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ABSTRACT

In this paper a comprehensive one-dimensional two-phase flow model for sediment transport under sheet-flow condi-

tions is presented. The model is based on the dense granular flow rheology µ(I) for the intergranular stresses and on

a mixing length model for the Reynolds shear stress. A drift velocity model is introduced to represent the vertical

dispersion effects. Recent experimental data are used to improve the mixing length model and the numerical model

is validated for four configurations. The model is further assessed by comparing the dependence of the sediment

transport rate and the sheet layer thickness on the Shields number. The good agreement with experimental data

confirms the capability of the model formulation to reproduce unidirectional sheet-flows. The agreement with the

latest kinetic theory of granular flows based model demonstrate that the dense granular flow rheology can be used

as an alternative approach to kinetic theory in two-phase flow models.

Keywords: Bedload ; benthic boundary layers and near-bed processes ; eddy-viscosity closures ; particle-laden

flows ; suspended sediments ; turbulence-sediments interactions

1 Introduction

The sheet-flow regime of sediment transport occurs when the fluid flow is strong enough to

mobilise a thick and dense layer of particles on the top of the sediment bed. Provided that the

particles are light enough or the shearing is strong enough, sediment particles can be entrained

in suspension to form a suspension layer above the sheet layer. It is widely accepted that both

intergranular interactions and turbulent processes are key mechanisms in momentum diffusion

and dilatancy effects (e.g. Bagnold, 1956; Jenkins & Hanes, 1998). In this paper, we focus on

uniform and steady sheet-flows of well-sorted particles in which the slope is sufficiently low to

neglect the body force acting on the particles.

Two dimensionless numbers, the Shields number θ and the suspension number S, are considered
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to characterise this transport mode. The Shields number is the ratio between the force exerted

by the fluid on a single particle and its apparent weight θ = ρf u
2
∗
/(ρs − ρf ) g dp where ρf and

ρs are the fluid and sediment densities, u∗ is the bed friction velocity, g is the gravity acceleration

and dp the particle diameter. In the literature, the transition from the bedform regime to the

sheet-flow one is shown to occur for a Shields number around 0.5. Above this value, the sheet-flow

layer thickness (δs) and the associated solid load (qs) are dependent on the Shields number (e.g.

Einstein, 1950; Wilson, 1966; Yalin, 1977). Second, the suspension number S = wfall/u∗

characterises the competition between particle inertia, represented by the settling velocity (wfall)

and the turbulent velocity fluctuation magnitude, represented by the bed friction velocity (u∗). The

suspension number can be seen as a macroscopic Stokes number. Following Sumer, Kozakiewicz,

Fredsoe, and Deigaard (1996), when wfall/u∗ < 0.8 the suspended-load dominates the bed-load

in the so-called suspension mode. By contrast, when wfall/u∗ > 1, the bed-load dominates the

suspended-load in the so-called no-suspension mode.

First attempts in modelling sheet-flows have been made by Hanes and Bowen (1985) and Wilson

(1987). In these models the concentration profile is prescribed and the intergranular stresses are

given by an empirical law (e.g. Bagnold, 1954). Over the past fifteen years, two-phase models

based on the kinetic theory of granular flows to describe intergranular stresses, have been applied

with some success to model the sheet-flow regime (e.g. Hsu, Jenkins, & Liu, 2004; Jenkins

& Hanes, 1998). In these models, the kinetic theory has been stated for situations in which

collisional interactions are the dominant mechanisms of momentum transfer. The concentration

profile is obtained from a balance between collisional interactions and gravity as a result of the

model. More recently, Berzi (2011) and Berzi and Fraccarollo (2013) developed analytical solutions

for sheet flows based on the kinetic theory. In the latest version they incorporated a mixing length

and a granular like contribution to the fluid stress (Berzi & Fraccarollo, 2015) as well as a turbulent

suspension layer accounting for the suspended load (Berzi & Fraccarollo, 2016). Based on these

analytical solutions the authors have been able to draw phase diagrams for sediment transport

allowing to differentiate between sheet flows and debris flows, and between ordinary bed-load,

collisional sediment transport, with and without suspension, and fully turbulent suspension as a

function of the Shields number, particulate Reynolds number and bed slope (Berzi & Fraccarollo,

2013, 2016).

Over the past decade the dense granular flow rheology µ(I) (GDRmidi, 2004) has been proposed

to describe intergranular stresses in dry granular flows. This phenomenological approach has been

used in two-phase flow sediment transport models (e.g. Chiodi, Claudin, & Andreotti, 2014;
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Ouriemi, Aussillous, & Guazzelli, 2009; Revil-Baudard & Chauchat, 2013) and the comparison

with experiments has shown the potential of this rheology to capture the main features of sediment

transport. It represents an alternative approach to kinetic theory. The dense granular flow rheology

is based on the dimensional analysis of the simple shear configuration (Forterre & Pouliquen,

2008), the shear to normal stress ratio, denoted as µ, and the solid phase volume fraction φ are

function of a dimensionless number I. Depending on the role of the interstitial fluid Courrech du

Pont, Gondret, Perrin, and Rabaud (2003) and Cassar, Nicolas, and Pouliquen (2005) introduced

three different granular flow regimes: free-fall, viscous and turbulent regimes. For each one, the

formulation of the dimensionless number I is different. Boyer, Guazzelli, and Pouliquen (2011)

have thoroughly investigated the viscous regime using annular shear cell experiments. Aussillous,

Chauchat, Pailha, Médale, and Guazzelli (2013) have used Boyer et al. (2011)’s formulation to

reproduce laminar bed-load experiments. In this situation, the volume fraction of particles is almost

constant throughout the moving layer and the φ(I) relationship is not required in the model. Revil-

Baudard and Chauchat (2013) have shown that for turbulent sheet flows the dense granular flow

regime is in the free-fall one for the no-suspension mode (wfall/u∗ > 1) and in the turbulent regime

for the suspension mode (wfall/u∗ < 1). In both cases, the φ(I) relationship is able to qualitatively

reproduce the decrease of sediment concentration in the moving sediment layer. Chiodi et al. (2014)

have proposed an improved two-phase flow model valid in the viscous and turbulent flow regimes.

The proposed model is able to reproduce the scaling law proposed by Meyer-Peter and Muller

(1948) for the solid flux versus the Shields number as well as the exchange of mass between the

suspension and the bed-load layer without any empirical parametrisation. According to the authors

conclusion, this model still needs to be compared with experimental or numerical data.

Concerning laboratory experiments on sheet-flows, the first small scale laboratory experiments

designed to study the vertical structure of uniform and steady sheet-flows were conducted in pipe

flows by Daniel (1965), Wilson (1966), Nnadi and Wilson (1992) and Pugh and Wilson (1999).

Mean local volumetric concentration (φ) and fluid streamwise velocities (u) were measured using

γ-ray technique and a conductivity probe, respectively. However, velocity and concentration

have never been measured during the same experiment. Sumer et al. (1996) have performed free

surface and duct flow experiments using capacity probes for concentration and a Pitot device for

streamwise velocity measurements. Again, no dataset exist with both velocity and concentration

for the same run. Matoušek (2009) did sheet flow experiments and measured concentration

profiles using a gamma-ray technique and averaged quantities for the fluid and solid discharges.

Spinewine, Capart, Fraccarollo, and Larcher (2011) and Capart and Fraccarollo (2011) have

used video techniques to get both streamwise velocity and concentration profiles at the side-wall.

3



A
c
c
e
p
te

d
 M

a
n
u
s
c
ri
p
t

November 24, 2016 Journal of Hydraulic Research Chauchat˙JHR2016˙Final

This data set is more complete but the measurements are available for the particles only and

are not collocated between velocity and concentration. Also, no informations on the fluid flow

profile is available. More recently, Revil-Baudard, Chauchat, Hurther, and Barraud (2015) have

presented a new experimental dataset obtained using the Acoustic Velocity and Concentration

Profiler (ACVP) (Hurther, Thorne, Bricault, Lemmin, & Barnoud, 2011) to measure collocated

two-component velocities and concentration measurements over the entire water column at

the centreline of the channel. This new dataset allows investigating turbulence closures for the

momentum and sediment diffusivities.

The purpose of the present contribution is to extend the model by Revil-Baudard and Chauchat

(2013) to develop a single layer model solving the two-phase equations over the entire domain and to

use the new experimental data presented in Revil-Baudard et al. (2015) to improve the constitutive

laws. The two-phase flow model is presented in section 2. Improved constitutive laws are proposed

and used to validate the model on two experimental datasets in section 3. The predicted sediment

transport rate and sheet layer thickness for a wide range of Shields numbers are further compared

with experimental data and models from the literature. In section 4, the main conclusions of the

paper are given and guidelines for future research are drawn.

2 Two-phase flow model formulation

The proposed model is inspired from previous works (Chauchat, Guillou, Bang, & Nguyen, 2013;

Revil-Baudard & Chauchat, 2013). It is based on Jackson (2000)’s two-phase equations that

consists in mass and momentum balance equations for both fluid and solid phases:

∂ǫρf
∂t

+∇ · (ǫρfuf ) = 0 ;
∂φρs
∂t

+∇ · (φρsus) = 0, (1)

∂ǫρfuf
∂t

+∇ · (ǫρfuf ⊗ uf ) = −∇pf + ǫρfg + ǫ∇ · τf +∇ · Rf − nfD, (2)

∂φρsus
∂t

+∇ · (φρsus ⊗ us) = −∇ps − φ∇pf + φρsg + φ∇ · τf +∇ · τs + nfD, (3)

where ǫ and φ are the volume fraction of fluid and solid phase respectively, ρk and uk are the

density and the velocity vector of phase k, pk and τ
k are the pressure and shear stress tensor

associated with phase k, Rf is the fluid Reynolds stress tensor, g is the gravity acceleration, fD

represents the drag force exerted by the fluid on a single particle and n is the number of particles

4
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per unit volume. Phase k stands for either f for the fluid phase or s for the solid phase. In addition

to these conservation equations, the overall volume conservation imposes that:

φ+ ǫ = 1 (4)

2.1 One-dimensional formulation

In this work we focus on uniform flow conditions, therefore the only velocity components that do

not vanish are u and w and they only depend on the vertical position z. With these assumptions,

the mass conservation equations for each phases reduce to:

∂ǫρf
∂t

+
∂ǫρfwf
∂z

= 0 ;
∂φρs
∂t

+
∂φρsws
∂z

= 0. (5)

The direction z is normal to the channel bottom and upward oriented. The mass conservation for

the mixture reads:

∂

∂z
(φws + ǫwf ) = 0, (6)

meaning that the mixture is incompressible. Equation (4) still holds: ǫ = 1− φ.

With these assumptions the momentum equations for both phases and for the stream-wise (Ox)

and wall-normal (Oz) directions simplify as follow:

∂ǫρfuf
∂t

+ wf
∂ǫρfuf
∂z

= ǫρfg sin(β) + ǫ
∂τ fxz
∂z

+
∂Rfxz
∂z

− nfDx, (7)

∂φρsus
∂t

+ ws
∂φρsus
∂z

= φρsg sin(β) + φ
∂τ fxz
∂z

+
∂τ sxz
∂z

+ nfDx, (8)

∂ǫρfwf
∂t

+ wf
∂ǫρfwf
∂z

= −ǫ
∂pf
∂z

− ǫρfg cos(β) + ǫ
∂τ fzz
∂z

− nfDz, (9)

∂φρsws
∂t

+ ws
∂φρsws
∂z

= −
∂ps
∂z

− φ
∂pf
∂z

− φρsg cos(β) + φ
∂τ fzz
∂z

+ nfDz. (10)

In the present contribution we attempt to provide a consistent numerical model with adequate

closure laws for application to sediment transport in the sheet-flow regime. The terms that need

5
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closures are the viscous shear stress τ fxz, the fluid Reynolds shear stress Rfxz, the particulate shear

stress τ sxz, the particulate pressure ps and the drag force nfDx and nfDz.

2.2 Closures

The closures are inspired from Revil-Baudard and Chauchat (2013) in which the viscous shear

stress is based on an effective viscosity depending on the solid phase volume fraction, the turbulent

Reynolds shear stress is based on a mixing length formulation, the particulate shear stress and the

particulate pressure are based on the dense granular flow rheology. The drag force is based on an

empirical correlation for the drag coefficient and the turbulent dispersion effects are included based

on the drift velocity concept as in Chauchat and Guillou (2008).

Viscous and Reynolds shear stresses

As proposed by Jackson (1997, 2000) the effective viscous shear stress is proportional to the shear

rate of the mixture with an effective viscosity ηmix that depends on the particulate phase volume

fraction:

τ fxz = ηmix
dU

dz
, (11)

where U = ǫuf + φus is the volume averaged mixture velocity. The model proposed by Boyer et

al. (2011) is used for the mixture viscosity:

ηmix
ηf

= 1 + 2.5φ

(

1−
φ

φmax

)

−1

. (12)

It should be pointed out that, due to the incompressibility of the mixture, the effective viscous

stress cancels out in the vertical momentum equation.

The Reynolds shear stress is modelled using a simple mixing length approach in which the mixing

length is parameterised based on the integral of the particulate phase volume fraction against the

vertical direction:

Rfxz = ηt
dU

dz
, (13)

where ηt = ǫρf l
2
m |dU/dz| and

lm = κ

∫ z

0
1−

(

φ(ξ)

φmax

)nlm

dξ, (14)

where κ is the von Karman ”constant” and nlm is an empirical exponent that will be discussed in

6
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section 3. The case nlm = 1 has been proposed by Li and Sawamoto (1995) and used by Dong and

Zhang (1999) and Revil-Baudard and Chauchat (2013) to model sheet-flows.

Particulate shear stress

The particulate shear stress is based on the dense granular flow rheology (Forterre & Pouliquen,

2008):

τ sxz = µ(I) ps, (15)

in which the friction coefficient µ depends on the inertial number I = |dus/dz| dp
√

ρs/ps and

defined as:

µ(I) = µs +
µ2 − µs
I0/I + 1

.

In these relationships, dp is the particle diameter, µs is the static friction coefficient, µ2 is an

empirical dynamical coefficient and I0 is an empirical constant of the rheology. For glass beads in

air the typical values are: µs = 0.38, µ2 = 0.64 and I0 = 0.3 (Jop, Forterre, & Pouliquen, 2006).

A solid phase viscosity can be written by identifying equation (15) with τ sxz = ηs |dus/dz| leading

to ηs = µ(I)ps/ |dus/dz|. This mathematical expression is not defined if the shear rate vanishes

|dus/dz| = 0. The regularisation proposed by Chauchat and Médale (2014) is adopted:

ηs =
µ(I) ps

(

∣

∣

∣

∣

dus
dz

∣

∣

∣

∣

2

+ λ2

)1/2
, (16)

where λ is the regularisation parameter. It is fixed to λ = 10−6s−1 for all the simulations presented

herein.

Particle pressure

The particulate pressure represents the resistance to compression of the solid phase. In the present

problem two different contributions have to be considered: one originates from the permanent

contact between the particles and the other one originates from the shearing of the granular media.

Following Johnson and Jackson (1987) the total particulate pressure is obtained as the sum of

these two contributions: ps = pcs + pss, where p
c
s is related to permanent contact and pss is related

to shear induced mechanisms (frictional/collisional interactions).

The permanent contact contribution to the particulate pressure can be written following Johnson

7
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and Jackson (1987) as:

pcs = Π0 (φmax − φ)−ζ , (17)

where Π0 and ζ are two empirical parameters. In the present paper we have used the following

values: Π0 = 4 10−35 Pa and ζ = 15. When using the frictional rheology µ(I) it is critical that

the hydrostatic particulate pressure is recovered in the static bed as the particulate viscosity is

proportional to the particulate pressure.

Concerning the shear induced contribution, it can be obtained from the dilatancy law φ(I) as

proposed by Boyer et al. (2011) for the viscous regime of the granular flow rheology. The adaptation

to the inertial regime leads to:

φ(I) =
φmax

1 + b I
. (18)

Developing this expression in a Taylor expansion around I = 0 and identifying with the linear

relationship proposed in Forterre and Pouliquen (2008) the coefficient b must be equal to one-third

(b = 1/3). Inverting equation (18) and substituting the definition of the inertial number I gives the

following expression for the shear induced pressure:

pss =

(

bφ

φmax − φ

)2

ρsdp

∣

∣

∣

∣

dus
dz

∣

∣

∣

∣

2

. (19)

Drag force

The drag force is modelled following Chauchat and Guillou (2008) as:

nfD =
φρs
τfs

(ur + ud) , (20)

where ur = uf −us is the relative velocity, ud is the drift velocity and τfs is the particle relaxation

time defined as:

τfs =

(

3ρf

4ρsd̃p
CD ‖ ur + ud ‖ ǫ

2−nRZ

)

−1

, (21)

where CD is the averaged drag coefficient for a single particle (Schiller & Naumann, 1933):

CD =
24

Rep

(

1 + 0.15Rep
0.687

)

where Rep =‖ ur ‖ d̃p/νf is the particulate Reynolds number in

which ‖ ur ‖=
√

(uf − us)2 + (wf − ws)2. A shape factor ψ has been introduced: d̃p = ψdp, to

account for the influence of non-sphericity of the particles on the settling velocity. The term ǫ2−nRZ

8
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is the hindrance function proposed by Richardson and Zaki (1954), where nRZ = 3.65 is an em-

pirical coefficient, that accounts for the decrease of the particle settling velocity when the local

concentration of particles increases.

The drift velocity ud, of components ud and wd, represents the fluid velocity fluctuations ”seen

by the particles” (Simonin & Viollet, 1990) also sometimes called the turbulent slip velocity. More

generally, it represents the dispersion effects on the particle phase induced by the turbulent velocity

fluctuations. In this paper, only the vertical component is modelled:

wd = −
ηt

ρfσs φ

dφ

dz
, (22)

where σs is the turbulent Schmidt number, ratio of the eddy viscosity to the sediment turbulent

diffusivity. This formulation ensures that the two-phase flow model is fully consistent with the

Rouse profile, the interested reader is referred to appendix A for a complete demonstration.

The drift velocity component in the streamwise direction ud would represent the existence of a

lag velocity (Bouvard & Petkovic, 1985; Muste & Patel, 1997). Due to the lack of experimental

data for such quantity under sheet flow conditions this term is neglected in the present model.

The governing equations are discretised using a finite volume technique for the mass conservation

equation and a finite difference technique for the momentum balance. A staggered grid is used with

the velocities located at the cell face and the scalar quantities, such as volume fraction or viscosities,

located at the cell centre. For the pressure velocity coupling a projection method (Chorin, 1968;

Temam, 1969) is used. The numerical schemes are Euler implicit for the time derivative, upwind

for the advection terms and central difference for the diffusion terms. For additional information

on the numerical model, the reader is referred to Chauchat et al. (2013).

Even if the problem is steady the choice of a transient solver is made to allow for future applica-

tions of the model to unsteady situations like flood, tides or waves and to prepare the development

of a multi-dimensional numerical model for which a pressure-velocity algorithm is the corner stone.

3 Results and discussion

In this section, the two-phase flow model presented above is applied to uniform and unidirectional

sheet-flows. First, the mixing length parameters are adjusted based on experimental measurements

reported in Revil-Baudard et al. (2015). Second, the numerical model is validated against two

experimental data sets: Revil-Baudard et al. (2015) and Sumer et al. (1996). The range of Shields

numbers investigated is between 0.44 and 2.1 and the range of suspension numbers varies between

0.84 to 1.1 which corresponds to the transition between suspension and no-suspension sheet-flow

9
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regimes (Sumer et al., 1996). Additional numerical simulations have been performed to extend

the range of Shields numbers up to 3.3 and the numerical results are compared with experimental

data and model predictions for the dependence of the dimensionless sediment transport rate and

the sheet layer thickness on the Shields number.

The experiments reported in Revil-Baudard et al. (2015) were performed in a tilting flume 10m

long and 0.35m wide with a bed slope of β =0.005. The sediments are irregularly shaped (PMMA,

density ρs = 1192 kg.m−3), with a tangent of the angle of repose measured at µms = 0.7. The grain

size distribution is quite well-sorted and centred around dp = 3 mm± 0.5 mm. The mean settling

velocity is equal to wfall = 5.59 cm.s−1, which was determined experimentally from settling tests

in a still water tank (see table A1).

Figure A1(a) shows the velocity and concentration profiles made dimensionless by their respective

maximum values as obtained in the experiments (Revil-Baudard et al., 2015). In Fig. A1(b), the

experimental Schmidt number σs profile is plotted, it exhibits a constant value of σs = 0.44 for

z/dp > 5. This value will be used for the vertical component of the drift velocity in equation

(22). The measured value is consistent with the parametrisation from Van Rijn (1984): σs =

(1 + 2(wfall/u∗)
2)−1 that lead to a Schmidt number of 0.3 in this configuration.

Figure A1(c) shows the experimental mixing length profile together with the best fit presented

in Revil-Baudard et al. (2015): lm = κ(z − zd) with κ = 0.225 and zd = 3.1 dp. These results

show that the von Karman ”constant” is drastically reduced under sheet-flow conditions and that

the zero plane bed (zd) is vertically shifted upward compared with the uf = 0 plane. This is an

issue for using mixing length under sheet-flow conditions as this value has to be parameterised.

The mixing length proposed in equation (14) allows to circumvent the issue of imposing the zero

plane bed position i.e. the mixing length origin. It is a purely empirical formulation that is for

the first time compared with detailed measurements in a turbulent boundary layer above a mobile

bed. The profile obtained by using equation (14) with nlm = 1 and a von Karman ”constant” of

κ = 0.225 is shown by the green dashed dotted line. The agreement is satisfactory but the mixing

length is slightly underestimated. The red dashed line corresponds to the solution of equation (14)

with nlm = 1.66 and a von Karman ”constant” of κ = 0.225. The agreement is much better for

z/dp > 5. The influence of this parametrisation will be discussed in the following. Recently, Berzi

and Fraccarollo (2015) proposed a parametrisation of the mixing length for collisional suspension

based only on the local concentration:

lm
dp

= 3 (φmax − φ)3 . (23)

10
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This parametrisation is presented in Fig. A1(c) as the magenta dotted line. The behaviour of this

mixing length in the region of intermediate concentration (0.3 > φ > 0.1) is good even if a better

agreement could be obtained by adjusting the parameters of this empirical law. However, Berzi and

Fraccarollo (2015)’s mixing length can not reproduce the linear behaviour in the dilute suspension

layer as measured in Revil-Baudard et al. (2015). This model is probably only valid in the collisional

layer. Obviously, it can not reproduce the logarithmic layer characteristic of turbulent boundary

layers. It is possible that the small submergence, i.e. a small water depth to particle diameter ratio

in Capart and Fraccarollo (2011) experiments used to derive this model can explain this limitation.

The model presented in section 2 is used together with the constitutive laws proposed above

to perform a comparison with experimental data presented in Revil-Baudard et al. (2015) and

Sumer et al. (1996). The numerical model has been run using Nz grid points uniformly dis-

tributed (see table A2) and an initial condition at rest (uf = wf = us = wf = 0), the par-

ticulate phase volume fraction profile is set according to an hyperbolic tangent profile: φ =

φ0 1/2
{

1 + tanh
[

200
(

zint(φ
max/φ0)− z

)]}

where zint corresponds to the initial ”bed interface”

elevation, φ0 is the initial solid volume fraction and z is the vertical coordinate. The runs are per-

formed using the measured friction slope Sf and the measured water depth for Revil-Baudard et al.

(2015) experiment. For Sumer et al. (1996) experiments, in order to avoid solving for the boundary

layer at the top rigid lid, the experimentally estimated hydraulic radius has been preferred. The

initial interface position is chosen to reach approximately the same Shields parameter than in the

experiments at steady state. The complete set of boundary conditions are presented in table A3.

Two numerical simulations have been performed to evaluate the influence of the mixing length

parametrisation (equation 14): RB1 (nlm = 1) and RB2 (nlm = 1.66). The granular rheology

parameters have been chosen according to the values for glass beads in air, the µs value is identical

to the measured value of the tangent of the angle repose (µms ), the difference µ2 − µs = 0.26,

I0 = 0.3 and b = 1/3. The resulting mean velocity, mean concentration and Reynolds shear stress

profiles are shown in Fig. A2. The run RB1 with exponent nlm = 1 leads to an overestimated fluid

velocity in the outer region (≈ 20%). The results obtained in run RB2 are in better agreement

with the measurements. The concentration profile is well predicted in the suspension layer but

the agreement is not as good in the more concentrated region of the flow (φ > 0.25) suggesting

that the granular rheology has to be modified. The predicted shear stress profile (panel c) nicely

coincides with the experimental one meaning that the friction slope and the water depth used in

the simulation are consistent with the experimental conditions. The Shields number is equal to

θ =0.45, obtained by extrapolating the shear stress profile to z = 0 corresponding to the uf = 0

plane.
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For confirmation, the two-phase flow model is run on Sumer et al. (1996) configurations, the

physical parameters are synthesised in table A1. Three cases, for which velocity profile measure-

ments are available, have been ran corresponding to Shields numbers θ =1.38 (SUM A), θ =1.63

(SUM B) and θ =2.18 (SUM C). Figure A3 shows the comparison of the two-phase flow model

results with experimental fluid velocity profiles in panel (a). Run SUMA1/B1/C1 corresponds to

granular rheology parameters for glass beads (see table A2). The concentration profile (panel b) and

shear stress profile (panel c) are given for reference but no experimental data are available for these

configurations. Using glass beads parameters for the granular flow rheology leads to overestimated

fluid velocity in the upper part of the profile and too strong velocity gradient in the lower part of

the profile compared with measurements for the three cases SUMA1/B1/C1 (see left panel of Fig.

A3). The concentration profiles exhibit a concentration shoulder as reported in Revil-Baudard and

Chauchat (2013).

The rheological parameters of the sheet flow model have been optimised over the four config-

urations (RB, SUMA/B/C) using trial and error. The following values have been retained: µs is

reduced by 25% compared with the tangent of the angle of repose µms , µ2−µs is fixed to 0.44, I0 =

0.6 and b = 2/3. The reduction of µs can be justified based on concentration profiles measurements

by Pugh and Wilson (1999); Sumer et al. (1996) and Matoušek (2009). These authors report on

values of the friction coefficient between 0.2 to 0.36 for the sheet layer thickness versus Shields

number model to match the experimental values. Revil-Baudard et al. (2015) also mentioned a

friction coefficient value as low as 0.2 in their experiments. Run RB3 is performed with these val-

ues (summarised in table A2) and the results are shown in Fig. A2. The velocity profile is in better

agreement with the experiment and the suspension is slightly overestimated exhibiting a concen-

tration shoulder on the mean concentration profile. Concerning Sumer et al. (1996) configurations,

the velocity profiles predicted using the optimised rheological parameters (SUMA2/B2/C2) shown

in Fig. A3 are in better agreement with the measurements especially in the denser part of the flow.

However, the velocity magnitude in the upper part of the profile is underestimated. This could be

due to a lower value of the von Karman constant for these configurations.

In conclusion of this calibration/validation, the proposed model is able to reproduce almost

quantitatively the experimental data for the depth profiles of average quantities. Nevertheless, some

questions remain on the actual choice of the rheological parameters and on the von Karman constant

value for sheet flow conditions. The model should be compared with detailed experiments for a

wider range of flow conditions and sediment properties (density, size, shape). More sophisticated

turbulence models like k − ε or k − ω models or turbulence resolving simulations (Large Eddy

Simulations) could help to improve our understanding of the complex interactions between the

12
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granular dynamics and the fluid turbulent boundary layer.

Beyond the validation on depth profiles, the model is further compared with experimental data

and other model predictions for the dimensionless sediment transport rate qs = qs/
√

(ρs − ρf )gdp
3

and the dimensionless sheet layer thickness δs = δs/dp over a wide range of Shields numbers.

Figure A4(a) shows the dimensionless sediment transport rate versus the Shields number for cases

RB3, SUMA2/B2/C2 and four other simulations with the same parameters as Sumer et al. (1996)

cases but with different water depth corresponding to different Shields numbers. Overall the range

of Shields numbers investigated is θ ∈ [0.44; 3.3]. The sediment transport rate per unit width

is computed as: qs =
∫ h
0 us φ dz where the integral is performed over the entire domain i.e.

it corresponds to the total sediment transport rate including the contribution of the suspended

load. The model predictions are compared with experimental data from the literature (Capart

& Fraccarollo, 2011; Meyer-Peter & Muller, 1948; Nnadi & Wilson, 1992; Sumer et al.,

1996; Wilson, 1966) and the model predictions from Capart and Fraccarollo (2011); Hsu et al.

(2004); Wilson (1987) and Berzi and Fraccarollo (2013). The present results are in good agreement

with experimental data from Nnadi and Wilson (1992) with sand and bakelite particles and with

two-phase numerical simulations from Hsu et al. (2004) and Berzi and Fraccarollo (2013) using

two-phase flow model based on the kinetic theory of granular flows. The sediment transport rate

predicted by the proposed two-phase flow model is slightly lower than the one predicted by Hsu

et al. (2004), by a factor of two at most, and exhibit a power law relationship with the Shields

number with an exponent two (see the red dash-dotted line in the inset of panel (a) in log-log scales

). It is remarkable that the proposed model gives almost identical results than the one obtained

by Berzi and Fraccarollo (2013)’s model based on the extended kinetic theory, on the exact same

configurations. In the inset of Fig. A4(a), it is observed that both models predict the exact same

power law exponent with an exponent two and not one and a half as suggested by most empirical

formulas (e.g. Wilson, 1987).

Figure A4(b) shows the dependence of the sheet layer thickness on the Shields number. For

the numerical simulation the sheet-layer thickness is defined as the vertical extent between the

position at which the volume fraction is equal to 0.08, i.e.: max({z|φ ≥ 0.08}) and the position

at which the stream-wise component of the particle phase velocity is lower than 0.02 m/s, i.e.:

min({z|us ≥ 0.02}). These definitions are consistent with Hsu et al. (2004) and Revil-Baudard

and Chauchat (2013) ones. The trend is linear with the Shields number and the results are in

good agreement with Capart and Fraccarollo (2011) measurements based on concentration profile

measurements and the authors’ model. Again, the results from Berzi and Fraccarollo (2013)’s model

are almost identical to the proposed two-phase flow model predictions.
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Figure A4 clearly illustrates the scatter in the data as well as in the model predictions. It is

noteworthy that the experimental results reported in Capart and Fraccarollo (2011) with PVC

particles and in Nnadi and Wilson (1992) with nylon particles corresponds to lower sediment

transport rate for a given Shields number. The suspended-load contribution could be responsible for

the observed difference but no clear correlation has been observed between the sediment transport

rate and the suspension number S (not shown here). Another argument could be the submergence

which is smaller in Capart and Fraccarollo (2011)’s experiments than in Sumer et al. (1996)’s ones.

The turbulent boundary layer and the suspension layer could be significantly affected in Capart

and Fraccarollo (2011)’s experiments. It could leads to a lower sediment transport rate and a thiner

sheet layer. The mixing length model proposed by Berzi and Fraccarollo (2015), based on the same

dataset, gives additional arguments for the influence of the small submergence. This reason could

partly explain the discrepancies observed between the two experimental datasets but this requires

further investigation.

The fact that the proposed model gives very similar results than Berzi and Fraccarollo (2013)’s

model tends to demonstrate that the dense granular flow rheology µ(I)/φ(I) can be used as an al-

ternative approach to the kinetic theory to describe intergranular stresses in two-phase flow models

for sheet flow applications. The great advantage of this rheological approach is that no additional

transport equations has to be solved for the granular temperature leading to simpler model equa-

tions. The main drawback is the number of empirical parameters that are required (µ2, I0 and b).

Based on the careful calibration presented in this paper, the model can now be used to predict sheet

flows with similar particles without further calibration. The main limitation of both approaches,

kinetic theory and dense granular flow rheology, is still the lack of understanding of the complex

interactions between the turbulence and the granular dynamic. High resolution experimental data

on a wider range of flow conditions and particle properties together with turbulence resolving sim-

ulations are required to further improve our understanding of intergranular stress and turbulence

models for sheet flow regime.

A potential issue has been raised by Barker, Schaeffer, Bohorquez, and Gray (2015), the µ(I)

rheology is ill-posed for dry granular flows at very low and very high values of the inertial number I

(for flow on an inclined plane). This result has been obtained without the volume fraction law φ(I)

and according to the authors it is not clear whether the inclusion of an additional φ(I) dependence

will be sufficient to prevent ill-posedness. In the meantime, two groups of researchers have been

able, independently, to obtain numerical solutions of 2D and 3D granular flow problems using a

regularised version of the µ(I) rheology (Chauchat & Médale, 2010, 2014; Lagrée, Staron, &

Popinet, 2011; Staron, Lagree, & Popinet, 2012; Staron, Lagrée, & Popinet, 2014) without
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observing the instabilities mentioned in Barker et al. (2015). Another argument against the ill-

posedness issue is that in two-phase flow models for sediment transport the solid phase momentum

equation in the dilute region of the flow, corresponding to high values of the inertial number, is

tightly coupled with the fluid one and the ill-posedness of the granular rheology could be screened

by the well-posed fluid flow problem. The potential ill-posedness of the µ(I) rheology has to be

kept in mind when developing a multi-dimensional numerical model.

4 Conclusion

In this paper, an extension of the two-phase flow model proposed in Revil-Baudard and Chauchat

(2013) has been presented. The main improvement concerns the single layer formulation adopted

herein i.e. the model is based on the same set of mass and momentum conservation equations from

the fixed sediment bed up to the free surface. The mixing length formulation has been improved

and validated on experimental measurements under sheet-flow conditions and can now be used to

describe the turbulent boundary layer above mobile beds. A drift velocity has been introduced to

represent the turbulent dispersion terms that allows recovering the Rouse profile. The model is

shown to reproduce quite well the experimental data from Revil-Baudard et al. (2015) and Sumer

et al. (1996) provided that the granular rheology parameters are modified compared with classical

values for glass spheres in air. The comparison with other experimental data and models for the

sediment transport rate and the sheet layer thickness are in good agreement showing that the

model can be used as a predictive tool. The only parameter that remains to be adjusted is the

static friction coefficient µs, the other ones can be calculated based on the method proposed in

this paper: µ2 = µs+0.44, I0 = 0.6 and b = 2/3. For the mixing length, the dependency of the von

Karman constant with the Shields and suspension numbers is still unclear and a parametrisation

based on experiments remains to be established. For the Schmidt number, the proposition of Van

Rijn (1984) can be used even if, again, new high resolution measurements could help to improve

this parametrisation. The most important result of the present paper is probably the very good

agreement between the proposed dense granular flow based model and the extended kinetic theory

based model from Berzi and Fraccarollo (2013), demonstrating that the dense granular flow rheology

can be used in two-phase flow sediment transport models as an alternative to the kinetic theory.

In terms of perspectives, the proposed model has been used in conjunction with fluid-Discrete

Element Method simulation of bed-load transport Maurin, Chauchat, and Frey (2016) to better

characterise the dense granular flow rheology for application to sediment transport. In the mean

time, the proposed model will be implemented in sedFOAM, a 3D open source two-phase sediment
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transport model based on openFOAM (Cheng, Hsu, & Calantoni, 2016), that will open new

perspectives in terms of applications of the model on more complex geometries and flow conditions.
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Appendix A. Recovering the Rouse profile

In this appendix, we will detail how the so-called Rouse profile (Rouse, 1937) and the two-

phase equations presented in section 2 can be reconciled. A similar demonstration can be found in

Greimann, Muste, and Holly (1999).

The Rouse profile corresponds to the balance between the settling flux wfallφ and the upward

turbulent dispersion term w′

sφ
′ and leads to the following equation:

wfallφ+ w′

sφ
′ = 0, (A1)

where wfall represents the settling velocity of the sediment. The . corresponds to the time averaging

in the Reynolds averaging process. Following Rouse (1937), the turbulent dispersion flux can be

modelled as a diffusion process according to:

w′

sφ
′ = −

νtf
σs

∂φ

∂z
, (A2)

where νtf represents the eddy viscosity and σs the Schmidt number. The Rouse profile is obtained

by solving analytically the first order ordinary differential equation in φ:
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∂φ

∂z
+
wfallσs
νtf

φ = 0, (A3)

in which νtf follows a Prandtl like relationship:

νtf = u2
∗
κz
(

1−
z

h

)

, (A4)

where u∗ is the bed friction velocity, κ the von Karman constant, and h the water depth. The

solution of equation (A3) with eddy viscosity given by equation (A4) gives the so-called Rouse

Profile:

φ

φref
=







h

z
− 1

h

zref
− 1







wfallσs
κu2

∗

. (A5)

We now switch to the two phase equations, at steady-state the vertical velocity of both phases

vanishes (i.e.: ws = wf = 0), the vertical component of the momentum equations (9) and (10)

simplifies to:

0 = −ǫ
∂pf
∂z

− ǫρfg cos(β)−
φρs
τfs

wd, (A6)

0 = −
∂ps
∂z

− φ
∂pf
∂z

− φρsg cos(β) +
φρs
τfs

wd. (A7)

The mixture momentum equation is obtained by adding equations (A6) and (A7):

0 = −
∂ps
∂z

−
∂pf
∂z

− ((1− φ)ρf + φρs) g cos(β). (A8)

For solid phase volume fraction lower than a critical value φc the particulate pressure vanishes

(ps = 0), meaning that no normal stress develops between the particles. They have no intrinsic

resistance to compression. The vertical fluid pressure gradient balances the mixture weight:

∂pf
∂z

= − ((1− φ)ρf + φρs) g cos(β). (A9)

Introducing this relationship in equation (A7) leads to the equilibrium between gravity and
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vertical dispersion effect:

0 = −(1− φ)

(

1−
ρf
ρs

)

g cos(β) +
wd
τfs

. (A10)

In order to identify this equilibrium with the Rouse mass balance equation, we have to express

the settling flux in absence of turbulence. It is given by the two-phase equation by neglecting the

drift velocity, this is equivalent to equation (A10) with -ws instead of wd:

φws + φ(1− φ)(1−
ρf
ρs

) g cos(β) τfs = 0, (A11)

which leads to:

ws
τfs

= −(1− φ)(1−
ρf
ρs

) g cos(β). (A12)

Greimann et al. (1999) obtained the same result by using the definition of the particle relaxation

time.

By identifying the right hand side of equation (A12) with equation (A10) and using equation

(A1) we obtain that:

w′

sφ
′ = φ wd. (A13)

Therefore, in order to recover the Rouse profile in the two-phase framework the following rela-

tionship for the drift velocity must be used:

wd = −
νtf
σs φ

∂φ

∂z
. (A14)

This is what is classically done in two-phase sediment transport models (Chauchat & Guillou,

2008; Hsu et al., 2004).
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Notations

b = parameter of the dilatancy law (–)

CD = drag coefficient (–)

dp = particle diameter (m)

d̃p = particle diameter corrected for shape effect (m)

fD = drag force on a particle (kg m−2 s−2)

g = gravity acceleration vector (m s−2)

I = Inertial number (-)

I0 = empirical parameter of the granular rheology (-)

lm = mixing length (m)

n = number density of particle (–)

nlm = mixing length exponent (–)

nRZ = Richardson and Zaki’s exponent (–)

pk = pressure of phase k (Pa)

pcs = particle pressure originating from permanent contact (Pa)

pss = particle pressure originating from shear induced mechanisms (Pa)

qs = sediment transport rate per unid width (m2 s−1)

qs = dimensionless sediment transport rate per unid width (-)

Rf = Reynolds stress tensor (Pa)

Rfxz = xz component of the Reynolds shear stress (Pa)

Rep = particulate Reynolds number (–)

S = Suspension number (–)

Sf = friction slope (–)

u∗ = bed friction velocity (m s−1)

ud = drift velocity vector (m s−1)

uk = velocity vector of phase k (m s−1)

uk = stream-wise velocity component of phase k (m s−1)

U = stream-wise volume averaged mixture velocity (m s−1)

wk = wall normal velocity component of phase k (m s−1)

wfall = settling velocity (m/s)

zd = zero plane bed (m)

zint = initial bed interface elevation (m)
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Greek symbols

β = channel slope (rad)

δs = sheet layer thickness (m)

δs = dimension less sheet layer thickness (-)

ǫ = Solid phase volume fraction (–)

ζ = particle pressure exponent (-)

ηf = fluid dynamical viscosity (kg m−1 s−1)

ηmix = mixture dynamical viscosity (kg m−1 s−1)

ηs = solid phase viscosity (kg m−1 s−1)

ηt = eddy viscosity (kg m−1 s−1)

θ = Shields number (-)

κ = von Karman constant (-)

λ = regularisation parameter (s−1)

µ = friction coefficient (-)

µs = static friction coefficient for the rheology (-)

µms = measured static friction coefficient (-)

µ2 = dynamic friction coefficient for the rheology (-)

νf = fluid kinematic viscosity (m2 s−1)

Π0 = particle pressure modulus (Pa)

ρk = density of phase k (kg m−3)

σs = Schmidt number (−)

τk = stress tensor of phase k (Pa)

τkxz = xz stress component of phase k (Pa)

τfs = particle relaxation time (s)

φ = Solid phase volume fraction (–)

φ0 = initial solid volume fraction (–)

φmax = maximum packing volume fraction (–)

ψ = shape factor (−)
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Table A1 Physical parameters for the numerical simulations

case Sf h zint φ0 φmax dp ρp/ρf wfall µms θ S = wfall/u∗

(m) (m) (-) (-) (mm) (-) (m.s−1) (-) (-) (-)

RB 0.0019 0.2 0.0541 0.53 0.55 3 1.19 0.0559 0.7 0.44 1.1

SUM A 0.0079 0.104 0.0526 0.5 0.6 2.6 1.14 0.073 0.51 1.38 1.04

SUM B 0.0091 0.104 0.0521 0.5 0.6 2.6 1.14 0.073 0.51 1.63 0.95

SUM C 0.0105 0.104 0.0516 0.5 0.6 2.6 1.14 0.073 0.51 2.18 0.84

Table A2 Model parameters for the different runs

run name configuration κ nlm σs µs µ2 I0 b ψ Nz

RB1 Revil-Baudard et al. (2015) 0.225 1 0.44 0.7 0.96 0.3 1/3 0.5 401

RB2 Revil-Baudard et al. (2015) 0.225 1.66 0.44 0.7 0.96 0.3 1/3 0.5 401

RB3 Revil-Baudard et al. (2015) 0.225 1.66 0.44 0.52 0.96 0.6 2/3 0.5 401

SUM A1/B1/C1 Sumer et al. (1996) 0.225 1.66 0.44 0.51 0.77 0.3 1/3 0.945 201

SUM A2/B2/C2 Sumer et al. (1996) 0.225 1.66 0.44 0.38 0.82 0.6 2/3 0.945 201

Table A3 Boundary conditions

BC φ uf wf us ws p

Bottom
∂φ

∂z
= 0 uf = 0 wf = 0 us = 0 ws = 0

∂p

∂z
= 0

Top
∂φ

∂z
= 0

∂uf

∂z
= 0

∂wf

∂z
= 0

∂us

∂z
= 0

∂ws

∂z
= 0 p = 0
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Figure A1 Dimensionless experimental mean velocity and mean concentration profiles (a) experimental Schmidt number

profile (b) experimental mixing length profile, best fit lm = κ(z − zd) with κ = 0.225 and zd = 3.1 dp (black solid line) and

parametrisations based on equation (14) with κ = 0.225 and nlm = 1 (− ·) and nlm = 1.66 (− −) and on equation (23) (· · · ·)

(c). Experimental data from Revil-Baudard et al. (2015).

Figure A2 Comparison of numerical results for case RB1, RB2 and RB3 with experimental data. Panel (a) fluid and particulate

phase velocity profiles for case RB1 (uf : blue dotted line), RB2 (uf : blue dashed-dotted line) and RB3 (uf : blue solid line ; us:

red dashed line). Panel (b) concentration profile for case RB1 (red dotted line), RB2 (red dashed-dotted line) and RB3 (red

solid line). Pannel (c) Reynolds shear stress profile for case RB1 (blue dotted line), RB2 (blue dashed-dotted line) and RB3

(blue solid line). The symbols represent experimental data from Revil-Baudard et al. (2015).
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Figure A3 Comparison of numerical results with experimental data from Sumer et al. (1996) (symbols) in terms of fluid

velocity profile (a), concentration profile (b) and Reynolds shear stress profile (c) for case SUM A1 (uf : blue dash dotted lines)

and SUM A2 (uf : blue solid lines ; us: red dashed lines ) in the top panels, SUM B1 and SUM B2 in the middle panels and

SUM C1 and SUM C2 in the bottom panels. The legend is the same for the cases B and C as for case A.
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Figure A4 Dimensionless sediment transport rate qs = qs/
√

(ρs − ρf )gd3p (a) dimensionless sheet layer thickness δs = δs/dp

(b) versus the Shields number θ predicted by the proposed two-phase flow model: red circles (◦) correspond to Sumer et

al. (1996) configurations and green triangle (◮) corresponds to Revil-Baudard et al. (2015) configuration. Blue squares (�):

two-phase flow simulations from Hsu et al. (2004). Black x (x): Meyer-Peter and Muller (1948) data with sand. Black circle

(•): Wilson (1966) data with sand. Black triangles (N): Nnadi and Wilson (1992) data with nylon. Black stars (⋆): Nnadi and

Wilson (1992) data with bakelite. Black diamonds (⋄): Capart and Fraccarollo (2011) data with PVC cylinders. Black pluses

(+): Sumer et al. (1996) data with sand. Black solid line (—–): Wilson (1987)’s fit qs = 11.8 θ1.5 and δs = 10 θ. Black dashed

line (− − −): Capart and Fraccarollo (2011)’s model qs = 4.2 θ1.5 and δs ∝ θ1.5 (see equation (7) in the original paper).

The inset in panel (a) shows the dimensionless sediment transport rate versus the Shields number in log-log scales, the red

dash-dotted line corresponds to a quadratic law.

28


