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Abstract All characterizations of non-degenerate multivariate tail dependence structures are
both functional and infinite-dimensional. Taking advantage of the Hoeffding–Sobol decom-
position, we derive new indices to measure and summarize the strength of dependence in a
multivariate extreme value analysis. The tail superset importance coefficients provide a pair-
wise ordering of the asymptotic dependence structure. We then define the tail dependograph,
which visually ranks the extremal dependence between the components of the random vector
of interest. For the purpose of inference, a rank-based statistic is derived and its asymptotic
behavior is stated. These new concepts are illustrated with both theoretical models and real
data, showing that our methodology performs well in practice.
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1 Introduction

This paper is at the crossroads of two domains: sensitivity analysis and multivariate extreme val-
ues. This combination makes it possible to find variables or groups of asymptotically dependent
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variables, and to illustrate the asymptotic dependence structure with the use of non-oriented
graphs of dependence.

It is already possible to characterize the dependence structure using a finite number of
parameters. Since the original idea of Tiago de Oliveira (1962/63) in the bivariate case and
the name proposed by Smith (1990), many authors have studied or just used the extremal
coefficients. In dimension d, we have 2d−d−1 coefficients that, for a given subset of {1, . . . , d},
might be interpreted as the number of asymptotically independent components among this
subset. The aim of this paper is to build a second family whose pairwise version is of size
d(d− 1)/2. It is not possible to say which one is preferable to the other since they are partial
extractions of an infinite-dimensional function. Nevertheless, the illustrations in this paper
make it possible to show situations where the second family of proposed indices provides greater
nuances.

It would be untrue to say that this is the first time that the terms ‘sensitivity analysis’ and
‘extreme values’ can be found together in a research paper. We can mention, for example, the
section ”Extreme values” (Section 7) of Liu and Owen (2006). Building on the decomposition
of the variance of a well-chosen function and the notion of mean dimension, they show that
the laws of extremes cannot be Gaussian. Their work focuses on extreme values in a univariate
framework and does therefore not deal with dependence in extremes.
More generally, a sensitivity analysis is the search for the input into a system that will have the
greatest impact on the system’s output, often extremely complex. This search can be applied
to subsets of components whose variations will most significantly impact variations in output.
In other words, given a pre-established size of subset, which group of input parameters will
have the most impact on the outcome? This question, which is generally addressed using global
variances, is in fact linked to the extreme value theory if the indicator observed becomes a high
quantile or a probability of failure. We refer to the works of Owen et al. (2014), Kucherenko
and Song (2016), Sueur et al. (2017), Browne et al. (2017) and Maume-Deschamps and Niang
(2018).

In the study presented here, there is no output, only inputs: a random vector of interest,
denoted by X = (X1, . . . , Xd). For example, in a financial context, Peng and Ng (2012)
investigated the contagion between stock indices across markets. From a global viewpoint, none
of the stock markets is favored. The aim is to classify the degrees of asymptotic dependence
between these economic institutions. Another example is storms, which are characterized by
the behavior of high surge, low pressure, strong wind, storm size, angle to coast, etc. One
goal could be to compare the strength of tail dependence between surge, wind, water level and
pressure. Once again, no variable is favored by designating it as the output of a complex system
whose inputs would be the other variables mentioned. See Cai et al. (2013), Kereszturi et al.
(2016) or Mhalla et al. (2017) for such environmental considerations.

Since there is no observed output, we construct it artificially but with mathematical sig-
nificance. We apply global sensitivity analysis to the multivariate function that models the
dependence structure for multivariate extreme values, which, if unknown, has an empirical
tractable version. Indeed, under multivariate max-stable modeling, various ways to describe
the extremal dependence structure of X exist: extreme value copula, dependence functions,
intensity measure, spectral measure, etc, which obviously have strong connections. We refer to
Fougères (2004) and Segers (2012) for a comprehensive description of these notions. The focus
here is on the stable tail dependence function. See Ressel (2013) for its complete characteriza-
tion. It has some nice properties: homogeneity of order 1, convexity, identity on the axis, and
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tractable upper and lower bounds for independence and complete positive dependence respec-
tively. The restriction to the stable tail dependence function is imposed by the fact that tail
independence induces additivity properties to it. In fact, sensitivity analysis detects additivity
in the response’s structure with respect to several inputs.

The main goal of this paper is to introduce new indices, called tail superset importance
coefficients, for this type of multivariate extreme value analysis. Let ` stand for the stable tail
dependence function of X. In our setting, we only have natural entries represented by the d vari-
ables Xi jointly studied but there is no response. The idea is to define a pseudo-response such
as `(U) at some generic random vector U, with the intention of ranking dependence in the
asymptotic joint structure. Roughly speaking, our indices are derived from the decomposition
of the variance of `(U). Their definition starts from the Hoeffding–Sobol decomposition (of
the function `) that is a very well-known tool in computer experiments. See Hoeffding (1948)
for the pioneer construction and Sobol′ (1993) for its practical efficient use. The new indices
make it possible to decompose the tail dependence structure but, above all, rank the pairs of
components (or subsets with fixed size) in terms of their global contribution to tail dependence.

Furthermore, the superset importance coefficients of Hooker (2004) and Liu and Owen
(2006) are not the only tool of sensitivity analysis that we try to transpose to an extreme
value setting. We also want to highlight the features of the FANOVA graph introduced by
Muehlenstaedt et al. (2012). Applied to the stable tail dependence function, we refer to it as
the tail dependograph since it graphically represents, on an undirected but weighted graph, the
strength of asymptotic dependence within a vector. On this graph, the edge thickness between
two vertices is proportional to the force of tail dependence in the corresponding bivariate model
but also cumulates the information of the asymptotic dependence structure for any multivariate
model that contains this pair.

If instead of applying the Hoeffding–Sobol decomposition on the true (and most of the time

unknown) stable tail dependence function, its estimation ˆ̀ is used, we have a decomposition of
the estimated variance of `(U). As a consequence, we obtain an estimation of the tail superset
importance coefficients and, obviously, an estimate of the tail dependograph. The empirical
estimator of the stable tail dependence function, first proposed by Huang (1992), leads to
explicit rank-based estimators of the tail superset importance coefficients. Under a second-order
condition, similar to the setting assumed in Fougères et al. (2015), and taking advantage of the
asymptotic distributional expansion of the empirical estimator of `, we state the asymptotic
behavior of the empirical tail superset importance coefficients. Normalized versions of the new
indices are also introduced and consistent rank-based estimators are provided.

The remainder of the article is organized as follows: In Section 2, we review some tools
from global sensitivity analysis. Then, in Section 3, we derive new coefficients and dependency
graphs for extreme value analysis. In Section 4, the inference is done through a non-parametric
approach. The asymptotic behavior of these empirical indices is also explored at the end of the
section. We provide a broad numerical illustration of the new concepts in Section 5. The paper
ends with some concluding remarks and the proofs are presented in a dedicated section.

2 Background on global sensitivity analysis

Global Sensitivity Analysis is a branch of control theory and computer sciences. This type
of analysis measures how sensitive the outcome quantity f(u) is to the variation of individual
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input variables ui. A variance decomposition determines which of the multiple input parameters
are responsible for most of the variation in the outcome. This section presents an overview of
functional decomposition, computational issues and consequences in terms of variance.

2.1 The Hoeffding–Sobol Decomposition

Let d ≥ 2 be an integer and let f : Rd → R. The Hoeffding–Sobol decomposition aims at
representing f(u) as a sum of terms of increasing complexity. The name of this decomposition
arises, first, from its creation by Hoeffding (1948) in the context of U -statistics and, second,
from its use for sensitivity analysis by Sobol′ (1993).

Theorem 1 (Hoeffding–Sobol Decomposition) Let U = (U1, . . . , Ud) be a random vector
with independent margins and distribution denoted by µ = µ1 ⊗ . . . µd. For any u ∈ Rd, and
any subset I ⊆ {1, . . . , d}, uI concatenates the components of u whose indices are included
in I. Assume that f ∈ L2(µ). Then there exists a unique decomposition of the form:

f(u1, . . . , ud) = f∅ +

d∑
i=1

fi(ui) +
∑
i<j

fi,j(ui, uj) + . . .+ f1,...,d(u1, . . . , ud) (1)

where the fI : R|I| → R satisfy

E[fI(UI)|UI′ ] = 0 when I ′ = ∅ or I ′ ( I . (2)

Furthermore, the fI ’s are given explicitly by:

fI(uI) = E[f(U)|UI = uI ]−
∑
I′(I

fI′(uI′) .

In Theorem 1, we followed the presentation of Efron and Stein (1981) and we refer to their
paper for a proof.
The fI ’s are known as ANOVA terms. They can be interpreted as follows. The constant f∅ =
E[f(U)] is the global (unconditional) mean, fi(ui) = E[f(U)|Ui = ui]− f∅ represents the main
effect of component {i}, fij(ui, uj) = E[f(U)|Ui = ui, Uj = uj ]− fi(ui)− fj(uj)− f∅ captures
the second-order interaction from the pair of components {i, j}, and so on. In the previous for-
mulae, the mathematical expectation refers to the integral with respect to dµ in f∅, to ⊗t6=idµt
in the definition of fi, and to ⊗t6=i,jdµt in that of fij .

Even if f(u) involves all variables u1, . . . , ud in its definition, it is not generally equal to
the highest order interaction terms f1,...,d(u) of the Hoeffding–Sobol decomposition. Indeed,
it does not satisfy the non-simplification conditions E(f(U1, . . . , Ud)|UI) = 0 for all strict

subsets I of {1, . . . , d}. Consider, for instance, f(u1, . . . , ud) =
∏d
i=1 ui and U1, . . . , Ud be-

ing i.i.d. uniform on [0, 1]. It is then easy to check that the Hoeffding–Sobol decomposition

of f is obtained by expanding the product
∏d
i=1((ui − 0.5) + 0.5). All the terms fI(uI) =∏

i∈I(ui − 0.5)0.5d−|I| satisfy the non-simplification conditions, and we can conclude by unic-
ity. In particular, f1,...,d(u1, . . . , ud) =

∏
i=1,...,d(ui − 0.5).
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The reader is also referred to van der Vaart (1998; Section 11.4). More recently, an extension
to dependent entries was obtained by Chastaing et al. (2012) under specific conditions. Before
going further, it is important to avoid any possible confusion. Here, we only refer to the pioneer
setting where the distribution of U is a product measure. On the contrary, all the dependences
that we discuss in this paper will be stored in the function ` on which we will focus as of
Section 3.1.

2.2 A variance decomposition

The Hoeffding–Sobol decomposition also has the advantage of a variance decomposition

var(f(U)) =
∑

I⊆{1,...,d}

var(fI(UI)) .

Indeed, the property (2), which means that the orthogonal projection of the ANOVA terms
fI onto strict subspaces is zero, implies that they are non correlated (see e.g. Efron and Stein
(1981)). The variance decomposition is generally referred to with the following notation

D(f) =
∑

I⊆{1,...,d}

DI(f) (3)

where D(f) denotes the global variance var(f(U)) and DI(f) the variance corresponding to the
subset I, i.e., var(fI(UI)) or the variance of the term fI . For instance, D{i}(f) is the variance
of f(U) due to the ith component only. Similarly, D{i,j}(f) is the variance due to the combined
effect of components {i, j}.

One combination of such variances is of prime interest. It is defined by

Dsuper
{i,j} (f) =

∑
I⊇{i,j}

DI(f)

and referred to as the superset importance of the pair {i, j}. See Hooker (2004) and Liu
and Owen (2006) for further discussion. This coefficient is positive and smaller than or equal
to D(f). This index makes it possible to discover additive structures in multivariate functions.
Indeed, under continuity assumptions on µ and f , Dsuper

{i,j} (f) = 0 implies that f does not

simultaneously depend on i and j in its ANOVA decomposition and, thus, f is additive with
respect to ui and uj . Taking the decomposition of the variance D(f) into account, scaled
versions were introduced by Sobol′ (1993). The superset sensitivity indices that belong to the
interval [0, 1] are given by Ssuper

{i,j} (f) = Dsuper
{i,j} (f)/D(f).

2.3 On computational aspects

When the function of interest f is known, the Hoeffding–Sobol decomposition (1) is obviously
not necessarily derived. Let us introduce some notation. Let (e1, . . . , ed) stand for the canonical
basis of Rd. Both vectors u + (v − ui)ei and u + (v − ui)ei + (w − uj)ej are obtained from u,
with ui replaced by v and, additionally, in the second case, with uj replaced by w. We denote
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the corresponding evaluations of f at these points by Ti[f ](u, v) := f(u + (v − ui)ei), and
Ti,j [f ](u, v, w) := f(u + (v − ui)ei + (w − uj)ej). Then, from Liu and Owen (2006), we have

Dsuper
{i,j} (f) =

1

4

∫
[0,1]d+2

{f(u)− Ti[f ](u, v)− Tj [f ](u, w) + Ti,j [f ](u, v, w)}2 dµ(u)dµi(v)dµj(w) . (4)

Equality (4) is powerful. On the one hand, it provides information that is not just limited
to {i, j} but that is linked to all subsets I from {1, . . . , d} that contain this pair. On the other
hand, it does not require the knowledge of all subfunctions fI induced in the initial definition
of Dsuper

{i,j} (f). In other words, this integral representation makes it possible to compute∑
I⊇{i,j}

var(fI(UI))

without identifying the terms of the decomposition {fI , I ⊇ {i, j}}.
Again, even if the superset importance coefficient associated with any pair has an inte-

gral formula, it is not easy to compute explicitly. Hopefully, Formula (4) admits Monte Carlo
approximations as estimates. It can be written as

D̂super
{i,j} (f) =

1

4N

N∑
s= 1

(
f(u[s])− Ti[f ](u[s], v[s])− Tj [f ](u[s], w[s]) + Ti,j [f ](u[s], v[s], w[s])

)2
(5)

where all u[s], v[s], w[s] are i.i.d. random vectors or variables drawn from ⊗t=1,...,ddµt, dµi
and dµj respectively. Its statistical properties have been investigated in Fruth et al. (2014):
it is unbiased and asymptotically normal when the true value is not zero. More interestingly,
it is asymptotically efficient in a class of models with exchangeable variables, indicating that
it has the smallest within-class variance. Furthermore, D̂super

{i,j} (f) vanishes when the theoret-

ical Dsuper
{i,j} (f) is zero: the Monte Carlo error of estimation under this specific case is always

zero, which is remarkable.
Finally, the scaled version Ssuper

{i,j} (f) can also be approximated with Monte Carlo replications

by dividing D̂super
{i,j} (f) by a common estimator of the overall variance D(f).

3 New measures for extreme value analysis

The main idea of this paper is to apply the above to a functional characterization of the tail de-
pendence structure. We begin this section with some background on the stable tail dependence
function, which is additive under tail independence. We then derive both new coefficients and
a new graph for multivariate extreme value analysis. A small numerical illustration is given at
the end of this section.

3.1 The stable tail dependence function

Let X = (X1, . . . , Xd) be a multivariate vector with continuous marginal cumulative distri-
bution functions denoted by F1, . . . , Fd. When it exists, the stable tail dependence function
(s.t.d.f.) is defined at the point u = (u1, . . . , ud) by

`(u) = lim
z→∞

z
{

1− F
(
F−11 (1− u1/z), . . . , F−1d (1− ud/z)

)}
. (6)
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This function furnishes a full characterization of the extremal dependence between the compo-
nents of X. It is not the only measure to model the dependence between extreme components.
As such, it is regularly used in the literature in a modeling bid, for instance, with parametric
construction or for inference concerns. Assuming both Equation (6) and that each marginal Ft
(for t = 1, . . . , d) belongs to the domain of attraction of the Generalized Extreme Value dis-
tribution with parameters (µt, σt, ξt) is equivalent to assuming that F is in the domain of
attraction of the distribution

H(u) = exp (−` (− logH1(u1), . . . ,− logHd(ud))) (7)

with

Ht(u) = exp

(
−
(

1 + ξt
u− µt
σt

)−1/ξt)
.

For more details, we refer to de Haan and Ferreira (2006; Theorem 6.2.1, Part 2 combined with
convergence (6.2.1)) for example.
Necessary and sufficient conditions on ` to be a s.t.d.f. can be found in Ressel (2013). Only
some tractable properties will be needed here. The s.t.d.f. is continuous, convex and, as already
said, homogeneous of order 1. Furthermore, taking Equation (6), for example, we obtain

u1 ∨ . . . ∨ ud ≤ `(u) ≤ u1 + . . .+ ud (8)

corresponding to asymptotic full dependence (lower bound, denoted AD) and asymptotic inde-
pendence (upper bound, denoted AI ) between all components.

3.2 The tail superset importance coefficients

In the present setting, the random vector U from Section 2 is an abstract construction. We will
further introduce the following assumption (Hµ) The measure µ is continuous with support
[0, 1]d , where µ = µ1 ⊗ . . . ⊗ µd refers to the distribution of U. First, the requirement on
the support makes it possible to substitute the function f by ` in Equation (1) or (3). By
homogeneity of `, the s.t.d.f. can be restricted to [0, 1]d without loss of information. Now, by
continuity, ` is square integrable on [0, 1]d. Note that the continuity is also useful in this paper
to deduce that a term of variance zero is null.

Definition 1 (Tail superset importance coefficient) A tail superset importance coeffi-
cient is a superset importance index Dsuper

{i,j} (`) where ` is a stable tail dependence function and

where µ satisfies (Hµ). Its scaled version is Ssuper
{i,j} (`).

Even though it is associated with a random vector X, function ` is a deterministic function.
Because ` is generally unknown, we provide here a new modeling tool. Under AI between
all components (right hand side of (8)), for instance, all tail superset importance coefficients
vanish. However, these indices are also helpful in less exaggerated situations. By looking at
their sorted values, it is possible to trace the pair with the strongest asymptotic dependence up
to the one with the weakest (in the superset sense, not in the bivariate one). These coefficients
can be directly compared and applied for dimension reduction purposes.
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To illustrate Definition 1, let us put it in the simple context of dimension 2 and the standard
model

`r(u1, u2) = (u
1/r
1 + u

1/r
2 )r (9)

with r ∈ (0, 1], known as the symmetric logistic model of Gumbel (1960). The limit as r tends
to zero leads to AD, whereas AI corresponds to r = 1. The values of Dsuper

12 (`r)/D
super
12 (`0) are

plotted under different distributions µ on Figure 9(a). We should compare the new indices to
the well-known extremal coefficients, given as `r(1, 1) = 2r under (9). We represent 2− `r(1, 1)
on Figure 9(b). Both scales are chosen to produce comparable information.

(a) (b)
Fig. 1: (a) Illustration of Definition 1 in the two-dimensional framework (9) where Dsuper

12 (`r)/D
super
12 (`0) is

plotted with respect to the coefficient r. Four types of product measure µ are used based either on Uniform,
Beta, Triangular or Truncated normal. (b) Values of 2− `r(1, 1) derived from the classical extremal coefficient
under the same model (9).

Our aim here is not to rank the coefficient Dsuper
12 (`) versus 2− `(1, 1). Their values are not

the same, but through many two-dimensional practical examples, they always order strengths
of asymptotic dependence in a concordant way. On the other hand, the information is more
dissonant in a higher dimension, as illustrated in Sections 3.5 and 5.1. Insofar as the two families
are pairwise orderings of the asymptotic dependence, an infinite-dimensional function, the two
families of indices cannot replace each other but are complementary.

3.3 The tail dependograph

We now introduce a new weighted graph whose weights are directly given by the tail superset
importance coefficients. An undirected and weighted graph is a list G = (V,g) of the set of
vertices V = {1, . . . , d} and the collection g = {g1;2, g1;3, . . . , g1;d, . . . , gd−1;d} of the d(d− 1)/2
edge weights. Graphically, we represent the vertex number inside a bubble and plot a segment
between {i} and {j} whose width varies proportionally to gi;j . For a dependency graph of a
random vector X = (X1, . . . , Xd), V represents the components of X and g contains some
positive dependence measures between pairs.

When the weight of an edge is close to zero, it indicates some independence. Moreover,
ordered values of edge weights reflect ordered strength of dependence between the associated
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pairs. In this paper, we adopt the graph representation given in the R sensitivity package
(Pujol et al., 2017): the weights are not printed along edges but a visual indication is given
through the edge thickness.

We now introduce a new dependency graph to explore tail dependence.

Definition 2 (Tail dependency graph) An undirected and weighted graph G will be known
as a tail dependency graph if the following holds: the vectors XA = {Xa, a ∈ A} and XB =
{Xa, a ∈ B} are asymptotically independent when there is no edge from any vertex in A to
any vertex in B, for any two subsets of vertices A and B from V : gi;j = 0, ∀i ∈ A,∀j ∈ B.

The new indices, namely the tail superset importance coefficients of Section 3.2, are suitable
measures to play the role of edge weights of tail dependency graphs.

Definition 3 (Tail dependograph) The tail dependograph is a tail dependency graph with
edge weights given by Dsuper

{i,j} (`), namely the tail superset importance coefficient from Defini-

tion 1. Similarly, the weights for the scaled tail dependograph are given by the tail sensitivity
indices Ssuper

{i,j} (`) .

Note that the tail dependograph corresponds to a FANOVA graph, introduced in Muehlenstaedt
et al. (2012), when applied to the s.t.d.f. `.

Proposition 1 Tail independence involved in Definition 2 and 3 is concordant with the in-
tuitive meaning. Let A, B and (possibly empty) C be a partition of {1, . . . , d}. The random
vectors XA and XB are asymptotically independent if

`(uA,uB ,0C) = `(uA,0B ,0C) + `(0A,uB ,0C) ∀uA,uB .

We postpone all the proofs of the paper until the Proof Section. Note that the link between
additivity of ` and the product form (two terms here) of the asymptotic distribution H can be
derived from (7). This can be generalized to the asymptotic independence of any K groups of
components ; the s.t.d.f. ` becomes a sum of K terms and the limiting extreme distribution H
is then a product of K terms of separate variables.

Section 3.5 provides two examples of tail dependographs when d = 3 and d = 4. More
illustrations for d = 4, 10 and 21 are given in Sections 5.1 and 5.3.

3.4 Two competitors for tail graphical summaries

To provide the reader with a better understanding of the interest of the tail dependograph, it is
useful to compare it with two other graphs that rely on well-known summary measures for tail
dependence, namely the extremal coefficients. For a s.t.d.f. `, the extremal coefficient associated
with subset I from {1, . . . , d} is given as θI(`) := `

(∑
i∈I ei

)
. On the basis of Equation (8), it

should be kept in mind that

1 ≤ θI(`) ≤ |I| , (10)

where the lower (resp. upper) bound corresponds to AD (resp. AI).
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The λ-graph is a tail dependency graph with the edge weights given by

λ{i,j} := 2− θ{i,j}(`) = 2− `(ei + ej) .

Using Equation (10) all the weights lie in the interval [0, 1], ranging from AI to AD. In particular
they are positive and satisfy the tail dependency graph property. By extension to supersets of
a pair, we define the λ-supergraph as the tail dependency graph G with weights

λsuper{i,j} :=
∑

I⊇{i,j}

{|I| − θI(`)} = (d+ 2)2d−3 −
∑

I⊇{i,j}

`

(∑
i∈I

ei

)
.

Similarly to the λ-graph, (10) ensures that the weights are valid. They range from 0 (AI)
to d2d−3 (AD), and could be easily normalized to range within [0, 1]. The value (d + 2)2d−3

as well as the upper bound d2d−3 have been derived from standard combinatorial results, with
details given in the proof section.

3.5 Illustrating the tail dependograph on the asymmetric logistic model

Among the parametric subfamilies of s.t.d.f., one of the well-known forms is the asymmetric
logistic model. Introduced in full generality by Tawn (1990), we have

`(u) =
∑
b∈B

(∑
i∈b

(βi,bui)
1/αb

)αb

where B is the set of all non-empty subsets of {1, . . . , d}, the dependence parameters αb lie
in (0, 1] and the asymmetric collection of weights βi,b are coefficients from [0, 1] satisfying
∀i ∈ {1, . . . , d},

∑
b∈B:b3i βi,b = 1. For standard Fréchet univariate margins, the simulation

of vectors with such multivariate dependence is included in the R evd package of Stephenson
(2002) and detailed in Stephenson (2003).

Let us consider two examples extracted from the help file of the function rmvevd of the evd

package. For the dimension d = 3, let s.t.d.f. (11) be the asymmetric logistic model with the
following family of coefficients

(β1,{1}, β2,{2}, β3,{3}) = (.4, .1, .6) (β1,{12}, β2,{12}) = (.3, .2) with α{12} = .6,

(β1,{13}, β3,{13}) = (.1, .1) with α{13} = .5, (β2,{23}, β3,{23}) = (.4, .1) with α{23} = .8, (11)

and (β1,{123}, β2,{123}, β3,{123}) = (.2, .3, .2) with α{123} = .3.

We provide a graph representation below of the s.t.d.f. through the tail superset indices in
Figure 2(a), the λ-graph in (b) and the λ-supergraph in (c).
Corresponding numerical values are available in Table 1.
The tail dependograph points out a strict ordering between the three pairs thanks to tail
superset indices, i.e., not visible by looking at the other two graphs. Focusing on the λ-graph,
it is possible to isolate the pair {1, 2} from the other two. Looking at the λ-supergraph, we
could conclude that the three variables are exchangeable with respect to this criterion. Of



The Tail Dependograph 11

1

2

3

1

2

3

1

2

3

(a) (b) (c)
Fig. 2: The tail dependograph (a), the λ-graph (b), and the λ-supergraph (c) for s.t.d.f. (11).

Pair {i, j} {1, 2} {1, 3} {2, 3}
Dsuper

{i,j} (`) 0.00040 0.00014 0.00019

λ{i,j}(`) 0.2946 0.2123 0.2229
λsuper{i,j} (`) 0.8736 0.7913 0.8019

Table 1: Values of theoretical coefficients for ` being the s.t.d.f. (11).

course, the λ-graph remains interesting since it relies on coefficients θI that are interpretable
through the equality

P
(
Xt ≤ F−1t (p), for all t ∈ I

)
= pθI(`) , (12)

written above when F , the distribution of X, is a max-stable distribution. With the tail superset
coefficients, we lose this kind of interpretation. Instead, a global variance D(`) is a reference
to which each Dsuper

{i,j} (`) can be compared so that they also can be compared to one another

directly.

4 Nonparametric statistical inference

Let X1, . . . ,Xn be n independent copies of the d-variate vector X. For inference purposes, we
change the notation: we use (t) as an exponent to refer to the t-th component of a random

vector. For t = 1, . . . , d and s = 1, . . . , n, we denote the t-th component of Xs byX
(t)
s . Let k ≤ n

be an integer. In extreme value theory, k represents the number of largest values considered
in inference procedures. When k is too large, the estimation relies on some observations that
are not extreme, introducing some bias. On the contrary, when k is too small, there is no bias
but the variance of the estimator is large. Nice asymptotic properties are based on such a
balance. In this section we derive non-parametric estimators of the main indices in this paper:
the coefficients Dsuper

{i,j} (`) in the first part, and the whole Hoeffding–Sobol decomposition in the

second one. The particular case of uniform margins for U is then dealt with. Finally, asymptotic
results are addressed at the end of the section.

4.1 Empirical versions of the tail superset importance coefficients

Taking Section 2.3 into account, once an estimator ˆ̀ for ` is given, the computation of a
tail superset importance coefficient is then possible by substituting f with ˆ̀ in Formula (5).
Consequently, the estimating issue could already appear to be settled. More interestingly, exact
expressions can be derived for new indices D{i,j}(ˆ̀) when the empirical counterpart of the true
function ` is used.
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Recall first the natural estimation of the stable tail dependence function, given by Huang
(1992)

ˆ̀
k,n(u) =

1

k

n∑
s=1

1
{
X(1)
s ≥ X(1)

n−[ku1]+1,n or . . . or X(d)
s ≥ X(d)

n−[kud]+1,n

}
,

where z has been replaced by n/k in (6), F by its empirical version, and F−1t (1 − z−1ut)

for t = 1, . . . , d by X
(t)
n−[nz−1ut]+1,n. This estimator can be written as

ˆ̀
k,n(u) =

1

k

n∑
s=1

1
{
u1 ≥ R̃(1)

s or . . . or ud ≥ R̃(d)
s

}
, (13)

in terms of R̃
(t)
s := (n−R(t)

s + 1)/k where R
(t)
s denotes the rank of X

(t)
s among X

(t)
1 , . . . , X

(t)
n .

We now give the expression of the empirical version of the tail superset importance coef-
ficients in terms of the rank observations. With a slight abuse of notation, we simply write
µt(u) = µt([0, u])

(
=
∫ u
0
dµt(x)

)
for any u ∈ (0, 1).

Proposition 2 The empirical tail superset importance coefficient can be expressed as

Dsuper
{i,j} (ˆ̀

k,n) =
1

k2

n∑
s=1

n∑
s′=1

 ∏
t∈{i,j}

(
µt

(
R̃(t)
s ∧ R̃

(t)
s′

)
− µt

(
R̃(t)
s

)
µt

(
R̃

(t)
s′

)) ∏
t/∈{i,j}

µt

(
R̃(t)
s ∧ R̃

(t)
s′

) .

The empirical scaled tail superset importance coefficient is estimated by Ŝsuper
k,n;{i,j} :=

Dsuper
{i,j} (ˆ̀

k,n)

D(ˆ̀
k,n)

where

D(ˆ̀
k,n) =

1

k2

n∑
s=1

n∑
s′=1

{
d∏
t=1

µt

(
R̃(t)
s ∧ R̃

(t)
s′

)
−

d∏
t=1

µt

(
R̃(t)
s

)
µt

(
R̃

(t)
s′

)}
.

Proposition 2 provides accurate versions of these coefficients. These rank-based expressions
avoid the additional Monte Carlo error estimation that we obtain when replacing f by the
empirical estimator (13) in Equation (5).

4.2 Complete empirical Hoeffding–Sobol decomposition

The main difference between the previous sections and the current one is based on the fact
that all subsets I from {1, . . . , d} are considered here. This paper could have begun by defining
the new summaries associated with all of the subsets and not just the pairs. However, due to
our strong desire to introduce a new graph for extreme value analysis, we have to deal with
weights associated with pairs. The coefficient Dsuper

I (`) generalizes the pair version and stands
for
∑
J⊇I DJ(`). The global sensitivity indices are also extended to any subset I by SI(`) =

DI(`)/D(`) and Ssuper
I (`) = Dsuper

I (`)/D(`). These two ratios satisfy 0 ≤ SI(`) ≤ Ssuper
I (`) ≤ 1

with extreme behavior Ssuper
I (`) = 0 or SI(`) = 1 that characterizes the situation where `(u)

does not depend on uI or where `(u) only depends on uI.
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The Hoeffding–Sobol decomposition of the function ˆ̀
k,n is given by

ˆ̀
k,n(u1, . . . , ud) = ˆ̀

k,n;∅ +

d∑
i=1

ˆ̀
k,n;{i}(ui) +

∑
i<j

ˆ̀
k,n;{i,j}(ui, uj) + . . .+ ˆ̀

k,n;{1,...,d}(u1, . . . , ud)

where the subfunctions are centered and orthogonal as explained in Section 2.1. The frame-
work under study is fairly unusual in global sensitivity analysis since most of the empirical
computation can be done and all of the terms have an explicit expression as stated below.

Theorem 2 Let I ⊆ {1, . . . , d} be non-empty. The associated subfunction in the decomposition
is

ˆ̀
k,n;I(uI) = −1

k

n∑
s=1

{∏
t∈I

(
1{ut < R̃(t)

s } − µt
(
R̃(t)
s

))∏
t/∈I

µt

(
R̃(t)
s

)}
,

and its variance, which corresponds to an estimate of DI(`), has the following form

DI(ˆ̀
k,n) =

1

k2

n∑
s=1

n∑
s′=1

(∏
t∈I

{
µt

(
R̃(t)
s ∧ R̃

(t)
s′

)
− µt

(
R̃(t)
s

)
µt

(
R̃

(t)
s′

)}∏
t/∈I

µt

(
R̃(t)
s

)
µt

(
R̃

(t)
s′

))
.

The superset part of ˆ̀
n,k(u) associated with subset I, which is the part of Hoeffding–Sobol

decomposition that contains the variables {ut, t ∈ I}, is given by

ˆ̀super
k,n;I (u) = −1

k

n∑
s=1

∏
t∈I

(
1{ut < R̃(t)

s } − µt
(
R̃(t)
s

))∏
t/∈I

1{ut < R̃(t)
s } ,

with a variance of

Dsuper
I (ˆ̀

k,n) =
1

k2

n∑
s=1

n∑
s′=1

{∏
t∈I

(
µt

(
R̃(t)
s ∧ R̃

(t)
s′

)
− µt

(
R̃(t)
s

)
µt

(
R̃

(t)
s′

))∏
t/∈I

µt

(
R̃(t)
s ∧ R̃

(t)
s′

)}
.

Explicit expressions are then immediately deduced for the estimators of SI(`) and Ssuper
I (`)

defined as

Ŝk,n;I :=
DI(ˆ̀

k,n)

D(ˆ̀
k,n)

and Ŝsuper
k,n;I :=

Dsuper
I (ˆ̀

k,n)

D(ˆ̀
k,n)

,

by plugging the expression of D(ˆ̀
k,n) given in Proposition 2. Additionally, the constant term

in the Hoeffding–Sobol decomposition can be written as

ˆ̀
k,n;∅ =

n

k
− 1

k

n∑
s=1

d∏
t=1

µt

(
R̃(t)
s

)
.

By construction, the inequality DI(`) ≤ Dsuper
I (`) is verified by the empirical estimates whose

expressions are stated above. This can be directly checked by observing that

µt

(
R̃(t)
s

)
µt

(
R̃

(t)
s′

)
= µt

(
R̃(t)
s ∧ R̃

(t)
s′

)
µt

(
R̃(t)
s ∨ R̃

(t)
s′

)
≤ µt

(
R̃(t)
s ∧ R̃

(t)
s′

)
.
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4.3 Under standard uniform distributions

The issue of the optimal choice for the marginal distribution of U will not be raised in this
paper. However, it is natural to consider the uniform distribution. By requiring that u be in

the unit cube, introducing R̄
(t)
s := R̃

(t)
s ∧ 1 makes it possible to write

ˆ̀
k,n(u) =

1

k

n∑
s=1

1
{
u1 ≥ R̄(1)

s or . . . or ud ≥ R̄(d)
s

}
.

All preceding expressions can be simplified thanks to the equalities µt(R̃
(t)
s ) = R̄

(t)
s and µt(R̃

(t)
s ∧

R̃
(t)
s′ ) = R̄

(t)
s ∧ R̄(t)

s′ , when each probability measure µt is the standard uniform distribution. In
particular, the empirical tail superset importance coefficient is

Dsuper
{i,j} (ˆ̀

k,n) =
1

k2

n∑
s=1

n∑
s′=1

 ∏
t∈{i,j}

(
R̄(t)
s ∧ R̄

(t)
s′ − R̄

(t)
s R̄

(t))
s′

) ∏
t/∈{i,j}

R̄(t)
s ∧ R̄

(t)
s′


and its scaled version becomes

Ŝsuper
k,n;{i,j} =

∑n
s=1

∑n
s′=1

{∏
t∈{i,j}

(
R̄

(t)
s ∧ R̄(t)

s′ − R̄
(t)
s R̄

(t))
s′

)∏
t/∈{i,j} R̄

(t)
s ∧ R̄(t)

s′

}
∑n
s=1

∑n
s′=1

{∏d
t=1 R̄

(t)
s ∧ R̄(t)

s′ −
∏d
t=1 R̄

(t)
s R̄

(t)
s′

} .

4.4 Consistency

The large sample behavior of the new empirical indices is now stated. In order to prove consis-
tency for the empirical tail superset importance coefficients, we only need to focus on settings
where the estimator ˆ̀

k,n is uniformly consistent for the estimation of `.
(H1) The first-order assumption

The multivariate distribution function F with continuous marginal distribution functions Ft
for t = 1, . . . , d is such that the limit (6) exists for all u in the positive orthant.

Theorem 3 (Theorem 7.2.1 of de Haan and Ferreira (2006)) Let X1, . . . ,Xn be n
independent copies of the random vector X. Assume (H1) holds and let k be an intermediate
sequence: k = k(n) such that k →∞ as n→∞ but with k = o(n). Then, as n tends to infinity,

sup
u∈[0,1]d

∣∣∣ˆ̀k,n(u)− `(u)
∣∣∣ P−→ 0 .

This uniform convergence is valid for any subfunction of the Hoeffding–Sobol decomposition,
as stated in the next result.

Corollary 1 Under conditions of Theorem 3, all the empirical subfunctions defined in Theo-
rem 2 are uniformly consistent

sup
uI∈[0,1]|I|

|ˆ̀k,n;I(uI)− `I(uI)|
P−→ 0 .
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As a consequence, the empirical variances DI(ˆ̀
k,n) or Dsuper

I (ˆ̀
k,n) and the empirical ra-

tios Ŝk,n;I or Ŝsuper
k,n;I from Theorem 2 are consistent for their equivalent theoretical forms.

In particular, the (scaled) tail superset coefficients, whose empirical versions are detailed in

Proposition 2, satisfy Dsuper
{i,j} (ˆ̀

k,n)
P−→ Dsuper

{i,j} (`) and Ŝsuper
k,n;{i,j}

P−→ Ssuper
{i,j} (`) so that the empirical

(scaled) dependograph is consistent.

4.5 Asymptotic distribution

We need to assume some additional conditions in order to establish some asymptotics for the
distribution of the empirical tail superset importance coefficients.

(H2) The second-order condition
There exists a function a of constant sign and tending to zero and a function m that is not
proportional to ` such that

lim
z→∞

z
{

1− F
(
F−11 (1− u1/z), . . . , F−1d (1− ud/z)

)}
− `(u)

a(z)
= m(u) (14)

uniformly on [0, 1]d. Note that this condition quantifies the speed of convergence in the first-
order assumption.

The next result provides a general setting to describe the asymptotic distribution of the
function ˆ̀

k,n(·).

Lemma 1 Let X1, . . . ,Xn be n independent copies of X. Assume (H2) holds. Suppose further
that, for any t = 1, . . . , d, the first-order partial derivative of `, denoted by ∂t`, exists and is
continuous on the set of points {u = (u1, . . . , ud) ∈ Rd+ : ut > 0}.
Let k be an intermediate sequence such that

√
ka(n/k)→ a. Then as n tends to infinity,

√
k
{

ˆ̀
k,n(u)− `(u)

}
d−→ Z`(u) + am(u) , (15)

in the space of functions in [0, 1]d that are right-continuous and have left-hand limits. The
process Z` above can be stochastically represented as follows

Z`(u) := W`(u)−
d∑
t=1

W`(utet)∂t`(u) . (16)

The process W` is a continuous centered Gaussian process with E[W`(u)W`(ũ)] = ν{H(u) ∩
H(ũ)} given in terms of the intensity measure ν defined by ν{ũ ∈ Rd+ : ∃t such that ũt >
ut} := `(u) and H(u) = {ũ ∈ Rd+ : ∃t such that 0 ≤ ũt ≤ ut}.

The asymptotic distributional expansion (16) is inherited by subfunctions of the ANOVA
decomposition, as stated in the next result.

Corollary 2 Suppose that the assumptions of Lemma 1 hold. Assume moreover that the func-
tion m in (14) is square integrable with respect to ⊗dt=1dµt. Then, as n tends to infinity,

√
k
{

ˆ̀
k,n;I(uI)− `I(uI)

}
d−→ Z`;I(uI) + amI(uI)
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where the stochastic process Z`;I : ω ∈ Ω 7→ {Z`(ω)}I corresponds to the path of the subfunction
associated with subset I in the Hoeffding–Sobol decomposition of Z`(ω).
Moreover,

√
k
(
DI(ˆ̀

k,n)−DI(`)
)

d−→ 2EUI
[`I(UI){Z`;I(UI) + amI(UI)}]

where the expectation EUI
[·] refers to the integral with respect to ⊗t∈Idµt. Finally, if `I ≡ 0

that is equivalent to DI(`) = 0, we obtain

kDI(ˆ̀
k,n)

d−→ DI(Z` + am) .

The previous result states an asymptotic normality in most cases. When the true coefficient is
null, the asymptotic distribution has a χ2 type. Let us point out as well that by adding terms
from Corollary 2, we also obtain, if Dsuper

I (`) > 0,

√
k
(
Dsuper
I (ˆ̀

k,n)−Dsuper
I (`)

)
d−→
∑
J⊇I

2EUJ
[`J(UJ){Z`;J(UJ) + amJ(UJ)}] .

The next proposition once again states the asymptotic distribution for the empirical tail su-
perset coefficients. Another limiting expression is thus obtained, depending only on function `
and not on the subfunctions {`J , J ⊇ I} as above.

Proposition 3 Under the assumptions of Lemma 1, as n tends to infinity,

√
k
(
Dsuper
I (ˆ̀

k,n)−Dsuper
I (`)

)
d−→ 1

2|I|−1

∫
∆I [`, Z` + am](uI ,v)duIdv

where ∆I [`, Z](uI ,v) =
(∑

J⊆I(−1)|I\J|`(uJ ,v−J)
)(∑

K⊆I(−1)|I\K|Z(uK ,v−K)
)

.

If Dsuper
I (`) = 0 then

kDsuper
I (ˆ̀

k,n)→ Dsuper
I (Z` + am) .

In particular, when I stands for the pair {i, j}, the asymptotic distribution for the indices
involved in the empirical tail dependograph can be derived. More precisely, the convergence
of Dsuper

{i,j} (ˆ̀
k,n) to Dsuper

{i,j} (`) leads to two different regimes. In general, the classical root square

rate of convergence is obtained. However, when the true tail superset importance coefficient
vanishes, then the rate is faster.

5 Additional illustrations

We first exhibit a setting where classical tail measures fail to find extreme dependence. We
study the performance of the non-parametric estimators on simulation. In particular, the order
of tail superset importance between pairs is rather good for reasonable sample sizes. Finally,
the last section illustrates the new indices and graphs on real data.
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5.1 Revealing asymptotic dependence under asymmetric models

We now construct an example where δ and λ do not provide the same information. Let d = 4.
Consider the parametric asymmetric model with s.t.d.f. given as

`(u1, u2, u3, u4) = (1− ψ)(u1 + u2) + ψ
(
u
1/α
1 + u

1/α
2

)α
+ (1− ψ̃)(u3 + u4) + ψ̃

(
u
1/α̃
3 + u

1/α̃
4

)α̃
(17)

Each bivariate component is a mixture of AI with the logistic model of Gumbel introduced
by Tawn (1990). Fix (ψ, α) = (0.2, 0.2) and (ψ̃, α̃) = (0.8, 0.83). The pairplots (X1, X2)
and (X3, X4) are given on the left and right of Figure 3, respectively, under Gumbel mar-
gins.

0 5 10
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1
0

X1

X
2

0 5 10

0
5

1
0

X3

X
4

Fig. 3: Two pair plots for X a four-dimensional extreme value random vector with Gumbel margins and
s.t.d.f. (17). Left: (X1, X2). Right: (X3, X4).

We have λ12 ' 0.17 < λ34 ' 0.18 whereas Dsuper
12 ' 3.09× 10−4 > Dsuper

34 ' 1.81× 10−4. The
new index better detects the strongest tail dependent pair even in a small proportion. In terms
of graphs, this example leads to Figure 4, where the difference between the messages of the
two graphs speaks for itself.

X1

X2

X3

X4

X1

X2

X3

X4

Fig. 4: The tail dependograph (left) and the λ-graph (right) for s.t.d.f. (17).
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5.2 Finite sample performance in estimating the tail superset indices

We once again consider the s.t.d.f. ` as given in (11) from Section 3.5. Recall that the numerical
values of several indices were collected in Table 1. Our goal now is to estimate the pairwise coef-
ficients λ{i,j} and Dsuper

{i,j} on trivariate samples. We assume the distribution to be trivariate max-

stable with Fréchet margins, F (x1, x2, x3) = exp
(
−`(x−11 , x−12 , x−13 )

)
. Computed on several

repetitions, we first record the proportion of trials that correctly ordered a triplet of theoretical
coefficients. This means that a trial is a success when Dsuper

{1,2}(
ˆ̀
k,n) > Dsuper

{2,3}(
ˆ̀
k,n) > Dsuper

{1,3}(
ˆ̀
k,n)

or when λ{1,2}(ˆ̀
k,n) > λ{2,3}(ˆ̀

k,n) > λ{1,3}(ˆ̀
k,n) respectively, depending on the criterion we

are examining. Varying the sample size n, we obtain the curves presented in Figure 5. The
values for the experiment are: n ∈ {100, 200, . . . , 1000}, N = 1000 repetitions and several
choices for k have been taken. We only plot two of them: k = 50 (plain lines) and k = n/2
(dotted lines), which, roughly speaking, correspond to the worst and best cases.

200 400 600 800 1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n

k = 50 with λ
k = n 2 with λ
k = 50 with Dsuper

k = n 2 with Dsuper

Fig. 5: Proportion of well-ordered triplets of theoretical coefficients. For the first (resp. second) line of Table 1,
results are in gray (resp. black).

To furnish most of the details, we also provide the boxplots associated with the estimation of
each triplet in both situations: k = 50 and k = n/2 when n = 1000 in Figure 6. It is worth
noting that even if the coefficients are not as well estimated when k is large (see Figure 6
(b) and (d)), a classical observation in extreme value analysis, the proportion of well-ordered
triplets remains good and even increases compared to the value obtained for a small k (see
Figure 6 (a) and (c)).
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(a) (b) (c) (d)
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with k = 50 with k = n/2 with k = 50 with k = n/2

Fig. 6: Boxplots when n = 1000 for the estimation of Dsuper
{i,j} (left) and λ{i,j} (right). For both type of indices,

the first triplet is obtained with k = 50 and the second with k = n/2. Black points represent true values, already
given in Table 1.

5.3 Selection of the strongest tail dependences in large dimension

In this case, we want to use the tail superset importance coefficients to select the pairs with the
strongest asymptotic dependence. This should not be understood in the sense of the strongest
extreme bivariate structure of dependence. Indeed, it should be recalled that the tail superset
importance coefficient of a pair measures the contribution in the global tail dependence not
only through the pair itself, but also through all its supersets.
In both Section 5.3.1 and 5.3.2, we focus on the tail dependence. For that reason, we have
decided to work on preprocessed data (renormalized yearly maxima). In that way, we avoid the
discussion about the choice of k and the marginal distributions. Note that working with yearly
maxima also has the benefit of avoiding temporal dependence issues.

5.3.1 Log-return contagion

Let us consider the close prices of ten stock indices using the qrmdata package (Hofert and
Hornik, 2016): S&P 500 (SP500), Dow Jones (DJ), NASDAQ 100 (NASD), Swiss Market Index
(SMI), Euro Stoxx 50 (EURS), Cotation Assistée en Continu (CAC), Deutscher Aktienindex
(DAX), Hang Seng Index (HSI), Shanghai Stock Exchange Composite Index (SSEC), and the
NIKKEI (NIKK). Focusing on log-returns for the period 1990 to 2015, we compute renor-
malized yearly maxima. We thus obtain a ten-dimensional vector with unit Fréchet marginal
distributions and a joint distribution characterized by an unknown s.t.d.f. `.
The tail dependograph is provided in Figure 7(a). It contains 45 edges (d = 10). We also furnish
two additional plots. Figure 7(b) shows the values of the tail superset importance coefficients
Dsuper
{i,j} in a decreasing order, whereas Figure 7(c) represents the number of variables involved

by at least one edge with respect to the number of the largest tail indices that are plotted
(starting by the largest).

The tail dependences are not all of the same importance, as shown in Figure 7(b). It is
possible to only focus on a partial dependograph (with the intention of dimension reduction)
that is a tail dependence graph where only the largest tail superset importance coefficients are
plotted.
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(a) (b) (c)

Fig. 7: For ten log-returns over the period 1990-2015: (a) Complete empirical tail dependograph (b) Sorted
estimated values of Dsuper

{i,j} (c) Number of variables involved in a partial tail dependograph with respect to the

number of plotted edges (starting by the largest).

The largest empirical tail superset coefficient is obtained for the pair SSEC-SMI. The second
largest links EURS and DAX. The eight largest empirical tail superset coefficients concern the
group {SMI, SSEC, SP500, EURS, DAX}. DJ then joins the graph through its tail superset
dependence with SSEC, as illustrated in Figure 8(a). We now have to wait for the 12th largest
(resp. 15th, 16th) value of these empirical measures to see a connection of NIKK (resp. HSI,
NASD) with the group through SSEC (resp. DAX, SSEC). Finally the 20th largest value of
the empirical tail superset coefficients links CAC to the rest of the group via EURS, as plotted
in Figure 8(b).

(a) (b)

Fig. 8: Partial empirical tail dependographs for ten log-returns over the period 1990-2015: (a) The nine largest
empirical tail superset coefficients (b) the twenty largest.

We do not want to favor one methodology over another to select variables. Our intention is
to provide new indices, to compute or estimate them, and to share the interest for a number
of related issues based on the assessment of these values. Selection with respect to a criterion
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is a very general question that is beyond the scope of the underlying study. For that reason,
we do not conclude by measuring the effective dimension of the tail dependence structure.

5.3.2 Temperatures in France

The yearly maxima temperatures of 21 continental cities in France were recorded during the
period 1946-2000. In Figure 9, we plot two partial dependographs and the complete one. Of
course, looking at all the empirical tail superset information simultaneously on Figure 9(c) is
uninformative because of the dimension of the problem here. However, the strongest connections
can be observed in the north, and after that, a strong dependence structure appears in the south,
as can be seen in Figure 9(a). In the partial tail dependograph of Figure 9(b), links between
the north and south are already present.

(a) (b) (c)

Fig. 9: Partial and complete empirical tail dependographs for temperatures of 21 French continental cities over
the period 1946-2000: (a) The nine largest empirical tail superset coefficients (b) the 30 largest (c) all of them.

Concluding remarks and perspectives

We have introduced new measures to explore the asymptotic dependence structure in extreme
value theory. These indices, referred to as tail superset importance coefficients, are based on
the Hoeffding–Sobol (ANOVA) decomposition of the stable tail dependence function (s.t.d.f.).
They quantify the (proportion of) variance of the s.t.d.f. explained by all supersets of pairs of
variables. In other words, for a given pair, the tail superset importance index informs not only
on the asymptotic bivariate structure but also on any tail dependence structure that contains
this pair.

In a d-variate setting, it is remarkable that such information is available at a quadratic cost
with respect to the number of variables (d(d−1)/2 pairs), compared to the exponential number
of subsets of {1, . . . , d} in the case of the well-known extremal coefficients θI . Furthermore,
these coefficients can be visualized on a graph, referred to as a tail dependograph. On the
other hand, the powerful probabilistic interpretation (12) of the family of θI ’s coefficients is
lost, whereas a comparison via a global variance decomposition is gained. Our aim is not to say
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if the new family is preferable to the old one. In reality, they are both only necessarily partial
summaries of an infinite-dimensional measure. Consequently, and as been illustrated through
several examples in this paper, these two families of indices are complementary.

On the theoretical level, we derived several results for statistical inference. First, analytical
expressions are available when the s.t.d.f. is replaced with its empirical version. Second, we
proved consistency of the tail superset importance coefficient estimates under usual assumptions
ensuring uniform consistency for the empirical s.t.d.f. Asymptotic distribution is also obtained,
with the unusual feature that the speed of convergence depends on the nullity of the (true)
value: O(k−1/2) for a non-zero index and O(k−1) for a null value.

We further investigated the behavior of the new measures compared to other competitors
based on standard extremal coefficients. We observed that some features are better detected
by the new coefficients, such as asymmetry, in dependent models for extremes. On the other
hand, initial trials indicate that tail superset importance indices do not improve asymptotic
independence testing. Thus, they may be more useful to describe the dependence structure of
extremes via the tail dependograph.

Several questions could perhaps be answered with these new measures: First, the effective
dimension of the asymptotic distribution under the assumption of max-domain of attraction;
Second, a multivariate summary of the asymptotic dependence, similar to the multivariate tau,
for example; and third, a real guide for the construction of nested models. Other topics related
to the estimation of the tail superset importance coefficients could be dealt with as well. We
restricted our study to the empirical estimator of the stable tail dependence function. Other
choices are possible, such as the asymptotically unbiased version of Fougères et al. (2015) or
the M-estimator of Einmahl et al. (2016). Finally, the inference of the tail superset coefficients
inside parametric models could be the focus of future research.
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Proofs

Details for Section 3.4.
We prove here the combinatorial formulas used in the definition of the λ-supergraph. First,
starting from the identity (1 + x)d =

∑
I⊆{1,...,d} x

|I|, and computing the derivative at 1,

we obtain
∑
I⊆{1,...,d} |I| = d2d−1. Thus, by parameterizing the supersets I of a pair {i, j}

by J = I \ {i, j}, we have∑
I⊇{i,j}

|I| =
∑

J⊆{1,...,d−2}

{|J |+ 2} = (d− 2)2d−3 + 2× 2d−2 = (d+ 2)2d−3.

Consequently, the upper bound of the weight edges is given by
∑
I⊇{i,j} {|I| − 1} = d2d−3.
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Proof of Proposition 1.
For the sake of simplicity, let us identify `(uA,uB ,0C) with `(uA,uB). Assume first that `(u) =
`(uA,0B) + `(0A,uB) and introduce the notation f(uA) = `(uA,0B) and g(uB) = `(0A,uB).
The functions f and g admit the Hoeffing–Sobol decomposition f(uA) =

∑
I⊆A fI(uI) and

g(uB) =
∑
I⊆B gI(uI) so that, from the uniqueness of the decomposition,

`(u) =
∑

I⊆{1,...,d}

`I(uI)

with `I = fI if I ⊆ A, `I = gI if I ⊆ B and `I ≡ 0 if I ∩A 6= ∅ and I ∩B 6= ∅. It yields

Dsuper
{i,j} (`) =


Dsuper
{i,j} (f) if {i, j} ⊆ A

Dsuper
{i,j} (g) if {i, j} ⊆ B

0 if (i, j) ∈ A×B or (i, j) ∈ B ×A .

No edge goes from any vertex in A to any vertex in B.
Now, assume thatDsuper

{i,j} (`) = 0 for all i ∈ A and j ∈ B. Then, since it is a sum of positive terms,

all terms vanish: DK = 0 and `K ≡ 0 ∀K that contains {i, j}. Thus `(u) = f(uA) + g(uB). In
particular `(uA,0B) = f(uA) + g(0B) and `(0A,uB) = f(0A) + g(uB). By adding these terms,
we obtain

`(uA,0B) + `(0A,uB) = f(uA) + g(0B) + f(0A) + g(uB) = `(u) + `(0) = `(u) .

For the proofs, we first need to provide a technical preliminary lemma in sensitivity analysis.

Lemma 2 Let f be a tensor-product function f(u) =
∏d
t=1 ft(ut). Assume, moreover, the

framework of a Hoeffding–Sobol decomposition: u1, . . . , ud are viewed as independent random
variables, and f(u) is square integrable. For any subset I ⊆ {1, . . . , d}, denote the term indexed
by I in the Hoeffding–Sobol decomposition of f(u) by fI(uI). Finally, set mt = E[ft(ut)]. Then

fI(uI) =
∏
t∈I
{ft(ut)−mt}

∏
t/∈I

mt

and its variance is DI(f) =
∏
t∈I Var(ft(ut))

∏
t/∈I m

2
t . Furthermore, for a given set I ⊆

{1, . . . , d}, the superset part of f(u), i.e. the part in the Hoeffding–Sobol decomposition that
contains the variables ut, t ∈ I is given by

f superI (u) =
∏
t∈I
{ft(ut)−mt}

∏
t/∈I

ft(ut) (18)

and its variance is Dsuper
I (f) =

∏
t∈I Var(ft(ut))

∏
t/∈I E

(
ft(ut)

2
)
.

Proof of Lemma 2.
For the first part of the lemma, observe that the Hoeffding–Sobol decomposition of f(u) is
obtained by expanding the product

f(u) =

d∏
t=1

{(ft(ut)−mt) +mt} =
∑

I⊆{1,...,d}

fI(uI),
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with fI(uI) =
∏
t∈I{ft(ut)−mt}

∏
t/∈I mt. Such fIs satisfy the condition E[fI(uI)|uJ ] = 0 for

each strict subset J ( I so that the result follows from unicity of the decomposition.
Let us now fix a set I ⊆ {1, . . . , d}. By expanding the product

f(u) =
∏
t∈I
{(ft(ut)−mt) +mt}

∏
t/∈I

ft(ut),

the term
∏
t∈I(ft(ut) −mt)

∏
t/∈I ft(ut) corresponds to all supersets J of I in the Hoeffding–

Sobol decomposition of f(u). Indeed the fJs are obtained through the same expansion mech-
anism by picking the first term (ft(ut) −mt) in the parenthesis {(ft(ut) −mt) + mt} when t
belongs to J ⊇ I. This can also be checked using the analytical expression of fJ proved above:

f superI (u) =
∏
t∈I

(ft(ut)−mt)

∑
J⊇I

∏
t∈J\I

(ft(ut)−mt)
∏
t/∈J

mt


=
∏
t∈I

(ft(ut)−mt)

 ∑
K⊆{1,...,d}\I

∏
t∈K

(ft(ut)−mt)
∏
t/∈K

mt

 =
∏
t∈I

(ft(ut)−mt)
∏
t/∈I

ft(ut).

Finally the variance expressions are direct, recalling that each fI is centered and all the ut are
assumed to be independent.

Proof of Proposition 2.
We have:

ˆ̀
k,n(u) =

1

k

n∑
s= 1

(
1−

d∏
t= 1

1{ut < R̃(t)
s }

)
=
n

k
− 1

k

n∑
s= 1

d∏
t= 1

1{ut < R̃(t)
s }. (19)

Let us now fix a pair {i, j}. The constant term n/k does not play a role in the superset
importance. The second term is a sum of tensor-product functions. Thus, taking Lemma 2, its
superset part is obtained by centering the terms in the products that involve the considered
pair. Namely, from (18), we obtain

ˆ̀super
k,n;{i,j}(u) = −1

k

n∑
s= 1

d∏
t=1

(
1{ut < R̃(t)

s } − 1{t ∈ {i, j}}µt
(
R̃(t)
s

))
.

Observing that the term is centered, the variance reduces to the expectation of its square

(
ˆ̀super
k,n;{i,j}(u)

)2
=

1

k2

n∑
s=1

n∑
s′=1

d∏
t= 1

(
1{ut < R̃(t)

s } − 1{t ∈ {i, j}}µt
(
R̃(t)
s

))
×
(

1{ut < R̃
(t)
s′ } − 1{t ∈ {i, j}}µt

(
R̃

(t)
s′

))
.

A direct computation of the expectation then gives the announced expression

Dsuper
{i,j} (ˆ̀

k,n) =
1

k2

n∑
s=1

n∑
s′=1

d∏
t= 1

(
µt

(
R̃(t)
s ∧ R̃

(t)
s′

)
− 1{t ∈ {i, j}}µt

(
R̃(t)
s

)
µt

(
R̃

(t)
s′

))
.
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Using Equation (19), we obtain the global variance as follows

D(ˆ̀
k,n) =

1

k2

n∑
s= 1

n∑
s′= 1

{
E

(
d∏

t= 1

1{ut < R̃(t)
s } 1{ut < R̃

(t)
s′ }

)

−E

(
d∏

t= 1

1{ut < R̃(t)
s }

)
E

(
d∏

t= 1

1{ut < R̃
(t)
s′ }

)}
,

which yields the result by using the independence of the ut’s.

Proof of Theorem 2.
Lemma 2 can be applied to ˆ̀

k,n(·) − n/k since it is a sum of tensor-product functions. The

results lead directly to ˆ̀
k,n;I for any non-empty subset I, and the term n/k has to be added

in order to recover the constant term in the decomposition.

Proof of Corollary 1.
Recall that the Hoeffding–Sobol decomposition relies on the recursive construction, written
below in its empirical version,

ˆ̀
k,n;I(uI) = E[ˆ̀k,n(U)|UI = uI ]−

∑
I′(I

ˆ̀
k,n;I′(uI′) .

The proof is by induction on I. Observe first that

|ˆ̀k,n;∅ − `∅| = |E[ˆ̀k,n(U)− `(U)]| ≤ sup
u∈[0,1]d

|ˆ̀k,n(u)− `(u)| P−→ 0 .

Now, let I be a non-empty subset of {1, . . . , d} and assume that for any subset I ′ ( I

sup
uI′∈[0,1]|I

′|
|ˆ̀k,n;I′(uI′)− `I′(uI′)|

P−→ 0 .

Applying the recursive formula twice, we obtain

sup
uI∈[0,1]|I|

|ˆ̀k,n;I(uI)− `I(uI)| ≤ sup
uI∈[0,1]|I|

∣∣∣E[ˆ̀k,n(U)− `(U)|UI = uI ]
∣∣∣

+
∑
I′(I

sup
uI′∈[0,1]|I

′|
|ˆ̀k,n;I′(uI′)− `I′(uI′)|

that both converge to zero in probability. The consistency of the global variance or that of
the variances associated with subsets is a direct consequence of what preceeds. Nevertheless,
note that the existence and the consistency of the empirical global sensitivity indices Ŝk,n;I
and Ŝsuper

k,n;I rely on the fact that the empirical global variance D(ˆ̀
k,n) and the limiting global

variance D(`) never vanish in the extreme value theory setting.

Proof of Lemma 1.
Lemma 1 can be seen as the concatenation of several statements already established in the



26 Cécile Mercadier, Olivier Roustant

literature. See, for example, de Haan and Ferreira (2006; Theorem 7.2.2), Einmahl et al. (2012;
Theorem 4.6) or Fougères et al. (2015; Proposition 1) for some very similar statements. The dif-
ference between the results is concentrated on the specification of the intermediate sequence k.

Let Y
(t)
s denote the uniform random variables Y

(t)
s = 1 − Ft(X

(t)
s ) for t = 1, . . . , d and

s = 1, . . . , n. One can write

ˆ̀
k,n(u) = Vk

(n
k
Y

(1)
[ku1],n

, . . . ,
n

k
Y

(d)
[kud],n

)
and the difference

ˆ̀
k,n(u)− `(u) = Ak,n(u) +Bk,n(u) + Ck,n(u)

with

Vk(u) =
1

k

n∑
s=1

1{
Y

(1)
s ≤ku1/n or ... or Y (d)

s ≤kud/n
}

Ak,n(u) = Vk

(n
k
Y

(1)
[ku1],n

, . . . ,
n

k
Y

(d)
[kud],n

)
− n

k
[1− F{F−11 (1− Y (1)

[ku1],n
), . . . , F−1d (1− Y (d)

[kud],n
)}]

Bk,n(u) =
n

k
[1− F{F−11 (1− Y (1)

[ku1],n
), . . . , F−1d (1− Y (d)

[kud],n
)}]− `

(n
k
Y

(1)
[ku1],n

, . . . ,
n

k
Y

(d)
[kud],n

)
and

Ck,n(u) = `
(n
k
Y

(1)
[ku1],n

, . . . ,
n

k
Y

(d)
[kud],n

)
− `(u) .

We thus have

sup
0≤u1,...,ud≤1

∣∣∣∣∣√k(ˆ̀
k,n(u)− `(u))−W`(u) +

d∑
t=1

W`(utet)∂t`(u)− am(u)

∣∣∣∣∣
≤ sup

0≤u1,...,ud≤1

∣∣∣√kAk,n(u)−W`(u)
∣∣∣

+ sup
0≤u1,...,ud≤1

∣∣∣∣∣√kCk,n(u) +

d∑
t=1

W`(utet)∂t`(u)

∣∣∣∣∣
+ sup

0≤u1,...,ud≤1

∣∣∣√kBk,n(u)− am(u)
∣∣∣ .

Applying de Haan and Ferreira (2006; Proposition 7.2.3) leads in D([0, 1]d) to

√
kAk,n(u)

d−→W`(u) .

Due to the Skorohod construction we can write

sup
0≤u1,...,ud≤1

∣∣∣√kAk,n(u)−W`(u)
∣∣∣→ 0 a.s. . (20)
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For any intermediate sequence, the proof of Einmahl et al. (2012; Theorem 4.6) ensures the
convergence for t = 1, . . . , d

sup
u∈[0,1]

|
√
k
(n
k
Y

(t)
[ku],n − u

)
+W`(uet)| → 0 a.s. , (21)

and finally

sup
0≤u1,...,ud≤1

∣∣∣∣∣√kCk,n(u) +

d∑
t=1

W`(utet)∂t`(u)

∣∣∣∣∣→ 0 a.s. . (22)

It thus remains to prove that

sup
0≤u1,...,ud≤1

∣∣∣√kBk,n(u)− am(u)
∣∣∣→ 0 a.s. .

The second order condition that holds uniformly on [0, 1]d in (14) yields

sup
0≤u1,...,ud≤1

∣∣∣∣Bk,n(u)

a(n/k)
−m

(n
k
Y

(1)
[ku1],n

, . . . ,
n

k
Y

(d)
[kud],n

)∣∣∣∣→ 0 a.s. .

Then the result follows from
√
ka(n/k)→ a and

sup
0≤u1,...,ud≤1

∣∣∣m(u)−m
(n
k
Y

(1)
[ku1],n

, . . . ,
n

k
Y

(d)
[kud],n

)∣∣∣→ 0 a.s. ,

that is obtained combining (21) and the continuity of the function m.
Finally, we proved that

sup
0≤u1,...,ud≤1

∣∣∣∣∣√k(ˆ̀
k,n(u)− `(u))−W`(u) +

d∑
t=1

W`(utet)∂t`(u)− am(u)

∣∣∣∣∣→ 0 a.s. .

Proof of Corollary 2.
From Lemma 1 and due to the Skorohod construction, almost surely

√
k(ˆ̀

k,n(u)− `(u))−W`(u) +

d∑
t=1

W`(utet)∂t`(u)− am(u) = o(1)

uniformly over [0, 1]d. Now, making use again of the recursive definition ˆ̀
k,n;I(uI) = E[ˆ̀k,n(U)|UI =

uI ]−
∑
I′(I

ˆ̀
k,n;I′(uI′) there is no difficulty to make ˆ̀

k,n;I inherit the asymptotic distribution

property from ˆ̀
k,n. The Hoeffding–Sobol decomposition of the process Z` + am makes sense.

Indeed, the sample paths of the process in (16) are bounded on [0, 1]d and consequently square
integrable because 0 ≤ ∂j` ≤ 1 and the Gaussian process W` has continuous trajectories almost
surely.
Proof of Proposition 3.
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This result is obtained by the fact that any superset importance coefficient has an integral
representation. Indeed, from (9) in Liu and Owen (2006), we know that

Dsuper
I (`) =

1

2|I|

∫ ∑
J⊆I

(−1)|I\J|`(uJ ,v−J)

2

dµJ(uJ)dµ−J(v−J) .

Applying this formula to the empirical version ˆ̀
k,n and making use of the distributional ex-

pansion ˆ̀
k,n ' `+ Z`/

√
k + a(n/k)m, provided by Lemma 1, allows us to write

Dsuper
I (ˆ̀

k,n) = Dsuper
I (`) +

1

k
Dsuper
I (Z`) + a2(n/k)Dsuper

I (m)

+
1

2|I| − 1

∫
∆I [`, Z`/

√
k](uI ,v) +∆I [`, a(n/k)m](uI ,v) +∆I [Z`/

√
k, a(n/k)m](uI ,v)

+ o(1/
√
k) + o(a2(n/k)) + o(a(n/k)/

√
k) ,

where the integral is with respect to the measure dµI(uI)dµ(v). The result follows from the
asymptotic behavior of a, i.e. a(n/k) ∼ a/

√
k.
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