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In this paper, we consider a class of the focusing inhomogeneous nonlinear Schrödinger equation i∂tu

with 0 < b < min{2, d} and α ≤ α < α where α = 4-2b

In the mass-critical case α = α , we prove that if u 0 has negative energy and satisfies either xu 0 ∈ L 2 with d ≥ 1 or u 0 is radial with d ≥ 2, then the corresponding solution blows up in finite time. Moreover, when d = 1, we prove that if the initial data (not necessarily radial) has negative energy, then the corresponding solution blows up in finite time. In the mass and energy intercritical case α < α < α , we prove the blowup below ground state for radial initial data with d ≥ 2. This result extends the one of Farah in [9] where the author proved blowup below ground state for data in the virial space H 1 ∩ L 2 (|x| 2 dx) with d ≥ 1.

The (INLS) is a particular case of (1.1) with K(x) = |x| -b . The equation (1.1) has been attracted a lot of interest in a past several years. Bergé in [START_REF] Bergé | Soliton stability versus collapse[END_REF] studied formally the stability condition for soliton solutions of (1.1). Towers-Malomed in [START_REF] Towers | Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity[END_REF] observed by means of variational approximation and direct simulations that a certain type of time-dependent nonlinear medium gives rise to completely stabe beams. Merle in [19] and Raphaël-Szeftel in [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF] studied (1.1) for k 1 < K(x) < k 2 with k 1 , k 2 > 0. Fibich-Wang in [START_REF] Fibich | Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities[END_REF] investigated (1.1) with K(x) := K( |x|) where > 0 is small and

K ∈ C 4 (R d ) ∩ L ∞ (R d ).
The case K(x) = |x| b with b > 0 is studied by many authors (see e.g. [START_REF] Chen | On a class of nonlinear inhomogeneous Schrödinger equation[END_REF][START_REF] Liu | Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity[END_REF]32] and references therein).

In order to recall known results for the (INLS), let us give some facts for this equation. We firstly note that the (INLS) is invariant under the scaling,

u λ (t, x) := λ 2-b α u(λ 2 t, λx), λ > 0.
An easy computation shows u λ (0) Ḣγ = λ γ+ 2-b α -d 2 u 0 Ḣγ . Thus, the critical Sobolev exponent is given by

γ c := d 2 - 2 -b α . (1.2)
Moreover, the (INLS) has the following conserved quantities:

M (u(t)) := |u(t, x)| 2 dx = M (u 0 ), (1. 
3)

E(u(t)) := 1 2 |∇u(t, x)| 2 - µ α + 2 |x| -b |u(t, x)| α+2 dx = E(u 0 ). (1.4)
The well-posedness for the (INLS) was firstly studied by Genoud-Stuart in [13, Appendix] by using the argument of Cazenave [3] which does not use Strichartz estimates. More precisely, the authors showed that the focusing (INLS) with 0 < b < min{2, d} is well posed in H 1 :

• locally if 0 < α < α ,

• globally for any initial data if 0 < α < α ,

• globally for small initial data if α ≤ α < α , where α and α are defined by

α := 4 -2b d , α := 4-2b d-2 if d ≥ 3, ∞ if d = 1, 2.
(1.5)

In the case α = α (L 2 -critical), Genoud in [START_REF] Genoud | An inhomogeneous, L 2 -critical, nonlinear Schrödinger equation[END_REF] showed that the focusing (INLS) with 0 < b < min{2, d} is globally well-posed in H 1 assuming u 0 ∈ H 1 and

u 0 L 2 < Q L 2 ,
where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state equation ∆Q -Q + |x| -b |Q| 4-2b d Q = 0. Also, Combet-Genoud in [START_REF] Combet | Classification of minimal mass blow-up solutions for an L 2 critical inhomogeneous NLS[END_REF] established the classification of minimal mass blow-up solutions for the focusing L 2 -critical (INLS).

In the case α < α < α , Farah in [9] showed that the focusing (INLS) with 0 < b < min{2, d} is globally well-posedness in H 1 , d ≥ 1 assuming u 0 ∈ H 1 and

E(u 0 ) γc M (u 0 ) 1-γc < E(Q) γc M (Q) 1-γc , (1.6) ∇u 0 γc L 2 u 0 1-γc L 2 < ∇Q γc L 2 Q 1-γc L 2 ,
where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state equation

∆Q -Q + |x| -b |Q| α Q = 0. (1.7)
He also proved that if

u 0 ∈ H 1 ∩ L 2 (|x| 2 dx) =: Σ satisfies (1.6) and ∇u 0 γc L 2 u 0 1-γc L 2 > ∇Q γc L 2 Q 1-γc L 2 , (1.8)
then the blow-up in H 1 must occur. Afterwards, Farah-Guzman in [START_REF] Farah | Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation[END_REF]11] proved that the above global solution is scattering under the radial condition of the initial data.

Guzman in [START_REF] Guzmán | On well posedness for the inhomogneous nonlinear Schrödinger equation[END_REF] used Strichartz estimates and the contraction mapping argument to establish the local well-posedness as well as the small data global well-posedness for the (INLS) in Sobolev space. Recently, the author in [7] improved the local well-posedness in H 1 of Guzman by extending the validity of b in the two and three dimensional spatial spaces. Note that the results of Guzman [START_REF] Guzmán | On well posedness for the inhomogneous nonlinear Schrödinger equation[END_REF] and Dinh [7] about the local well-posedness of (INLS) in H 1 are a bit weaker than the one of . More precisely, they do not treat the case d = 1, and there is a restriction on the validity of b when d = 2 or 3. However, the local well-posedness proved in [START_REF] Guzmán | On well posedness for the inhomogneous nonlinear Schrödinger equation[END_REF]7] provides more information on the solutions, for instance, one knows that the global solutions to the defocusing (INLS) satisfy u ∈ L p loc (R, W 1.q ) for any Schrödinger admissible pair (p, q). This property plays an important role in proving the scattering for the (INLS). Note also that the author in [7] pointed out that one cannot expect a similar local well-posedness result for (INLS) in H 1 as in [START_REF] Guzmán | On well posedness for the inhomogneous nonlinear Schrödinger equation[END_REF]7] holds in the one dimensional case by using Strichartz estimates.

In [7], the author used the so-called pseudo-conformal conservation law to show the decaying property of global solutions to the defocusing (INLS) by assuming the initial data in Σ (see before (1.8)). In particular, he showed that in the case α ∈ [α , α ), global solutions have the same decay as the solutions of the linear Schrödinger equation, that is for 2

≤ q ≤ 2d d-2 when d ≥ 3 or 2 ≤ q < ∞ when d = 2 or 2 ≤ q ≤ ∞ when d = 1, u(t) L q (R d ) |t| -d( 1 2 -1 q ) , ∀t = 0.
This allows the author proved the scattering in Σ for a certain class of the defocusing (INLS). Later, the author in [START_REF] Dinh | Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation[END_REF] made use of the classical Morawetz inequality and an argument of [30] to derive the decay of global solutions to the defocusing (INLS) with the initial data in H 1 . Using the decaying property, he was able to show the energy scattering for a class of the defocusing (INLS). We refer the reader to [7,[START_REF] Dinh | Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation[END_REF] for more details.

The main purpose of this paper is to show the finite time blowup for the focusing (INLS). Thanks to the well-posedness of Genoud-Stuart [13], we only expect blowup in H 1 when α ≤ α < α which correspond to the mass-critical and the mass and energy intercritical cases. Note that the local well-posedness for the energy-critical (INLS), i.e. α = α is still an open problem.

Our first result is the following finite time blowup for the (INLS) in the mass-critical case α = α .

Theorem 1.1. Let 0 < b < min{2, d} and u 0 ∈ H 1 . Then the corresponding solution to the focusing mass-critical (INLS) blows up in finite time if one of the following conditions holds true:

1. d ≥ 1, E(u 0 ) < 0 and xu 0 ∈ L 2 , 2. d ≥ 2, E(u 0 ) < 0 and u 0 is radial, 3. d = 1 and E(u 0 ) < 0. Remark 1.2.
1. This theorem extends the well-known finite time blowup for the focusing mass-critical nonlinear Schrödinger equation (i.e. b = 0 in (INLS)) [20,[START_REF] Ogawa | Blow-up of H 1 solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity[END_REF] to the focusing mass-critical (INLS). 2. The condition E(u 0 ) < 0 is a sufficient condition for the finite time blowup but it is not necessary. In fact, one can show (see Remark 4.2) that for any E > 0, there exists u 0 ∈ H 1 satisfying E(u 0 ) = E and the corresponding solution blows up in finite time.

We now consider the intercritical (i.e. mass-supercritical and energy-subcritical) case α < α < α . Our next result is the following blowup for the intercritical (INLS).

Theorem 1.3. Let d ≥ 3, 0 < b < 2, α < α < α , or d = 2, 0 < b < 2, α < α < 4. Let u 0 ∈ H 1 be radial and satisfy E(u 0 )M (u 0 ) σ < E(Q)M (Q) σ ,
(1.9) and

∇u 0 L 2 u 0 σ L 2 > ∇Q L 2 Q σ L 2 , ( 1.10) 
where

σ := 1 -γ c γ c = 2(2 -b) -(d -2)α dα -2(2 -b) , (1.11)
and Q is the unique solution the ground state equation (1.7). Then the corresponding solution to the focusing intercritical (INLS) blows up in finite time. Moreover, 

∇u(t) L 2 u(t) σ L 2 > ∇Q L 2 Q σ L 2 , ( 1 
0 L 2 u 0 σ L 2 < ∇Q L 2 Q σ L 2
, then the corresponding solution exists globally in time. This paper is organized as follows. In Section 2, we recall the sharp Gagliardo-Nirenberg inequality related to the focusing (INLS) due to Farah [9]. In Section 3, we derive the standard virial identity and localized virial estimates for the focusing (INLS). We will give the proof of Theorem 1.1 in Section 4. Finally, the proof of Theorem 1.3 will be given in Section 5.

Sharp Gagliardo-Nirenberg inequality

In this section, we recall the sharp Gagliardo-Nirenberg inequality related to the focusing (INLS) due to Farah [9].

Theorem 2.1 (Sharp Gagliardo-Nirenberg inequality [9]). Let d ≥ 1, 0 < b < min{2, d} and 0 < α < α . Then the Gagliardo-Nirenberg inequality |x| -b |u(x)| α+2 dx ≤ C GN u 4-2b-(d-2)α 2 L 2 ∇u dα+2b 2 L 2 , ( 2.1) 
holds true, and the sharp constant C GN is attended by a function Q, i.e.

C GN = |x| -b |Q(x)| α+2 dx ÷ Q 4-2b-(d-2)α 2 L 2 ∇Q dα+2b 2 L 2 , (2.2)
where Q is the unique non-negative, radially symmetric, decreasing solution to the elliptic equation

∆Q -Q + |x| -b |Q| α Q = 0. (2.3) Remark 2.2. 1. In [9]
, the author proved this result for α < α < α . However, the proof and so the result are still valid for 0 < α ≤ α . 2. The existence and uniqueness of the solution Q to the elliptic equation (2.3) was proved by Toland [28] and Yanagida [31] (see also ). 3. We also have the following Pohozaev identities:

Q 2 L 2 = 4 -2b -(d -2)α dα + 2b ∇Q 2 L 2 = 4 -2b -(d -2)α 2(α + 2) |x| -b |Q(x)| α+2 dx. (2.4)
In particular,

C GN = 2(α + 2) 4 -2b -(d -2)α 4 -2b -(d -2)α dα + 2b dα+2b 4 1 Q α L 2 .
(2.5)

Virial identities

In this section, we derive virial identities and virial estimates related to the focusing (INLS). Given a smooth real valued function a, we define the virial potential by

V a (t) := a(x)|u(t, x)| 2 dx. (3.1)
By a direct computation, we have the following result (see e.g. [27, Lemma 5.3] for the proof.)

Lemma 3.1 ([27]). If u is a smooth-in-time and Schwartz-in-space solution to

i∂ t u + ∆u = N (u), with N (u) satisfying Im (N (u)u) = 0, then we have d dt V a (t) = 2 R d ∇a(x) • Im (u(t, x)∇u(t, x))dx, (3.2)
and

d 2 dt 2 V a (t) = -∆ 2 a(x)|u(t, x)| 2 dx + 4 d j,k=1 ∂ 2 jk a(x)Re (∂ k u(t, x)∂ j u(t, x))dx + 2 ∇a(x) • {N (u), u} p (t, x)dx, (3.3)
where {f, g} p := Re (f ∇g -g∇f ) is the momentum bracket.

We note that if

N (u) = -|x| -b |u α u, then {N (u), u} p = α α + 2 ∇(|x| -b |u| α+2 ) + 2 α + 2 ∇(|x| -b )|u| α+2 .
Using this fact, we immediately have the following result.

Corollary 3.2. If u is a smooth-in-time and Schwartz-in-space solution to the focusing (INLS), then we have

d 2 dt 2 V a (t) = -∆ 2 a(x)|u(t, x)| 2 dx + 4 d j,k=1 ∂ 2 jk a(x)Re (∂ k u(t, x)∂ j u(t, x))dx - 2α α + 2 ∆a(x)|x| -b |u(t, x)| α+2 dx + 4 α + 2 ∇a(x) • ∇(|x| -b )|u(t, x)| α+2 dx.
(3.4)

A direct consequence of Corollary 3.2 is the following standard virial identity for the (INLS).

Lemma 3.3. Let u 0 ∈ H 1 be such that |x|u 0 ∈ L 2 and u : I × R d → C the corresponding solution to the focusing (INLS). Then, |x|u ∈ C(I, L 2 ). Moreover, for any t ∈ I, d 2 dt 2 xu(t) 2 L 2 x = 8 ∇u(t) 2 L 2 - 4(dα + 2b) α + 2 |x| -b |u(t, x)| α+2 dx. (3.5)
Proof. The first claim follows from the standard approximation argument, we omit the proof and refer the reader to [3, Proposition 6.5.1] for more details. The identity (3.5) follows from Corollary 3.2 by taking a(x) = |x| 2 .

In order to prove the blowup for the focusing (INLS) with radial data, we need localized virial estimates. To do so, we introduce the smooth, non-negative function θ

: [0, ∞) → [0, ∞) satisfying θ(r) = r 2 if 0 ≤ r ≤ 1, const. if r ≥ 2,
and θ (r) ≤ 2 for r ≥ 0.

(3.6)

Note that the precise constant here is not important. For R > 1, we define the radial function

ϕ R (x) = ϕ R (r) := R 2 θ(r/R), r = |x|. (3.7)
It is easy to see that 

2 -ϕ R (r) ≥ 0, 2 - ϕ R (r) r ≥ 0, 2d -∆ϕ R (x) ≥ 0. (3.8) Lemma 3.4. Let d ≥ 2, 0 < b < 2, 0 < α < 4,
d 2 dt 2 V ϕ R (t) ≤ 8 ∇u(t) 2 L 2 - 4(dα + 2b) α + 2 |x| -b |u(t, x)| α+2 dx +O R -2 + -α 4-α R -2[(d-1)α+2b] 4-α + ∇u(t) 2 L 2 .
(3.9) Remark 3.5.

1. The condition d ≥ 2 comes from the radial Sobolev embedding. This is due to the fact that radial functions in dimension 1 do not have any decaying property. The restriction 0 < α < 4 comes from the Young inequality below. 2. If we consider α ≤ α ≤ α , then there is a restriction on the validity of α in 2D. More precisely, we need α ≤ α < 4 when d = 2.

Proof of Lemma 3.4. We apply (3.4) for a(x) = ϕ R (x) to get

d 2 dt 2 V ϕ R (t) = -∆ 2 ϕ R |u(t)| 2 dx + 4 d j,k=1 ∂ 2 jk ϕ R Re (∂ k u(t)∂ j u(t))dx - 2α α + 2 ∆ϕ R |x| -b |u(t)| α+2 dx + 4 α + 2 ∇ϕ R • ∇(|x| -b )|u(t)| α+2 dx.
Since ϕ R (x) = |x| 2 for |x| ≤ R, we use (3.5) to have

d 2 dt 2 V ϕ R (t) = 8 ∇u(t) 2 L 2 - 4(dα + 2b) α + 2 |x| -b |u(t)| α+2 dx -8 ∇u(t) 2 L 2 (|x|>R) + 4(dα + 2b) α + 2 |x|>R |x| -b |u(t)| α+2 dx (3.10) - |x|>R ∆ 2 ϕ R |u(t)| 2 dx + 4 d j,k=1 |x|>R ∂ 2 jk ϕ R Re (∂ k u(t)∂ j u(t))dx - 2α α + 2 |x|>R ∆ϕ R |x| -b |u(t)| α+2 dx + 4 α + 2 |x|>R ∇ϕ R • ∇(|x| -b )|u(t)| α+2 dx. Since |∆ϕ R | 1, |∆ 2 ϕ R | R -2 and |∇ϕ R • ∇(|x| -b )| |x| -b , we have d 2 dt 2 V ϕ R (t) = 8 ∇u(t) 2 L 2 - 4(dα + 2b) α + 2 |x| -b |u(t)| α+2 dx + 4 d j,k=1 |x|>R ∂ 2 jk ϕ R Re (∂ k u(t)∂ j u(t))dx -8 ∇u(t) 2 L 2 (|x|>R) + O |x|>R R -2 |u(t)| 2 + |x| -b |u(t)| α+2 dx .
Using (3.8) and the fact that

∂ 2 jk = δ jk r - x j x k r 3 ∂ r + x j x k r 2 ∂ 2 r ,
we see that

d j,k=1 ∂ 2 jk ϕ R ∂ k u∂ j u = ϕ R (r)|∂ r u| 2 ≤ 2|∂ r u| 2 = 2|∇u| 2 . Therefore 4 d j,k=1 |x|>R ∂ 2 jk ϕ R Re (∂ k u(t)∂ j u(t))dx -8 ∇u(t) 2 L 2 (|x|>R) ≤ 0.
The conservation of mass then implies

d 2 dt 2 V ϕ R (t) ≤ 8 ∇u(t) 2 L 2 - 4(dα + 2b) α + 2 |x| -b |u(t)| α+2 dx + O R -2 + |x|>R |x| -b |u(t)| α+2 dx .
It 

sup x =0 |x| d-2s 2 |f (x)| ≤ C(d, s) f 1-s L 2 f s Ḣ1 . (3.11)
Moreover, the above inequality also holds for d ≥ 3 and s = 1.

Using (3.11) with s = 1 2 and the conservation of mass, we estimate

|x|>R |x| -b |u(t)| α+2 dx ≤ sup |x|>R |x| -b |u(t, x)| α u(t) 2 L 2 R - (d-1)α 2 +b sup |x|>R |x| d-1 2 |u(t, x)| α u(t) 2 L 2 R - (d-1)α 2 +b ∇u(t) α 2 L 2 u(t) α 2 +2 L 2 R - (d-1)α 2 +b ∇u(t) α 2
L 2 . We next recall the Young inequality: for a, b non-negative real numbers and p, q positive real numbers satisfying 1 p + 1 q = 1, then for any > 0, ab a p + -q p b q . Applying the Young inequality for a = ∇u(t)

α 2 L 2 , b = R - (d-1)α 2
+b and p = 4 α , q = 4 4-α , we get for any > 0,

R - (d-1)α 2 +b ∇u(t) α 2 L 2 ∇u(t) 2 L 2 + -α 4-α R -2[(d-1)α]+2b 4-α .
Note that the condition 0 < α < 4 ensures 1 < p, q < ∞. The proof is complete.

In the mass-critical case α = α , we have the following refined version of Lemma 3.4. The proof of this result is based on an argument of [20] (see also [START_REF] Boulenger | Blowup for fractional NLS[END_REF]). 

d 2 dt 2 V ϕ R (t) ≤ 16E(u 0 ) -2 |x|>R χ 1,R - d + 2 -b χ d 2-b 2,R |∇u(t)| 2 dx + O R -2 + R -2 + -2-b d-2+b R -2d-2+b d-2+b , (3.12)
where

χ 1,R = 2(2 -ϕ R ), χ 2,R = (2 -b)(2d -∆ϕ R ) + db 2 - ϕ R r . (3.13)
Proof. We firstly notice that

j,k ∂ 2 jk ϕ R ∂ k u∂ j u = ϕ R |∂ r u| 2 , ∇ϕ R • ∇(|x| -b ) = -b ϕ R r . Using (3.10) with α = α = 4-2b d and rewriting ϕ R = 2 -(2 -ϕ R ), ϕ R r = 2 -2 - ϕ R r and ∆ϕ R = 2d -(2d -∆ϕ R ), we have d 2 dt 2 V ϕ R (t) = 16E(u(t)) - |x|>R ∆ 2 ϕ R |u(t)| 2 dx -4 |x|>R (2 -ϕ R )|∂ r u(t)| 2 dx + 4 -2b d + 2 -b |x|>R (2d -∆ϕ R )|x| -b |u(t)| 4-2b d +2 dx + 2db d + 2 -b |x|>R 2 - ϕ R r |x| -b |u(t)| 4-2b d +2 dx ≤ 16E(u(t)) + O(R -2 ) -2 |x|>R χ 1,R |∇u(t)| 2 dx + 2 d + 2 -b |x|>R χ 2,R |x| -b |u(t)| 4-2b d +2 dx,
where χ 1,R and χ 2,R are as in (3.13). Using the radial Sobolev embedding (3.11) with s = 1 2 and the conservation of mass, we estimate

|x|>R χ 2,R |x| -b |u(t)| 4-2b d +2 dx = |x|>R |x| -b χ d 4-2b 2,R u(t) 4-2b d |u(t)| 2 dx ≤ sup |x|>R |x| -b χ d 4-2b 2,R (x)u(t, x) 4-2b d u(t) 2 L 2 R - (2-b)(d-1) d +b ∇ χ d 4-b 2,R u(t) 2-b d L 2 u(t) 2+ 2-b d L 2 R - (2-b)(d-1) d +b ∇ χ d 4-2b 2,R u(t) 4-2b d L 2 .
We next apply the Young inequality with p = 2d 2-b and q = d d-2+b to get for any > 0

R - (2-b)(d-1) d +b ∇ χ d 4-2b 2,R u(t) 4-2b d L 2 ∇ χ d 4-2b 2,R u(t) 2 L 2 + O -2-b d-2+b R -2d-2+b d-2+b
.

Moreover, using (3.6), (3.7) and (3.8), it is easy to check that |∇(χ

d/(4-2b) 2,R )| R -1 for |x| > R. Thus the conservation of mass implies ∇ χ d 4-2b 2,R u(t) 2 L 2 R -2 + χ d 4-2b 2,R ∇u(t) 2 L 2 .
Combining the above estimates, we prove (3.12).

To prove the blowup in the 1D mass-critical case α = 4 -2b, we need the following version of localized virial estimates due to [START_REF] Ogawa | Blow-up of H 1 solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity[END_REF]. Let ϑ be a real-valued function in W 3,∞ satisfying

ϑ(x) =            2x if 0 ≤ |x| ≤ 1, 2[x -(x -1) 3 ] if 1 < x ≤ 1 + 1/ √ 3, 2[x -(x + 1) 3 ] if -(1 + 1/ √ 3) ≤ x < -1, ϑ < 0 if 1 + 1/ √ 3 < |x| < 2, 0 if |x| ≥ 2.
(3. 

u(t) L 2 (|x|>1) ≤ a 0 , (3.16)
for any t ∈ I, then there exists C > 0 such that

d 2 dt 2 V θ (t) ≤ 16E(u 0 ) + C(1 + N ) 2-b u(t) 6-2b L 2 (|x|>1) + N u(t) 2 L 2 (|x|>1) , (3.17) 
for any t ∈ I, where

N := ∂ x ϑ L ∞ + ∂ 2 x ϑ L ∞ + ∂ 3 x ϑ L ∞ .
Proof. We apply (3.4) with a(x) = θ(x) to get

d 2 dt 2 V θ (t) = -∂ 4 x θ|u(t)| 2 dx + 4 ∂ 2 x θ|∂ x u(t)| 2 dx - 4 -2b 3 -b ∂ 2 x θ|x| -b |u(t)| 6-2b dx + 2 3 -b ∂ x θ∂ x (|x| -b )|u(t)| 6-2b dx.
Since θ(x) = x 2 on |x| ≤ 1, the definition of energy implies

d 2 dt 2 V θ (t) = 16E(u(t)) - |x|>1 ∂ 4 x θ|u(t)| 2 dx -4 |x|>1 (2 -∂ 2 x θ)|∂ x u(t)| 2 dx + 4 -2b 3 -b |x|>1 (2 -∂ 2 x θ)|x| -b |u(t)| 6-2b dx + 2b 3 -b |x|>1 2 - ∂ x θ x |x| -b |u(t)| 6-2b dx = 16E(u 0 ) - |x|>1 ∂ 4 x θ|u(t)| 2 dx -2 |x|>1 χ 1 |∂ x u(t)| 2 dx + 2 3 -b |x|>1 χ 2 |x| -b |u(t)| 6-2b dx, (3.18)
where

χ 1 := 2(2 -∂ 2 x θ), χ 2 := (2 -b)(2 -∂ 2 x θ) + b 2 - ∂ x θ x .
We now estimate

|x|>1 χ 2 |x| -b |u(t)| 6-2b dx ≤ sup |x|>1 χ 2 |x| -b |u(t)| 4-2b u(t) 2 L 2 (|x|>1) ≤ ρu(t) 4-2b L ∞ (|x|>1) u(t) 2 L 2 (|x|>1) ,
where ρ(x) := χ 

ρu(t) L ∞ (|x|>1) ≤ u(t) 1/2 L 2 (|x|>1) 2 ρ 2 ∂ x u(t) L 2 (|x|>1) + u(t)∂ x (ρ 2 ) L 2 (|x|>1) 1/2 . Thus, |x|>1 χ 2 |x| -b |u(t)| 6-2b dx ≤ u(t) 4-b L 2 (|x|>1) 2 ρ 2 ∂ x u(t) L 2 (|x|>1) + u(t)∂ x (ρ 2 ) L 2 (|x|>1) 2-b ≤ u(t) 4-b L 2 (|x|>1) 2 1-b 2 2-b ρ 2 ∂ x u(t) 2-b L 2 (|x|>1) + u(t)∂ x (ρ 2 ) 2-b L 2 (|x|>1) ≤ 2 3-2b u(t) 4-b L 2 (|x|>1) ρ 2 ∂ x u(t) 2-b L 2 (|x|>1) +2 1-b u(t) 6-2b L 2 (|x|>1) ∂ x (ρ 2 ) 2-b L ∞ (|x|>1) . (3.19) We next estimate ∂ x (ρ 2 ) L ∞ (|x|>1)
. By the definition of ρ, we write

∂ x (ρ 2 ) = 1 2 -b ∂ x χ 2 χ 1-b 2-b 2 . On 1 < |x| ≤ 1 + 1/ √ 3, a direct computation shows 2 - ∂ x θ x = 2 (|x| -1) 3 |x| , 2 -∂ 2 θ = 6(|x| -1) 2 .
Thus,

χ 2 = 6(2 -b)(|x| -1) 2 + 2b (|x| -1) 3 |x| ,
and

∂ x χ 2 =    (x -1) 12(2 -b) + 2b (x-1)(3x-1) x 2 if 1 < x ≤ 1 + 1/ √ 3, (x + 1) 12(2 -b) + 2b (x+1)(3x-1) x 2 if -(1 + 1/ √ 3) ≤ x < -1.
Thus

∂ x χ 2 χ 1-b 2-b 2 =          (x -1) b 2-b 12(2-b)+2b (x-1)(3x-1) x 2 [6(2-b)+2b x-1 x ] 1-b 2-b if 1 < x ≤ 1 + 1/ √ 3, (x + 1) b 2-b 12(2-b)+2b (x+1)(3x-1) x 2 [6(2-b)+2b x+1 x ] 1-b 2-b if -(1 + 1/ √ 3) ≤ x < -1. This implies that ∂ x χ 2 /χ 1-b 2-b 2 is uniformly bounded on 1 < |x| ≤ 1 + 1/ √ 3. On |x| > 1 + 1/ √ 3, we note that χ 2 ≥ 4 since ∂ 2
x θ and ∂ x θ/x are both non-positive there by the choice of ϑ. We thus simply bound

∂ x χ 2 /χ 1-b 2-b 2 ∂ x ϑ L ∞ + ∂ 2 x ϑ L ∞ N. Therefore, ∂ x (ρ 2 ) L ∞ (|x|>1) 1 + N.
Combining this with (3.19), we obtain

|x|>1 χ 2 |x| -b |u(t)| 6-2b dx ≤ 2 3-2b u(t) 4-b L 2 (|x|>1) ρ 2 ∂ x u(t) 2-b L 2 (|x|>1) + C(1 + N ) 2-b u(t) 6-2b L 2 (|x|>1) , (3.20)
for some constant C > 0. We thus get from (3.18) and (3.20) that

d 2 dt 2 V θ (t) ≤ 16E(u 0 ) + N u(t) 2 L 2 (|x|>1) -2 |x|>1 χ 1 |∂ x u(t)| 2 dx + 2 4-2b 3 -b u(t) 4-b L 2 (|x|>1) ρ 2 ∂ x u(t) 2-b L 2 (|x|>1) + C(1 + N ) 2-b u(t) 6-2b L 2 (|x|>1) ≤ 16E(u 0 ) -2 |x|>1 χ 1 - 2 3-2b 3 -b χ 2 u(t) 4-b L 2 (|x|>1) |∂ x u(t)| 2 dx +C(1 + N ) 2-b u(t) 6-2b L 2 (|x|>1) + N u(t) 2 L 2 (|x|>1
) . We will show that if u(t) L 2 (|x|>1) ≤ a 0 for some a 0 > 0 small enough, then

χ 1 - 2 3-2b 3 -b χ 2 u(t) 4-b L 2 (|x|>1) ≥ 0, (3.21)
for any |x| > 1. It immediately yields (3.17). It remains to prove (3.21). To do so, it is enough to show for some a 0 > 0 small enough, 2 , and

χ 1 -a 0 2 3-2b 3 -b χ 2 ≥ 0, (3.22) for any |x| > 1. On 1 < |x| ≤ 1 + 1/ √ 3, we have χ 1 = 2(2 -∂ 2 x θ) = 12(|x| -1)
χ 2 = (2 -b)(2 -∂ 2 x θ) + b 2 - ∂ x θ x = 6(2 -b)(|x| -1) 2 + 2b (|x| -1) 3 |x| = 6(|x| -1) 2 2 -b + b |x| -1 3|x| < 6(|x| -1) 2 2 -b + b 3 √ 3 .
Thus, by taking a 0 > 0 small enough, we have (3.22).

On

|x| > 1 + 1/ √ 3, since ∂ 2 x θ = ∂ x ϑ ≤ 0, we have χ 1 ≥ 4.
Moreover, χ 2 ≤ C for some constant C > 0. We thus get (3.22) by taking a 0 > 0 small enough. The proof is complete.

Mass-critical case α = α

In this section, we will give the proof of Theorem 1.1.

The case

d ≥ 1, E(u 0 ) < 0 and xu 0 ∈ L 2 . Applying (3.5) with α = α , we see that d 2 dt 2 xu(t) 2 L 2 = 8 ∇u(t) 2 L 2 - 16 α + 2 |x| -b |u(t, x)| α +2 dx = 16E(u 0 ) < 0.
By the classical argument of Glassey [START_REF] Cho | Sobolev inequalities with symmetry[END_REF], the solution must blow up in finite time.

4.2. The case d ≥ 2, E(u 0 ) < 0 and u 0 is radial. We use the localized virial estimate (3.12) to have

d 2 dt 2 V ϕ R (t) ≤ 16E c (u 0 ) -2 |x|>R χ 1,R - d + 2 -b χ d 2-b 2,R |∇u(t)| 2 dx +O R -2 + R -2 + -2-b d-2+b R -2d-2+b d-2+b
, where

χ 1,R = 2(2 -ϕ R ), χ 2,R = (2 -b)(2d -∆ϕ R ) + db 2 - ϕ R r .
If we choose a suitable radial function ϕ R defined by (3.7) so that

χ 1,R - d + 2 -b χ d 2-b 2,R ≥ 0, ∀r > R, ( 4.1) 
for a sufficiently small > 0, then by choosing R > 1 sufficiently large depending on , we see that

d 2 dt 2 V ϕ R (t) ≤ 8E(u 0 ) < 0,
for any t in the existence time. This shows that the solution u blows up in finite time. It remains to find ϕ R so that (4.1) holds true. To do so, we follow the argument of [20]. Let us define the smooth function

ϑ(r) :=        2r if 0 ≤ r ≤ 1, 2[r -(r -1) 3 ] if 1 < r ≤ 1 + 1/ √ 3, ϑ < 0 if 1 + 1/ √ 3 < r < 2, 0 if r ≥ 2,
and

θ(r) := r 0 ϑ(s)ds.
It is easy to see that θ satisfies (3.6). We thus define ϕ R as in (3.7). We show that (4.1) holds true for this choice of ϕ R . Using the fact

∆ϕ R (x) = ϕ R (r) + d -1 r ϕ R (r),
we have

χ 2,R = (2 -b)(2 -ϕ R ) + (2d -2 + b) 2 - ϕ R r . By the definition of ϕ R , ϕ R (r) = Rθ (r/R) = Rϑ(r/R), ϕ R (r) = θ (r/R) = ϑ (r/R). When R < r ≤ (1 + 1/ √ 3)R, we have χ 1,R (r) = 12 r R -1 2 ,
and

χ 2,R (r) = 6 r R -1 2 2 -b + (2d -2 + b)(r/R -1) 3r/R < 6 r R -1 2 2 -b + 2d -2 + b 3 √ 3 . Since 0 < r/R -1 < 1/ √ 3, we can choose > 0 small enough so that (4.1) is satisfied. When r > (1 + 1/ √ 3)R, we see that ϑ (r/R) ≤ 0, so χ 1,R (r) = 2(2 -ϕ R (r)) ≥ 4.
We also have χ 2,R (r) ≤ C for some constant C > 0. Thus by choosing > 0 small enough, we have (4.1).

4.3.

The case d = 1 and E(u 0 ) < 0. We follow the argument of [START_REF] Ogawa | Blow-up of H 1 solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity[END_REF]. We only consider the positive time, the negative one is treated similarly. We argue by contradiction and assume that the solution exists for all t ≥ 0. We divide the proof in two steps.

Step 1. We assume that the initial data satisfies

δ := -16E(u 0 ) -C(1 + N ) 2 u 0 6-2b L 2 -N u 0 2 L 2 > 0, (4.2 
)

θ|u 0 | 2 dx 1/2 2 δ ∂ x u 0 2 L 2 + 1 1/2 ≤ 1 2 a 0 , (4.3) 
where C, N, θ and a 0 are defined as in Lemma 3.8. We will show that if u 0 satisfies (4.2) and (4.3), then the corresponding solution satisfies (3.16) for all t ≥ 0. Since θ(x) ≥ 1 for |x| > 1 and δ > 0, we have from (4.3) that

u 0 L 2 (|x|>1) ≤ 1 2 a 0 . ( 4.4) 
Let us define

T 0 := sup{t > 0 : u(s) L 2 (|x|>1) ≤ a 0 , 0 ≤ s < t}. Since s → u(s) L 2 (|x|>1) is continuous, (4.4) implies T 0 > 0. If T 0 = ∞, we are done. Suppose that T 0 < ∞. The continuity in L 2 of u(t) gives u(T 0 ) L 2 (|x|>1) = a 0 . (4.5)
On the other hand, u(t) satisfies the assumption of Lemma 3.8 on [0, T 0 ). We thus get from Lemma 3.8 and (4.2) that

θ|u(t)| 2 dx ≤ θ|u 0 | 2 dx -2tIm ∂ x θu 0 ∂ x u 0 dx - δ 2 t 2 = - δ 2 t + 1 δ Im ∂ x θu 0 ∂ x u 0 dx 2 + 1 2δ Im ∂ x θu 0 ∂ x u 0 dx 2 + θ|u 0 | 2 dx ≤ 1 2δ Im ∂ x θu 0 ∂ x u 0 dx 2 + θ|u 0 | 2 dx ≤ 1 2δ ∂ x θu 0 2 L 2 ∂ x u 0 2 L 2 + θ|u 0 | 2 dx, ( 4.6) 
for all 0 ≤ t < T 0 . By the definition of θ, it is easy to see that θ ≥ ϑ 2 /4 = (∂ x θ) 2 /4 for any x ∈ R. Thus, (4.6) yields

θ|u(t)| 2 dx ≤ 2 δ ∂ x u 0 2 L 2 + 1 θ|u 0 | 2 dx,
for all 0 ≤ t < T 0 . By (4.3) and the fact that θ ≥ 1 on |x| > 1, we obtain

u(t) L 2 (|x|>1) ≤ θ|u(t)| 2 dx 1/2 ≤ 1 2 a 0 ,
for all 0 ≤ t < T 0 . By the continuity of u(t) in L 2 , we get

u(T 0 ) L 2 (|x|>1) ≤ 1 2 a 0 .
This contradicts with (4.5). Therefore, the assumptions of Lemma 3.8 are satisfied with I = [0, ∞) and we get d 2 dt 2 V θ (t) ≤ -δ < 0, for all t ≥ 0. This is impossible. Hence, if the initial data u 0 satisfies (4.2) and (4.3), then the corresponding solution must blow up in finite time.

Step 2. In this step, we will use the scaling

u λ (t, x) = λ -1 2 u(λ -2 t, λ -1 x), λ > 0 (4.7)
to transform all initial data with negative energy into initial data satisfying (4.2) and (4.3). Note that the 1D mass-critical (INLS) is invariant under (4.7), that is, if u(t) is a solution to the 1D mass-critical (INLS) with initial data u 0 , then u λ (t) is also a solution to the 1D mass-critical (INLS) with initial data u λ (0). Moreover, we have

u λ (t) L 2 = u λ (0) L 2 = u 0 L 2 , (4.8) E(u λ (t)) = E(u λ (0)) = λ -2 E(u 0 ), (4.9) 
for any t as long as the solution exists. We will show that there exists λ > 0 such that

δ λ = -16E(u λ (0)) -C(1 + N ) 2 u λ (0) 6-2b L 2 -N u λ (0) 2 L 2 > 0, (4.10 
)

θ|u λ (0)| 2 dx 1/2 2 δ λ ∂ x u λ (0) 2 L 2 + 1 1/2 ≤ 1 2 a 0 . (4.11)
By (4.8) and (4.9),

δ λ = -16λ -2 E(u 0 ) -C(1 + N ) 2 u 0 6-2b L 2 -N u 0 2 L 2 . ( 4.12) 
Thus, if we choose λ > 0 so that

λ < -16E(u 0 ) C(1 + N ) 2 u 0 6-2b L 2 + N u 0 2 L 2 -1 1/2 =: λ 0 , (4.13) 
then (4.10) holds true. Moreover, since

∂ x u λ (0) 2 L 2 = λ -2 ∂ x u 0 2
L 2 , we have from (4.12) that 2

δ λ ∂ x u λ (0) 2 L 2 = 2 ∂ x u 0 2 L 2 λ 2 δ λ ≤ C 0 , 0 < λ < λ 1 , (4.14) 
for some λ 1 > 0, where C 0 depends on λ 1 but does not depend on λ. We next recall the following fact (see e.g. [21, Lemma 2.3]).

Lemma 4.1. Let v ∈ L 2 and

H(x) := |x| if |x| ≤ 1, 1 if |x| > 1.
Set v λ (x) = λ -1/2 v(λ -1 x) for λ > 0. Then for any > 0, there exists λ 0 > 0 such that

Hv λ L 2 ≤ , 0 < λ < λ 0 .
Applying Lemma 4.1, there exists λ 2 > 0 such that λ 2 < λ 1 and

θ|u λ (0)| 2 dx ≤ 4 Hu λ (0) 2 L 2 ≤ 1 4 (C 0 + 1) -1 a 2 0 , 0 < λ < λ 2 .
Combining this and (4.14), the condition (4.11) holds for 0 < λ < λ 2 . Therefore, if we choose 0 < λ < min{λ 0 , λ 2 }, then u λ (0) satisfies (4.10) and (4.11). The proof is complete.

Remark 4.2. We now show that the condition E(u 0 ) < 0 is sufficient for the blowup but it is not necessary. Let E > 0. We find data u 0 ∈ H 1 so that E(u 0 ) = E and the corresponding solution u blows up in finite time. We follow the standard argument (see e.g. [3, Remark 6.5.8]). Using the standard virial identity (3.5) with α = α , we have

d 2 dt 2 xu(t) 2 L 2 = 16E(u 0 ), hence xu(t) 2 L 2 = 8t 2 E(u 0 ) + 4t Im u 0 x • ∇u 0 dx + xu 0 2 L 2 =: f (t).
We see that if f (t) takes negative values, then the solution must blow up in finite time. In order to make f (t) takes negative values, we need

Im u 0 x • ∇u 0 dx 2 > 2E(u 0 ) xu 0 2 L 2 . (4.15) Now fix θ ∈ C ∞ 0 (R d ) a real-valued function and set ψ(x) = e -i|x| 2 θ(x). We see that ψ ∈ C ∞ 0 (R d ) and Im ψx • ∇ψdx = -2 |x| 2 θ 2 (x)dx < 0.
We now set

A = 1 2 ∇ψ 2 L 2 , B = 1 α + 2 |x| -b |ψ(x)| α +2 dx, C = xψ 2 L 2 , D = -Im ψx • ∇ψdx.
Let λ, µ > 0 be chosen later and set u 0 (x) = λψ(µx). We will choose λ, µ > 0 so that E(u 0 ) = E and (4.15) holds true. A direct computation shows

E(u 0 ) = λ 2 µ 2 µ -d 1 2 ∇ψ 2 L 2 -λ α +2 µ b µ -d 1 α + 2 |x| -b |ψ(x)| α +2 dx = λ 2 µ 2-d A - λ α µ 2-b B ,
and

Im u 0 x • ∇u 0 dx = λ 2 µ -d Im ψx • ∇ψdx = -λ 2 µ -d D,
and

xu 0 2 L 2 = λ 2 µ -d-2 xψ 2 L 2 = λ 2 µ -d-2 C. Thus, the conditions E(u 0 ) = E and (4.15) yield λ 2 µ 2-d A - λ α µ 2-b B = E, (4.16) D 2 C > 2 A - λ α µ 2-b B . (4.17) Fix 0 < < min A, D 2 2C
and choose

λ α µ 2-b B = A -.
It is obvious that (4.17) is satisfied. Condition (4.16) implies

λ 2 µ 2-d = E or B A - 2-d 2-b λ 2+ (2-d)α 2-b = E.
This holds true by choosing a suitable value of λ.

Intercritical case α < α < α

In this section, we will give the proof of Theorem 1.3. We firstly show (1.12). By the definition of energy and multiplying both sides of E(u(t)) by M (u(t)) σ , the sharp Gagliardo-Nirenberg inequality (2.1) yields

E(u(t))M (u(t)) σ = 1 2 ∇u(t) L 2 u(t) σ L 2 2 - 1 α + 2 |x| -b |u(t, x)| α+2 dx u(t) 2σ L 2 ≥ 1 2 ∇u(t) L 2 u(t) σ L 2 2 - C GN α + 2 u(t) 4-2b-(d-2)α 2 +2σ ∇u(t) dα+2b 2 = f ( ∇u(t) L 2 u(t) σ L 2 ), (5.1) 
where

f (x) = 1 2 x 2 - C GN α + 2 x dα+2b 2 .
Moreover, using (2.4) and (2.5), it is easy to see that

f ( ∇Q L 2 Q σ L 2 ) = E(Q)M (Q) σ . (5.2)
We also have f is increasing on (0, x 0 ) and decreasing on (x 0 , ∞), where

x 0 = 2(α + 2) (dα + 2b)C GN 2 dα-(4-2b) .
Using again (2.4) and (2.5), we see that x 0 is exactly ∇Q L 2 Q σ L 2 . By (5.1), the conservations of mass and energy together with the assumption (1.9) imply f ( ∇u(t) L 2 u(t) σ L 2 ) ≤ E(u 0 )M (u 0 ) σ < E(Q)M (Q) σ . Using this, (5.2) and the assumption (1.10), the continuity argument shows ∇u(t) L 2 u(t) σ L 2 > ∇Q L 2 Q σ L 2 , for any t as long as the solution exists. This proves (1.12).

We next pick δ > 0 small enough so that

E(u 0 )M (u 0 ) σ ≤ (1 -δ)E(Q)M (Q) σ . (5.3) This implies f ( ∇u(t) L 2 u(t) σ L 2 ) ≤ (1 -δ)E(Q)M (Q) σ .
(5.4) By Pohozaev identities (2.4), we learn that

E(Q)M (Q) σ = dα -(4 -2b) 2(dα + 2b) ( ∇Q L 2 Q σ L 2 ) 2 .
(5.5) Moreover, we have from the fact

x 0 = ∇Q L 2 Q σ L 2 that C GN = 2(α + 2) dα + 2b 1 ( ∇Q L 2 Q σ L 2 )
dα-(4-2b) 2

.

(5.6)

By dividing both sides of (5.4) by E(Q)M (Q) σ and using (5.5) and (5.6), we obtain

dα + 2b dα -(4 -2b) ∇u(t) L 2 u(t) σ L 2 ∇Q L 2 Q σ L 2 2 - 4 dα -(4 -2b) ∇u(t) L 2 u(t) σ L 2 ∇Q L 2 Q σ L 2 dα+2b 2 ≤ 1 -δ.
The continuity argument then implies that there exists δ > 0 depending on δ so that

∇u(t) L 2 u(t) σ L 2 ∇Q L 2 Q σ L 2 ≥ 1 + δ or ∇u(t) L 2 u(t) σ L 2 ≥ (1 + δ ) ∇Q L 2 Q σ L 2 .
(5.7)

We also have for > 0 small enough, 8 ∇u(t) for any t in the existence time. Indeed, multiplying the left hand side of (5.8) with a conserved quantity M (u(t)) σ , we get LHS(5.8) × M (u(t)) σ = 4(dα + 2b)E(u(t))M (u(t)) σ + (8 + -2dα -4b) ∇u(t) 2 L 2 M (u(t)) σ . The conservations of mass and energy, (5.3), (5.5) and (5.7) then yield

LHS(5.8) × M (u 0 ) σ ≤ 4(dα + 2b)(1 -δ)E(Q)M (Q) σ + (8 + -2dα -4b)(1 + δ ) 2 ( ∇Q L 2 Q σ L 2 ) 2 = ( ∇Q L 2 Q σ L 2 ) 2 2(dα -4 + 2b)[1 -δ -(1 + δ ) 2 ] + (1 + δ ) 2
. By taking > 0 small enough, we prove (5.8).

5.1. The case xu 0 ∈ L 2 . The finite time blowup for the intercritical (INLS) with initial data in H 1 ∩ L 2 (|x| 2 dx) satisfying (1.9) and (1.10) was proved in [9]. For the sake of completeness, we recall some details. By the standard virial identity (3.5) and (5.8), + ∇u(t) 2 L 2 , for any t in the existence time. By taking > 0 small enough and R > 1 large enough depending on , we learn from (5.8) that d 2 dt 2 V ϕ R (t) ≤ -c/2 < 0. This shows that the solution must blow up in finite time.
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 1 Introduction Consider the Cauchy problem for the inhomogeneous nonlinear Schrödinger equation i∂ t u + ∆u + µ|x| -b |u| α u = 0, u(0) = u 0 , (INLS) where u : R × R d → C, u 0 : R d → C, µ = ±1 and α, b > 0. The parameters µ = 1 and µ = -1 correspond to the focusing and defocusing cases respectively. The case b = 0 is the well-known nonlinear Schrödinger equation which has been studied extensively over the last three decades. The inhomogeneous nonlinear Schrödinger equation arises naturally in nonlinear optics for the propagation of laser beams, and it is of a form i∂ t u + ∆u + K(x)|u| α u = 0. (1.1)
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 7 Let d ≥ 2, 0 < b < 2, R > 1 and ϕ R be as in (3.7). Let u : I × R d → C be a radial solution to the focusing mass-critical (INLS), i.e. α = α . Then for any > 0 and any t ∈ I,
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 8 Let 0 < b < 1 and θ be as in (3.15). Let u : I × R → C be a solution to the focusing mass-critical (INLS), i.e. α = 4 -2b. There exists a 0 > 0 such that if
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 2 x). Using a variant of the Gagliardo-Nirenberg inequality (see e.g. [21, Lemma 2.1]), we bound

  remains to bound |x|>R |x| -b |u(t)| α+2 dx. To do this, we recall the following radial Sobolev embedding ([23, 5]).

Lemma 3.6 (Radial Sobolev embedding [23, 5]). Let d ≥ 2 and 1 2 ≤ s < 1. Then for any radial function f ,

  2 dt 2 xu(t) 2 L 2 = 8 ∇u(t) 2 L 2 -4(dα + 2b) α + 2 |x| -b |u(t, x)| α+2 dx ≤ -c < 0.This shows that the solution blows up in finite time.5.2.The case u 0 is radial. We firstly note that under the assumptions of Theorem 1.3, we can apply Lemma 3.4 to obtain for any > 0,

	d 2 dt 2 V ϕ R (t) ≤ 8 ∇u(t) 2 L 2 -	4(dα + 2b) α + 2	|x| -b |u(t, x)| α+2 dx
	+O R -2 + -α 4-α R -2[(d-1)α+2b] 4-α
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