
HAL Id: hal-01649518
https://hal.science/hal-01649518

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algebraic condition and an algorithm for the internal
contact between two ellipsoids

Ibrahim Trabelsi, Maher Moakher, Cendrine Gatumel, Henri Berthiaux

To cite this version:
Ibrahim Trabelsi, Maher Moakher, Cendrine Gatumel, Henri Berthiaux. An algebraic condition and
an algorithm for the internal contact between two ellipsoids. Engineering Computations, 2009, 26 (6),
pp.635-644. �10.1108/02644400910975432�. �hal-01649518�

https://hal.science/hal-01649518
https://hal.archives-ouvertes.fr


Contact between
two ellipsoids

An algebraic condition and an
algorithm for the internal contact

between two ellipsoids
Ibrahim Trabelsi and Maher Moakher

National Engineering School at Tunis, LAMSIN-ENIT & FS Gabés
Tunis-Belvédère, Tunisia, and

Cendrine Gatumel and Henri Berthiaux
Ecoles des Mines d’Albi, Centre RAPSODEE-EMAC, UMR CNRS 2392,

Albi, France

Abstract
Purpose – The purpose of this paper is to present a new method for the detection and resolution of
the contact point between two ellipsoids. Numerical simulations of ellipsoidal particles in a rotary
cylinder are also presented.
Design/methodology/approach – An algebraic condition is developed for the internal contact
between two ellipsoids and an efficient contact detection algorithm for overlapping ellipsoids is
implemented.
Findings – This method was found to have the advantages of effectiveness and speed in the
detection and resolution of the contact point.
Originality/value – The dynamics of granular materials are of great importance in many industries
dealing with powders and grains, such as pharmaceutical, chemical, and food industries. The main
difficulty of such simulations is the excessive CPU time required for a large number of particles. In
the discrete element method, contact detection between grains is the most expensive step in solving a
nonlinear system for determination of the contact point, the normal vector and the overlap distance
between ellipsoids. The numerical behavior and the optimization of the new algorithm presented in
this paper are important also.
Keywords Programming and algorithmic languages, Geometric planes and solids
Paper type Research paper

1. Introduction
The problem of contact detection between two objects arises in various applications
such as robotics, geomechanics, computer graphics, computer animation, etc. In the
discrete element simulation of the flow of granular materials, one also needs to resolve
the contact, i.e. to determine the ‘‘contact point’’ and ‘‘contact normal direction’’. The
problems of detection and resolution of contact are sometimes coupled in many
algorithms. However, the resolution of the contact can be important in terms of
computing time. It is therefore desirable to devise an algorithm that separates these
two steps so that when there is no contact the second step is not performed.

Several studies are interested in the problem of the intersection of two quadratic
surfaces in three-dimensional space. Some mathematical tools are used to resolve this
problem. Segre’s characteristics is used to classify the intersection curves between two
quadric surfaces. Descartes’ rule of signs, first described by Réné Descartes, is a
technique for determining the number of positive or negative roots of a polynomial.
Sturm theorem makes it possible to calculate the number of distinct real roots,
belonging to a given interval, of a polynomial function.

Among the works that are interested only on the contact detection we cite:
(Bromwich, 1906; Sommerville, 1947) for the classification of quadratic forms, (Farouki



et al., 1989; Levin, 1979) for the structure and parameterization of the intersection
curve, and (Perram and Wertheim, 1985; Perram et al., 1996) for molecular dynamics
simulations. Among the works interested in detecting and resolving the contact point
problem we mention (Lin and Ng, 1995; Trabelsi and Moakher, 2006) for discrete
element simulations, and (Wang et al., 2001) for the algebraic condition of external
contact between ellipsoids.

Ellipsoids have a relatively simple convex form that can approximate the shape
of several nature and man-made grains. This justifies the needs for developing an
efficient method for the resolution of contact between two overlapping ellipsoids. In
this paper we present an algebraic condition for the internal contact and a new
algorithm for the determination of the contact point and the overlapping distance of
two ellipsoids. The determination of the signs of the roots of the characteristic equation
of two ellipsoids allows the contact detection. Indeed, the roots of the characteristic
equation changes sign depending on the state of two ellipsoids: separation, inclusion or
overlapping. Our work is an extension of (Wang et al., 2001) for the algebraic condition
of internal contact, and of (Lin and Ng, 1995; Trabelsi and Moakher, 2006) for the
efficient algorithm of contact detection.

The organization of this paper is as follows. In section 2, we review the algebraic
conditions for the internal intersection of a pair of ellipsoids. In section 3, we present an
iterative procedure that efficiently solve the contact problem based on the algebraic
condition and the concept of geometric potential. In section 4, we present simulation
results for ellipsoidal particles inside a rotary cylinder.

2. Intersection of two ellipsoids
Definition 2.1: Given two ellipsoidsA and B we say that:

. B is included inA ifA \ B ¼ B (See Figure 1(a)).

. A and B are tangent internally if A \ B ¼ A or B and their external surfaces
have only one common point (See Figure 1(b)).

. A and B are overlapping if their external surfaces have common points (See
Figure 1(c)).

Figure 1.
Inclusion, internal
tangency and overlap
of two ellipsoids
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LetA and B be two ellipsoids in three-dimensional space. ToA we associate the 4 " 4
symmetric and real matrix A such that the boundary of A is characterized by the
equation xT Ax ¼ 0, where x ¼ ðx; y; z; 1Þ represents homogeneous coordinates.
Similarly, to B we associate the 4 " 4 symmetric and real matrix B such that the
boundary of B is characterized by the equation xT Bx ¼ 0.

2.1 Algebraic condition
To the pair fA;Bg of ellipsoids, we introduce the function hð!Þ ¼ detð!Aþ BÞ which
is a polynomial of degree 4 in !. The equation hð!Þ ¼ 0 is called the characteristic
equation ofA and B.

The goal of this work is to show the following results:

. A \ B ¼ A or B if and only if the characteristic equation hð!Þ ¼ 0 has four
negative roots.

. A and B touch each other internally at a single point if and only if characteristic
equation hð!Þ ¼ 0 has a negative double root.

Theorem 2.2: The characteristic equation hð!Þ ¼ 0 has at least two negative roots.

Proof: There exists an affine transformation P which transforms A in its standard
formA* and B into a sphere B*:

A& : xT A&x ¼ xT PT APx ¼ 0; ð1Þ
B& : xT B&x ¼ xT PT BPx ¼ 0; ð2Þ

where A& and B& are the corresponding matrices which are given by

A& ¼

1=a2

1=b2

1=c2

'1

8
>><

>>:

9
>>=

>>;
; B& ¼

1 'x0

1 'y0

1 'z0

'x0 'y0 'z0 'r2 þ x2
0 þ y2

0 þ z2
0

8
>><

>>:

9
>>=

>>;
:

We note that detð!A& þB&Þ ¼ detð!AþBÞ ( ðdetðP'1ÞÞ2 ¼ 0. Therefore, although the
characteristic equation of A and B is different from the characteristic equation of A&

and B&, both equations have the same roots. Thus, the problem of finding the roots of
the characteristic equation hð!Þ ¼ 0 of the two ellipsoids A and B is equivalent to the
problem of finding the roots of the characteristic equation h&ð!Þ ¼ 0 of the two
ellipsoidsA& and B&. The latter equation writes

hð!Þ ¼' !

a2
þ 1

! "
!

b2
þ 1

! "
!

c2
þ 1

! "
ð!þ r2Þþ! !

b2
þ 1

! "
!

c2
þ 1

! "
x2

0

a2

! "

þ! !

a2
þ 1

! "
!

c2
þ 1

! "
y2

0

b2

! "
þ! !

a2
þ 1

! "
!

b2
þ 1

! "
z2

0

c2

! "
: ð3Þ

Without loss of generality we assume that 0 < a ) b ) c. Then it is easy to check that
hð'a2Þhð'b2Þ ) 0 and hð'b2Þhð'c2Þ ) 0. By the intermediate value theorem it
follows that hð!Þ ¼ 0 has at least two negative roots in ½'c2;'a2+.
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Lemma 2.3: If two ellipsoidsA and B touch each other internally at a single point, then
their characteristic equation hð!Þ ¼ 0 has a negative double root.

Proof: Assume that A \ B ¼ B and Xt
0AX0 ¼ Xt

0BX0 ¼ 0, where X0 is the
intersection point betweenA and B. IfA and B have the same tangent plane at X0 then
BX0 ¼ '!0AX0 for some real value !0 6¼ 0. Thus, ð!0Aþ BÞX0 ¼ 0 and !0 is a root of
hð!Þ ¼ 0. We take U0 a point such that Ut

0AU0 ¼ 0 and V0 the intersection of the line
passing by X0 and U0 and the external surface of B. We have Vt

0BV0 ¼ 0. Let Y0 be a
point on the line passing by X0 and U0 and is inside B and hence inside A. Then
Yt

0BY0 < 0 and Yt
0AY0 < 0. By construction we have

U0 ¼ sY0 þ ð1 ' sÞX0; s > 1 since Y0 is in A ð4Þ
V0 ¼ rY0 þ ð1 ' rÞX0; r > 1 since Y0 is in B ð5Þ

Therefore,

0 ¼ Ut
0AU0 ¼ ðð1 ' sÞX0 þ sY0ÞtAðð1 ' sÞX0 þ sY0Þ

¼ ðð1 ' sÞXt
0 þ sY t

0ÞAðð1 ' sÞX0 þ sY0Þ

¼ ð1 ' sÞ2Xt
0AX0 þ s2Yt

0AY0 þ 2sð1 ' sÞYt
0AX0;X

t
0AX0 ¼ 0

¼ s2Yt
0AY0 þ 2sð1 ' sÞYt

0AX0; ð6Þ

and hence

Yt
0AX0 ¼

s

2ðs' 1Þ
Yt

0AY0 < 0: ð7Þ

Similarly, from Vt
0BV0 ¼ 0 we obtain

Yt
0BX0 ¼

r

2ðr ' 1ÞY
t
0BY0 < 0: ð8Þ

As ð!0Aþ BÞX0 ¼ 0, we have Yt
0ð!0Aþ BÞX0 ¼ !0Yt

0AX0 þ Yt
0BX0 ¼ 0, which

implies that !0 ¼ ' Yt
0BX0

Yt
0
AX0

< 0. The product of the four roots of hð!Þ ¼ 0 is (abcr)2 > 0,

hð!Þ ¼ 0 have two negative roots, !0 < 0 then the fourth root !1 must be negative. It
remains to prove that !0 ¼ !1.

Suppose !0 6¼ !1, then X1 6¼ X0 is the eigenvector associated with !1. Then
ð!0Aþ BÞX0 ¼ 0, ð!1Aþ BÞX1 ¼ 0 and Xt

1ð!0Aþ BÞX0 ¼ 0, Xt
0ð!1Aþ BÞX1 ¼ 0.

We have Xt
1BX0 ¼ Xt

1AX0 ¼ Xt
0BX1 ¼ Xt

0AX1 ¼ 0, which implies that X1 is a common
point on the tangent plane of A and B and X1 is outside A and B. It follows that
Xt

1AX1 ¼ Xt
1BX1 > 0 and Xt

1ð!1Aþ BÞX1 > 0. This is a contradiction since
ð!1Aþ BÞX1 ¼ 0.

Lemma 2.4: If the characteristic equation hð!Þ ¼ 0 has a negative double root, then
the two ellipsoidsA and B touch each other internally at a single point.

Proof: Let !0 6¼ 0 be negative double root of hð!Þ ¼ 0 and let X0 be the associated
eigenvector. Then !0 is also an eigenvalue of 'A'1B with multiplicity 2. Let
X1 be the generalized eigenvector defined by ð!0I ' A'1BÞ2X1 ¼ 0 ¼ ð!0I ' A'1BÞ
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X0. It follows that ð!0I ' A'1BÞX1 ¼ X0. Since A and B are symmetric we
have Xt

0AX0 ¼ ðð!0I ' A'1BÞX1ÞtAð!0I ' A'1BÞX1 ¼ Xt
1A ð!0I ' A'1BÞ2X1 ¼ 0.

Xt
0BX0 ¼ ðð!0I ' A'1BÞX1ÞtBð!0I ' A'1BÞX1 ¼ Xt

1Bð!0I ' A'1BÞ2X1 ¼ 0. Then X0

is a point of both A and B. As X0 is the eigenvector associated with !0, we
have hð!0Þ ¼ ð!0Aþ BÞX0 ¼ 0. Thus, the tangent plane of A and B at X0

are XtAX0 ¼ XtBX0 ¼ 0 are the same. We therefore conclude that A and B are tangent
atX0.

Lemma 2.5: If the external surfaces of A and B have common points, then hð!Þ ¼ 0
does not have four negative roots.

Proof: It has been proved that hð!Þ ¼ 0 has a double positive roots if A and B
are tangent externally (Wang et al., 2001) and has double negative roots if A and
B are tangent internally, cf. Lemma 2.4. Note that the case where there is
intersection between the two ellipsoids is in between these two situations (Figure
2). Therefore, two of the roots change from positive into negative through 0 or 1,
without ever becoming imaginary roots, which is a contradiction by the continuity
of the solution (Bhatia, 1997) and since the leading coefficient of hð!Þ ¼ 0 is
'ðabcÞ'2 6¼ 0.

Lemma 2.6: IfA \ B ¼ A or B, then hð!Þ ¼ 0 has four negative roots.

Proof: IfA \ B ¼ A or B, then the two ellipsoids are either:

(1) tangent internally;

(2) or one is included in the other.

It has been proved that if the two ellipsoids A and B are tangent internally then
hð!Þ ¼ 0 has a double negative roots, which implies that hð!Þ ¼ 0 has four negative
roots by Theorem 2.2.

If A \ B ¼ A or B and the two ellipsoids A and B are not tangent internally, then
A is included inB, or B is included inA. Let us assume that B is included inA. IfA and
B have the same center ðx0 ¼ y0 ¼ z0 ¼ 0Þ, then hð!Þ ¼ 0 have four negative roots

Figure 2.
Two ellipsoids A and B

touching each other
internally at a single

point X0
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ð'a2;'b2;'c2;'r2Þ. Let BðtÞ be a family of ellipsoids that represents a continuous
motion from Bðt0Þ ¼ B to Bðt1Þ such that the external surfaces of A and BðtÞ do not
have common points for all t 2 ½t0; t1+. We suppose that hð!; tÞ ¼ 0 does not have four
distinct negative roots and we will proof that there is a contradiction. From (Bhatia,
1997) we associate continuous roots to all continuous polynomials with complex
coefficients. By theorem 2.2, hð!Þ ¼ 0 has two negative roots which we denote by !3ðtÞ
and !4ðtÞ. The two other roots are denoted !1ðtÞ and !2ðtÞ. For Bðt0Þ, hð!Þ ¼ 0 has four
negative roots and therefore !1ðt0Þ and !2ðt0Þ are negative.

If the roots change signs then:

. !1ðtÞ and !2ðtÞ change signs from negative to positive through 0 or1, without
ever becoming imaginary;

. !1ðtÞ and !2ðtÞ are a pair of imaginary conjugate roots.

For the first case, if hð!Þ ¼ 0 has a positive roots then the two ellipsoids are separated
(Wang et al., 2001), which is impossible because for all t 2 ½t0; t1+ the ellipsoid BðtÞ is
included in A. From Equation (3) the leading and the last coefficients of hð!; tÞ ¼ 0
are'ðabcÞ'2 and 'r2, respectively. Thus, the product of the four roots of hð!; tÞ ¼ 0 is
ðabcrÞ2 > 0.

In the second case, let !1ðtÞ and !2ðtÞ be a pair of imaginary conjugate roots. Let
lð!; tÞ be the function such that hð!; tÞ ¼ "ð!' !3ðtÞÞð!' !4ðtÞÞlð!; tÞ. Then, the
equation lð!; tÞ ¼ 0 has a negative discriminant !ðtiÞ, and !ðtiÞ ¼ 0 for some
ti 2 ½t0; t1+. For this ti , we have !1ðtiÞ ¼ !2ðtiÞ. In the first case !1ðtiÞ and !2ðtiÞ can
not be positive roots. Then !1ðtiÞ ¼ !2ðtiÞ < 0. From lemma 2.4, we have that A
and BðtiÞ are tangent internally. This is impossible because the external surfaces of
A and BðtÞ do not have common points for all t 2 ½t0; t1+. We therefore conclude
that both !1ðtÞ and !2ðtÞ are negative for all t 2 ½t0; t1+, and hence hð!Þ ¼ 0 has
four negative roots.

Lemma 2.7: If the characteristic equation hð!Þ ¼ 0 has four distinct negative roots,
then eitherA \ B ¼ A or B.

Proof: Suppose that hð!Þ ¼ 0 has four distinct negative roots. Then one and only one
of the following four situations holds:

(1) A and B are separated.

(2) The external surfaces ofA and B have common points.

(3) A and B are tangent.

(4) A \ B ¼ A or B.

The first case is impossible because if A and B are separated then by (Wang et al.,
2001) hð!Þ ¼ 0 has two distinct positive roots. If the external surfaces ofA and B have
common points which is not possible by lemma 2.5. If A and B are tangent then
hð!Þ ¼ 0 has positive or negative double roots which is a contradiction. Therefore, the
only possible situation isA \ B ¼ A or B.

Theorem 2.8: Let two ellipsoidsA and B with the characteristic equation hð!Þ ¼ 0.

(1) A and B touch each other internally at a single point, if and only if hð!Þ ¼ 0 has
a negative double root.

(2) A \ B ¼ A or B, if and only if hð!Þ ¼ 0 has four negative roots.
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Proof:

(1) For the first part of this theorem we have:

. ‘‘If’’: If A and B touch each other internally at a single point, then by lemma
2.3 hð!Þ ¼ 0 has a negative double root.

. ‘‘Only if’’: If hð!Þ ¼ 0 has a negative double root, then by lemma 2.4A and B
touch each other internally at a single point.

(2) For the second part:

. ‘‘If’’: IfA \ B ¼ A or B, then by lemma 2.6 hð!Þ ¼ 0 has four negative roots.

. ‘‘Only if’’: if hð!Þ ¼ 0 has four negative roots, then by lemma 2.7 and lemma
2.4A \ B ¼ A or B.

3. Internal contact algorithm
In the geometric potential method (Lin and Ng, 1995), one needs to solve the two
nonlinear systems. Here we propose an iterative procedure that converges rapidly to
the solution of such systems. The principle idea of the proposed algorithm is that it
combines the algebraic condition of the contact of two ellipsoids with the geometric
potential method (See Figure 3).

For convenience, let f and g be the real-valued functions defined on R4 by:

f ðxÞ ¼ xT Ax
gðxÞ ¼ xT Bx

#
ð9Þ

such that the boundaries of the two ellipsoids A and B are defined by f ðxÞ ¼ 0 and
gðxÞ ¼ 0, respectively.

Figure 3.
Internal contact of

two ellipsoids
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For each e 2 ½'1;þ1Þ, the set of points x such that f ðxÞ ¼ e is the boundary of an
ellipsoid Ae that is similar to A , A0. Similarly, for each e 2 ½'1;þ1Þ, the set of
points x such that gðxÞ ¼ e is the boundary of an ellipsoid Be that is similar to B , B0.

If A and Be have a real touching point x0, then x0 is the eigenvector of 'A'1Be

associated with the eigenvalue !0. Our procedure for the determination of the possible
point of contact between the externally surface of A and the externally surface of B is
first to check if a contact exists. This can be quickly checked by looking if hð!Þ ¼ 0 does
not have four distinct negative roots. If so then we proceed in finding the points C and C 0.

The problem is formulated as

Find x0 and e such that
A and Be has one real touching point x0:

#
ð10Þ

The search for x0 and e solving this problem is a delicate geometrical problem. Indeed, the
search for a vector x0 in the intersection of the two ellipsoids is a nonlinear problem.
However, if the two externally surface of A and B overlap then we are guaranteed that
there exists e such that heð!Þ has a negative double root. As stated earlier, the equation
xT Bex ¼ e defines the boundary of a family of ellipsoids Be. Therefore, we conclude that
e 2 ½0;"+ where" < 2. Hence, Equation (10) can be reformulated as

Find e 2 ½0;"+ such that
heð!Þ has a negative double root:

#
ð11Þ

Our algorithm is to start with e0 2 I0 ¼ ½a0; b0+, where a0 ¼ 0 and b0 ¼ ". Then for each
iteration k ¼ 1; 2; . . . we check whether A \ Bek'1

¼ Bek'1
by looking at the roots of

hek'1
ð!Þ ¼ 0. If so, then Ik ¼ ½ak; bk+ where ak ¼ ðak'1 þ bk'1Þ=2 and bk ¼ bk'1.

Otherwise, we take Ik ¼ ½ak; bk+ where ak ¼ ak'1 and bk ¼ ðak'1 þ bk'1Þ=2. This process
is repeated until jekþ1 ' ekj falls below a prescribed small value #.

Algorithm:

(1) Initialization: test = false, e0 ¼ 0, a0 ¼ 0, b0 ¼ ", k ¼ 0.

(2) While (test ¼¼ false) Do

(3) If hek
(!) ¼ 0 has a negative double root !k, then

(!, e) ¼ (!k, ek þ ), test ¼ true.
Go to step 8.

(4) If hek
(!) ¼ 0 has four negative roots, then

A \ Bek ¼ Bek
Take akþ1 ¼ ek, bkþ1 ¼ bk

(5) Else the externally surfaces ofA and Bek overlap.
Take akþ1 ¼ ak, bkþ1 ¼ ek.

(6) ekþ1 ¼
akþ1 þ bkþ1

2
.

k ¼ k þ 1.

(7) If |ek'1 ' ek | < " then test ¼ true.

(8) End Do.

(9) Find x0 solution of the linear system (!A þ Be) x ¼ 0.
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Convergence of this iterative procedure is guaranteed by the fact that in each
iteration the interval Ik ¼ ½ak; bk+ for the possible values of ek is cut in halves. Let
dkþ1 ¼ jekþ1 ' ekj. Then, d0 ¼ " and d1 ¼ je1 ' e0j ¼ "

2 < 1, and for each k ¼ 1; 2; . . .
we have dkþ1¼ 1

2 dk ¼
"
2k

.
The final step in the above algorithm is of course to find the contact point

C ¼ ðxc; yc; zcÞ obtained by finding the eigenvector x0 ¼ ðxc; yc; zc; 1Þ associated with
!, which is equivalent to solve the following linear system ð!Aþ BeÞx ¼ 0.

4. Numerical simulations
For the numerical simulation of granular materials presented here, 10,000 ellipsoidal
particles are randomly placed inside a circular cylinder with radius R ¼ 0.06 m and
length L ¼ 0.08 m. Under the action of the gravity alone the particles are settled at the
bottom part of the cylinder. After this initialization step, the cylinder is rotated around its
axis of revolution with a constant angular velocity equal to 30 R.P.M. In Table I, we
summarize the particle properties employed in this numerical simulation.

After few time steps, two motion zones appear: an internal zone that rotates almost
as a rigid body, and an external zone characterized by a rapid flow. In Figure 4, we
show two snapshots of the rotative cylinder at t ¼ 1s and at t ¼ 1.3s.

5. Conclusion and future work
The introduction of the algebraic condition of internal contact can be generalized for
other quadratic forms like cylinder. However, the new algorithm for the calculation of
the contact point introduces a new approach for the resolution of the contact problems,
which can be useful for other convex forms.

Table I.
Ellipsoidal particle data

Particle number 10,000
Particle semi-axes (2, 3, 2) mm
Mass 0.125 g
Angular velocity 30 R.P.M.
Normal stiffness coefficient 3,000 Pa
Restitution coefficient 0.7
Friction coefficient 0.4
Ratio of tangential/normal stiffnesses 0.7

Figure 4.
Snapshots of the

rotative cylinder at t ¼ 1 s
and at t ¼ 1.3 s
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It is clear that this new algorithm is efficient in the case of overlapping ellipsoids, and
especially for the calculation of the contact point and the overlapping distance with a
high degree of accuracy. The numerical behavior and the optimization of this new
algorithm are also of importance, it will be the goal of future work.
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