runs as follows:

Theorem 6.4. Assume that (X, σ) is tame in Y. The surjective morphism from A
(2)
X/Y to A

(∞)
X/Y admits a

canonical section.

Proof. Let RX/Y be the kernel of the map A
(1)
X/Y → A

(∞)
X/Y . The kernel of the map A

(1)
X/Y → A

(2)
X/Y is a

subalgebra of RX/Y , and we must prove that any element of RX/Y maps to zero in A
(2)
X/Y . We prove this

for all the subspaces FpRX/Y (where Fp is the Lie filtration), and argue by induction on p. If p = 0, this
is trivial since F0RX/Y vanishes. For any i with 1 ≤ i ≤ p, we can write in HomDb(S )(OX ,SpN∗X/Y [p])
using Lemma 5.4

∆p = (−1)pΘTp−1N∗X/Y
◦ ΘTp−2N∗X/Y

◦ · · · ◦ (ΘTi+1N∗X/Y
◦ ΘTiN∗X/Y

) ◦ · · · ◦ ΘOX

= Ap,i + Θp,i + Rp,i

where:
– Ap,i ∈ HomDb(S )(OX ,Tp−i−1N∗X/Y ⊗ Λ2N∗X/Y ⊗ Ti−1N∗X/Y [p]).
– Θp,i is in Fp−1HomDb(S )(OX ,Tp−i−1N∗X/Y ⊗ sym2N∗X/Y ⊗ Ti−1N∗X/Y [p]).

– Rp,i vanishes in A
(2)
X/Y .

For 1 ≤ i ≤ p − 1, let χp,i : TpN∗X/Y → Ti−1N∗X/Y ⊗ S2N∗X/Y ⊗ Tp−i−1N∗X/Y be the partial symmetrization
map. Then we have

χp,i ◦ ∆p = χp,i ◦ Rp,i + Θp,i.

It follows from the dual version of Lemma 2.1 that there exist an element Rp in the kernel of the natural
map A

(1)
X/Y → A

(2)
X/Y such that ∆−p+Rp lies in Fp−1HomDb(S )(OX ,TpN∗X/Y [p]). Now any element in FpRX/Y
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can be written as φ ◦∆−p +ψ where ψ belongs to Fp−1RX/Y , and we conclude by induction since elements
in Fp−1RX/Y map to zero in A

(2)
X/Y . □

7. Conclusion and perspectives

7.1. State of the art in the tame case. In this paper we introduced a tameness condition for a quantized
cycle (X, σ) in Y . Under this assumption we proved that the shifted normal sheaf NX/Y [−1] is endowed
with a Lie bracket and that the sheaf of derived OY -linear endomorphisms of OX is isomorphic to the
universal enveloping algebra of NX/Y [−1]. Using this, we were able to:

– identify the quantized cycle class with the Duflo element of the Lie algebra object NX/Y [−1],
recovering and reinterpreting in Lie algebraic terms a result Yu.

– describe explicitly the Ext algebra Ext•Y (OX ,OX).

7.2. Beyond the tame case. At first sight, the diagonal cycle X ↪→ X × X admits two distinguished
quantizations (i.e. first order retractions): the two projections pr1 and pr2. However, since the space of
quantizations of a cycle is an affine space, this gives a whole line of quantizations, namely tpr1+(1− t)pr2
for t in the base field k.

In general these quantizations are never tame except for t = 0 or t = 1, that is for the two projections.

However, the value t =
1
2

is special since the corresponding quantized cycle fits in a very interesting
family of quantized cycles: every fixed-point locus X = Y ι of an involution ι of Y defines naturally a
quantized cycle. In our former example, Y = X × X and ι(x, x′) = (x′, x). In Lie algebraic terms this
corresponds to symmetric pairs. We will study further on this case in future work.
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[4] Damien Calaque, Andrei Căldăraru, and Junwu Tu. On the Lie algebroid of a derived self-intersection. Adv. Math.,

262:751–783, 2014.
[5] Pierre Deligne and John W. Morgan. Notes on supersymmetry (following Joseph Bernstein). In Quantum fields and

strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), pages 41–97. Amer. Math. Soc., Providence,
RI, 1999.

[6] Michel Duflo. Opérateurs différentiels bi-invariants sur un groupe de Lie. Annales scientifiques de l’École normale
supérieure, 10(2):265–288, 1977.

[7] Julien Grivaux. On a conjecture of Kashiwara relating Chern and Euler classes of o-modules. J. Differential Geom.,
90(2):267–275, 2012.

[8] Julien Grivaux. The Hochschild-Kostant-Rosenberg isomorphism for quantized analytic cycles. Int. Math. Res. Not.
IMRN, (4):865–913, 2014.

[9] Julien Grivaux. Derived geometry of the first formal neighbourhood of a smooth analytic cycle. Preprint, 2017.
[10] G. Hochschild, Bertram Kostant, and Alex Rosenberg. Differential forms on regular affine algebras. Trans. Amer. Math.

Soc., 102:383–408, 1962.
[11] M. Kapranov. Rozansky-Witten invariants via Atiyah classes. Compositio Math., 115(1):71–113, 1999.
[12] M. Kashiwara and P. Schapira. Deformation quantization modules. Astérisque. Société mathématique de France, 2012.
[13] Maxim Kontsevich. Deformation quantization of Poisson manifolds. Lett. Math. Phys., 66(3):157–216, 2003.
[14] Nikita Markarian. The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem. J. Lond. Math. Soc. (2),

79(1):129–143, 2009.
[15] Ajay C. Ramadoss. The big Chern classes and the Chern character. Internat. J. Math., 19(6):699–746, 2008.
[16] Ajay C. Ramadoss. The relative Riemann-Roch theorem from Hochschild homology. New York J. Math., 14:643–717,

2008.
[17] Domingo Toledo and Yue Lin L. Tong. Duality and intersection theory in complex manifolds. I. Mathematische Annalen,

237(1):41–77, 1978.
[18] Shilin Yu. Todd class via homotopy perturbation theory. Preprint, 2016.
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