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Abstract. A sign language utterance can be seen as a continuous stream of mo-
tion, involving the signs themselves and inter-sign movements or transitions. Like
in speech, coarticulation constitutes an important part of the language. Indeed, the
signs are contextualized: their form and, most of all, the transitions will greatly
depend on the surrounding signs. For that reason, the manual segmentation of
sign language utterances is a difficult and imprecise task. Besides, annotators of-
ten assume that both hands are synchronous, which is not always true in practice.
In this paper, we first propose a technique to automatically refine the segmenta-
tion by adjusting the manual tags isolating signs from transitions. We then study
motion transitions between consecutive signs and, in particular, the duration of
those transitions. We propose several computation techniques for the transition
duration based on the analysis we have conducted. Finally, we use our findings in
our motion synthesis platform to create new utterances in French Sign Language.

Keywords: Coarticulation, Sign Language Segmentation, Transition Duration,
Kinematic Features Analysis, Synthesis, French Sign Language (LSF)

1 Introduction

French Sign Language (LSF) is the natural language of deaf people in France and is
therefore used as their first means of communication. As the linguistic mechanisms
used in LSF are very different from those used in French, deaf people may face diffi-
culties using written French. In LSF, the grammatical rules, as well as the nature and
the spatial organization of the linguistic concepts are completely different from those
used in French. However, most sources of information available on the Web and on
other media are in French (written or oral), thus restraining Deaf access to information
in their everyday life.

Virtual humans or avatars are a new and promising way to improve Deaf access to
information. With avatar technologies, the anonymity of the signer is preserved. Fur-
thermore, the content of sign language can be edited, manipulated, and produced more
easily than with a video medium. Indeed, videos lack flexibility and operations such as
copy/paste fail to deal with transitions in the context of editing new utterances.

Several approaches for synthesizing signed language utterances have been exploited
over the years including keyframe techniques, procedural synthesis and data-driven syn-
thesis. Keyframe techniques and procedural synthesis have been extensively devel-
oped in the international community. It allows a fine control at the language specifica-
tion level which results in a precise behavior of the avatar. In return, the specification
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step is fastidious and time-consuming. Moreover, the avatar may be poorly accepted by
the deaf community due to the lack of realism of the resulting animations. To compen-
sate for this realism issue, McDonald et al. [23] analyzed noise in motion capture data
in order to extract linguistic and kinematic information. They injected this information
into their keyframe-based synthesis tool to give their avatar a more life-like appearance.
Data-driven synthesis often involves motion capture which is a very powerful tool to
analyze movement features. Furthermore, as the synthesis is based on the movements
of a real signer, the produced animations are more human-like. However, the capture of
motion, the post-processing of data, the skeleton reconstruction and the annotation are
costly both in time and resources. Besides, the corpus has to be large enough to account
for the variability of sign languages.

Over the last ten years, we have worked on a data-driven approach for sign lan-
guage synthesis. In our two last projects, SignCom [8] and Sign3D [9], we have devel-
oped a system in which we edit and compose new sentences that keep some linguistic
coherence and are visually acceptable when played by an avatar. Some editing and
animation issues have already been studied, implemented and discussed in [9]. Cur-
rently, our synthesis system relies on manually annotated data by expert annotators
(deaf signers). However, manually segmenting sign language movements is a laborious
and time-consuming process. Furthermore, this process depends on linguistic studies.
In particular, the phonetic work proposed by Liddell and Johnson [15], as well as the
annotation template proposed by Johnston and De Beuzeville [16] have largely inspired
our annotation scheme in the SignCom project [8]. This template has been slightly re-
fined in the Sign3D project to ease the annotation by avoiding the labeling of transition
segments [9].

One of the main difficulties in the annotation process is that it is subject to variability
due to the fact that all annotators do not agree with the starting and ending frames of the
semantic segments [12]. Furthermore, as the signs in sequences appear in a continuous
stream, one signer may start the subsequent movement before fully completing the pre-
vious one. This contextual dependency between signs, called coarticulation, makes the
labeling more complex. Besides, the level of details of the annotation scheme greatly
influences the way the avatar will be controlled.

This paper focuses on the analysis of inter-sign transitions to make the segmenta-
tion process as automatic and precise as possible, and to find motion invariants, in order
to interactively improve the animation of the novel utterances signed by an avatar. Our
final objective is to be able to incorporate coarticulation mechanisms into our concate-
native synthesis system in order to generate a natural articulation between signs, while
preserving the linguistic intelligibility. Two sub-challenges are considered in this pa-
per: first, the segmentation of the transitions between signs is analyzed, leading to a
refinement of the manual annotations; second, the duration of the transitions is deeply
studied. The results are illustrated through interactive tools that are directly incorpo-
rated into our synthesis system.
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2 Related Work

Segmentation of human motion is the process of breaking a continuous sequence of
movement data into smaller and meaningful components, that range from actions to
movement primitives. It is important here to emphasize that the segmentation may de-
pend on its further use; in particular, this process is more constraining when the motion
primitives relate to movement generation. The segmentation process consists in iden-
tifying the starting and ending frames for each segment corresponding to a movement
primitive. The definition of the segments themselves is challenging due to the high-
dimensional nature of human movement data and the variability of movement. For sign
language movements, this is even more challenging since the segments depend on how
the linguistic element boundaries are defined, according to phonetic, phonological and
semantic rules, as well as coarticulation between signs. We review hereafter some seg-
mentation work applied on general motion capture data and on sign language motion.

For general motion capture data segmentation, a frequently used approach is to iden-
tify segment boundaries by detecting sudden changes or threshold crossings in kine-
matic features, such as position and orientation and their derivatives (velocity, acceler-
ation, curvature). For example, an indexing system has been developed by using joint
positions relatively to other points or 2D planes [25] or by detecting the zero crossings
in the angular velocity of the arm joints [6]. If these methods are easy to implement and
can be efficiently applied on various data sets, they may give over or under segmentation
boundaries and do not take into account semantic content.

Boundaries can be determined by other metric thresholds, using for example data
analysis principles such as Principal Component Analysis (PCA), Probabilistic PCA,
or Gaussian Mixture Models (GMM) [14], deriving Bayesian methods [5], or tempo-
ral application of Hilbert space embedding of distributions [10]. These methods, by
projecting the motion capture data into low-dimensional representation spaces, give ef-
fective results, but fail to represent semantic data.

Other segmentation approaches use supervised learning techniques to take into ac-
count the semantic content of motion data. Among the proposed approaches, Müller
et al. [24] used a genetic algorithm to identify characteristic keyframes while Brand et
al. [2] used Hidden Markov Models.

Segmentation of sign language data has first been studied using video sequences.
The complexity of the signs, characterized by many features (including hand move-
ment, hand configuration and facial expression), requires the development of specific
approaches. Lefebvre-Albaret et al. [21] developed a method to semi-automatically seg-
ment sequences of signs in French Sign Language (LSF) using region aspects: tempo-
ral boundaries are identified from a set of features including symmetry, repetition of
movements, hand velocity and stability of the configuration. It introduces an interactive
segmentation tool: first, a one-frame segment called seed is picked out by the user for
each sign; this seed is then used by the region-detection algorithm to determine inter-
vals containing all features of a sign. The resulting segmentation can be checked by a
sign language annotator. Gonzalez and al. [11] have proposed to define an automatic
two-level segmentation process: the first one, based on a robust tracking algorithm,
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uses hand movement features; the second one uses hand configuration to correct the
first level. A segmentation approach, based on a Hidden Markov Model and a state au-
tomata, has also been developed for Korean Sign Language segmentation [17]. Yang et
al. [27] use Conditional Random Fields to distinguish transitions and signs in American
Sign Language.

Coarticulation has given rise to a few works. Linguistically motivated models have
been defined and validated through various approaches. Huenerfauth [13] has found
that adding pauses and variations in sign durations improved the performance of virtual
avatars by making the synthesized sentences more comprehensible by ASL signers.
Pauses and temporal variations within signs were also introduced in LSF utterances
by Segouat [26] to highlight the coarticulation effects in animations. A coarticulation
model, incorporated into an inverse kinematic model has been developed for synthesis
purpose [19]. Transitions have also been studied. A transition-inclusive system, sepa-
rating the Strokes (S) conveying the meaning of the signs from the Preparation (P) and
Retraction (R) phases characterizing inter-sign movements, has been initially proposed
by [18] and used for LSF [1]. The transition shape has then been studied for recogni-
tion [20] or synthesis purposes [4].

Segmenting signs into significant components is still an open issue. Since the build-
ing of new sentences relies on the quality of the segmentation, we focus on this problem
and we analyze inter-sign timing for synthesis purposes.

3 Our Synthesis System

Our synthesis system aims to build new utterances in LSF. To this end, it creates sen-
tences concatenatively by:

(i) retrieving motion chunks corresponding to isolated signs, glosses (groups of signs
with a specific meaning), or semantic components from our motion database, and

(ii) adding transitions between those chunks to create a continuous motion.

3.1 Data-Based Concatenative Synthesis

The system is based on a dual heterogeneous database containing both a database in-
dexed by linguistic annotations and a second one indexed by the motion signal that has
been recorded using motion capture. Furthermore, movements are annotated on differ-
ent linguistic levels corresponding to grammatical indications, two-hand glosses, and
finer phonological or phonetic levels (including right and left handshapes, hand place-
ment and mouthing [9], [4]). These different levels are annotated on different channels.

To create a new LSF utterance, the user first edits the sentence by selecting a se-
quence of glosses organized in an order that is grammatically correct in LSF. The mo-
tion chunks corresponding to the glosses are then extracted from the motion database
using the annotations. The concatenative synthesis then consists in concatenating those
motion chunks by adding transitions between each glosse (see for example figure 1).
This process is based on the assumption that the semantic annotation is accurate.
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Note that in our system, we could query the database to retrieve motion primitives
by channel, and we will show in section 4 that this would be more accurate, although
the proposed synthesis presented at the end of the paper does not yet take advantage of
this possibility.

Segmentation The aim of the segmentation is to explicitly identify at which frame a
sign or a component of sign starts and at which frame it ends. One of the main dif-
ficulties of this process relies on the identification of the starting and ending of the
meaningful part of the sign (called meaning).

Unlike speech in which transitions between words is silence, movement never stops
and there is no reference starting point in space or rest hand configuration. However,
there is a phase when the hand (or arm) prepares to move towards the starting posi-
tion/configuration of the hand for the sign about to be executed. This phase is called
preparation of the sign. For the same reason, before preparing to make the next sign,
the hand/arm system first needs to retract to be ready to prepare for the next sign. This
phase is named retraction. As we capture full sentences of LSF, each sign recorded in
our database will be of the following form: Preparation-Meaning-Retraction. The an-
notation identifies the meaning part of each sign, the preparation and retraction being
respectively the frames before and after the meaning.

Transition Synthesis We implemented two algorithms to synthesize transitions be-
tween two signs: the Interpolation and the Blending techniques.

The Motion Interpolation Method: it consists in doing a linear interpolation of both
joint orientations and joint positions between the last posture of the first sign and the
first posture of the second sign (see figures 1 and 13). In that case, we do not use
the retraction motion of the first sign nor the preparation motion of the second sign.
The duration of the interpolation (i.e. the number of frames n being added between
both motion chunks) is based on the distance between M1 N and M2 0 and the mean
velocities of M1 and M2 (see section 5.2, SIMPLE DURATION, for details on the
computation). This method is simple to compute but does not take into account the
transition data recorded in the database. As a result, it gives visually poor results when
the duration exceeds a certain threshold.

Fig. 1. Transition using the motion Interpolation method based on the last posture of the first sign
and the first posture of the second sign.

The Motion Blending Method: it is computed as a linear blending of two motions: the
movement following the first sign (retraction of M1) and the movement preceding the
second sign (preparation of M2) in the Sign3D database (see figure 2). The transition
length, i.e. the number of frames n used for the blending, is computed as previously
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(see section 5.2, SIMPLE DURATION, for details on the computation). This method
gives better results in terms of realism (partial conservation of the context) and robust-
ness with respect to a longer duration. However, the quality of the resulting movement
greatly depends on the content of the database. For instance, if there is no captured mo-
tion before the second sign or after the first sign in the database, the transition will be
less realistic (use of an idle skeleton with a default posture instead).

Fig. 2. Transition using the motion Blending method with the n first frames of the retraction
phase R1 of the first sign and the n last frames of the preparation phase P2 of the second sign.

For both methods, the quality of the original annotation that will identify the mean-
ing phase of a sign is of prime importance. However, when the annotation is manually
done, usually by watching the corresponding video, it is not always easy to find the
actual starting and ending frames of the meaning phase, let apart that both hands are not
always synchronous as we will show in section 4.1.

The second important parameter of the concatenative synthesis is the choice of the
length of the transition to be constructed. Considering the organization of the database,
if the computed duration is too long, part of another sign could be extracted in addition
to the preparation or retraction part. For example, in our database, a transition lasts
on average about 0.30s (i.e. 30 frames) and never exceeds 50 frames while a sign may
last about 20 frames. It is straightforward that if the computed transition time exceeds
by 20 frames or more the transition time recorded in the database (> 50 frames), the
transition will be computed using the previous sign and the preparation of the next sign
when it should only use the preparation phase of the next sign. This results in a quite
unrealistic motion that will appear as an hesitation from the avatar in the final synthesis.
For the same reason, if the annotation is shifted by 10 frames from the actual point in
time from where it should be, it will impact the final synthesis in the same way or by
creating truncated motions.

This illustrates the need of a good computation of the transition duration as well as
an accurate annotation of the database.

3.2 Overview of the Paper

In this paper, we first study the segmentation of the motion, by looking at the manual an-
notation provided by deaf experts in annotating LSF data as well as at an automatically
refined annotation that we compute. Both annotations are then used to study the transi-
tions in captured data to derive rules and metrics to use in our concatenative synthesis
system to create new utterances in LSF (see figure 3).
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Fig. 3. Overview of the paper: we first study the segmentation of the captured data and improve
the manual annotation; we then use both annotations to study the nature and length of transitions;
we finally show some results using our findings in our synthesis system.

4 Segmentation

In sign languages, the signer alternates between signs and transitions. When processing
recordings of sign language utterances, the first step consists in manually isolating signs
from inter-sign movements using an annotation software such as ELAN [22, 3]. This
step consumes both time and resources as at least one person has to review each video
in order to produce a correct annotation. Another drawback of this manual annotation
step is that it is a subjective task that greatly depends on the annotator’s criteria and
on the quality of the data to be processed. Indeed, it is often difficult to point out with
certainty the beginning and end of a sign due to the inter-sign coarticulation and the
continuous aspect of movement.

4.1 Kinematic Features of LSF Motion

In order to study a possible correlation between the kinematic properties of the hand
motions and the sign/transition segmentation, sequences of LSF composed of two or
three signs separated by transitions were examined. Those sequences, considered as
the ground truth, are raw motions directly extracted from the Sign3D database which
contains different utterances in French Sign Language. We have computed several kine-
matic features on those motions for various joints and observed that the speed (i.e. the
norm of the velocity) of both wrists had interesting properties.

The figures 4 and 5 show the speed of both hands (left wrist and right wrist) for two
different sign sequences. A green plain vertical line marks the beginning of a sign while
a green dotted vertical line shows the end of the sign and the beginning of the transition,
according to the manual segmentation. The dotted blue and red lines show the local
minima of the two curves, respectively depicting the speed of the right hand and the left
hand. The values were processed using a lowpass filter to prevent the algorithm from
detecting all the incidental minima due to noise in the data.

According to the manual segmentation, the transitions seem to be delimited by two
local minima in the norm of the velocity even though, due to the manual aspect of the
task, the tags are not positioned exactly on the minima. Our hypothesis is thus that the
correct segmentation of the signs should be on the local minima of the curves.

Furthermore, when doing manual segmentation, the whole body is considered. So,
the starting and ending time of a sign is considered to be the same for all the skeleton
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Fig. 4. Norm of the velocity of the left (red line with markers) and right (blue line) hands with
respect to the frame number. The vertical lines show the edge of the transition defined by the
annotator (green lines), the local minima of the right hand (blue lines) and the local minima of
the left hand (red lines).

joints. However, that is not always true in practice. On figure 5, we can note that, as-
suming that minima delimit a transition, the transition of the left hand does not occur
at the same time than the transition of the right hand. Indeed, there is an offset between
the minima for each hand.

Therefore, we decided to refine the manual segmentation of motion capture data of
French Sign Language by:

(i) detecting the speed minima of hand motions, and
(ii) assuming that the joints of the two hands are partially autonomous.

This refinement aims to improve the quality of the segmentation in order to perform
a more accurate analysis and synthesis of LSF utterances.

4.2 Semi-automatic Segmentation

The detection of the speed minima of the hand motions is a fully automated process.
However, it presents mixed results when used for LSF segmentation because of false
positives when a sign is too noisy or complex (like the sign [AFTERNOON] which is a
contraction of [AFTER] and [NOON] in LSF).

We have thus used a combination of the manual annotation and the local minima
computation. When a minimum is close to a manual segmentation tag, the manual seg-
mentation tag is replaced by the automatically computed minimum. If there is no min-
imum sufficiently close to a manual segmentation tag, it is kept with no modification
(see figure 6: the minimum for the left hand 3 is too far away from the manual tag 2 ).
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Fig. 5. Norm of the velocity of the left (red line with markers) and right (blue line) hands with
respect to the frame number. The vertical lines show the edge of the transition defined by the
annotator (green lines), the local minima of the right hand (blue lines), and the local minima of
the left hand (red lines). An offset between the minima for each hand is visible.

We have used an empirical threshold of 15 frames for a capture frequency of 100Hz:
it corresponds to 0.15s of motion. A minimum distant of more than 15 frames from a
manual segmentation is discarded. As the motion capture data was segmented by deaf
people experts in annotating LSF data, we assumed that this relatively small threshold
would result in a correct segmentation for a majority of cases. One benefit of this 15-
frame threshold is that the minima of complex signs is removed from the segmentation
(see figure 6, 4 ). This segmentation can be considered as an automated refinement of
the manual segmentation that has the advantage of providing a different segmentation
for each hand (see figure 6, 1 ).

5 Transition Duration

The length of transitions impacts the quality of synthesized animations of LSF utter-
ances. A too short or too long transition will be perceived as strange and will often have
repercussions on the general comprehension of the sentence [13]. The computation of
a correct duration for transitions is therefore necessary.

5.1 Analysis

In order to define some empirical laws and invariants for the transition duration, we
considered 89 transitions extracted from two sequences of motion capture data in the
Sign3D database [9]. The first sequence (SIG S1 X04) is a presentation of the opening
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Fig. 6. Norm of the velocity of the left (red line with markers) and right (blue line) hands with
respect to the frame number. The vertical lines show the edge of the transition defined by the an-
notator (Manual Segmentation (MS) with green lines) and refined by the segmentation procedure
(blue lines for the right hand (RH) and red lines for the left hand (LH)).

and closing times of various town places (swimming pool, museum, etc.). The second
sequence (SIG S3 X02) explains the change of location of various exhibitions due to
some incidents. Table 1 shows an example extracted from each sequence. The 89 tran-
sitions are the motions between two consecutive signs. They are extracted from the
sequences using the annotations, either manual or the automatically refined annotation
presented in section 4.2.

Table 1. Example of utterances contained in the database

Sequence Extracted Utterances (English translation)
SIG S1 X04 The swimming pool in front of the theater is open from 12:00 a.m to 11:00 p.m.
SIG S3 X02 The museum exhibition was moved to the theater due to construction works.

Duration with Respect to the Distances Between Postures The duration of each
transition was computed from the annotation times of the beginning tag and end tag of
the transition.

The average distances between the last posture of the previous sign and the first
posture of the next sign were computed. Two types of distances were used: the Geodesic
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Distance between the joint orientations and the Euclidean Distance between the joint
positions of the two skeletons. Each distance was averaged on the number of joints.

Considering two skeletons S1 and S2 composed of oriented joints, the Geodesic dis-
tance between the orientations (quaternions) of S1 and S2 is defined as the mean of the
Geodesic distances between the orientations of each joint of S1 and the corresponding
joint of S2:

GeodesicDistance(quaternion a, quaternion b) = ||log(a−1 ∗ b)|| (1)

The Euclidean distance between S1 and S2 is defined as the mean of the Euclidean
distances between the positions of each joint of S1 and the corresponding joint of S2:

EuclideanDistance(vector3d a, vector3d b) = ||a− b|| (2)

To take into account the two types of distances, we normalized them (by subtracting
the mean value and dividing by the range of values) and computed the average distance.

Observations using Manual Annotations: figures 7 and 8 show the duration of the
transitions with respect to the distances between the postures at the beginning and end
of the transitions.

Fig. 7. Duration of the transitions in function
of the average of the two normalized distances.

Fig. 8. More than 90% of the values is con-
tained in the area bounded by the lines.

Considering our examples, we can note that:

1. The general tendency of the duration is to increase with the distance.
2. Apart from a single outlier, the duration never exceeds 0.5s.
3. The duration never goes under 0.1s.
4. More than 90% of the values is contained in a diamond shaped bounding box (see

figure 8).
5. The mean duration of a transition is 0.303s with a standard deviation of 0.098s.
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Comparison with the Refined Segmentation (section 4): figure 9 shows the transition
duration as a function of the mean Euclidean distance for the left joints (on the left) and
for the right joints (on the right). The transition lengths of the left and right hand are
considered independently and are, therefore, different for each hand. As each hand uses
a different segmentation, only the arm joints (from the shoulder to the tip of the fingers)
were studied and the mean Euclidean distance is, once again, computed between the
last skeleton of the first sign and the first skeleton of the second sign. The blue diamond
shaped markers represent the values for the manual segmentation whereas the red circle
markers show the results considering the segmentation described in section 4.2. The
lines between the pairs of markers depict the differences between the results of the two
methods of segmentation.

Figure 9 confirms that there is an important difference, visible in the length of the
lines connecting each two markers, between the segments defined by annotators and by
the refinement using the velocity minima. However, the benefits of this new segmenta-
tion have to be ascertained using a quantitative and/or a perceptual evaluation.

Fig. 9. On the left (right resp.): transition duration with respect to the mean of Euclidean distances
of the left joints (right resp.) for the manual segmentation (blue diamond markers) and for the
refined segmentation (red disk markers). The line between each pair of markers represents the
difference in duration and distance between both segmentations.

Duration with Respect to the Type of the Surrounding Signs To determine if the
length of the transitions is related to the nature of the surrounding signs, two differ-
ent features of signs in LSF were examined in order to quantify their impact on the
transition duration:
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1. The number of hands used in the execution of the sign:
• 0 = one hand ([MUSEUM] sign, for example),
• 1 = two hands as in the [SWIMMING POOL] sign, and
• 2 = one hand is doing a one-hand sign and the other is preserving the con-

text: for example a [POINTING] gesture (one-hand sign) toward the other hand
showing the remnant of the previous [EXHIBITION] sign (context). This is a
case of contextualized signs.

2. The symmetry of the sign (only in the case of a two-hand sign). A sign is considered
as symmetric if the two hands perform a symmetric motion:
• 0 = the movement is not symmetric (e.g., [HOUR] sign), and
• 1 = the movement is symmetric as in the [SWIMMING POOL] sign.

A transition was thus defined with four digits, the first two digits designating the
features of the previous sign and the last two the features of the following sign. For
example, a transition associated with the number 1011 is a transition between a two-
hand asymmetric sign (10) and a two-hand symmetric sign (11). The transition 0010 is
a transition between a one-hand and thus asymmetric sign (00) and a two-hand asym-
metric sign (10). Table 2 lists all of the possible types of transition, their distribution
in our data set and the mean duration and standard deviation according to the type of
transition and the manual segmentation.

Table 2. List of all the transition types, mean duration and standard deviation

Transition Type Number Mean Duration (s) Standard Deviation (s)
0000 6 0.26833 0.095167
0010 7 0.31000 0.090000
0011 5 0.32000 0.069642
0020 0 / /
1000 9 (8) 0.36778 (0.3150 without outlier) 0.16292 (0.041057)
1010 9 0.33444 0.098629
1011 11 0.29273 0.054789
1020 0 / /
1100 4 0.30500 0.077675
1110 16 0.25813 0.081912
1111 6 0.31667 0.14528
1120 6 0.29500 0.089610
2000 0 / /
2010 1 0.30000 0
2011 5 0.30400 0.10761
2020 4 0.30250 0.078049

The shortest transitions are obtained for the transitions from two-hand symmetric
signs to two-hand asymmetric signs (1110) and for the passage from one-hand signs to
other one-hand signs (0000). Apart from the 1000 transitions whose result is impacted
by the outlier (average without outlier: 0.3150s), the longest transitions are between
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two-hand asymmetric signs (1010). Figure 10 shows the mean duration of the transi-
tions depending on the number of hands (type 2 considered as two-hand signs). The
transition between two one-hand signs (1H→ 1H) and two two-hand signs (2H→ 2H)
is shorter (and might be interpreted as easier) than adding or removing a hand between
signs (1H→ 2H and 2H→ 1H). However, as the standard deviation is quite high com-
pared to the mean values, the conclusion that can be made is that the number of hands
and the symmetry of the signs surrounding a transition do not significantly impact the
duration of the transition. An analysis of a higher number of transitions could lead to
more conclusive results.

Fig. 10. Mean duration considering the number of hands involved in the first and second signs.

5.2 Synthesis

Computation of Transition Duration By using the results of our analysis, we aim to
find a transition duration that best emulates the behavior of a real LSF signer in order
to synthesize more natural and intelligible utterances.

SIMPLE DURATION: previously to this analysis, the computation of the duration was
based on the distance between the extreme positions S1 (end of the first movement
M1) and S2 (beginning of the second movement M2) and the mean velocity of the two
surrounding signs:

simpleDuration = (α ∗ 2 ∗ EuclideanDistance(S1, S2)
MeanV elM1 +MeanV elM2

+

(1− α) ∗ 2 ∗ GeodesicDistance(S1, S2)
MeanAngV elM1

+MeanAngV elM2

(3)
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This method produces visually acceptable results for small distances and high ve-
locities (short duration) but the computed transition duration is often longer than the
ground truth equivalent. It reaches sometimes unacceptable values (sometimes as high
as 1.5s) that give unrealistic results with a slow down or an hesitation depending on the
type of synthesized transition (Interpolation or Blending respectively).

Using the results of our analysis we propose three new computation methods of the
transition duration.

SIMPLE BOUNDED DURATION: a first, simple measure is to put an empirical lower
limit at 0.1s and a higher limit at 0.5s using the items #2 and #3 of the observations
(section 5.1). The transitions with inconsistent duration are thus automatically changed
to more correct values. We visually note an improvement in the rendering of the anima-
tion for the transitions involved.

LINEAR DURATION: we also exploit the data of figure 7 to compute the coefficients
of a trend line and use those coefficients to predict the value of a new transition with re-
spect to the mean of the two normalized distances. In this way, we follow the Isochrony
Principle (first mentioned in [7]).

SURFACE DURATION: we compute the equation of a surface using normal equations
to minimize the linear least square distance between the surface and the data (Euclidean
and Geodesic distances of the 89 transitions). With this method, we find the optimal
coefficients and use those to predict the duration of a new transition. Figure 11 shows
the surface computed thanks to normal equations and the data that has been used to do
the computation.

θ = (XT ∗X)
−1 ∗XT ∗ y (4)

• θ: the optimal parameters of the surface,
• X: a 89 ∗ 3 matrix containing the inputs (the first column contains only the value

1, the other two columns contain the Geodesic and Euclidean distances of each
transition respectively), and
• y: a vector containing the durations of the transitions.

Using the equation (4) and our data, we found:

θ =

0.148777
0.663958
0.275229


The mean error between the real and computed duration for our 89 transitions can

be calculated as:

MeanError =
1

89

89∑
i=1

√
(yi − (Xi ∗ θ))2 = 0.06075s (5)

As the analysis of section 5.1 concluded that the number of hands and symmetry of
the surrounding signs did not have a great impact on the transition duration, these two
parameters were not taken into account in the duration computation.
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Fig. 11. Surface computed using normal equations (4) with the manual annotation data.

Results In this section, we compare and visualize the results of the various computa-
tions methods of the transition duration.

We first compare synthesized transitions with their ground truth equivalent on
a limited number of examples. The ground truth is the original motion capture signal
segmented according to the manual annotation. The transition synthesis methods (Inter-
polation or Blending) and the duration computation methods (XXX DURATION) are
tested by comparing the resulting animation with the ground truth equivalent. Figure 12
illustrates the transition between the signs [BUILDING] and [THEATER]: an offset be-
tween the two skeletons is visible when playing the animation. This offset changes with
the parameters of the transition. While the duration of the ground truth is of 0.27s, the
LINEAR DURATION method gives the closest result with a duration of 0.30s whereas
the SIMPLE DURATION method is the farthest with 0.37s.

Then, we compared the synthesized transitions with each other by choosing to
pair any, not necessarily consecutive, signs in the database. It is thus impossible to
compare the performances of the generated transition with the ground truth which does
not exist but, instead, we can compare the synthesized transitions with one another.

On figure 13, the user has chosen to analyze the transition between the sign [TO
PAY] and the sign [MUSEUM]. The duration of the corresponding transition has been
computed for each of the methods. We can see that the SIMPLE DURATION method
gives an abnormally high value of 1.47s. Indeed, the Euclidean distance between the
two extreme skeletons of the transition is equal to 1.08172 and the Geodesic distance
is 0.103753. The high value of the Euclidean distance can be explained by the fact that
[TO PAY] is a two-hand sign and [MUSEUM] is a one-hand sign (see figure 13).
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Fig. 12. Comparison of the ground truth with the synthesized transitions. The two skeletons rep-
resenting the ground truth (in white) and the synthesized motion (in cyan) are superimposed.

The resulting transition is not convincing using either the Interpolation (slowdown)
or Blending (artifacts due to unwanted sign chunks added to the animation) generation
techniques.

The SURFACE DURATION gives a much more acceptable result with a transition
of 0.51539s:

duration = θ0 + θ1 ∗GeoDist+ θ2 ∗ EucDist
= 0.148777 + 0.663958 ∗ 0.103753 + 0.275229 ∗ 1.08172
= 0.51539s

The other methods do not allow the duration to exceed the 0.5s boundary and their
results are also more convincing than the SIMPLE DURATION method.

Improvement of Motion Retrieval The previous analysis shows that the distance be-
tween two consecutive motions has an impact on the transition duration. We also know
that a long duration will often be less realistic than a shorter duration. We thus im-
plemented a new motion retrieval method based on those observations. This method
retrieves a motion from a range of possible motions in order to minimize the average
distance of this motion with the previous and/or following motion. By minimizing the
distance, the duration of the transition is naturally shorter than if we had taken a random
motion among all of the possible motions.

6 Conclusion

In this paper, we studied the coarticulation aspect of sign languages by focusing on the
transition segmentation and duration.

We first proposed a new way of segmenting LSF utterances by analyzing some
kinematic properties of sign language motions and, more specifically, by detecting local
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Fig. 13. Composition of two signs for transition comparison. The last posture of the first move-
ment is quite far from the first posture of the second movement.

minima in the norm of the velocity for each hand. The manual annotations done by
deaf experts were then refined by selecting the nearest corresponding minima for each
manual segment.

In a second phase, the transition duration was analyzed with respect to the distance
covered during a transition and to the type of the surrounding signs. Based on our obser-
vations, we defined new methods to compute transition durations based on our observa-
tions. An extremely simple and effective method resulting in a visual improvement of
the animation is to introduce a lower and upper limit in the duration. Other approaches
using basic statistics on the data were implemented. For our dataset, the nature of the
surrounding signs did not impact significantly the duration of the transition. An analysis
of a higher number of transitions could lead to more conclusive results. This approach
raises questions concerning the synchronization of the sign language channels. Indeed,
our segmentation is based on the observation that each hand has a partially autonomous
behavior. The offset between both hands will be the focus of future studies.

Using these observations, we aim to improve our synthesis engine by handling the
two hands separately. This process will be evaluated thanks to perceptual studies with
native LSF signers testing, on the one hand, the intelligibility and comprehensibility
of the produced sentences and, on the other hand, the acceptability and realism (3D
rendering, smoothness, etc.) of the animation. Other issues may be addressed such as
the advantages of segmenting each channel (hand configuration, placement, orientation,
non-manual features, etc.) separately both for retrieving signs in our database and for
synthesizing sentences. In the future, we would like to use our semi-automatic segmen-
tation on a larger corpus composed of carefully chosen utterances to perform further
analyses.
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Université Paul Sabatier - Toulouse III, 2010.

21. F. Lefebvre-Albaret, P. Dalle, and F. Gianni. Toward a computer-aided sign segmentation.
Language Resources and Evaluation Conference (LREC). European Language Resources
Association, 2008.

22. Max Planck Institute for Psycholinguistics, The Language Archive, Nijmegen, The Nether-
lands. http://tla.mpi.nl/tools/tla-tools/elan/.

23. J. Mcdonald, R. Wolfe, R.B. Wilbur, R. Moncrief, E. Malaia, S. Fujimoto, S. Baowidan, and
J. Stec. A new tool to facilitate prosodic analysis of motion capture data and a data- driven
technique for the improvement of avatar motion. In Proceedings of the 7th Workshop on the
Representation and Processing of Sign Languages: Corpus Mining Language Resources and
Evaluation Conference (LREC), volume 7, 2016.

24. M. Müller, A. Baak, and H.-P. Seidel. Efficient and robust annotation of motion capture data.
Symposium on Computer Animation, 2009.
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