
HAL Id: hal-01649511
https://hal.science/hal-01649511

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of a Rover Anti-collision System
Ning Ge, Éric Jenn, Nicolas Breton, Yoann Fontenneau

To cite this version:
Ning Ge, Éric Jenn, Nicolas Breton, Yoann Fontenneau. Formal Verification of a Rover Anti-collision
System. FMICS-AVoCS 2016, Sep 2016, Pisa, Italy. pp.PP. 171 - 188. �hal-01649511�

https://hal.science/hal-01649511
https://hal.archives-ouvertes.fr

To link to this article : DOI: 10.1007/978-3-319-45943-1_12

URL : https://doi.org/10.1007/978-3-319-45943-1_12

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 18132

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible.

To cite this version: Ge, Ning and Jenn, Éric and Breton, Nicolas and
Fontenneau, Yoann Formal Verification of a Rover Anti-collision System.
(2016) In: FMICS-AVoCS 2016, 26 September 2016 - 28 September 2016
(Pisa, Italy)

Any correspondence concerning this service should be sent to the repository administrator:
staff-oatao@listes-diff.inp-toulouse.fr

mailto:staff-oatao@listes-diff.inp-toulouse.fr
https://doi.org/10.1007/978-3-319-45943-1_12
http://oatao.univ-toulouse.fr/

Formal Verification of a Rover Anti-collision System

Ning Ge1,*, Eric Jenn1,†, Nicolas Breton2, and Yoann Fonteneau2

1 IRT Saint-Exupéry, Toulouse, France firstname.name@irt-saintexupery.com
2 Systerel, Toulouse, France firstname.name@systerel.fr

Abstract. In this paper, we integrate inductive proof, bounded model check-
ing, test case generation and equivalence proof techniques to verify an em-
bedded system. This approach is implemented using Systerel Smart Solver
(S3) toolset. It is applied to verify properties at system, software, and code
levels. The verification process is illustrated on an anti-collision system (ARP
for Automatic Rover Protection) implemented on-board a rover. Focus is
placed on the verification of safety and functional properties and the proof
of equivalence between the design model and the generated code.

Keywords: SAT, safety critical system, S3, bounded model checking, inductive
proof, equivalence proof, test case generation

1 Introduction

Even though significant progress has been made towards the integration of formal
methods in the industry of safety critical systems, their usability is still impaired
by their cost. Nevertheless, the hope is that once the initial integration is done,
subsequent verifications can be achieved at significantly lower costs. In this paper,
we show how this could be achieved using a formal verification toolset, Systerel
Smart Solver (S3)3, and draw some lessons from our experience.

S3 [8] is built around a synchronous language and a model checker (S3-core)
based on SAT [4] techniques. As the proof engine, S3-core relies on Bounded Model
Checking (BMC) [3] and k-induction [16, 6] techniques. S3 supports different activi-
ties of a software development process: property proof, equivalence proof, automatic
test case generation, simulation, and provides necessary elements to comply with the
software certification processes. It can be applied on designs expressed in SCADE
[7]/Lustre [11] (including floating-point arithmetic) and implementations coded in C
and Ada, and has been used for the formal verification of railway signaling systems
for years by various industrial companies in this filed.

In this work, we apply S3 on an anti-collision system (ARP for Automatic Rover
Protection) that is deployed on a three-wheeled rover. Focus is placed on three main
activities: (1) Formal specification of the critical functional and safety requirements,
(2) Verification of expected properties using appropriate formal techniques, (3) Proof
* Seconded from Systerel, Toulouse, France
† Seconded from Thales Avionics, Toulouse, France
3 S3 is maintained, developed and distributed by Systerel (http://www.systerel.fr/).

of the equivalence between the design model and the generated code. An additional
purpose is to make the ARP use case publicly available to the research community.

This paper is organized as follows: Section 2 presents the S3 toolset; Section 3
describes the ARP use case; Section 4 exposes the verification of safety and func-
tional properties using inductive proof, BMC, and test cases generation techniques;
Section 5 illustrates the process of equivalence proof for the verification of the gener-
ated code; Section 6 draws some lessons from the verification activities, and Section
7 gives some concluding remarks and discusses perspectives.

2 The S3 Toolset

S3 is composed of the following main elements:
-- A synchronous declarative language similar to the Lustre language [11], called

HLL (High Level Language) that is used to model the system, its environment
constraints as well as its properties. As an example, Fig. 1 presents an HLL model
that calculates the population count (popcount) of an input boolean table of size
N. The boolean elements of the input table are constrained to be conjunctively
true. The function counter() is defined as the algorithm of popcount. Finally,
the proof obligation clause expresses one expected property on the result.
Constants: int N := 10;

Inputs: bool in[N];

Constraints: SOME i: [0, N-1] (in[i]);

Declarations:

 int unsigned 10 counter(int);

 int unsigned 10 cnt_num;

Definitions:

 counter(i) := if i == -1 then 0

 else if in[i] then counter(i-1)+1 else counter(i-1);

 cnt_num := counter(N-1);

Outputs: cnt_num;

Proof Obligations: cnt_num <= N & cnt_num >= 1;

Fig. 1: Example of HLL Model

-- Several translators to convert models or code (Scade, Lustre, C and Ada) to
HLL models.

-- An expander to translate HLL models into a bit level language, called LLL (Low
Level Language) that only contains boolean streams and is restricted to three
bitwise operators: negation, implication and equivalence.

-- A SAT-based proof engine, named S3-core, to check LLL models.
-- Tools to build equivalence proof between models, or between models and code.
-- Tools to animate and debug models.

S3 supports the following activities of a typical development process:
-- Static detection of runtime errors and standard conformance check, in-

cluding array bounds check, range check, division by zero check, over and un-
derflow check, output and constraint initialization check, etc. Proof obligations
are also generated to ensure that the generated HLL models show no undefined
behavior with respect to the semantics of the source language.

-- Property proof: Fig. 2 presents the workflow of property proof. The design
model, e.g. Lustre, is translated into an HLL model. Combined with properties
expressed in HLL as well, it is then expanded to a LLL model that is fed to the
S3-core. If a property is falsifiable, a generated counterexample can be simulated
at the HLL level. This activity will be detailed in Section 4.

S3-core
Design Model Design Model

Translator
Design Model

HLL

+
Propertie

HLL

expander

Properties valid?
YES / NO

Design+

Property

LLL

Fig. 2: Process of Property Proof
-- Equivalence proof: Fig. 3 presents the process of proving the equivalence be-

tween the design model, e.g. Lustre, and the generated/implemented code, e.g.
C code. Models and code are translated into HLL models. The HLL models are
then expanded to LLL models using diversified expanders4. Equivalence models
are respectively constructed at the HLL level and the LLL level. Equivalence
proof is performed on one of the equivalence models or both. This activity will
be detailed in Section 5.

Design

Model
Lustre

Code

C

Lustre
Translator

C-Translator

Design
Model

HLL

Code

HLL

expander 1

expander 2

Equivalence
Constructor

LLL

LLL

S3-core
LLL

Equivalence
Constructor

HLL

Generated/
Implemented

Fig. 3: Process of Equivalence Proof

-- Test case generation: Test scenarios are generated from properties expressed
as test goals using BMC. This activity will be detailed in Section 4.3.
The architecture of S3 facilitates the construction of formal verification solutions

compliant with certification standards, e.g. DO178C [10]. Towards this goal, S3 is
organized in a set of small, independent components, from which the most critical
ones - an equivalence model constructor, and a tool to verify the validity of the
proof - are developed according to the highest integrity levels. The performance of
the proof engine allows users to manage the proof of industrial size problems: the size
of those models routinely attains ten millions variables and several hundred millions
clauses. Verification of designs using floating-point arithmetic (FPA) compliant with
IEEE Standard for FPA (IEEE 754) [1] are addressed by means of bit-blasting5 [8].
4 The diversified expanders are designed and implemented by different teams using different

programming languages.
5 Bit-blasting is a classic method that translates bit-vector formulas into propositional

logic expressions.

3 Specification and Design of the ARP Use Case

3.1 The Context of Use Case

TwIRTee is a three-wheeled rover used to experiment and evaluate various meth-
ods and tools in the domain of hardware/software co-design, virtual integration of
equipments, and formal verification within the INGEQUIP project6. TwIRTee’s ar-
chitecture and its software and hardware components are representative of typical
aeronautical, spatial and automotive systems [9]. The overall system is composed
of a unique stationary supervision station and a set of TwIRTee rovers moving in a
controlled environment (Fig. 4). The architecture of rover is composed of a mission
and a power control subsystems. The power control subsystem is in charge of power
supply, motor control and sensor acquisition. The mission subsystem is composed
of a pair of redundant channels A and B. Each channel contains a monitoring unit
(MON) in charge of monitoring the data and a command unit (COM) in charge
of calculating commands for the rovers. The mission and power control systems
communicate via CAN bus.

In the nominal case, each rover moves autonomously on a set of predefined tracks
so as to perform its missions, i.e., moving from a start waypoint to a target way-
point under speed and positioning constraints. In this system, the ARP function is
aimed at preventing collisions between the rovers. It generates the maximal acceler-
ations and minimal decelerations that are taken into account by the rover trajectory
management function. The communication between rovers are carried out via WIFI.

L/R
wheels

CAN bus

Supervision station

Power-PC platform
(Freescale’s MPC5674)

Position
Sensors

ARM platform
(Xillinx ZYNQ)

Unit MON

WiFi

Unit COM
Channel A Channel B

MON

Mission subsystem

Power Control
subsystem

MON

Compass

CON

Power-PC platform
(Freescale’s MPC5674) Map : 45 waypoints

150 segments
Rovers : 3
Mission: 20 waypoints maximal

Fig. 4: Overview of the TwIRTee System
6 The INGEQUIP project is conducted at the IRT Saint-Exupéry.

Here, we introduce several terms used in the paper. A mission is defined by a
list of waypoints to be “passed-by” by the rover. A segment, defined by a couple
of waypoints on the track, corresponds to a straight path. Segments only intersect
at waypoints. The set of all waypoints and segments constitutes a map. Dedicated
monitoring mechanisms ensure that if the rover gets out of the track, it is placed in
a stopped safe mode and the supervisor is alerted. Accordingly, we consider that all
displacements of rovers comply with the map. In the use case, we consider 3 rovers
moving on a map of 45 segments and 150 waypoints. A mission contains at most
20 waypoints.

3.2 System-Level Safety and Functional Requirements

The requirements of ARP use case comes from the industrial partners of the IN-
GEQUIP project. The ARP is expected to ensure system-level safety requirement
(REQ-SAF-1) stated in Table 2 in Appendix. REQ-SAF-1 states that at any time,
the minimal distance between the centers of two rovers shall be greater or equal
to 0.4m. It is split in two subsets of requirements: one about the exclusive access
to segments (REQ-SAF-1-1) and several others about the design of map (IR-F1,
IR-F2 and IR-F3). Compliance with the requirements of map data is under the map
supplier’s responsibility.

Table 3 in Appendix presents other system-level requirements. The functional
ones (REQ-F1 and REQ-F2) are mainly about excluding trivial implementations that
would prevent collisions by, e.g., freezing all rovers. In the same manner, REQ-QoS-
1 is introduced to guarantee the performance of the design, and to prevent trivial
solutions of anti-collision, e.g., by performing missions sequentially. Note that the
ARP is not to schedule the movement of the rovers but to ensure safety. Accordingly,
if missions are schedulable, they shall remain schedulable with the ARP.

3.3 System Design Choice

Missions are elaborated off-line and transmitted via the supervision station. They
are considered to be validated on-board (according to the REQ-F1 in Table 4 in
Appendix). To ensure the main safety requirements, separation of rovers is imple-
mented as follows: a rover may only enter a segment if it has been granted exclusive
access to both the beginning and the end waypoints of the segment. As waypoints
are global resources shared by all rovers, their reservation is ensured at system-level.
Our system is designed as globally asynchronous and locally synchronous. Usually
the synchronous programming schema used in synchronous languages, such as Lus-
tre and HLL, supposes that time is defined as a sequence of instants. To preserve
determinism, these languages use the concept of instantaneous broadcast [2] when
several processes in parallel communicate, which means that message reception is
synchronous (or simultaneous) with their emission. To comply with this execution
semantics, we consider the PALS approach proposed in [15] where system-level clock
synchronization is used to provide a global logical synchronicity.

3.4 High-Level Software Requirements and Software Design

During the software design process, the system-level requirements are refined into
High-Level software Requirements (HLRs), given in Table 4 in Appendix. The HLRs
represent "what" to be implemented, while the Low-Level Requirements (LLRs)
represent "how" to implement it. In this work, the LLRs are expressed by a Lustre
model7. For space reasons, the Lustre model is not presented in the paper. We briefly
describe some of its key points.

The ARP is split in two parts: one that manages segments reservation and one
that calculates the speed and position of the rover with respect to the reservation
decision. As mentioned in Section 3.3, the problem of reserving a track segment can
be reduced to the problem of managing access to critical sections in a distributed
system. In our design, this problem is solved by decomposing time into "time-slots"
and allocating a dedicated reservation slot to each rover: so that only one rover at a
time can perform a reservation. Each time slot is split in four sub-slots respectively
for request, reply, reservation and empty tasks. For example, if there are two rovers
(R1 and R2) in the system, the first time slot (sub-slots t0 - t3) is assigned to R1,
while the second time slot (sub-slots t4 - t7) is assigned to R2.

4 Property Verification

We have specified the system and produced a candidate Lustre design model in Sec-
tion 3. Before generating C code from the Lustre model, one needs to check whether
the model actually complies with its specification. With S3, this property verification
process combines inductive proof, BMC, test case generation and equivalence proof
techniques. The first three techniques are used to verify properties of the design
model. The equivalence proof technique is used to verify that the generated code
is equivalent to the model, which implies that the properties verified in the design
model are also satisfied in the code. We illustrate the property verification in this
section and present the equivalence proof in Section 5.

4.1 The Workflow of Property Verification

Fig. 5 presents the property verification workflow. The Lustre model is translated
into an HLL model, to which properties and environment constraints expressed in
HLL are concatenated. The full HLL model is then expanded to the LLL model used
as the input of the S3-core. This verification workflow can be split in two phases:
first, the properties are checked for a certain time length n. If no property is violated,
n is increased until either a counterexample (cex) is found, or some pre-known upper
bound of n is reached. In case a safety property8 fails, a cex in the form of a sequence
of states is generated, where the last state contradicts the property. The cex trace
is then directly exploited to debug the property or the design model.
7 With respect to the DO178, the Lustre model is considered to express LLRs, since the

source code is directly generated from the model with no other interpretation/refinement.
8 Usually, the safety referred by requirements means the system is safe, while the safety

referred by properties is related to the deterministic process. Here is the latter case.

YES

HLL

Fig. 5: The Workflow of Property Verification

The BMC represents a partial decision procedure for a model checking problem,
which is not complete. The completeness of a safety property can be achieved with
k-inductive proof based on strengthening inductive invariants (also referred to as
lemmas hereafter) if needed9. The k-induction relies on an iterative process to search
for lemmas by analyzing the repeatedly produced step counterexamples, until the
proof is complete. Examples of k-induction proofs and BMC verification are given in
Section 4.2 and 4.3 respectively.

4.2 K-inductive Proof of Safety Property

Recent works have shown that k-induction often gives good results in practice when
implemented by SAT or SMT based model checking [16, 6]. Mathematical induction
is the classical proof technique that consists of proving a base case (Eq. 1) and an
inductive step case (Eq. 2). Let a transition system S be specified by an initial state
condition I(x) and a transition relation T (x, x’) where x, x’ are vectors of state
variables. A state property P (x) is invariant for S, i.e., satisfied by every reachable
state of S, if the entailments in Eq. 1 and 2 hold for some k ≥ 0.

I(x0) ∧ T (x0, x1) ∧ · · · ∧ T (xk−1, xk) |= P (x0) ∧ · · · ∧ P (xk) (1)
T (x0, x1) ∧ · · · ∧ T (xk, xk+1) ∧ P (x0) ∧ · · · ∧ P (xk) |= P (xk+1) (2)

A counterexample trace for the base entailment indicates that the property P is
falsifiable in a reachable state of S. This is similar to the counterexamples produced
by BMC, but a counterexample trace for the induction step entailment may start
from an unreachable state or an over-approximated reachable state of S. In Fig. 6, we
distinguish the reachable part of the state space and the over-approximated reachable
state space. The transition T (xn, xn+1) starts from an over-approximated reachable
state in step n, and ends in a unreachable state in step n+ 1. One way to rule out
such step counterexamples is to increase the depth k of the induction. However,
9 Lemma searching is not a must. It is possible that a property is k-inductive.

some invariant properties are not inductive for any k. So, instead of increasing k,
the method to enhance k-induction of a property is to strengthen the induction
hypothesis using new lemmas to reduce the over-approximation of the reachable
state space.

reachable state space

reachable states space
over-approximation

states space

step n step n+1base

Fig. 6: Step Counterexample in Inductive Proof

Many recent efforts are dedicated to the automatic generation of invariants
(used as lemmas in this work): automatic invariant checking based on BDDs [14];
unbounded model checking using interpolation [12]; property-directed reachability
(PDR) [5]; quadratic invariant generation using templates based on abstract inter-
pretation [13]. S3 provides a lemma generation tool based on a speculation strategy
that searches for equivalent variables at bit-level. According to our experience, it is
still very difficult for those tools to generate all necessary lemmas for an arbitrary
system, and manual elaboration of lemmas to complete the proof remains important.
So, to keep the approach as generic as possible, we do not apply invariant generation
methods. Instead, we show how lemmas can be found "manually" on the basis of
the step-counterexamples. We pick the property HLR-06-1 in Table 4 as an example
to illustrate the process of inductive proof.

Example 1. HLR-06-1 states that the rover position shall be in front of or at the
initial position of the reserved area. It is formally expressed in Eq. 3, where, at time
t, posr(t) is the position of the rover r, and posr(initrsv, t) is the initial position of
the reserved area of rover r. The corresponding property expressed in HLL is given
in Eq. 4, where i is the id of rover r, and the FLT_ge() is the floating point greater-
or-equal operator. The notion of time cycle does not appear in Eq. 4, because it is
implicit in the HLL model. To simplify the explanation, we suppose that the mission
of each rover contains at most 5 waypoints.

∀r ∈ Rovers, t ∈ Time
(
posr(t) ≥ posr(initrsv, t)

)
(3)

FLT_ge(posi, init_rsvi) == true; (4)

Following the workflow defined in Fig. 5, BMC is executed first, with no coun-
terexample found within a time length of 20 cycles. Then k-induction is executed.
With k = 1, a step counterexample is found in the next inductive depth (depth =
2), shown in Fig. 7. The FPA-lib of S3 follows the IEEE 754 FPA standard, thus

a variable of float type (here variables pos1 and init_rsv1) is composed of a sign,
an exponent, and a mantissa. To facilitate the explanation, the converted decimal
values of floating numbers are given in Fig. 7. The boolean variable rsv1[i] repre-
sents the reservation status (by the local rover) of waypoint i of a rover's mission.
Values of variables pos1, init_rsv1 and rsv1 are given for steps 0 - 3, where a step-
counterexample is produced in step 2.

[depth 2] > rsv1

rsv1 is a composite

$28*: rsv1[0] is t t [] f

$29: rsv1[1] is f f [] t

$30: rsv1[2] is t t [t] t

$31: rsv1[3] is f f [] f

$32: rsv1[4] is f f [] f

[depth 2] > pos1

$1: pos1 is 0.45 0.55 [0.75] 1.05

[depth 2] > init_rsv1

$2: init_rsv1 is 0 0 [1.20] 0.60

Fig. 7: Step-counterexample of Property HLR-06-1

This step-counterexample contradicts the property HLR-06-1 because of pos1
(=0.75) < init_rsv1 (=1.20) in step k=2. This means that the rover locates out-
side the reserved area. The reserved area is in fact a set of continuous10 reserved
waypoints of rover's mission, therefore the calculation of init_rsv1 depends on the
reservation status of the waypoints (variable rsv1). We notice that in step k=1, the
waypoints P0 and P2 in the mission are reserved (i.e., rsv1[0]=t and rsv1[2]=t), but
the waypoint P1 is not (i.e., rsv1[1]=f), which means that the reserved area is
not continuous. This step-counterexample does not indicate a design error. Indeed,
REQ-09 in Table 4 requires that any positive reply to a reservation request shall
contain a set of continuous waypoints. Unfortunately, we cannot use it as lemmas
of this property because its inductive proof also produces step-counterexamples and
needs to be analyzed. We thus have two solutions: (1) express and prove a property
about the continuity of the reserved area, if valid, use it as a lemma to prove HLR-
06-01; (2) investigate the step-counterexamples of HLR-09 to make it proved, and
then use HLR-09 as a new lemma to prove HLR-06-1.

For the first solution, the added lemma is expressed in HLL as Eq. 5, where N
is the number of waypoints in a mission. Using this additional lemma, HLR-06-1 as
well as all other indeterminate11 properties are proved by 1-induction. In this case,
we suggest to report this step-counterexample to the designer. Then s/he might
decide to add the new lemma as a complementary requirement about the continuity
of reserved areas in the specification. This may reduce the re-verification effort.

ALL i : [0,N − 3], j : [2,N − 1] (rsv1[i] ∧ rsv1[i + 1] ∧ i + j ≤ N − 1 → rsv1[i + j]); (5)
10 As explained by the REQ-01-4 in Table 4 in Appendix, we use continuous (continuity)

hereafter for the fact that each waypoint has a unique precedent waypoint in a mission
or in a reserved area, except that it is the initial one.

11 Indeterminate means neither valid nor violated.

For the second solution, we can first consider HLR-09 as an axiom. Inductive
proof demonstrates that even if HLR-09 were proved, HLR-06-1 would remain inde-
terminate and a step-counterexample similar to the one in Fig. 7 would be produced
again. Following the same idea, we assume all indeterminate properties except HLR-
06-1 are valid, all the step-counterexamples indicate that the step k+1 contains
non-continuous reserved areas. This leads the verifier to add the same lemma as the
one in the first solution.

4.3 BMC and Test Case Generation

In general, properties are classified as safety or liveness properties. The former de-
clares what should not happen (or should always happen), while the latter declares
what should eventually happen. The vast majority of properties in the ARP system
are safety ones, except the system-level functional property REQ-F2 in Table 3 and
the software-level functional property HLR-13 in Table 4.

Example 2. REQ-F2 states that at any time, if the definition of schedulable missions
are free of deadlock, a deadlock shall not occur due to the ARP. HLR-13 states that
the ARP shall ensure that the schedulable mission is completed within worst case
mission time (WCMT).

HLR-13 is a bounded liveness property because an over-approximated WCMT
can be used as the upper bound of checking. Hence it is a good candidate for BMC.
If no counterexample12 is found before the time bound, the property is valid. In the
case of HLR-13, a counterexample is easily produced using BMC. A precondition of
HLR-13 is REQ-F2, because a rover may not complete its mission when deadlocks
occur. The validation of REQ-F2 requires that missions are schedulable, otherwise
it is possible that deadlocks occur, and HLR-13 fails. As we cannot check these two
properties considering the actual mission schedules, we use BMC to generate test
case scenarios containing deadlocks due to unschedulable missions. These test cases
can be used later to check the verification tool of mission schedules.

To explain the generation of deadlock scenarios, we consider a system with two
rovers. REQ-F2 is satisfied if the property expressed in Eq.6 is false, where rovers ri
and rj are stopped, ri (rj) requests waypoint pj (pi), but pi (pj) is reserved by ri
(rj). Both rovers wait for a locked resource.

∀pi ∈ Misi, pj ∈ Misj, ri, rj ∈ Rovers, t ∈ Time (i ̸= j ∧ state(ri, t) = STOP∧
state(rj, t) = STOP ∧ req(ri, pj, t) ∧ req(rj, pi, t) ∧ rsvd(ri, pi, t) ∧ rsvd(rj, pj, t))

(6)

We launch BMC for this property for some time length, and test case scenarios
are extracted from the generated counterexamples.
12 The counterexample of liveness property is a path to a loop that does not contain the

desired state. This implies that with an infinite loop path, the system never reaches the
specified state.

4.4 Safety Property and Map Data Validation

Some safety properties can hardly be verified by induction or BMC, in particular due
to the floating-point operations for instance. In that case, we may take benefit of
divide and conquer strategy by decomposing the property into a set of simpler ones,
even static ones. Take the REQ-SAF-1 in Table 2 as an example.

Example 3. REQ-SAF-1 states that at any time, the minimal distance between the
centers of two rovers shall be greater or equal to 0.4m.

This property can be verified by calculating the distance between two rovers
at any time and then checking its value, unfortunately this solution is expensive.
To alleviate this problem, REQ-SAF-1 is split in another safety property about the
reservation of waypoints (REQ-SAF-1-1) and a set of properties about the map data
(IR-F1, IR-F2 and IR-F3), see Table 2. REQ-SAF-1-1 is proved by k-induction. IR-F1,
IR-F2 and IR-F3 are requirements about the length of segment, the distance between
a waypoint and a segment, and the absence of intersection between segments. In
this work, the map data are modeled in Lustre, as same as the software. Beside the
advantage of using a unique toolchain, this approach allows to reuse directly the
properties expressed on the map data in the verification process of the software. In
fact, these static map data could be easily checked using a dedicated verification
program. However, when these map properties are used as sub-properties of the
safety property REQ-SAF-1, they need in any case to be re-verified in the Lustre
model.

4.5 Property Verification Results

The safety, functional and performance properties of ARP are formally expressed in
Table 5, Table 6 and Table 7 in the Appendix. As shown in Table 1, some safety
properties can be directly proved by 0 or 1-induction, while some others need ad-
ditional lemmas. REQ-QoS-1 is a system-level performance property. It is difficult
to verify it at system-level without having software design, it is thus expressed as
HLR-12 and verified at software-level by inductive proof.

Table 1: ARP Property Verification Results

Verification
Techniques REQ-ID Verification Results

Inductive Proof
IR-F1, IR-F2, IR-F3, REQ-F1, HLR-01, HLR-03,
HLR-04, HLR-05, HLR-07, HLR-08, HLR-11 Valid by 0-induction
REQ-SAF-1-1, HLR-10 Valid by 1-induction
HLR-02, HLR-06-1, HLR-06-2, HLR-06-3, HLR-
06-4, HLR-09, HLR-12 (REQ-QoS-1)

Valid by 1-induction us-
ing additional lemmas

Data Validation REQ-SAF-1 (IR-F1, IR-F2, IR-F3) Valid
BMC and Test
Case Generation HLR-13, REQ-F2 Test cases generated

5 Equivalence Proof between Design and Generated Code

The property verification activities depicted in Section 4 demonstrate that the design
model complies with its specification. However, there is still a gap between the design
model and the code embedded in the system. The code can be either implemented by
the developer or be generated automatically from the Lustre model. In our case, we
use the lus2c translator13 to generate the C code from the Lustre model. However,
as this translator is not qualified14, it is still unknown whether this C code satisfies
the specification.

To prove the code is correct, two approaches are applicable. The first one fol-
lows the strategies presented in Section 4. We first translate the C code into the
HLL model using a C2HLL translator, and verify that this HLL model satisfies all
requirements defined in Section 3. The second approach demonstrates that the code
is equivalent to the design model, i.e., the same inputs generate the same outputs.
This guarantees that the properties (related to inputs and outputs) satisfied by the
design model will be satisfied by the code.

Fig. 8 presents several verification activities (A) in the process of equivalence
proof: A1 generates C code from Lustre model with a qualified translator; A2 trans-
lates Lustre models into HLL models, where properties are combined and verified;
A3 translates C code into HLL models, where properties are combined and verified;
A4 proves that the HLL models generated from the Lustre model and the C code
are equivalent; A5 proves that the LLL models generated from the Lustre model and
the C code (through the HLL model) are equivalent.

Fig. 8: Activities in the Process of Equivalence Proof

Based on different development contexts and the activities in Fig. 8, we summa-
rize a set of strategies (S) for the verification of the C code, as follows:
13 The translator lus2c is provided by Lustre v4 toolset.
14 Qualification is a requirement in getting a system certified.

-- S1: The code generator is qualified as a development tool at the same level as
the application. Properties are verified on the Lustre model (A2). Thanks to the
qualified translation (A1), properties are preserved in the generated C code.

-- S2: The code generator is not qualified at the same level as the application.
• S2a: Properties are directly verified on the C code (A3).
• S2b: Properties are verified on the Lustre model (A2). The C code is proved

to be equivalent to the Lustre model (A4 or A5). Thanks to the equivalence
proof, properties are preserved by the C code.
* S2b1: The equivalence is proved at HLL level (A4).
* S2b2: The equivalence is proved at LLL level (A5).

• S2c: Properties are verified at both Lustre and C code level (A2 and A3).

We prove equivalence between the Lustre model (including the map data) and
the generated C code. In our case study, we applied the strategy S2b for the following
reasons:

1. The C code generator lus2c is non-qualified. (rule out S1)
2. It is reasonable to assume that only a subset of the requirements will be formally

expressed and verified. One will probably use other more classical approaches,
such as testing. The cost of test increases as the abstraction level decreases,
thus test is less expensive at Lustre level than at C level. (rule out S2a and S2c)

3. Specific formal verification techniques can be applied on Lustre thanks to its
abstract semantics, which is lost once the C code is generated. This implies that
proving properties at Lustre level is simpler than at C level. (rule out S2a and
S2c)

4. S2b supports two complementary approaches of equivalence proof S2b1 and
S2b2. S2b1 allows debugging counterexamples at the HLL level, but might need
additional lemmas for some cases. S2b2 automatically searches and adds neces-
sary lemmas using speculation techniques, but counterexamples are still difficult
to exploit. Usually S2b2 is performed first; if a property is falsifiable or indeter-
minate, the S2b1 is used to analyze the (step-)counterexample. (keep S2b)

6 Lessons Learned

6.1 Proof of Generated Code

The strategies of equivalence proof discussed in Section 5 have pros and cons. One
can select appropriate strategies under the development contexts and the available
resources.

-- S1 requires a qualified code generator. This was not an option in our case, but
this is the usual strategy in the domain of safety critical applications where
the cost of a failure largely exceeds the cost of qualification. A qualified code
generator saves a lot of effort, but is very expensive.

-- S2a and S2c require to express and verify properties and lemmas at code level.
As the code is less abstract and more complex than the Lustre model, property
verification requires more effort.

-- S2c seems redundant as property proofs are performed at both Lustre and C
level. However, it might be useful to determine the origin of an error: a property
satisfied in Lustre but falsifiable in C reveals probably an error during translation.

-- S2b is "S1 without qualified generator". The equivalence proof between Lustre
model and C code ensures that the generated C code implements exactly the
properties expressed in Lustre. S2b does not need expensive qualified generator,
but needs more effort to carry out equivalence proof. Each time the Lustre
model is modified and the new code is generated, the equivalence needs to be
re-proved.

6.2 Proof-Driven Design Guidance

The formal verification of a system could fail because of the complexity of the
system, the lacking of complete requirements to support formal verification, etc. For
instance, in Section 4.2, the HLR-06-1 is proved by k-induction after searching and
adding a lemma. If we consider that the verifier has not a complete or deep knowledge
about the design, s/he reports a scenario that contains the step-counterexample to
the designer. If necessary, the designer may then decide to add a complementary
requirement derived from this lemma in the initial specification, in order to reduce
the cost of subsequent verification. The other way round, the verifier may ask the
designer to state as many detailed requirements as possible about the system. These
properties may be written as comment and/or assertions to be checked at runtime.

Sometimes, a lemma may not be provable from the initial hypotheses. This might
be the case that some environment hypotheses have been considered as granted by
the designer without ever being explicitly expressed. This case could be handled
either by a modification of the requirements to make the hypothesis explicit or by a
modification of the design to make it independent from these hypotheses.

7 Conclusion and Perspective

This paper shows how multiple formal verification techniques (inductive proof, BMC,
test case generation, and equivalence proof) can be integrated to verify an actual
system with an industrial grade toolset. Some significant activities of a typical verifi-
cation process have been addressed, from the specification and design to the formal
verification. Focus has been placed on the verification of safety and functional prop-
erties and on the equivalence proof between the design model and the generated
code. We have drawn some lessons about the equivalence proof and the proof-driven
design guidance from this experiment.

Note that a specific design using fixed point numbers instead of floating point
numbers was used to prove the equivalence, because the integration of FPA into the
C2HLL translator is an on-going work. The equivalence proof will be re-performed
when the latest C2HLL translator is available.

References

1. IEEE Standards Association. IEEE standard for floating-point arithmetic. 2008.

2. Albert Benveniste and Gérard Berry. The synchronous approach to reactive and real-
time systems. Proceedings of the IEEE, 79(9):1270--1282, 1991.

3. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. Springer, 1999.

4. Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability, volume
185. IOS press, 2009.

5. Johannes Birgmeier, Aaron R Bradley, and Georg Weissenbacher. Counterexample to
induction-guided abstraction-refinement (CTIGAR). In Computer Aided Verification,
pages 831--848. Springer, 2014.

6. Per Bjesse and Koen Claessen. SAT-based verification without state space traversal.
In Formal Methods in Computer-Aided Design, pages 409--426. Springer, 2000.

7. Jean-Louis Boulanger, François-Xavier Fornari, Jean-Louis Camus, and Bernard Dion.
Scade: Language and applications. 2015.

8. Mathieu Clabaut, Ning Ge, Nicolas Breton, Eric Jenn, Rémi Delmas, and Yoann Fonte-
neau. Industrial grade model checking - use cases, constraints, tools and applications.
In International Conference on Embedded Real Time Software and Systems, 2016.

9. Philippe Cuenot, Eric Jenn, Eric Faure, Nicolas Broueilh, and Emilie Rouland. An ex-
periment on exploiting virtual platforms for the development of embedded equipments.
In International Conference on Embedded Real Time Software and Systems, 2016.

10. RTCA DO. 178c. Software considerations in airborne systems and equipment certifi-
cation, 2011.

11. Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305--
1320, 1991.

12. Kenneth L McMillan. Interpolation and SAT-based model checking. In Computer
Aided Verification, pages 1--13. Springer, 2003.

13. Pierre Roux, Romain Jobredeaux, and Pierre-Loïc Garoche. Closed loop analysis of
control command software. In Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pages 108--117. ACM, 2015.

14. John Rushby. Integrated formal verification: Using model checking with automated
abstraction, invariant generation, and theorem proving. In Theoretical and Practical
Aspects of SPIN Model Checking, pages 1--11. Springer, 1999.

15. Lui Sha, Abdullah Al-Nayeem, Mu Sun, Jose Meseguer, and Peter C Olveczky. PALS:
Physically asynchronous logically synchronous systems. 2009.

16. Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety properties using
induction and a SAT-solver. In Formal methods in computer-aided design, pages 127-
-144. Springer, 2000.

Appendix

Table 2: System-Level Safety Requirements
REQ-ID REQ

REQ-SAF-1 Minimal separation: At any time, the minimal distance between the centers of two rovers shall be greater or equal to
0.4m.

REQ-SAF-1-1 Exclusive access to segment: The ARP shall consider that it has been granted exclusive access to a segment.
IR-F1 Length of segment: The length of a segment shall be greater or equal to 0.4m.

IR-F2 Distance between waypoint and segment: The distance between a segment and a waypoint on a non-continuous
segment shall be greater or equal to 0.4m.

IR-F3 No intersection: There shall not be any intersection between two segments.

Table 3: System-Level Functional and Performance Requirements
REQ-ID REQ
REQ-F1 Missions shall be structurally deadlock free.

REQ-F1-1 The initial waypoints of missions shall not be the same.
REQ-F1-2 The end waypoints of missions shall not be the same.
REQ-F1-3 The end waypoint of a rover’s mission shall not exist in the missions of other rovers.

REQ-F2 No deadlock: At any time, if the definitions of scheduled missions are free of deadlocks, a deadlock shall not occur due
to the ARP.

REQ-QoS-1 Fairness: At any time, any rover shall be given the opportunity to move.

Table 4: High-Level Software Requirements
REQ-ID REQ

REQ-01

Mission validation: The ARP shall validate the missions to be executed. A mission is an ordered set of waypoint indexes.
(REQ-01-1) The mission shall have a starting waypoint. (REQ-01-2) The mission shall refer to existing waypoints in the
map. (REQ-01-3) The mission shall not successively refer to the same waypoint. (REQ-01-4) Each waypoint in a mission
shall have unique precedent waypoint except the starting waypoing (referred to as continuity in this document).

REQ-02 Motor Request: The ARP shall control the motor using one command out of emergency braking, acceleration, and deceler-
ation.

REQ-03
Emergency braking: The ARP function shall send a non-null emergency brake request to the motor control if the distance
to the end of the reserved area is less than or equal to [D_BRK] and the reserved end is not the mission end, or if the rover
is at the reserved end.

REQ-04
Deceleration: The ARP function shall send a non-null deceleration request to the motor control subsystem if the distance
to the end of the reserved area is less than or equal to [D_DEC] and greater than [D_BRK], and the reserved end is not the
mission end.

REQ-05
Acceleration: The ARP function shall send a non-null acceleration request to the motor control if the distance to the end of
the reserved area is greater than [D_DEC], or if the distance to the end of the reserved area is less than or equal to [D_DEC]
and the reserved end is the mission end.

REQ-06

Inside Reserved Area: The ARP shall only allow a rover to enter an area that has been previously reserved. (REQ-06-1)
The rover position shall be in front of or at the initial position of the reserved area. (REQ-06-2) The rover position shall be
behind or at the final position of the reserved area. (REQ-06-3) The initial waypoint of the reserved area shall be reserved.
(REQ-06-4) The final waypoint of the reserved area shall be reserved.

REQ-07 Desired Reservation Zone: At any time, the ARP shall require segments that enclose a zone of length [D_RSV] in front of
the rover.

REQ-08 Request of waypoints: The ARP shall send reservation request for all the waypoints in the desired reservation area.

REQ-09
Reply to requests: The ARP shall reply to reservation requests sent by other rovers. It shall acknowledge positively (accept)
a reservation for a waypoint if and only if the waypoint it not currently reserved by the local rover. The acknowledgement
shall contain a continuous set of waypoints.

REQ-10 Reservation of waypoints: The ARP shall reserve a waypoint once it has received positive reservation acknowledgement
from all other rovers.

REQ-11 Release of waypoints: The ARP shall release the waypoints of a segment as soon as the segment is on longer in its reserved
area.

REQ-12 Fairness of reservation: The ARP shall send waypoint reservation requests when its reservation slot is activated. The APR
shall have the possibility to perform a reservation if the required waypoint is not reserved by other rovers.

REQ-13 End of mission: The ARP shall ensure that the scheduled mission is completed within worst case mission time (WCMT).

Table 5: Formal Specification of System-Level Safety Properties

REQ-ID Formal Specification of Properties
REQ-SAF-1 REQ-SAF-1-1 ∧ IR-F1 ∧ IR-F2 ∧ IR-F3

REQ-SAF-1-1 ∀pi ∈ Misi, pj ∈ Misj (i ̸= j ∧ id(pi) = id(pj))

IR-F1 ∀s ∈ Segs (length(s) ≤ 0.4)
IR-F2 ∀p ∈ Wps, s ∈ Segs (s ̸∈ s → shortest_distance(p, s) ≤ 0.4)

IR-F3
∀si, ei, sj, ej ∈ Wps, Si,Sj ∈ Segs, Si = (si, ei), Sj = (sj, ej) (i ̸= j ∧ si ̸= sj ∧ si ̸= ej
∧sj ̸= ei ∧ ei ̸= ej ∧ ccw(si, ei, ej) ̸= ccw(ei, sj, ej) ∧ ccw(si, ei, sj) ̸= ccx(si, ei, ej)),
where ∀a, b, c ∈ Wps(ccw(a, b, c) = (c.y − a.y)× (b.x − a.x) > (b.y − a.y)× (c.x − a.x))

Table 6: Formal Specification of System-Level Functional Properties

REQ-ID Formal Specification of Properties
REQ-F1 REQ-F1 ∧ REQ-F2 ∧ REQ-F3

REQ-F1-1 ∀pi ∈ Misi, pj ∈ Misj(i ̸= j ∧ pi = init(Misi) ∧ pj = init(Misj) → id(pi) ̸= id(pj))

REQ-F1-2 ∀pi ∈ Misi, pj ∈ Misj(i ̸= j ∧ pi = end(Misi) ∧ pj = end(Misj) → id(pi) ̸= id(pj))

REQ-F1-3 ∀pi ∈ Misi (i ̸= j ∧ pi = end(Misi) → pi ̸∈ Misj)

REQ-F2 ̸ ∃pi ∈ Misi, pj ∈ Misj, ∀i, j ∈ Rovers, t ∈ Time (i ̸= j ∧ statei(t) = STOP∧
statej(t) = STOP ∧ reqi(pj, t) ∧ reqj(pi, t) ∧ reservedi(pi, t) ∧ reservedj(pj, t))

Table 7: Formal Specification of Software-Level Functional Properties

REQ-ID Formal Specification of Properties
HLR-01 HLR-01-1 ∧ HLR-01-2 ∧ HLR-01-3 ∧ HLR-01-4

HLR-01-1 ∀p ∈ Mis (is_mis_init(p) = true → p ̸= NULL)
HLR-01-2 ∀p ∈ Mis (p ̸= NULL → p ∈ Map)
HLR-01-3 ∀pi, pj ∈ Mis (pj = next(pi) ∧ pi ̸= NULL → pj ̸= pi)

HLR-01-4 ∀s ∈ Segs (length(s) < INF)
HLR-02 ∀r ∈ Rovers, t ∈ Time (stater(t) = S_BRK ∨ stater(t) = S_ACC ∨ stater(t) = S_DEC)

HLR-03 ∀r ∈ Rovers, t ∈ Time (posr(endrsv, t) ≥ posr(t) ∧ posr(endrsv, t)− posr(t) ≤ D_BRK
∧posr(endrsv, t) ̸= posr(endmis, t) ∧ posr(t) ̸= posr(endmis) → stater(t) = S_BRK)

HLR-04 ∀r ∈ Rovers, t ∈ Time (posr(endrsv, t)− posr(t) > D_BRK∧
posr(endrsv, t)− posr(t) ≤ D_DEC ∧ posr(endrsv, t) ̸= posr(endmis) → stater(t) = S_DEC)

HLR-05 ∀r ∈ Rovers, t ∈ Time (posr(endrsv, t)− posr(t) > D_DEC ∧ posr(endrsv, t)− posr(t) > 0
∧posr(endrsv, t)− posr(t) ≤ D_DEC ∧ posr(endrsv, t) = posr(endmis) → stater(t) = S_DEC)

HLR-06 HLR-06-1 ∧ HLR-06-2 ∧ HLR-06-3 ∧ HLR-06-4
HLR-06-1 ∀r ∈ Rovers, t ∈ Time (posr(t) ≥ posr(initrsv, t))
HLR-06-2 ∀r ∈ Rovers, t ∈ Time (posr(t) ≤ posr(endrsv, t))
HLR-06-3 ∀r ∈ Rovers, n ∈ Wpsrsv, t ∈ Time (posr(n) = posr(initrsv, t) → reservedr(n))
HLR-06-4 ∀r ∈ Rovers, n ∈ Wpsrsv, t ∈ Time (posr(n) = posr(endrsv, t) → reservedr(n))

HLR-07
r ∈ Rovers, n,m, p ∈ Mis, t ∈ Time
(m = next(n) ∧ p = pre(n) ∧ posr(n) < posr(t) ∧ (posr(m) ≥ posr(t) ∨ posr(n) ≥ posr(t))
∨posr(endrsv, t) > posr(p) ∧ posr(endrsv, t) < posr(n) ∧ posr(n) < INF → n ∈ Wpsdesired)

HLR-08 ∀p ∈ Mis, r ∈ Rovers, t ∈ Time
(rover_activer(t) = true ∧ request_activer(t) = true ∧ p ∈ Wpsdesire → p ∈ Wpsreq)

HLR-09 ∀r ∈ Rovers, n ∈ Wpsreq, t ∈ Time (rover_activer(t) = false ∧ reply_activer(t) = true∧
reservedr(n) = false ∧ (∀m ∈ Wpsreq(m < n → reply_positive(m))) → reply_positive(n))

HLR-10 ∀i, j ∈ Rovers, p ∈ Mis, t ∈ Time
(i ̸= j ∧ rover_activei(t) = true ∧ replyj(p) = true → reservedi(p, t) = true)

HLR-11 ∀r ∈ Rovers, p ∈ Mis, t ∈ Time
(posr(p) < posr(initdesired, t) ∧ posr(p) > posr(enddesired, t) → reservedr(p, t) = false)

HLR-12 ∀i, j ∈ Rovers, p ∈ Mis, t ∈ Time(i ̸= j ∧ rover_activei(t) = true∧
request_activei(t) = true ∧ reservedj(p, t) = false → reservedi(p, t) = true)

HLR-13 r ∈ Rover, t ∈ Time (t = WCMT → posr(t) = posr(endmis))

