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Adaptive step duration in biped walking: a robust approach to nonlinear constraints

When a biped robot is walking in a crowd, being able to adapt the duration of steps is a key element to avoid collisions. Model Predictive Control (MPC) schemes for biped walking usually assume a fixed step duration since adapting it leads to a nonlinear problem, in general. Nonlinear solvers do not guarantee the satisfaction of nonlinear constraints at every iterate and this can be problematic for the real-time operation of robots. We propose a method to make sure that all iterates satisfy the nonlinear constraints by borrowing concepts from robust control: we make the problem robust to nonlinearities within some bounds. These bounds are linear with respect to the variables of the problem and can be adapted online.

I. INTRODUCTION

When walking in a crowd, a biped robot should naturally try to avoid collisions with people. One strategy to do this is to adapt the position of steps in response to the motion of the crowd. This can be formulated as a linear problem if one considers the duration of steps to be fixed, as usually done [START_REF] Herdt | Online Walking Motion Generation with Automatic Foot Step Placement[END_REF], [START_REF] Diedam | Online walking gait generation with adaptive foot positioning through linear model predictive control[END_REF], [START_REF] Englsberger | Three-dimensional bipedal walking control based on divergent component of motion[END_REF]. Nevertheless, the combination of maximal step length and fixed step duration limits the maximal speed the robot can achieve and, consequently, its ability to avoid collisions [START_REF] Bohórquez | Safe navigation strategies for a biped robot walking in a crowd[END_REF]. We need, therefore, to adapt the duration of the steps of the robot.

However, by doing this, the problem becomes either nonlinear or combinatorial, depending on whether we choose to vary the duration of the steps in a continuous or discrete manner. On the continuous side, nonlinear MPC schemes have been proposed using Sequential Quadratic Programming (SQP) [START_REF] Aftab | Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme[END_REF] or Interior Point (IP) methods [START_REF] Kryczka | Online regeneration of bipedal walking gait pattern optimizing footstep placement and timing[END_REF]. On the discrete side, these MPC schemes have been formulated as Mixed Integer Quadratic Programs [START_REF] Ibanez | Emergence of humanoid walking behaviors from mixed-integer model predictive control[END_REF]. Alternatively, others have shown that the problem of adapting the duration of the steps can be made completely linear if we either: 1) limit the number of steps in the future to one [START_REF] Khadiv | Step timing adjustment: A step toward generating robust gaits[END_REF] or 2) consider the relation between the Capture Point and the positions of the future footsteps [START_REF] Griffin | Walking stabilization using step timing and location adjustment on the humanoid robot, atlas[END_REF]. However, it is not clear whether these two last approaches are suitable for making a robot walk in a crowd: the first one proposes a preview horizon that might be too short and the second does not account explicitly for the motion of the Center of Mass (CoM).

Standard solvers for nonlinear problems (SQP and IP methods) implement a form of Newton method in which constraints are iteratively linearized. However, the satisfaction of these linearized constraints does not imply the satisfaction of the original nonlinear constraints. There is no guarantee that the nonlinear constraints are satisfied at every Newton Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP*, LJK, 38000 Grenoble, France nestor-alonso.bohorquez-dorante, pierre-brice.wieber@inria.fr.

iterate. This is a problem for real-time operation where we may need to interrupt the solver before convergence and still need a solution that can be applied safely to the robot. This issue has been reported in [START_REF] Caron | Dynamic Walking over Rough Terrains by Nonlinear Predictive Control of the Floating-base Inverted Pendulum[END_REF] but for a different humanoid locomotion problem.

We propose here a method to guarantee safe Newton iterates. It is similar to what was done in [START_REF] Brasseur | A robust linear MPC approach to online generation of 3d biped walking motion[END_REF], [START_REF] Serra | A Newton method with always feasible iterates for Nonlinear Model Predictive Control of walking in a multi-contact situation[END_REF] for the problem of adapting the vertical motion of the CoM of the robot: we design constraints that are robust to changes in the variable that introduces the nonlinearity. To do so, we make sure the constraints are feasible over a given interval of this variable. We can then make safe linear approximations of the objective function inside of this interval and always generate feasible iterates.

With this method it suffices to solve a single Quadratic Program (which takes 0.29[ms] on average) to obtain a feasible solution. Simulations show that, by adapting the step duration in this way, we can reduce the collision rate of the robot walking in a crowd from 75% to less than 6%.

We proceed as follows: in Section II we present the specific nonlinearity that we face when we adapt the duration of the steps and how we develop robustness with respect to it. We then apply this technique for robustness to all dynamic, kinematic and collision avoidance constraints of the robot in Section III. We introduce in Section IV the Optimal Control Problem (OCP) we need to solve. Finally, we present some numerical results that showcase the capabilities of our controller in Section V.

II. PROBLEM DEFINITION

The motion of the CoM of a biped walking robot is commonly modeled as a triple integrator [START_REF] Kajita | Biped walking pattern generation by using preview control of zero-moment point[END_REF] x

+ = ⎡ ⎣ 1 τ τ 2 /2 0 1 τ 0 0 1 ⎤ ⎦ x + ⎡ ⎣ τ 3 /6 τ 2 /2 τ ⎤ ⎦ ... c , (1) 
where c is the position of the CoM, the jerk ... c is the input of the system, x = (c, ċ, c) and x + = (c + , ċ+ , c+ ) are two consecutive states. Here, the jerk is considered to be constant over intervals of time of length τ that we define to be 1/8 th of the duration of one step of the robot. The successor state x + is linear with respect to ... c but nonlinear with respect to τ . In particular, x + is a cubic polynomial of τ . The value of τ is commonly set to a constant in order to obtain a completely linear formulation.

We base our approach for adapting the duration of the steps on varying τ , what gives a nonlinear problem to solve.

β 0 = x + (τ ) β 0 + t * ∂x + ∂τ (τ ) = β 2 + u * ∂x + ∂τ (τ ) = β 1 β 2 = x + (τ )
x + (τ )

Fig. 1: Boundaries of x + (τ ) defined as the convex hull of its Bernstein coordinates (β 0 , β 1 , β 2 ). The control points β 0 and β 2 are located at x + (τ ) and x + (τ ), respectively. The control point β 1 is located at the intersection of the lines tangent to x + (τ ) and x + (τ ).

We propose to restrict τ to an interval [τ , τ ] and build bounds on x + (τ ) that depend on τ , τ but not on τ . The complexity of the bounds that we define on x + (τ ) depend on the degree of the polynomial involved. In order to simplify this issue, we reduce the degree of x + (τ ) by rewriting the last equation of (1) as

... c = c+ - c τ , (2) 
and substituting it back in the triple integrator to obtain:

x + = ⎡ ⎣ 1 τ τ 2 /3 0 1 τ /2 0 0 0 ⎤ ⎦ x + ⎡ ⎣ τ 2 /6 τ /2 1 ⎤ ⎦ c+ . (3) 
In this way, the successor state x + (τ ) is a quadratic polynomial of τ that preserves the C 2 continuity of the motion of the CoM. We define the bounds on x + (τ ) by changing its representation from the monomial basis {1, τ, τ 2 } to the Bernstein basis [START_REF] Lorentz | Bernstein polynomials, ser. Mathematical expositions[END_REF]:

{b 0 (τ ), b 1 (τ ), b 2 (τ )}, (4) 
(traditionally used in Bézier curves) where

b 0 (τ ) = (1 -τ ′ ) 2 , b 1 (τ ) = 2τ ′ (1 -τ ′ ), b 2 (τ ) = τ ′2 , (5) 
and

τ ′ = τ -τ τ -τ , (6) 
for a given choice of τ , τ . These polynomials have the desirable property that for all τ ∈

[τ , τ ], b i (τ ) ∈ [0, 1], b i (τ ) = 1 and therefore x + (τ ) = 2 i=0 β i b i (τ ) ∈ conv{β i }. (7) 
So, the polynomial x + (τ ) is always contained in the convex hull of the points β 0 , β 1 , β 2 whenever τ ∈ [τ , τ ], as can be seen in Figure 1. These points can be interpreted geometrically as control points of x + (τ ). Details on the transformation from monomial to Bernstein coordinates can be found in the Appendix.

III. CONSTRAINTS ROBUST TO THE STEP DURATION A. Constraint on the steps

We introduce a constraint on the sequence of steps made by the robot (s 1 , . . . , s J ) to prevent it from crossing legs while walking:

s j+1 -s j ∈ S j . (8) 
The set S j alternates between left and right according to s j .

B. Constraint on the CoP

When the robot is walking with its CoM at a constant height over a horizontal flat ground, the position of the Center of Pressure (CoP) can be written as:

p + (τ ) = 1 0 -h/g x + (τ ), ( 9 
)
where h is the height of the CoM and g is the norm of the gravity vector. Due to the unilaterality of the contact forces with the ground, the CoP can only reside inside the support polygon of the robot, which is a convex set P translated to the j th footstep position s j :

p + (τ ) -s j ∈ P. (10) 
This involves a quadratic polynomial of τ that can be expressed in Bernstein basis as outlined earlier:

p + (τ ) -s j = λ i b i (τ ) ∈ conv{λ i }, (11) 
where

λ i = 1 0 -h/g β i -s j .
We can enforce this nonlinear constraint for all τ ∈ [τ , τ ] by imposing instead that ∀i :

λ i ∈ P, (12) 
since by definition of the Bernstein basis:

∀i : λ i ∈ P =⇒ p + (τ ) -s j ∈ P. (13) 
As mentioned before, each λ i is linear with respect to the initial state x and the control input c+ . By satisfying the linear constraints on {λ i } we satisfy the nonlinear constraints on p + (τ )s j .

C. Constraint on the CoM

Since the length of the legs is limited, we do not allow the CoM to be far from the position of the footsteps. We define a convex set C j that represents the possible positions of c + (τ ) with respect to s j :

c + (τ ) -s j ∈ C j . ( 14 
)
The set C j alternates between left and right accordingly. Since c + (τ ) = 1 0 0 x + (τ ), this involves the quadratic polynomial

c + (τ ) -s j = π i b i (τ ) ∈ conv{π i }, (15) 
where π i = 1 0 0 β is j . Then, by enforcing the linear constraint ∀i :

π i ∈ C j , (16) 
we make sure that the nonlinear constraint ( 14) is satisfied for all τ ∈ [τ , τ ] since ∀i :

π i ∈ C j =⇒ c + (τ ) -s j ∈ C j . (17) 

D. Constraint on collision avoidance

In order to avoid collisions, we want the CoM of the robot to be at least a certain distance d from each person m k in the environment:

∀k : ∥c + (τ ) -m k (τ )∥ 2 ≥ d. (18) 
If we define m k (τ ) = µ i b i (τ ) then this constraint involves, again, the quadratic polynomial

c + (τ ) -m k (τ ) = σ i b i (τ ) ∈ conv{σ i }, (19) 
where

σ i = 1 0 0 β i -µ i .
We define σ as the centroid of the control points {σ i } and B i as a ball centered at the origin with radius d + ∥σσ i ∥ 2 . We enforce the linear constraint

∀i : σ / ∈ B i , (20) 
which is a sufficient condition for the satisfaction of the nonlinear constraint (18) for all τ ∈ [τ , τ ], that is

∀i : σ / ∈ B i =⇒ ∀k : ∥c + (τ ) -m k (τ )∥ 2 ≥ d. (21) 

E. Constraint on capturability

In order to impose 0-step capturability at the end of the horizon, we conduct the last position of the Capture Point ξ N to the interior of the support polygon of the robot

ξ N (τ ) -s J ∈ P. (22) 
Given that ξ + (τ ) = 1 h/g 0 x + (τ ) we can write, once again, the quadratic polynomial

ξ N (τ ) -s J = ψ i b i (τ ) ∈ conv{ψ i }, (23) 
where ψ i = 1 h/g 0 β is J , and check the linear constraint ∀i :

ψ i ∈ P, (24) 
which is sufficient to ensure the 0-step capturability of the robot for all τ ∈ [τ , τ ] ∀i :

ψ i ∈ P =⇒ ξ N (τ ) -s J ∈ P. (25) 
F. Adapting the positions of the steps as a function of their duration Constraints ( 10), ( 14) and ( 22) are not always possible to satisfy with a single choice of s j for all values of τ . In particular, constraint [START_REF] Caron | Dynamic Walking over Rough Terrains by Nonlinear Predictive Control of the Floating-base Inverted Pendulum[END_REF] is the most restrictive as can be easily seen in Figure 2: different trajectories of the CoP for different τ do not fit all inside a single sequence of steps.

We propose to vary the positions of the steps of the robot as a linear function of τ :

(s 1 (τ ), . . . , s J (τ )). (26) 
To do so, we choose to relate the positions of the steps to the positions of the CoP by defining s j (τ ) as the centroid of P j (τ ):

s j (τ ) = 1 N j P j (τ ) + s ′ j , (27) 
where P j (τ ) is the set of all future positions of the CoP belonging to the j th future step and N j is the cardinality of this set. The free parameter s ′ j adds flexibility in the choice of the position of the footstep.

By doing this, constraint ( 8) is now a polynomial of τ (and, therefore, of the step duration) and the polynomials ( 11), (15), (23) change to

s j+1 (τ ) -s j (τ ) = γ i b i (τ ), p + (τ ) -s j (τ ) = λ ′ i b i (τ ), c + (τ ) -s j (τ ) = π ′ i b i (τ ), ξ N (τ ) -s J (τ ) = ψ ′ i b i (τ ). (28) 
Consequently, their respective sufficient conditions for feasibility become ∀i :

γ i ∈ S j , λ ′ i ∈ P, π ′ i ∈ C j , ψ ′ i ∈ P. (29) 

IV. MODEL PREDICTIVE CONTROL FOR WALKING

Having defined robust constraints with respect to an interval of τ , we can safely choose any value τ * ∈ [τ , τ ] that minimizes a given cost function. The desired behaviour of our robot, reflected in this cost function, is to: 1) keep each person in the crowd at a comfortable distance, i.e. no less than d ref from the CoM, 2) move the CoM at a reference velocity ċref , 3) keep the CoP at the center of the foot for improved balance, 4) minimize the jerk of the CoM for smoothness of its motion and regularization, 5) penalize step durations different from a given reference value 8τ ref where energy expenditure is optimal and 6) stop the robot at the end of the horizon to ensure capturability. In summary, we consider the following objectives:

o 1 : ∥c + (τ ) -m k (τ )∥ 2 ≥ d ref > d ∀k, o 2 : ċ+ (τ ) =ċ ref , o 3 : p + (τ ) -s j (τ ) =0, o 4 : ... c (τ ) = 0 , o 5 : τ = τ ref , o 6 : p N (τ ) =ξ N (τ ), (30) 
altogether as f (c + , τ, s ′ j ) ≤ q in the following OCP over a horizon of length N :

minimize c+ ,τ,s ′ j ,v ∥v∥ 2 2
subject to

f (c + , τ, s ′ j ) + v ≤ q (20), (29) τ ∈ [τ , τ ]. (31)
The function f is nonlinear with respect to τ so we apply a Newton method and consider successive linearizations. After each iteration we can adapt, for the next iteration, the interval [τ , τ ] based on the previous optimal τ * :

τ = τ * - ∆τ 2 , τ = τ * + ∆τ 2 . ( 32 
)
We propose to keep ∆τ constant. 

V. SIMULATION RESULTS

We evaluate the performance of our controller by simulating a robot and a crowd walking in opposite directions. As in [START_REF] Bohórquez | Safe navigation strategies for a biped robot walking in a crowd[END_REF], we assume that: people walk at constant velocities, they do not try to avoid the robot and collisions among people are disregarded. The parameters of the robot are specified in Table I. 

A. Typical behaviour

k {-1, -1.25, -1.5} m.s -1 ṁy k N (0, 0.2) m.s -1 Length of interval step duration ∆τ {0 , 0.5, 1, 2, 4, 8} ms 
obstacles present in the Field of View (FoV). The robot walks freely and tries to reach its reference velocity ċref making steps of nominal duration (0.8[s]). Between 2[s] and 16[s] the robot encounters people walking in opposite direction and moves backwards to avoid them. At first (between 2[s] and 3[s]) the robot only makes larger steps while maintaining its nominal step duration. However, its maximal speed under such conditions is only about -0.75m.s -1 whereas people in the crowd walk at -1.5m.s -1 . Consequently, it is forced (between 3[s] and 11[s]) to also make faster steps to be able to avoid collisions. At 11[s] the robot resumes its forward walking motion once it has overcome most people in its way. It has to stop occasionally a couple of times to walk around the last members of the crowd. From 16[s] until 20[s] the robot continues walking uninterrupted at its objective velocity.

The adaptation of [τ , τ ] allows the robot to avoid infeasibilities due to difficult collision-avoidance situations. The key here is objective o 1 : it makes the cost function take into account potential collisions in the future so that the optimal solution (c * , τ * , s * j ) moves the system away from infeasibilities.

B. Effect of the length of the interval of τ

We investigate the effect of ∆τ on the ability of the robot to avoid collisions with the crowd. We make 900 simulations A longer interval leads to a more constrained OCP that is more likely to become infeasible, which is what is shown in the left plot of Figure 4. For ∆τ ∈ {0.5, 1}[ms] this issue occurs less than 2% of the time and for ∆τ = 2[ms] this rises to 9%. When the OCP becomes infeasible we can continue executing the last computed trajectory until the OCP becomes feasible again. If this does not happen, the last computed trajectory ensures that the robot will come to a stop before any collision happens, as in [START_REF] Bohórquez | Safe navigation strategies for a biped robot walking in a crowd[END_REF].

The plot on the right of Figure 4 shows the proportion of such outcomes. No collisions occur when the speed of the crowd is less than 1.5[m.s -1 ] for any of the intervals we proposed. When the crowd reaches this speed collisions do occur: 1) with ∆τ ∈ {0.5, 1}[ms] because people move faster than what the robot can adapt its step duration; 2) with ∆τ = 8[ms], due to the high number of consecutive infeasible OCPs that make the robot stop in the middle of the walking crowd.

A choice of ∆τ = 1[ms] appears, therefore, to be the best option. The improvement in collision avoidance we obtain over a controller with fixed τ = 0.1[s], shown in Figure 4 as ∆τ = 0, is clear for the speeds of the crowd we considered.

C. Computational efficiency

The OCP (31) contains 41 decision variables. The number of constraints is proportional to the number of obstacles in the FoV (less or equal to M ). This number is multiplied by three due of the robustness we introduce using the Bernstein basis. In our simulations the total number of constraints oscillates between 500 and 900. A single iteration of this problem is solved on average in 0.29[ms] on a laptop with a 3[GHz] Intel Core i7 CPU.

VI. CONCLUSIONS

We presented a method to adapt the duration of the steps of the robot to improve its ability to avoid collisions when walking in a crowd. It is based on varying τ in a continuous manner while guaranteeing the satisfaction of nonlinear constraints at every Newton iteration. To do so, we identified bounds on the state of system for a given interval of τ and we made sure that the bounds satisfied all constraints. Solving a single carefully constructed Quadratic Program was sufficient to obtain a feasible solution. We reduced significantly the collision rate of the robot from 75% to less than 6%. In the future, we would like to apply this method to locomotion problems with multiple contacts where timing is a critical issue. APPENDIX Given a quadratic polynomial x(τ ) for τ ∈ [τ , τ ] with coordinates α = (α 0 , α 1 , α 2 ) in the monomial basis {1, τ, τ 2 }, we first find the equivalent coordinates in the normalized monomial basis {1, τ ′ , τ ′2 }, for τ ′ ∈ [0, 1], by defining τ = τ + (ττ )τ ′ and solving for all τ ′

α 0 + α 1 τ + α 2 τ 2 = α ′ 0 + α ′ 1 τ ′ + α ′ 2 τ ′2 , to obtain ⎡ ⎣ α ′ 0 α ′ 1 α ′ 2 ⎤ ⎦ = ⎡ ⎣ 1 τ τ 2 0 τ -τ 2(τ -τ )τ 0 0 (τ -τ ) 2 ⎤ ⎦ ⎡ ⎣ α 0 α 1 α 2 ⎤ ⎦ .
Then we find its coordinates β = (β 0 , β 1 , β 2 ) in the Bernstein basis {(1τ ′ ) 2 , 2τ ′ (1τ ′ ), τ ′2 } by solving, once again, for all τ ′

α ′ 0 + α ′ 1 τ ′ + α ′ τ ′2 = β 0 (1 -τ ′ ) 2 + β 1 2τ ′ (1 -τ ′ ) + β 2 τ ′2 , to obtain: ⎡ ⎣ β 0 β 1 β 2 ⎤ ⎦ = ⎡ ⎣ 1 0 0 1 1/2 0 1 1 1 ⎤ ⎦ ⎡ ⎣ α ′ 0 α ′ 1 α ′ 2 ⎤ ⎦ .
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 2 Fig.2: Future trajectories of the CoP for τ = τ (in yellow) and τ = τ (in blue). Figures show future steps that do not vary with τ (on the left) and that vary with τ (on the right). The circle represents the body of the robot, the filled rectangle is the current step, the unfilled rectangles are the previewed future steps.
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 3 Figure3shows the results obtained from one illustrative simulation. The parameters of the controller and the crowd are specified in TableII. During the first 2[s] there are no

Fig. 3 :

 3 Fig. 3: Adapting the step duration while walking in a crowd. The top subfigure shows in solid blue the x component of the steps (s x jc x ) made by the robot during the simulation. Values above and below the red line indicate forward and backward motion, respectively. The vertical dashed lines mark the instants at which steps were made. The magenta dashed lines indicate the maximal step the robot can make. The bottom subfigure shows the x component of the velocity of the robot ( ċx ) during the simulation. The magenta dashed lines indicate the maximal speed the robot can reach at a nominal step duration of 0.8[s]. The green dash-dotted line indicates the objective speed.

Fig. 4 :

 4 Fig. 4: Infeasible iterations and collision rate for different lengths of interval of τ .

TABLE I :

 I Parameters of biped robot

	Parameter	Symbol	Value	Unit
	CoM height (9)	h	0.80	m
	Feet dim. (10)	P	0.25 × 0.125	m × m
	Leg stride (14)	C j	0.30 × 0.30	m × m
	Feet separation (8)	S j	0.21	m
	Safety dist. (18)	d	1	m
	Radius of FoV	R	6	m
	Horizon length	N	18	samples
	Double supp. dur.	τ	-	s
	Single supp. dur.	7τ	-	s
	Ref. step dur. (30)	8τ ref	0.8	s
	Comfort dist. (30)	d ref	3	m
	Ref. vel. (30)	ċref	(0.5, 0)	(m.

s -1 , m.s -1 )

TABLE II :

 II Parameters of scenario A

	Parameter	Symbol	Value	Unit
	Size of crowd	M	16	persons
	Vel. of the crowd	ṁx k ṁy k	-1.5 N (0, 0.4)	m.s -1 m.s -1
	Length of interval of step duration	∆τ	5	ms

TABLE III :

 III Parameters of scenario B

	Parameter	Symbol	Value	Unit
	Size of crowd	M	16	persons
	Vel. of the crowd	ṁx		
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