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The purpose of this paper is to discuss some recent developments concerning the numerical simulation of space and time fractional Schrödinger and Gross-Pitaevskii equations. In particular, we address some questions related to the discretization of the models (order of accuracy and fast implementation) and clarify some of their dynamical properties. Some numerical simulations illustrate these points.

Introduction

The development of fractional partial differential equations (PDEs) has grown impressively during the last few years, because of the huge potential of emerging applications in science. In particular, some important impacts concern fractional quantum dynamics based on the space or/and time Fractional Schrödinger equation and its nonlinear version (SFNLSE or TFNLSE) [START_REF] Achar | Time fractional Schrödinger equation revisited[END_REF][START_REF] Bao | Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars[END_REF][START_REF] Bhatti | Fractional Schrödinger wave equation and fractional uncertainty principle[END_REF][START_REF] Carusotto | Quantum fluids of light[END_REF][START_REF] Dong | Space-time fractional Schrödinger equation with time-independent potentials[END_REF][START_REF] Elgart | Mean field dynamics of boson stars[END_REF][START_REF] Fröhlich | Effective dynamics for boson stars[END_REF][START_REF] Lomin | Fractional-time quantum dynamics[END_REF][START_REF] Naber | Time fractional Schrödinger equation[END_REF][START_REF] Pinsker | Fractional quantum mechanics in polariton condensates with velocity-dependent mass[END_REF][START_REF] Wang | Generalized fractional Schrödinger equation with space-time fractional derivatives[END_REF]. The fractional nonlinear Schrödinger equation is used to describe the nonlocal phenomena in quantum physics and to explore the quantum behaviors of either long-range interactions or time-dependent processes with many scales [1, 45, 46, 48-50, 58, 64, 74, 81, 82]. For example, FNLSE arise in the modeling of quantum fluids of light [START_REF] Carusotto | Quantum fluids of light[END_REF], boson stars [START_REF] Bao | Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars[END_REF][START_REF] Elgart | Mean field dynamics of boson stars[END_REF][START_REF] Fröhlich | Effective dynamics for boson stars[END_REF] and polariton condensates [START_REF] Pinsker | Fractional quantum mechanics in polariton condensates with velocity-dependent mass[END_REF]. Some analytical and approximate solutions have been considered e.g. for the TFSE [START_REF] Khan | Approximate solutions to time-fractional Schrödinger equation via homotopy analysis method[END_REF][START_REF] Odibat | Analytic study on time-fractional Schrödinger equations: exact solutions by GDTM[END_REF]. The complexity of FNLSE with different potentials and nonlinearities requires the development of efficient and accurate numerical simulations [START_REF] Bhrawy | A fully spectral collocation approximation for multidimensional fractional Schrödinger equations[END_REF][START_REF] Duo | Mass conservative method for solving the fractional nonlinear Schrödinger equation[END_REF][START_REF] Garrappa | Solving the time-fractional Schrödinger equation by Krylov projection methods[END_REF][START_REF] Hicdurmaz | A stable numerical method for multidimensional time fractional Schrödinger equation[END_REF][START_REF] Khaliq | A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations[END_REF][START_REF] Kirkpatrick | Fractional Schrödinger dynamics and decoherence[END_REF][START_REF] Li | The numerical computation of the time-fractional linear Schrödinger equation on unbounded domain[END_REF][START_REF] Liang | The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations[END_REF][START_REF] Mohebbi | The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics[END_REF][START_REF] Wei | Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation[END_REF] to go further.

The aim of the paper is not to review and compare all the numerical methods that have been designed during the last years for the SFNLSE and TFNLSE but rather to discuss some developments of efficient, accurate, stable and physically relevant numerical schemes through examples, most particularly regarding the dynamical laws for FNLSE where many questions remain open. For the integer order NLSE, the picture is now pretty clear [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF] and the development of high-order schemes follow a welldefined route, in particular concerning the discrete dynamical laws that a numerical scheme should mimic regarding the continuous physical equations. Concerning the Gross-Pitaevskii equation (GPE) arising in Bose-Einstein Condensation (BEC) [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF] as a generalization of the NLSE, numerous extensions to relevant physical situations are now clarified [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Antoine | Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF] (multi-components, nonlocal nonlinear interactions,...). For the fractional case, the situation is more complicated and still needs to be analyzed deeply. The aim of this paper is to contribute to the topic, by discussing the question of the dynamical laws that the space or time fractional NLSE/GPE should fulfill to yield correct physical solutions, while being efficient, accurate and stable. The schemes used here have mainly been designed by the authors and serve as examples to illustrate the purpose. Finally, the paper can be seen as a complement of [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF] while being much more prospective and does not pretend to be a review paper.

The plan of the paper is the following. In Section 2, we recall the main results concerning the features of the most popular schemes for the standard NLSE/GPE. In Section 3, we develop the space fractional NLSE/GPE, some of its properties, the numerical schemes leading to a fast implementation with coherent physical features, and finally provide some numerical examples. In Section 4, we consider the TFNLSE and discuss the dynamical laws. This case is the most difficult to analyze since only a few theoretical results are available. Then, we explain some fast evaluation schemes for the TFNLSE and report some illustrative examples to address the difficult issue of the dynamical laws that can be expected at the discrete level, according to the underlying fractional equation. We finally end the paper with a conclusion and draw a few perspectives in Section 5.

The standard NLSE/GPE

Integer-order models and dynamical properties

We start by considering the following time-dependent cubic NLSE [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Sulem | The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse[END_REF] i∂ t ψ(t, x) = -1 2 ∆ + V (x) + β|ψ(t, x)| 2 ψ(t, x), x ∈ R d , t > 0, (2.1)

ψ(t = 0, x) = ψ 0 (x), x ∈ R d . (2.2) 
In the above equations, i = √ -1 is the complex unit, t is the time variable, x ∈ R d is the spatial variable (for d = 1, 2, 3), ψ := ψ(t, x) is the unknown complexvalued wave function, ∆ = ∇ 2 is the usual Laplace operator in dimension d (and ∇ the gradient operator) and ψ 0 := ψ 0 (x) is a given complex-valued initial data. The real-valued external potential function V := V (x) is given and its definition is related to the underlying application. For instance, for BEC, it can be chosen as a harmonic confining trap, an optical lattice potential or even a quadratic-plus-quartic function [START_REF] Huang | A Bloch decomposition based numerical method for quantum dynamics in periodic potentials[END_REF][START_REF] Huang | Numerical simulation of the nonlinear Schrödinger equation with multidimensional periodic potentials[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]; for nonlinear optics applications, it could be set as an attractive potential. The potential function V may also depend on the time variable t or can even be stochastic. The standard cubic nonlinearity involves the density function ρ := |ψ| 2 := ψ ψ, the parameter β being the nonlinearity strength [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF] (positive for a repulsive/defocusing interaction and negative for an attractive/focusing interaction) and ψ the complex conjugate of the wave function ψ. Other local nonlinearities are used in nonlinear optics, i.e. cubic-quintic nonlinearity or saturation of the intensity nonlinearity [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Bao | Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation[END_REF], or even nonlocal nonlinearities like for dipolar gazes [START_REF] Bao | Dimension reduction of the Schrödinger equation with Coulomb and anisotropic confining potentials[END_REF]. The cubic NLSE (2.1) is also called the Gross-Pitaevskii Equation (GPE) in the framework of BEC [START_REF] Antoine | Modeling and Computation of Bose-Einstein Condensates: Stationary States, Nucleation, Dynamics, Stochasticity[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF].

Important dynamical properties are verified for the solution ψ of (2.1). Here we mention the most important ones that are also hopefully expected to be fulfilled at the discrete level to get some robust numerical methods. The integer-order NLSE (2.1) is a dispersive PDE that is time reversible, i.e. it is unchanged under the change of time variable t → -t, and next taking the conjugate into the equation. A second crucial property is gauge invariance, that is, if V → V + C (C ∈ R), then the solution ψ → ψe -iCt implies that the density ρ = |ψ| 2 is unchanged. The NLSE (2.1) conserves some quantities over the time, such as the mass and energy [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Cazenave | Semilinear Schrödinger Equations[END_REF][START_REF] Sulem | The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse[END_REF], for t ≥ 0,

N (t) := ψ(t, •) 2 2 = R d |ψ(t, x)| 2 dx ≡ R d |ψ(0, x)| 2 dx := N (0), (2.3) 
E 2 (t) := R d 1 2 |∇ψ(t, x)| 2 + V (x)|ψ(t, x)| 2 + β 2 |ψ(t, x)| 4 dx ≡ E 2 (0). (2.4)
In the free-potentiel situation, i.e. V (x) ≡ 0, the momentum and angular momentum are conserved [START_REF] Sulem | The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse[END_REF]. The NLSE (2.1) admits the plane wave solution as

ψ(t, x) = Ae i(k•x-ωt)
, where the time frequency ω, amplitude A and spatial wave number k satisfy the dispersion relation

ω = |k| 2 2 + β|A| 2 . (2.5) 
More dynamical properties of the NLSE (2.1) such as the well-posedness and finite time blow-up and the properties of its solitary solutions in 1d can be found in [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation[END_REF][START_REF] Cazenave | Semilinear Schrödinger Equations[END_REF][START_REF] Sulem | The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse[END_REF] and references therein.

Overview of popular numerical schemes

To numerically simulate the dynamical system (2.1), the full-space problem usually is truncated suitably so that the perturbation of the solution at the boundary is negligible. This results therefore in an initial boundary-value problem. In this paper, we restrict ourselves to consider the case where the solution is confined within domain

D :=]a; b[ d .
This is a standard situation, particularly for BEC, where the potential is strongly confining. Therefore, the choice of the boundary condition (BC) does not essentially modify the solution if D is large enough. The specific BCs are chosen according to the spatial discretization scheme one uses. More precisely, when a second-order finite-difference (FD) scheme is applied (see subsection 4.2), we impose a homogeneous Dirichlet BC. For the Fourier pseudospectral (SP) scheme (see subsection 3.2), we will use a periodic BC. In addition, if the solution ψ is not confined in D, i.e., ψ can strike the boundary, then much more complicated BCs are required, such as the transparent, artificial and absorbing BCs as well as perfectly matched layers (see references [START_REF] Antoine | A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations[END_REF][START_REF] Antoine | A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations[END_REF][START_REF] Zheng | A perfectly matched layer approach to the nonlinear Schrödinger wave equation[END_REF] for the integer order Schrödinger equations and [START_REF] Zhang | Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain[END_REF] for fractional order problems). However, this is out of the scope of the current paper.

Considering now the time approximation schemes for the Schrödinger equation, it is well-known that building schemes that preserve at the discrete level the physical properties discussed above in subsection 2.1 is nontrivial. We do not develop here a full discussion and rather choose to report in Table 1 the conclusion from [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF] for four specific schemes (where the discretization of the physical quantities must be suitably defined thanks to the approximation scheme). TSSP (respectively TSFD) refers to the second-order Strang Time Splitting scheme with pseudospectral SP [START_REF] Bao | On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime[END_REF][START_REF] Bao | Numerical study of time-splitting spectral discretization of nonlinear Schödinger equations in the semi-classical regimes[END_REF][START_REF] Besse | Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation[END_REF][START_REF] Lubich | On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations[END_REF] (respectively second-order FD) approximation in space. CNFD and ReFD are related to the second-order Crank-Nicolson (CN) and Relaxation schemes [START_REF] Besse | A relaxation scheme for nonlinear Schrödinger equation[END_REF] with FD.

Let us now discuss the convergence properties of the various schemes as well as some of the implementation issues, taking the one-dimensional case to explain the technical details. We assume here that we discretize in space with J -1 equally spaced interior points, i.e. x j = jh x , 0 ≤ j ≤ J (with x 0 = a and x J = b) in ]a; b[ (the extension to the d-dimensional situation is direct.) The spatial mesh size is then h = h x = (b -a)/J. In practice, we wish to compute the numerical solution from t = 0 to a maximal computational time t = T . Let us introduce the N + 1 uniformly distributed discrete times (t n ) 0≤n≤N such that: t n = n∆t, for n = 0, ..., N , with ∆t := T /N . The four schemes are unconditionally stable, i.e. there is no Courant-Friedrichs-Lewy (CFL) condition involving h and ∆t. In addition, the schemes are all second-order in time, and in space second-order for FD or spectral for SP.

The only fully explicit scheme is TSSP, where the nonlinearity and potential terms can be directly integrated in time, leading then to diagonalize the remaining freespace linear Schrödinger operator through the FFT (see also subsection 3.2) at a computational cost O(J d log J). In terms of memory storage, we need the values of the solution (ψ n j ) 0≤j≤J (with ψ n j ≈ ψ(x j , t n ), and ψ n ≈ ψ(•, t n )) only at time t n since no time memory effect is involved into the equation (indeed, i∂ t is a local operator). TSFD and ReFD are linearly implicit schemes since the nonlinearity is made explicit. Hence, each time step requires to store and solve the associated linear system, i.e. corresponding to O(J d ) coefficients to store and to O(J d log J) operations with an adapted fast linear algebra solver for structured systems. Of course, the solution must also be stored at time t n . Finally, since the CNFD scheme is fully implicit, each time step requires the solution to a nonlinear system that solved by iterative methods. As a consequence, the computational cost is clearly much larger than O(J d ), while the memory storage remains O(J d ). Table 1 

(J d ) O(J d ) O(J d ) O(J d ) Computational Cost O(J d log J) O(J d ) 2 O(J d log J) 3 O(J d log J) 4
Table 1. Integer order NLSE : physical/numerical properties of various numerical methods in the ddimensional case.

Let us remark that high-order TSSP schemes [START_REF] Bao | A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates[END_REF][START_REF] Shen | Spectral Methods. Algorithms, Analysis and Applications[END_REF][START_REF] Thalhammer | Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations[END_REF] can also be built for the NLSE/GPE. Nevertheless, these approaches do not always apply for some equations, e.g. when the system is non-autonomous. Recent high-order schemes (exponential integrators [START_REF] Besse | High-order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose-Einstein condensates[END_REF][START_REF] Thalhammer | High-order exponential operator splitting methods for time-dependent Schrödinger equations[END_REF][START_REF] Thalhammer | A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations[END_REF], IMEXSP [START_REF] Antoine | High-Order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF]...) with time-stepping techniques have been designed to get new efficient solvers that could be combined with pseudospectral approximation schemes. We also note that ReFD can be extended to include the pseudospectral approximation, resulting in the ReSP scheme given in [START_REF] Antoine | Perfectly matched layers and pseudospectral schemes for the dynamics of Gross-Pitaevskii equations with rotating term[END_REF]. When developing the ReSP method, each time step t n requires the solution to a n-dependent linear system that can be easily solved by combining an iterative Krylov subspace solver (GMRES) and an adapted preconditioner. From the analysis above, we see that TSSP provides a suitable way to solve the NLSE.

The space FNLSE/FGPE

Space fractional models and dynamical properties

We consider now the specific Space Fractional NLSE (SFNLSE )

i∂ t ψ(t, x) = 1 2 (-∆) s + V (x) + β|ψ(t, x)| 2 ψ(t, x). (3.6)
This equation is called SFGPE in the framework of the GPE for BECs. The real-valued parameter s > 0 is the space fractional order defining the nonlocal dispersive interaction. The fractional dispersion is called superdispersion (respectively subdispersion) for s > 1 (respectively s < 1) [START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF]. The fractional kinetic operator is defined via a Fourier integral operator

(-∆) s ψ = 1 (2π) d R d ψ(k) |k| 2s e ik•x dk, (3.7) 
where the Fourier transform is

ψ(k) = R d ψ(x)e -ik•x dx.
For s = 1, the SFNLSE (3.6) simplifies to the standard cubic NLSE (2.1). A more general form of (3.6) can be found in [START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF] where a nonlocal nonlinear interaction term given by a convolution kernel U (corresponding to a Coulomb or dipolar interaction) is added to the cubic nonlinearity, the Laplace operator involves a mass term m and finally a rotation term -ΩL z ψ (where L z = -i(x∂ y -y∂ x ) is the z-component of the angular momentum, Ω representing the rotating frequency) is included into the equation. More precisely, the system writes (with λ ∈ R)

i∂ t ψ(t, x) = 1 2 -∆ + m 2 s + V (x) + β|ψ| 2 + λΦ(t, x) -ΩL z ψ(t, x), (3.8) Φ(t, x) = U * |ψ(t, x)| 2 , x ∈ R d , t > 0, d ≥ 2. (3.9)
For (3.6) and (3.8)-(3.9), the mass conservation N given by (2.3) still holds. We can also define the conservation of a fractional energy E s as

E s (t) = R d 1 2 ψ -∇ 2 +m 2 s ψ+V |ψ| 2 + β 2 |ψ| 4 + λ 2 Φ|ψ| 2 -Ω ψL z ψ dx ≡ E s (0). (3.10)
We remark that m = 0 and the terms λ and Ω in (3.10) shall be omitted if d = 1. The equation is clearly still time reversible and gauge invariant. In addition, the dispersion relation (for V = 0) now reads as

ω = |k| 2s 2 + β|A| 2 . (3.11)
In the case of (3.8)-(3.9), extensions of some standard dynamical laws (mainly related to the angular momentum expectation and center of mass) have been stated in [START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF] for some values of s. Nevertheless, some questions still remain open such as the dynamical laws of the center of mass (for s > 1) and condensate widths, the well-posedness of the SFNLSE with general s and attractive interaction (i.e. β < 0).

Numerical schemes and their efficient implementation

From the conclusion of subsection 2.2, a natural scheme for solving (3.6) is to use an adapted TSSP scheme since the space fractional operator (-∆) s is naturally represented through an inverse Fourier transform as a pseudodifferential operator. Since the physics is confined within a finite computational domain, then periodic BCs can be set on the boundary. From t = t n to t = t n+1 := t n + ∆t and for the one-dimensional case (d = 1, the extension being direct to d ≥ 2), we solve the system in two steps. First, one considers

i∂ t ψ(t, x) = V (x) + β|ψ| 2 ψ(t, x), x ∈]a; b[, t n ≤ t ≤ t n+1 , (3.12) 
for a time step ∆t, and next we solve

i∂ t ψ(t, x) = 1 2 (-∂ xx ) s ψ(t, x), x ∈]a; b[, t n ≤ t ≤ t n+1 , (3.13) 
with periodic BCs at {a; b} for the same time step. The linear subproblem (3.13) is discretized in space by the Fourier pseudo-spectral method and integrated in time exactly in the Fourier space. Similarly to s = 1, the nonlinear subproblem (3.12) preserves the density, i.e. |ψ(t,

x)| 2 ≡ |ψ(t = t n , x)| 2 = |ψ n (x)| 2 , leading to ψ(t, x) = e -i[V (x)+β|ψ n (x)| 2 ](t-tn) ψ n (x), x ∈]a; b[, t n ≤ t ≤ t n+1 . (3.14)
Let us introduce J as an even positive integer and µ = 2π /(b -a), for -J 2 ≤ ≤ J 2 -1. We denote by ψ n the numerical solution at time t = t n , with components ψ n j , 0 ≤ j ≤ J, for the initial data ψ 0 = (ψ 0 (x j )) 0≤j≤J . A second-order TSSP scheme for solving (3.6) is

ψ (1) j = J/2-1 =-J/2 e -i∆t 4 |µ | 2s (ψ n ) e iµ (xj-a) , (3.15) 
ψ (2) j = ψ (1) j e -i∆t[V (xj)+β|ψ (1) j | 2 ] , (3.16 
)

ψ n+1 j = J/2-1 =-J/2 e -i∆t 4 |µ | 2s (ψ (2) ) e iµ (xj-a) , (3.17) 
for 0 ≤ j ≤ J and n ≥ 0. Here, (ψ n ) and (ψ (2) ) are the discrete Fourier series coefficients of ψ n and ψ (2) , respectively. The TSSP scheme (3.15)-(3.17) for s inherits of the properties for s = 1 given in Table 1 and can be extended to high-order timesplitting schemes.

The extension to the general system (3.8)-(3.9) is developed in [START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF]. It essentially needs to take care about the efficient spectral approximation of the nonlocal nonlinear interaction term (based on a Gaussian-Sum evaluation) and the elimination of the rotating term through a rotating Lagrangian coordinates transformation. This latter modification results in the appearance of a new time-dependent potential which must be integrated numerically in the TSSP scheme. Let us finally remark that ReSP could also be extended to the SFNLSE, and that, more generally, any well-designed highorder time integrator (TSSP, IMEXSP...) could be applied here.

Numerical examples

In this section, we consider the effect of the fractional order s on the dynamics of the SFNLSE for various situations. We only show the results in 1d and 2d. For d = 1, 2, the potential, computational domain and time step are chosen as

V (x) = 1 2 γ 2 x x 2 , d = 1, γ 2 x x 2 + γ 2 y y 2 , d = 2, D = - 64 d , 64 
d d , ∆t = 10 d-5 . (3.18)
Moreover, we take the mesh size h and initial data ψ 0 as

h = h x = 1 64 , d = 1, h = h x = h y = 1 16 , d = 2, ψ 0 (x) = φ s0 gs (x -x 0 ), (3.19) 
where φ s0 gs is the ground states (gs) of the SFNLSE (3.6) (if d = 1) and/or (3.8) (with m = λ = 0, if d = 2) with potential given by V (x) (3.18) and fractional order s 0 . The ground states can be computed either by the popular gradient flow method [START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars[END_REF][START_REF] Bao | Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT[END_REF] or the recently developed conjugated gradient flow approach [START_REF] Antoine | Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method[END_REF]. Here, we apply the method proposed in [START_REF] Antoine | On the ground states and dynamics of space fractional nonlinear Schrödinger/Gross-Pitaevskii equations with rotation term and nonlocal nonlinear interactions[END_REF].

Example 3.1. Here, we consider a simple 1d case to show the difference of dynamics for various fractional powers s. For d = 1, we take γ x = 1 in (3.18) and β = 250 in (3.6). We consider two cases of initial data ψ 0 (x) (see Eq. (3.19)):

Case 1. Fix s 0 = 1 and x 0 = 0, i.e., always take the initial data as the ground states of classical NLSE, then only vary s. Case 2. Take s 0 = s, and x 0 = 8, i.e., we take the initial data as the ground states of the SFNLSE with initial center shifted to x 0 . Then, we consider the dynamics for different fractional orders s.

All the ground states are computed by using the preconditioned nonlinear conjugate gradient method developed in [START_REF] Antoine | Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method[END_REF], eventually adapted to the SFNLSE. Figs. 1 and2 show the evolution of the density |ψ| 2 , the mass N (t) and the energy E s (t) for different fractional orders s in Cases 1 and 2. From these experiments and others not shown here for brevity, we could see that: 1) The mass and energy are conserved very well during the dynamics, for all the cases; 2) The fractional order s affects the dynamics of the density |ψ| 2 significantly and qualitatively (cf. Fig. 1). Oscillations usually arise during the dynamics, and would sometimes turn to a chaotic dynamics for long-time simulations; 3) When s is larger, one needs larger domain sizes to well-resolved the solution in phase space, while a smaller mesh size h is needed if s is smaller; 4) For a center-shifted initial profile, the larger s is, the faster the center of mass oscillates (cf. Fig. 2). Again, for a larger s, oscillation of the density occurs and chaotic dynamics arises (cf. Fig. 2 gs as Type 2 and set x 0 = (0, 0) T . We perturb the trapping frequency in the y-direction, i.e., we set γ y = 1.3. The other parameters are kept unchanged. Case 6. Same as Case 5, but now perturb the trapping frequency in both x and y-directions, i.e., we set γ x = γ y = 1.3.

Figs. 3 iii) and iv) show the evolution of the mass N (t) and the energy E s (t), while Fig. 4 shows the contour plots of the density |ψ(x, t)| 2 at different times for Case 1 to 6. From these figures and other experiments not shown here for the sake of brevity, we could see that: 1) The masses and total energies are conserved well for all cases;

2) The fractional order s affects the dynamics significantly and qualitatively. For the Type 1 initial data, when s < 1 (subdispersion), the vortex lattice is more condensed (i.e. the compact support of the density is smaller than the initial setup), and rotates with breather-like dynamics. On the other hand, when s > 1 (superdispersion), the vortex lattice is less condensed and similarly rotates with breather-like dynamics. The structure of the vortex lattice is destroyed although some symmetric properties of the density are still kept for long time dynamics (cf. Figs 4 (a)-(c)). Eventually, a chaotic dynamics and even a turbulent behaviour arises for most cases; 2) For Type 2 initial data, the ring-structure is destroyed if either the initial center of mass is shifted or the trapping potential are perturbed asymmetrically (cf. Figs 4 (d)-(e)). On the contrary, if only and symmetrically the trapping potential are perturbed, the ring-structure will be kept and the ring undergo a breather-like dynamics (cf. Fig. 4 (f)), similar as the dynamics in standard NLSE (i.e. s = 1). Based on all these examples, we conclude that the dynamics of a fractional BECs modeled by the SFNLSE can be deeply affected by the fractional power s, depending on the sub-or superdispersion situation. 

The time FNLSE/FGPE

Time fractional models and dynamical properties

We consider now the general Time-Fractional NLSE (TFNLSE) given by

(γ R + iγ I )(i C 0 D t ) α ψ(t, x) = - 1 2 ∆ψ + V (x)ψ + β|ψ| 2 ψ, x ∈ R d , t > 0, (4.20) 
with initial data ψ(0, x) = ψ 0 (x). The operator C 0 D α t denotes the Caputo fractional derivative of order α (0 < α < 1) with respect to t [START_REF] Podlubny | Fractional Differential Equations[END_REF] and defined by

C 0 D α t ψ(t, x) = 1 Γ(1 -α) t 0 1 (t -u) α ∂ψ(u, x) ∂u du, 0 < α < 1, (4.21) 
where Γ(•) is the Gamma special function. To define a general setting, we introduce a complex-valued coefficient in front of the fractional derivative, i.e. (γ R + iγ I ), where γ R > 0 and γ I ≥ 0. The reason is to get a unified writing of the various models that can be met in the literature, like the following one introduced in [1]

i( C 0 D t ) α ψ(t, x) = - 1 2 ∆ψ + V (x)ψ + β|ψ| 2 ψ, (4.22) 
by choosing γ R + iγ I = i 1-α , and seen as a modified version of Naber model's [START_REF] Naber | Time fractional Schrödinger equation[END_REF] (

i C 0 D t ) α ψ(t, x) = - 1 2 ∆ψ + V (x)ψ + β|ψ| 2 ψ, (4.23) 
corresponding to γ R = 1 and γ I = 0. Here, we set ( C 0 D t ) α = C 0 D α t . Therefore, one can interpret (4.22) as an extension of (4.23) with a dissipative term (up to a multiplicative constant) since indeed γ R = cos((1 -α)π/2) > 0 and γ I = sin((1 -α)π/2) ≥ 0, for 0 < α < 1. This generalizes the standard dissipative form of the GPE [START_REF] Tsubota | Vortex lattice formation in a rotating Bose-Einstein condensate[END_REF] which is used in quantum turbulence.

In [START_REF] Dong | Space-time fractional Schrödinger equation with time-independent potentials[END_REF], the authors prove that there is no conservation law for the linear version of (4.23) (i.e. for β = 0). In particular, for 0 < α < 1, they obtain that lim t→+∞

N (t) = 1 α 2 > 1, (4.24) 
which means that particles are created during the fractional dynamical process (extracted from the confined potential field). In addition, they show that the energy E 2 (t) goes to a limiting value when t tends towards +∞, and is given through averaging. Therefore, since (4.22) can be seen as a version of (4.23) with dissipative term, one can expect that inversely a certain amount of particles is absorbed when β = 0, leading then to a loss of mass and a decay of the energy. To the best of our knowledge, no general result is available for the nonlinear case where probably many possible situations can arise (see subsection 4.3 for some numerical illustrations depending on the models and assumptions).

Concerning the dispersion relation, if one uses a travelling plane wave ψ(t, x) = Ae i(k•x-ωt) , and since one gets

( C 0 D t ) α (Ae i(k•x-ωt) ) = Ae ik•x ( C 0 D t ) α (e -iωt )
and

( C 0 D t ) α (e -iωt ) := -iωt 1-α E 1,2-α (-iωt),
where E a,b is the two-parameter Mittag-Leffler special function [START_REF] Haubold | Mittag-Leffler functions and their applications[END_REF] with parameters (a, b) := (1, 2 -α), then the dispersion relation writes

-(γ R + iγ I )i 1+α ωt 1-α E 1,2-α (-iωt)e iωt = |k| 2 2 + β|A| 2 , (4.25) 
which simplifies to the standard dispersion relation for α = 1. Equation (4.25) is timedependent and not easy to understand at first sight. Let us nevertheless remark that one gets the asymptotic formula for the Mittag-Leffler functions

E a,b (z) = 1 a z (1-b)/a e z 1/a - N * r=1 1 Γ(b -ar) 1 z r + O( 1 z N * +1 ), for |z| → ∞, | arg z| ≤ µ,
where π/2 < µ < π and N * ∈ N * and N * > 1. In our situation, a = 1, b = 2 -α and z := -iωt, which means that | arg z| = π/2. As a consequence, we obtain the following asymptotic dispersion formula

(γ R + iγ I )ω α = |k| 2 2 + β|A| 2 , (4.26) 
which now clearly translates the time fractional behavior of the equation. With the substitution ψ → ψe -iCt and from the Leibniz rule for Caputo fractional derivatives [START_REF] Podlubny | Fractional Differential Equations[END_REF] given as an infinite series expansion, the gauge change property does not hold if α = 1. In addition, the equation is not a priori time reversible, in particular because of the dissipation term that may appear. From the discussion above, we see that the situation still needs to be clarified to understand which physical dynamical laws/properties a good discrete scheme should fulfill to be acceptable. This is probably one interesting point to investigate deeper in the future and that will be discussed in subsection 4.3 through numerical simulations. Before that, we introduce in subsection 4.2 some discretization schemes as well as their efficient implementation, most particularly regarding the computational cost, memory storage and order of accuracy.

Numerical schemes and their efficient implementation

As in the previous sections, we assume that we can restrict the computational domain to a finite box D :=]a; b[ with suitable boundary conditions (homogeneous Dirichlet/Neumann or periodic boundary conditions).

Before developing some discretization schemes for the full fractional system (4.20), we first address the problem of designing fast evaluation schemes for the fractional Caputo derivative. This operator depends on the history information and various discretization schemes can be developed, such as the L1-approximation [START_REF] Langlands | The accuracy and stability of an implicit solution method for the fractional diffusion equation[END_REF][START_REF] Li | Numerical analysis and physical simulations for the time fractional radial diffusion equation[END_REF][START_REF] Lin | Finite difference/spectral approximations for time-fractional diffusion equation[END_REF][START_REF] Sun | A fully discrete difference scheme for a diffusion-wave system[END_REF] given at time t n by

C 0 D α tn ψ n = ∆t -α Γ(2 -α) n k=1 a n-k (ψ k -ψ k-1 ), (4.27)
where

a k = (k + 1) 1-α -k 1-α (k ≥ 0). If ψ ∈ C 2 ([0, T ]
), the truncation error satisfies [START_REF] Lin | Finite difference/spectral approximations for time-fractional diffusion equation[END_REF][START_REF] Sun | A fully discrete difference scheme for a diffusion-wave system[END_REF]]

| C 0 D α tn ψ n -C 0 D α tn ψ n | ≤ C∆t 2-α . ( 4 

.28)

A high-order scheme for the Caputo derivative is the L2-1 σ formula proposed in [START_REF] Alikhanov | A new difference scheme for the time fractional diffusion equation[END_REF].

The scheme is approximated at the time point t n+σ , with σ = 1 -α/2, by

H D α t ψ n+σ = 1 Γ(1 -α) n k=1 tk tk-1 (Π 2,k ψ(s)) (t n+σ -s) α ds + tn+σ tn (Π 1,n ψ(s)) (t n+σ -s) α ds , (4.29)
where Π 2,n ψ(t) and Π 1,n ψ(t) are the quadratic and linear interpolations given by

Π 2,n ψ(t) = ψ n-1 (t -t n )(t -t n+1 ) 2∆t 2 -ψ n (t -t n-1 )(t -t n+1 ) ∆t 2 + ψ n+1 (t -t n-1 )(t -t n ) 2∆t 2 , Π 1,n ψ(t) = ψ n t n+1 -t ∆t + ψ n+1 t -t n ∆t .
As shown in [START_REF] Alikhanov | A new difference scheme for the time fractional diffusion equation[END_REF] under the assumption that ψ ∈ C 3 ([0, T ]), the truncation error satisfies

C 0 D α t ψ(t n+σ ) = H D α t ψ n+σ + O(∆t 3-α ), n = 0, 1, • • • , N -1.
From the approximation (4.27), one can see that evaluating the Caputo fractional derivative requires the storage of all the discrete past values of the unknown wave function ψ, i.e. ψ 0 , ψ 1 , • • • , ψ n , and O(n) flops at the n-th time step and for each spatial grid point x j , where j = 0, • • • , J. Thus, in the one-dimensional case (i.e. d = 1), the average storage is O(N J) and the total computational cost is O(N 2 J), which is clearly much larger than for the standard case (see Table 1). As a consequence, this is a severe limitation for the long-time simulation of the TFNLSE, most particularly for higher dimensional problems since the number of grid points then grows as J d . To reduce both the storage and computational cost, fast evaluation algorithms of the Caputo derivative can be built [START_REF] Jiang | Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations[END_REF]. The main idea of the acceleration method is to split the Caputo derivative into the sum of a local time part and a history part

C 0 D α tn ψ = 1 Γ(1 -α) tn tn-1 ψ (u, x) (t n -u) α du + 1 Γ(1 -α) tn-1 0 ψ (u, x) (t n -u) α du := C loc (t n , x) + C hist (t n , x).
For the local part C loc (t n , x), we apply the L1-approximation, i.e.

C loc (t n , x) ≈ ψ(t n , x) -ψ(t n-1 , x) Γ(1 -α)∆t tn tn-1 1 (t n -u) α du = ψ(t n , x) -ψ(t n-1 , x) Γ(2 -α)∆t α , (4.30) 
while for the history part C hist (t n , x), we integrate by part and get

C hist (t n , x) = 1 Γ(1 -α) ψ(t n-1 , x) ∆t α - ψ(t 0 , x) t α n -α tn-1 0 ψ(u, x) (t n -u) 1+α du . (4.31)
The sum-of-exponentials expansion can be used to approximate the kernel t -1-α . More precisely, for a given absolute error ε and for α, there exist some positive real numbers s and w , with = 1, • • • , N exp (N exp is the number of exponentials), such that

1 t 1+α - Nexp =1 ω e -s t ≤ ε, for all t ∈ [∆t, T ]. (4.32) 
By replacing in (4.31) the kernel t -1-α by its sum-of-exponentials approximation in (4.32), we deduce

C hist (t n , x) ≈ 1 Γ(1 -α)   ψ(t n-1 , x) ∆t α - ψ(t 0 , x) t α n -α Nexp =1 ω U hist, (t n , x)   .
The term U hist, (t n , x) is defined by

U hist, (t n , x) = tn-1 0 e -(tn-u)s ψ(u, x)du,
has a simple recurrence relation

U hist, (t n , x) = e -s ∆t U hist, (t n-1 , x) + tn-1 tn-2 e -s (tn-u) ψ(u, x)du, (4.33) 
with U hist, (t 0 , x) = 0. The integral can be calculated by

tn-1 tn-2
e -s (tn-u) ψ(u, x)du ≈ e -s ∆t s 2 ∆t (e -s ∆t -1+s ∆t)ψ n-1 + (1-e -s ∆t -e -s ∆t s ∆t)ψ n-2 .

Finally, the fast approximate evaluation of the Caputo fractional derivative is given by the formula

F C 0 D α tn ψ n = ψ(t n , x)-ψ(t n-1 , x) Γ(2 -α)∆t α + 1 Γ(1-α)   ψ(t n-1 , x) ∆t α - ψ(t 0 , x) t α n -α Nexp =1 ω U hist, (t n , x)   , (4.34) 
for n > 0, and where U hist, (t n , x) can be obtained by the recurrence relation (4.33). As shown in [START_REF] Jiang | Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations[END_REF], if ψ(t) ∈ C 2 ([0, t n ]), then the truncated error is

| C 0 D α tn ψ -F C 0 D α tn ψ| ≤ C(∆t 2-α + ε). (4.35) 
For the fast evaluation of the L2-1 σ scheme, we approximate the kernel (t n+σ -s) -α , for s ∈ (0, t n ), in (4.29) and use a linear interpolation Π 1,n ψ (s), for s ∈ (t n , t n+σ ), yielding

C 0 D α t ψ(t n+σ ) ≈ 1 Γ(1 -α) tn 0 ψ (s) Nexp =1 w e -s (tn+σ-s) ds + tn+σ tn (Π 1,n ψ(s)) (t n+σ -s) α ds = Nexp =1 w Γ(1 -α) tn 0 ψ (s)e -s (tn+σ-s) ds + 1 Γ(1 -α) (ψ n+1 -ψ n ) ∆t tn+σ tn 1 (t n+σ -s) α ds = Nexp =1 1 Γ(1 -α) w V n + λa 0 (ψ n+1 -ψ n ),
where

λ = ∆t -α Γ(2 -α) , a 0 = σ 1-α , V n = tn 0 ψ (s)e -s (tn+σ-s) ds.
The history part V n can be calculated by using a recursive relation and a quadratic interpolation, namely,

V n = tn 0 ψ (s)e -s (tn+σ-s) ds ≈ tn-1 t0 ψ (s)e -s (tn+σ-s) ds + tn tn-1 (Π 2,n ψ(t)) e -s (tn+σ-s) ds = e -s ∆t V n-1 + A (ψ n -ψ n-1 ) + B (ψ n+1 -ψ n ), (4.36) 
where

A = 1 0 (3/2 -s)e -s ∆t(σ+1-s) ds, B = 1 0 (s -1/
2)e -s ∆t(σ+1-s) ds.

Overall, the FL2-1 σ formula for C 0 D α t proposed in [START_REF] Yan | Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme[END_REF] is given by

FH D α t ψ n+σ = Nexp =1 1 Γ(1 -α) w V n + λa 0 (ψ n+1 -ψ n ), (4.37) 
where, if ψ(t) ∈ C 3 ([0, T ]), an error estimate is

| C 0 D α tn ψ -F H 0 D α tn ψ| ≤ C(∆t 3-α + ε). (4.38) 
Meanwhile, the number of exponentials N exp is estimated [START_REF] Jiang | Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations[END_REF] by

N exp = O log 1 ε log log 1 ε + log T ∆t + log 1 ∆t log log 1 ε + log 1 ∆t .
For a fixed accuracy ε, we have N exp = O(log N ) for T 1 or N exp = O(log 2 N ) for T ≈ 1, where N = T /∆t. The resulting algorithm has a nearly optimal complexity, requiring O(N JN exp ) operations and a O(JN exp ) storage for solving the TFNLSE. We remark that a linear system must be solved at each time step, therefore at the same cost as for the standard case α = 1. Other efforts to speed-up the evaluation of weakly singular kernels can be found in [START_REF] Alpert | Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation[END_REF][START_REF] Ke | A fast direct method for block triangular Toeplitz-like with tridiagonal block systems from time-fractional partial differential equations[END_REF][START_REF] Lu | Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional subdiffusion equations[END_REF][START_REF] Lubich | Fast convolution for nonreflecting boundary conditions[END_REF][START_REF] Zheng | Approximation, stability and fast evaluation of exact artificial boundary condition for one-dimensional heat equation[END_REF].

Thus, we apply the L1 scheme to approximate the time-fractional Caputo derivative, the second-order central finite difference method to approximate the second-order spatial derivative ∂ xx by ∆ h , and use a linearized scheme to approximate the nonlinear term. We respectively have the direct scheme

(γ R + iγ I )(i C 0 D tn ) α ψ n j = - 1 2 ∆ h ψ n j + V j + β|ψ n-1 j | 2 ψ n j , (4.39) 
and the corresponding fast scheme

(γ R + iγ I )(i F C 0 D tn ) α ψ n j = - 1 2 ∆ h ψ n j + V j + β|ψ n-1 j | 2 ψ n j , (4.40) 
for 1 ≤ j ≤ J -1. As discussed in [START_REF] Zhang | Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain[END_REF], the convergence orders of the schemes (4.39) and (4.40) are respectively O(h 2 + ∆t) and O(h 2 + ∆t + ε), if the solution ψ is smooth enough. We point out that the choice of ε is far smaller than (h 2 +∆t) to not affect the convergence order. In addition, FFT-based pseudo-spectral schemes (SP) can also be easily adapted from Sections 2 and 3. Another possible scheme is to use the relaxation technique introduced by Li et al. in [START_REF] Li | Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations[END_REF] for the direct method

(γ R + iγ I )(i C 0 D tn ) α ψ n j = - 1 2 ∆ h ψ n j + V j + β| ψn j | 2 ψ n j , (4.41) 
and the fast scheme

(γ R + iγ I )(i F C 0 D tn ) α ψ n j = - 1 2 ∆ h ψ n j + V j + β| ψn j | 2 ψ n j , (4.42) 
with ψn j = 2ψ n-1 j -ψ n-2 j . For a smooth enough solution, the truncated errors for the schemes (4.41) and (4.42) are respectively O(h 2 + ∆t 2-α ) and O(h 2 +∆t 2-α +ε). The proof of the convergence above requires to state a nontrivial discretized fractional Gronwall inequality [START_REF] Li | Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems[END_REF].

We now consider the high-order scheme for the TFNLSE, written at time t n+σ , n = 0, 1, 2..., and for any ψ(t) ∈ C 2 ([0, t N ]), based on the approximation

ψ(t n+σ ) = σψ n+1 + (1 -σ)ψ n + O(∆t 2 ), n = 0, 1, • • • , N -1.
The time-fractional Caputo derivative is approximated by the FL2-1 σ formula and we adapt the ReFD method for the nonlinear interaction term. The TFNLSE equation is then approximated at (t n+σ , x j ) by For a smooth enough solution, the truncated error for (4.43) is O(h 2 + ∆t 2 + ε), fixing σ = 1 -α/2. Let us remark that time-splitting schemes are currently being developed for fractional PDEs [START_REF] Cao | Time-splitting schemes for fractional differential equations I: smooth solutions[END_REF]. This is probably an interesting future direction to investigate for designing fast TSSP for the TFNLSE, similarly to the schemes presented in Sections 2 and 3. We finally point out that for fractional subdiffusion problems, an essential feature is that the solution always lacks some smoothness near the initial time although it would be smooth away from t = 0 (see e.g. the discussions in [START_REF] Brunner | Numerical simulations of 2D fractional subdiffusion problems[END_REF][START_REF] Jin | An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data[END_REF][START_REF] Mustapha | An implicit finite difference time-stepping method for a subdiffusion equation with spatial discretization by finite elements[END_REF][START_REF] Sakamoto | Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems[END_REF][START_REF] Stynes | Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[END_REF]). The expected order of convergence in time [START_REF] Liao | Sharp error estimate of nonuniform L1 formula for time-fractional reaction-subdiffusion equations[END_REF] needs the use of nonuniform mesh in the temporal direction, such as a graded mesh t n = T (n∆t) γ , for a well-chosen value of the parameter γ > 0.

     (1 -σ)u n+σ j + σu n-1+σ j = β|ψ n j | 2 , (γ R + iγ I )(i F C 0 D tn ) α ψ n+σ j = - 1 2 (σ∆ h ψ n+1 j + (1 -σ)∆ h ψ n j ) + (V j + u n+σ j )(σψ n+1 j + (1 -σ)ψ n j ).

Numerical examples

Example 4.1. For our first 1d example, we consider the quadratic potential V (x) := x 2 /2 and a purely linear TFNLSE, i.e. β := 0. The initial data is taken as the ground state of the standard linear Schrödinger equation with harmonic trap: ψ 0 (x) := e -x 2 /2 /π 1/4 . The corresponding mass is then equal to 1 and the energy level is 1/2. The final time of computation is T = 100 (except for α = 0.25 where T = 800) for the bounded spatial domain D :=] -10, 10[. The discretization parameters are ∆t = 10 -3 and h = 10 -2 . We use the fast second-order scheme (4.43) (for ε = 10 -11 ). Figs. 5(a)-(c) show the evolution of the density function |ψ| 2 , its mass N and energy E 2 , for (γ R + iγ I ) = 1 (no dissipation case) and three values of the fractional power, i.e. α = 0.25, 0.5, 0.75. We observe that the Gaussian solution is modified according to α, the limit of the mass N being indeed α -2 as predicted by formula (4.24), and lim t→+∞ E 2 (t) = α -2 /2 from the numerical simulations. An approximation of the limit value of the mass can be obtained through an average over [0; T ] of the numerical masses, yielding the estimates 16.93, 4.04, 1.78 approximating the theoretical limits 16.38, 4.04, 1.78 for α = 0.25, 0.5, 0.75, respectively. We observe that the solution fluctuates according to t, gaining/loosing some mass alternatively. The solution also disperses slightly more as α goes to zero (this is more clearly seen in Example 4.2). A formal way to understand this property is by considering the dispersive relation (4.26) which can also be rewritten and expanded for large spatial frequencies |k| as

ω = |k| 2/α (2(γ R + iγ I )) 1/α (1 + 2β |k| 2 |A| 2 ) 1/α ∼ |k| 2/α (2(γ R + iγ I )) 1/α (1 + 2β α|k| 2 |A| 2 ). (4.44)
Therefore, we can roughly interpret α as s -1 in Eq. (3.11) up to a multiplicative constant (that may also be complex-valued). Then, superdispersion formally corresponds to α < 1 and subdispersion to α > 1. Nevertheless, the situation here shows that the modeling is more complex since a fractional laplacian also affects the nonlinearity, the corresponding operator acting as a fractional derivative operator for α < 1 and a regularizing integral operator for α > 1. For longer times, the solution tends to a stationary state for the TFNLSE at fixed α which is expected to be the ground state. To end this first example, we compute on Fig. 5(d) the same problem for α = 0.5 but with: (γ R + iγ I ) = i 1-α , which means that we add some dissipation to the model. Therefore, after a sufficiently long time the solution converges to zero as it can be directly observed. Example 4.2. For this second example, we consider the TFNLSE with a quadratic potential V (x) = x 2 /2, and first with a focusing cubic nonlinearity β < 0. The initial data is given by

ψ 0 (x) := A √ -β sech (A(x -x 0 ))e i(νx+θ0) , x ∈ D,
with A = 2, x 0 = ν = θ 0 = 0. In the standard situation α = 1, and without potential term i.e. V = 0, then the mass and energy can be computed analytically [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations[END_REF] as , respectively, for β = -1. As already noticed above, the superdispersion effect is visible for smaller values of α and some decoherence effect in the wave field seems to appear. In the case of superdispersion, then there is no longer a compensation between the laplacian and the nonlinear term as for the standard case, the fractional time derivative introducing some dominant dispersion thanks to (4.44). Furthermore, the energy globally grows with the time to pass from negative to positive values, E 2 being larger for a given fractional order than for the integer order case. The energy increases as α gets smaller. The behavior of the mass is difficult to predict, but the value is always smaller than for the standard case. Comparing Figs. 6(a) and 6(c), we see that the curves for the solutions are exactly the same, up to the scaling factor between the two values of β, which is also consistent with formulae (4.45) for the standard case (but with a time-dependency for the fractional situation). Fig. 6(d) finally reports the case where (γ R + iγ I ) = i 1-α for α = 0.5 and β = -1. Compared with Fig. 6(a), we clearly observe the effect of the dissipation term even if the solution is actually not zero for longer times, probably because of the nonlinear interactions.

N (t) := A √ -β , E 2 (t) := Aν 2 β + A 3 3β , ( 4 
To complete the simulations, we consider now a defocusing nonlinearity β = 1 in Figs. 7(a)-(c) for α = 0.5, 0.75 and (γ R +iγ I ) = 1 and i 1-α . The simulation parameters are the same as previously, but the computational domain is ] -15; 15[. The behavior of the solution shows again some superdispersion effects, the evolution of the mass and energy being difficult to describe at first sight. When a dissipation term is active (see Figs. 7(c)), then we see that the solution tends to zero for large enough times t (the computational domain is ] -10; 10[ here). 

Conclusion and perspectives

We proposed a few numerical methods for time or space fractional nonlinear Schrödinger equations with some applications in Bose-Einstein condensation. In particular, we focused on the physical properties that a scheme should fulfill at the discrete level. Numerical simulations illustrate the purpose of the paper, trying to highlight some issues for the time fractional case. Building accurate, efficient and stable schemes for the FNLSE remains new and open a lot of future important directions to investigate. Among them, let us mention the extension of some schemes to the FNLSE with time and space varying fractional powers [START_REF] Bhrawy | Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations[END_REF], the simulation of coupled systems of FNLSE which can also integrate some nonlocal integral interactions like dipolar or Coulomb potentials, the development of 3d parallel solvers. Finally, one important point which still needs to be deeply understood concerns the link between the physics and the fractional quantum models, most particularly for modeling BECs.
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 1 Figure 1. Density |ψ(x, t)| 2 at different times t and evolution of the mass N (t) and energy Es(t) for different values of the fractional powers s for Case 1 in Example 3.1.
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 2 Figure 2. Evolution of the density |ψ(x, t)| 2 , mass N (t) and energy Es(t) for different fractional powers s for Case 2 in Example 3.1.

Figs. 3 iCases 1 - 3 .

 313 Figs. 3 i) and ii) show the contour plot of the density |φ s0gs | 2 of these two types of ground states. Then, we consider the following six cases:Cases 1-3. Choose φ s0 gs as Type 1, let x 0 = (0, 0) T , and only change the fractional order in the SFNLSE (3.8) for the dynamics as s = 0.8, s = 1.2 and s = 1.4, respectively. The other parameters are kept unchanged. Case 4. Choose φ s0 gs as Type 2, and only shift the initial center of mass, i.e., we set x 0 = (5, 5) T . The other parameters are kept unchanged. Case 5. Choose φ s0 gs as Type 2 and set x 0 = (0, 0) T . We perturb the trapping frequency in the y-direction, i.e., we set γ y = 1.3. The other parameters are kept unchanged. Case 6. Same as Case 5, but now perturb the trapping frequency in both x and y-directions, i.e., we set γ x = γ y = 1.3.
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 334 Figure 3. Initial data of Type 1 (i)) and Type 2 (ii)) and the evolution of the energy and mass for Cases 1 to 6 in Example 3.2.
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 5 Figure 5. Evolution of the density |ψ(x, t)| 2 , mass N (t) and energy E 2 (t) for the fractional powers α = 0.25, 0.5 and 0.75, and for the linear case β = 0 for Example 4.1.

1 Figure 6 .

 16 Figure 6. Evolution of the density |ψ(x, t)| 2 , mass N (t) and energy E 2 (t) for the fractional powers α = 0.5 and 0.75 for Example 4.2 (focusing nonlinearity).

1 Figure 7 .

 17 Figure 7. Evolution of the density |ψ(x, t)| 2 , mass N (t) and energy E 2 (t) for the fractional powers α = 0.5 and 0.75 for Example 4.2 (defocusing nonlinearity).

resumes the main properties.

  

	Method	TSSP	CNFD	ReFD	TSFD
	Time Reversible	Yes	Yes	Yes	Yes
	Time Transverse Invariant	Yes	No	No	Yes
	Mass Conservation	Yes	Yes	Yes	Yes
	Energy Conservation	No	Yes	Yes 1	No
	Dispersion Relation	Yes	No	No	Yes
	Unconditional Stability	Yes	Yes	Yes	Yes
	Time Accuracy	2 nd	2 nd	2 nd	2 nd
	Spatial Accuracy	spectral	2 nd	2 nd	2 nd
	Explicit Scheme	Yes	No	No	No
	Memory Storage at tn	O			

  for s = 1.4).

		s=0.2					s=0.8					s=1.3		
				t=0					t=0					t=0
	0.09			t=4	0.09				t=3.6	0.09				t=4
				t=7					t=7					t=7
		×10 -5		t=9					t=10					t=10
	0.06	9			0.06	0.1044				0.06	0.1044			
		6				0.1038					0.1038			
	0.03	3			0.03	0.1032				0.03	0.1032			
		0				0.1026					0.1026			
	0	7.8 8.1 8.4 8.7		0	-0.8 -0.4 0 0.4 0.8		0	-0.8 -0.4 0 0.4 0.8	
	-8	0	x	8	-8		0	x	8	-8		0	x	8
		s=1.8					Es(t)			1.001		N (t)		
	0.09			t=0 t=0.88	15.8									s=0.2 s=0.8
				t=1.23										s=1.3
				t=2.17			s=0.2							s=1.8
	0.06	0.104 0.106			15.7		s=1.3 s=0.8			1				
							s=1.8							
	0.03	0.102												
		0.1												
	0	-1.2 -0.6 0 0.6 1.2		15.6					0.999				
	-8	0	x	8	0	3	t	6	9	0	3	t	6	9
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