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We give an analytical characterization of the price function of an American option in Heston-type models. Our approach is based on variational inequalities and extends recent results of Daskalopoulos and Feehan (2011, 2016) and Feehan and Pop (2015). We study the existence and uniqueness of a weak solution of the associated degenerate parabolic obstacle problem. Then, we use suitable estimates on the joint distribution of the log-price process and the volatility process in order to characterize the analytical weak solution as the solution to the optimal stopping problem. We also rely on semi-group techniques and on the affine property of the model.

Introduction

The model introduced by S. Heston in 1993 ( [START_REF] Heston | A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options[END_REF]) is one of the most widely used stochastic volatility models in the financial world and it was the starting point for several more complex models which extend it. The great success of the Heston model is due to the fact that the dynamics of the underlying asset can take into account the non-lognormal distribution of the asset returns and the observed mean-reverting property of the volatility. Moreover, it remains analytically tractable and provides a closed-form valuation formula for European options using Fourier transform.

These features have called for an extensive literature on numerical methods to price derivatives in Hestontype models. In this framework, besides purely probabilistic methods such as standard Monte Carlo and tree approximations, there is a large class of algorithms which exploit numerical analysis techniques in order to solve the standard PDE (resp. the obstacle problem) formally associated with the European (resp. American) option price function. However, these algorithms have, in general, little mathematical support and in particular, as far as we know, a rigorous and complete study of the analytic characterization of the American price function is not present in the literature.

The main difficulties in this sense come from the degenerate nature of the model. In fact, the infinitesimal generator associated with the two dimensional diffusion given by the log-price process and the volatility process is not uniformly elliptic: it degenerates on the boundary of the domain, that is when the volatility variable vanishes. Moreover, it has unbounded coefficients with linear growth. Therefore, the existence and the uniqueness of the solution to the pricing PDE and obstacle problem do not follow from the classical theory, at least in the case in which the boundary of the state space is reached with positive probability, as happens in many cases of practical importance (see [START_REF] Andersen | Simple and efficient simulation of the Heston stochastic volatility model[END_REF]). Moreover, the probabilistic representation of the solution, that is the identification with the price function, is far from trivial in the case of non regular payoffs. 2 Notations and main results

The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset price S and the volatility process Y are governed by the stochastic differential equation system

dSt St = (r -δ)dt + √ Y t dB t , S 0 = s > 0, dY t = κ(θ -Y t )dt + σ √ Y t dW t , Y 0 = y ≥ 0,
where B and W denote two correlated Brownian motions with d B, W t = ρdt, ρ ∈ (-1, 1).

We exclude the degenerate case ρ = ±1, that is the case in which the same Brownian motion drives the dynamics of X and Y . Actually, it can be easily seen that, in this case, S t reduces to a function of the pair (Y t , t 0 Y s ds) and the resulting degenerate model cannot be treated with the techniques we develop in this paper. Moreover, this particular situation is not very interesting from a financial point of view.

Here r ≥ 0 and δ ≥ 0 are respectively the risk free rate of interest and the continuous dividend rate. The dynamics of Y follows a CIR process with mean reversion rate κ > 0 and long run state θ > 0. The parameter σ > 0 is called the volatility of the volatility. Note that we do not require the Feller condition 2κθ ≥ σ 2 : the volatility process Y can hit 0 (see, for example, [2, Section 1.2.4]).

We are interested in studying the price of an American option with payoff function ψ. For technical reasons which will be clarified later on, hereafter we consider the process

X t = log S t -ct, with c = r -δ - ρκθ σ , ( 2.1) 
which satisfies

dX t = ρκθ σ -Yt 2 dt + √ Y t dB t , dY t = κ(θ -Y t )dt + σ √ Y t dW t . (2.2)
Note that, in this framework, we have to consider payoff functions ψ which depend on both the time and the space variables. For example, in the case of a standard put option (resp. a call option) with strike price K we have ψ(t, x) = (K -e x+ct ) + (resp. ψ(t, x) = (e x+ct -K) + ). So, the natural price at time t of an American option with a nice enough payoff (ψ(t, X t , Y t )) 0≤t≤T is given by P (t, X t , Y t ), with

P (t, x, y) = sup θ∈Tt,T E[e -r(θ-t) ψ(θ, X t,x,y θ , Y t,y θ )],
where T t,T is the set of all stopping times with values in [t, T ] and (X t,x,y s , Y t,y s ) t≤s≤T denotes the solution to (2.2) with the starting condition (X t , Y t ) = (x, y).

Our aim is to give an analytical characterization of the price function P . We recall that the infinitesimal generator of the two dimensional diffusion (X, Y ) is given by

L = y 2 ∂ 2 ∂x 2 + 2ρσ ∂ 2 ∂y∂x + σ 2 ∂ 2 ∂y 2 + ρκθ σ - y 2 ∂ ∂x + κ(θ -y) ∂ ∂y ,
which is defined on the open set O := R × (0, ∞). Note that L has unbounded coefficients and is not uniformly elliptic: it degenerates on the boundary ∂O = R × {0}.

American options and variational inequalities

Heuristics

From the optimal stopping theory, we know that the discounted price process P (t, X t , Y t ) = e -rt P (t, X t , Y t ) is a supermartingale and that its finite variation part only decreases on the set P = ψ with respect to the time variable t. We want to have an analytical interpretation of these features on the function P (t, x, y). So, assume that P ∈ C 1,2 ((0, T ) × O). Then, by applying Itô's formula, the finite variation part of P (t, X t , Y t ) is

∂ P ∂t + L P (t, X t , Y t ).
Since P is a supermartingale, we can deduce the inequality

∂ P ∂t + L P ≤ 0
and, since its finite variation part decreases only on the set P (t, X t , Y t ) = ψ(t, X t , Y t ), we can write

∂ P ∂t + L P (ψ -P ) = 0.
This relation has to be satisfied dt -a.e. along the trajectories of (t, X t , Y t ). Moreover, we have the two trivial conditions P (T, x, y) = ψ(T, x, y) and P ≥ ψ.

The previous discussion is only heuristic, since the price function P is not regular enough to apply Itô's formula. However, it suggests the following strategy: (2.3) 2. Show that the discounted price function P is equal to the solution of (2.3) where ψ is replaced by ψ(t, x, y) = e -rt ψ(t, x, y).

We will follow this program providing a variational formulation of system (2.3).

Weighted Sobolev spaces and bilinear form associated with the Heston operator

We consider the measure first introduced in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]:

m γ,µ (dx, dy) = y β-1 e -γ|x|-µy dxdy, with γ > 0, µ > 0 and β := 2κθ σ 2 . It is worth noting that in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] the authors fix µ = 2κ σ 2 in the definition of the measure m γ,µ . This specification will not be necessary in this paper, but it is useful to mention it in order to better understand how this measure arises. In fact, recall that the density of the speed measure of the CIR process is given by y β-1 e -2κ σ 2 y . Then, the term y β-1 e -2κ σ 2 y in the definition of m γ,µ has a clear probabilistic interpretation, while the exponential term e -γ|x| is classically introduced just to deal with the unbounded domain in the x-component.

For u ∈ R n we denote by |u| the standard Euclidean norm of u in R n . Then, we recall the weighted Sobolev spaces introduced in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]. The choice of these particular Sobolev spaces will allow us to formulate the obstacle problem (2.3) in a variational framework with respect to the measure m γ,µ . Definition 2.1. For every p ≥ 1, let L p (O, m γ,µ ) be the space of all Borel measurable functions u : O → R for which

u p L p (O,mγ,µ) := O |u| p dm γ,µ < ∞,
and denote

H 0 (O, m γ,µ ) := L 2 (O, m γ,µ ).
1. If ∇u := (u x , u y ) and u x , u y are defined in the sense of distributions, we set

H 1 (O, m γ,µ ) := {u ∈ L 2 (O, m γ,µ ) : 1 + yu and √ y|∇u| ∈ L 2 (O, m γ,µ )}, and u 2 H 1 (O,mγ,µ) := O y|∇u| 2 + (1 + y)u 2 dm γ,µ .
2. If D 2 u := (u xx , u xy , u yx , u yy ) and all derivatives of u are defined in the sense of distributions, we set

H 2 (O, m γ,µ ) := {u ∈ L 2 (O, m γ,µ ) : 1 + yu, (1 + y)|∇u|, y|D 2 u| ∈ L 2 (O, m γ,µ )} and u 2 H 2 (O,mγ,µ) := O y 2 |D 2 u| 2 + (1 + y) 2 |∇u| 2 + (1 + y)u 2 dm γ,µ .
For brevity and when the context is clear, we shall often denote

H := H 0 (O, m γ,µ ), V := H 1 (O, m γ,µ )
and

u H := u L 2 (O,mγ,µ) , u V := u H 1 (O,mγ,µ) .
Note that we have the inclusion

H 2 (O, m γ,µ ) ⊂ H 1 (O, m γ,µ )
and that the spaces H k (O, m γ,µ ), for k = 0, 1, 2 are Hilbert spaces with the inner products

(u, v) H = (u, v) L 2 (O,mγ,µ) = O uvdm γ,µ , (u, v) V = (u, v) H 1 (O,mγ,µ) = O (y (∇u, ∇v) + (1 + y)uv) dm γ,µ and (u, v) H 2 (O,mγ,µ) := O y 2 D 2 u, D 2 v + (1 + y) 2 (∇u, ∇v) + (1 + y)uv dm γ,µ ,
where (•, •) denotes the standard scalar product in R n . Moreover, for every T > 0, p ∈ [1, +∞) and i = 0, 1, 2, we set

L p ([0, T ]; H i (O, m γ,µ )) = u : [0, T ] × O → R Borel measurable : u(t, •, •) ∈ H i (O, m γ,µ ) for a.e. t ∈ [0, T ] and T 0 u(t, •.•) p H i (O,mγ,µ) dt < ∞ and u p L p ([0,T ];H i (O,mγ,µ)) = T 0 u(t, •.•) p H i (O,mγ,µ) dt.
We also define L ∞ ([0, T ]; H i ) with the usual essential sup norm.

We can now introduce the following bilinear form.

Definition 2.2. For any u, v ∈ H 1 (O, m γ,µ ) we define the bilinear form

a γ,µ (u, v) = 1 2 O y u x v x (x, y) + ρσu x v y (x, y) + ρσu y v x (x, y) + σ 2 u y v y (x, y) dm γ,µ + O y (j γ,µ (x)u x (x, y) + k γ,µ (x)u y (x, y)) v(x, y)dm γ,µ ,
where

j γ,µ (x) = 1 2 (1 -γsgn(x) -µρσ) , k γ,µ (x) = κ - γρσ 2 sgn(x) - µσ 2 2 .
(2.4)

We will prove that a γ,µ is the bilinear form associated with the operator L, in the sense that for every u ∈ H 2 (O, m γ,µ ) and for every v ∈ H 1 (O, m γ,µ ), we have

(Lu, v) H = -a γ,µ (u, v).
In order to simplify the notation, for the rest of this paper we will write m and a(•, •) instead of m γ,µ and a γ,µ (•, •) every time the dependence on γ and µ does not play a role in the analysis and computations.

Variational formulation of the American price

Fix T > 0. We consider an assumption on the payoff function ψ which will be crucial in the discussion of the penalized problem.

Assumption H 1 . We say that a function ψ satisfies Assumption

H 1 if ψ ∈ C([0, T ]; H), √ 1 + yψ ∈ L 2 ([0, T ]; V ), ψ(T ) ∈ V and there exists Ψ ∈ L 2 ([0, T ]; V ) such that ∂ψ ∂t ≤ Ψ.
We will also need a domination condition on ψ by a function Φ which satisfies the following assumption.

Assumption H 2 . We say that a function Φ ∈ L 2 ([0, T ]; H 2 (O, m)) satisfies Assumption H 2 if (1 + y) 3 2 Φ ∈ L 2 ([0, T ]; H), ∂Φ ∂t + LΦ ≤ 0 and √ 1 + yΦ ∈ L ∞ ([0, T ]; L 2 (O, m γ,µ ′ )) for some 0 < µ ′ < µ.
The domination condition is needed to deal with the lack of coercivity of the bilinear form associated with our problem. Similar conditions are also used in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF].

The first step in the variational formulation of the problem is to introduce the associated variational inequality and to prove the following existence and uniqueness result.

Theorem 2.3. Assume that ψ satisfies Assumption H 1 together with 0 ≤ ψ ≤ Φ, where Φ satisfies Assumption H 2 . Then, there exists a unique function

u such that u ∈ C([0, T ]; H) ∩ L 2 ([0, T ]; V ), ∂u ∂t ∈ L 2 ([0, T ]; H) and          -∂u ∂t , v -u H + a(u, v -u) ≥ 0, a.e. in [0, T ] v ∈ L 2 ([0, T ]; V ), v ≥ ψ, u ≥ ψ a.e. in [0, T ] × R × (0, ∞), u(T ) = ψ(T ), 0 ≤ u ≤ Φ. (2.5)
The proof is presented in Section 3 and essentially relies on the penalization technique introduced by Bensoussan and Lions (see also [START_REF] Friedman | Variational principles and free-boundary problems[END_REF]) with some technical devices due to the degenerate nature of the problem. We extend in the parabolic framework the results obtained in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] for the elliptic case.

The second step is to identify the unique solution of the variational inequality (2.5) as the solution of the optimal stopping problem, that is the (discounted) American option price. In order to do this, we consider the following assumption on the payoff function.

Assumption H * . We say that a function ψ : [0, T ] × R × [0, ∞) → R satisfies Assumption H * if ψ is continuous and there exist constants C > 0 and L ∈ 0, 2κ σ 2 such that, for all (t, x, y) ∈ [0, T ] × R × [0, ∞), 0 ≤ ψ(t, x, y) ≤ C(e x + e Ly ), (2.6) 
and

∂ψ ∂t (t, x, y) + ∂ψ ∂x (t, x, y) + ∂ψ ∂y (t, x, y) ≤ C(e a|x|+by ), (2.7) 
for some a, b ∈ R.

Note that the payoff functions of a standard call and put option with strike price K (that is, respectively, ψ = ψ(t, x) = (K -e x+ct ) + and ψ = ψ(t, x) = (e x+ct -K) + ) satisfy Assumption H * . Moreover, it is easy to see that, if ψ satisfies Assumption H * , then it is possible to choose γ and µ in the definition of the measure m γ,µ (see (2.2.2)) such that ψ satisfies the assumptions of Theorem 2.3. Then, for such γ and µ, we get the following identification result. Theorem 2.4. Assume that ψ satisfies Assumption H * Then, the solution u of the variational inequality (2.5) associated with ψ is continuous and coincides with the function u * defined by

u * (t, x, y) = sup τ ∈Tt,T E ψ(τ, X t,x,y τ , Y t,y τ ) .
3 Existence and uniqueness of solutions to the variational inequality

Integration by parts and energy estimates

The following result justifies the definition of the bilinear form a.

Proposition 3.1. If u ∈ H 2 (O, m) and v ∈ H 1 (O, m), we have (Lu, v) H = -a(u, v). (3.1)
This result is proved with the same arguments of [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma 2.23] or [START_REF] Daskalopoulos | C 1,1 regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma A.3] but we prefer to repeat here the proof since it clarifies why we have considered the process X t = log S t -ct instead of the standard log-price process log S t .

We first need the following result which justifies the integration by parts formulas with respect to the measure m. The proof follows standard approximation techniques, so we omit it (see the proof of [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma 2.23] or [START_REF] Terenzi | American options in stochastic volatility models[END_REF] for the details). 

|u x (x, y)v(x, y)| + |u(x, y)v x (x, y)| + |u(x, y)v(x, y)| dm < ∞, we have O u x (x, y)v(x, y)dm = - O u(x, y) (v x (x, y) -γsgn(x)v) dm.
Similarly, if the derivatives u y and v y are locally square-integrable on O and We can now prove Proposition 3.1. 

O y |u y (x, y)v(x, y)| + |u(x, y)v x y(x, y)| + |u(x, y)v(x, y)|dm < ∞,

Proof of Proposition

= ( ζb) c √ ζ ≤ ζ 2 b 2 + 1 2ζ c 2 , b, c ∈ R, ζ > 0. (3.2)
Hereafter we will often apply (3.2) in the proofs even if it is not explicitly recalled each time.

We have the following energy estimates.

Proposition 3.4. For every u, v ∈ V , the bilinear form a(•, •) satisfies

|a(u, v)| ≤ C 1 u V v V , (3.3) a(u, u) ≥ C 2 u 2 V -C 3 (1 + y) 1 2 u 2 H , ( 3.4) 
where

C 1 = δ 0 + K 1 , C 2 = δ 1 2 , C 3 = δ 1 2 + K 2 1 2δ 1 , with δ 0 = sup s 2 1 +t 2 1 >0, s 2 2 +t 2 2 >0 |s 1 s 2 + ρσs 1 t 2 + ρσs 2 t 1 + σ 2 t 1 t 2 | 2 (s 2 1 + t 2 1 )(s 2 2 + t 2 2 ) , ( 3.5 
)

δ 1 = inf s 2 +t 2 >0 s 2 + 2ρσst + σ 2 t 2 2(s 2 + t 2 ) , ( 3.6) 
and

K 1 = sup x∈R j 2 γ,µ (x) + k 2 γ,µ (x). (3.7)
It is easy to see that the constants δ 0 , δ 1 and K 1 defined in (3.5) and (3.7) are positive and finite (recall that the functions j γ,µ = j γ,µ (x) and k γ,µ = κ γ,µ (x) defined in (2.4) are bounded).

These energy estimates were already proved in [5, Lemma 2.40] with a very similar statement. Here we repeat the proof for the sake of completeness, since we will refer to it later on.

Proof of Proposition 3.4. In order to prove (3.4), we note that

1 2 O y u x v x + ρσu x v y + ρσu y v x + σ 2 u y v y dm ≥ δ 1 O y|∇u| 2 dm. Therefore a(u, u) ≥ δ 1 O y|∇u| 2 dm -K 1 O y|∇u||u|dm ≥ δ 1 O y|∇u| 2 dm - K 1 ζ 2 O y|∇u| 2 dm - K 1 2ζ O (1 + y)u 2 dm = δ 1 - K 1 ζ 2 O y|∇u| 2 + (1 + y)u 2 dm -δ 1 - K 1 ζ 2 + K 1 2ζ O (1 + y)u 2 dm.
The assertion then follows by choosing ζ = δ 1 /K 1 . (3.3) can be proved in a similar way.

Proof of Theorem 2.3

Among the standard assumptions required in [START_REF] Bensoussan | Applications of aariational inequalities in Stochastic Control[END_REF] for the penalization procedure, there are the coercivity and the boundedness of the coefficients. In the Heston-type models these assumptions are no longer satisfied and this leads to some technical difficulties. In order to overcome them, we introduce some auxiliary operators.

From now on, we set Note that ā is symmetric. As in the proof of Proposition (3.4) we have, for every u, v ∈ V ,

a(u, v) = ā(u, v) + ã(u, v
|ā(u, v)| ≤ δ 0 O y|∇u||∇v|dm, ā(u, u) ≥ δ 1 O y|∇u| 2 dm, and |ã(u, v)| ≤ K 1 O y|∇u||v|dm,
with δ 0 , δ 1 and K 1 defined in Proposition 3.4. Moreover, for λ ≥ 0 and M > 0 we consider the bilinear forms

a λ (u, v) = a(u, v) + λ O (1 + y)uvdm, āλ (u, v) = ā(u, v) + λ O (1 + y)uvdm, ã(M) (u, v) = O (y ∧ M ) ∂u ∂x j γ,µ + ∂u ∂y k γ,µ vdm and a (M) λ (u, v) = āλ (u, v) + ã(M) (u, v).
The operator a λ was introduced in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF] to deal with the lack of coercivity of the bilinear form a, while the introduction of the truncated operator a (M) λ

with M > 0 will be useful in order to overcome the technical difficulty related to the unboundedness of the coefficients. Lemma 3.5. Let δ 0 , δ 1 , K 1 be defined as in (3.5), (3.6) and (3.7) respectively. For any fixed λ ≥ δ1 2 +

K 2 1
2δ1 the bilinear forms a λ and a (M) λ are continuous and coercive. More precisely, we have

|a λ (u, v)| ≤ C u V v V , u, v ∈ V, (3.8) a λ (u, u) ≥ δ 1 2 u 2 V , u ∈ V, ( 3.9) 
and |a .11) where

(M) λ (u, v)| ≤ C u V v V , u, v ∈ V, (3.10) a (M) λ (u, u) ≥ δ 1 2 u 2 V , u ∈ V. ( 3 
C = δ 0 + K 1 + λ.
Proof. The proof for the bilinear form a λ follows as in [START_REF] Daskalopoulos | Existence, uniqueness and global regularity for degenerate elliptic obstacle problems in mathematical finance[END_REF]Lemma 3.2]. We give the details for a (M) λ

to check that the constants do not depend on M . Note that, for every u, v ∈ V ,

|ã (M) (u, v)| ≤ K 1 O y|∇u||v|dm,
so that by straightforward computations we get

|a (M) λ (u, v)| ≤ (δ 0 + λ + K 1 ) u V v V .
On the other hand, for every ζ > 0,

a (M) λ (u, u) ≥ δ 1 O y|∇u| 2 dm + λ O (1 + y)u 2 dm -K 1 O y|∇u||u|dm ≥ δ 1 - K 1 ζ 2 O y|∇u| 2 dm + λ - K 1 2ζ O (1 + y)u 2 dm. By choosing ζ = δ 1 /K 1 , we get a (M) λ (u, u) ≥ δ 1 2 O y|∇u| 2 dm + λ - K 2 1 2δ 1 O (1 + y)u 2 dm ≥ δ 1 2 u 2 V , for every λ ≥ δ1 2 + K 2 1 2δ1
.

From now on in the rest of this paper we assume λ ≥ δ1 2 +

K 2 1
2δ1 as in Lemma 3.5. Moreover, we will denote by where C = δ 0 + K 1 + λ. This will be crucial in the penalization technique we are going to describe in Section 3.2.1. Roughly speaking, in order to prove the existence of a solution of the penalized coercive problem we will introduce in Theorem 3.8, we proceed as follows. First, we replace the bilinear form a λ with the operator a

b = sup u,v∈V,u,v =0 |b(u,v)| u V v V the norm of a bilinear form b : V × V → R.
(M)
λ , which has bounded coefficients, and we solve the associated penalized truncated coercive problem (see Proposition 3.9). Then, thanks to (3.12), we can deduce estimates on the solution which are uniform in M (see Lemma 3.10) and which will allow us to pass to the limit as M goes to infinity and to find a solution of the original penalized coercive problem.

Finally, we define

L λ := L -λ(1 + y)
the differential operator associated with the bilinear form a λ , that is

(L λ u, v) H = -a λ (u, v), u ∈ H 2 (O, m), v ∈ V.

Penalized problem

For any fixed ε > 0 we define the penalizing operator

ζ ε (t, u) = - 1 ε (ψ(t) -u) + = 1 ε ζ(t, u), t ∈ [0, T ], u ∈ V. (3.13)
Since for every fixed t ∈ [0, T ] the function x → -(ψ(t) -x) + is nondecreasing, we have the following well known monotonicity result (see [START_REF] Bensoussan | Applications of aariational inequalities in Stochastic Control[END_REF]).

Lemma 3.7. For any fixed t ∈ [0, T ] the penalizing operator (3.13) is monotone, in the sense that

(ζ ε (t, u) -ζ ε (t, v), u -v) H ≥ 0, u, v ∈ V.
We now introduce the intermediate penalized coercive problem with a source term g. We consider the following assumption: Assumption H 0 . We say that a function g satisfies Assumption

H 0 if √ 1 + yg ∈ L 2 ([0, T ]; H).
Theorem 3.8. Assume that ψ satisfies Assumption H 1 and g satisfies Assumption H 0 . Then, for every fixed ε > 0, there exists a unique function

u ε,λ such that u ε,λ ∈ L 2 ([0, T ]; V ), ∂u ε,λ ∂t ∈ L 2 ([0, T ]; H) and, for all v ∈ L 2 ([0, T ]; V ), - ∂u ε,λ ∂t (t), v(t) H + a λ (u ε,λ (t), v(t)) + (ζ ε (t, u ε,λ (t)), v(t)) H = (g(t), v(t)) H , a.e. in [0, T ], u ε,λ (T ) = ψ(T ). (3.14)
Moreover, the following estimates hold:

u ε,λ L ∞ ([0,T ],V ) ≤ K, (3.15) ∂u ε,λ ∂t L 2 ([0,T ];H) ≤ K, (3.16) 1 √ ε (ψ -u ε,λ ) + L ∞ ([0,T ],H) ≤ K, ( 3.17) 
where

K = C Ψ L 2 ([0,T ];V ) + √ 1 + yg L 2 ([0,T ];H) + √ 1 + yψ L 2 ([0,T ];V ) + ψ(T ) 2 V , with C > 0 indepen- dent of ε, and Ψ is given in Assumption H 1 .
The proof of uniqueness of the solution of the penalized coercive problem follows a standard monotonicity argument as in [START_REF] Bensoussan | Applications of aariational inequalities in Stochastic Control[END_REF], so we omit the proof.

The proof of existence in Theorem 3.8 is quite long and technical, so we split it into two propositions. We first consider the truncated penalized problem, which requires less stringent conditions on ψ and g.

Proposition 3.9. Let ψ ∈ C([0, T ]; H) ∩ L 2 ([0, T ]; V ) and g ∈ L 2 ([0, T ]; H). Moreover, assume that ψ(T ) ∈ H 2 (O, m), (1 + y)ψ(T ) ∈ H, ∂ψ ∂t ∈ L 2 ([0, T ]; V ) and ∂g ∂t ∈ L 2 ([0, T ]; H). Then, there exists a unique function u ε,λ,M such that u ε,λ,M ∈ L 2 ([0, T ]; V ), ∂u ε,λ,M ∂t ∈ L 2 ([0, T ]; V ) and for all v ∈ L 2 ([0, T ]; V ) - ∂u ε,λ,M ∂t (t), v(t) H + a (M) λ (u ε,λ,M (t), v(t)) + (ζ ε (t, u ε,λ,M (t)), v(t)) H = (g(t), v(t)) H , a.e. in [0, T ), u ε,λ,M (T ) = ψ(T ). (3.18)
Proof.

Finite dimensional problem

We use the classical Galerkin method of approximation, which consists in introducing a nondecreasing sequence (V j ) j of subspaces of V such that dimV j < ∞ and, for every v ∈ V, there exists a sequence (v j ) j∈N such that v j ∈ V j for any j ∈ N and v -v j V → 0 as j → ∞. Moreover, we assume that ψ(T ) ∈ V j , for all j ∈ N. Let P j be the projection of V onto V j and ψ j (t) = P j ψ(t). We have ψ j (t) → ψ(t) strongly in V and ψ j (T ) = ψ(T ) for any j ∈ N. The finite dimensional problem is, therefore, to find

u j : [0, T ] → V j such that - ∂uj ∂t (t), v H + a (M) λ (u j (t), v) -1 ε ((ψ j (t) -u j (t)) + , v) H = (g(t), v) H , v ∈ V j , u j (T ) = ψ(T ). (3.19)
This problem can be interpreted as an ordinary differential equation in

V j (dim V j < ∞), that is - ∂uj ∂t (t) + A (M) λ,j u j (t) -1 ε Q j ((ψ j (t) -u j (t)) + ) = Q j g(t), u j (T ) = ψ(T ),
where A (M) λ,j : V j → V j is a finite dimensional linear operator and Q j is the projection of H onto V j . It is not difficult to prove that the function (t, u) → Q j ((ψ j (t) -u(t)) + ) is continuous with values in V j and Lipschitz continuous with respect to the u variable and that the term Q j g belongs to L 2 ([0, T ]; V j ) (we refer to [START_REF] Terenzi | American options in stochastic volatility models[END_REF] for the details). Therefore, by the Cauchy-Lipschitz Theorem, we can deduce the existence and the uniqueness of a solution u j of (3.19), continuous from [0, T ] into V j , a.e. differentiable and with integrable derivative.

2.

Estimates on the finite dimensional problem First, we take v = u j (t) -ψ j (t) in (3.19). We get

- ∂u j ∂t (t), u j (t) -ψ j (t) H + a (M) λ (u j (t), u j (t) -ψ j (t)) - 1 ε ((ψ j (t) -u j (t)) + , u j (t) -ψ j (t)) H = (g(t), u j (t) -ψ j (t)) H ,
which can be rewritten as

- 1 2 d dt u j (t) -ψ j (t) 2 H - ∂ψ j ∂t (t), u j (t) -ψ j (t) H + a (M) λ (u j (t) -ψ j (t), u j (t) -ψ j (t)) H + 1 ε ((ψ j (t) -u j (t)) + , ψ j (t) -u j (t)) H + a (M) λ (ψ j (t), u j (t) -ψ j (t)) = (g(t), u j (t) -ψ j (t)) H .
We integrate between t and T and we use coercivity and u j (T ) = ψ j (T ) to obtain

1 2 u j (t) -ψ j (t) 2 H + δ 1 2 T t u j (s) -ψ j (s) 2 V ds + 1 ε T t (ψ j (s) -u j (s)) + 2 H ds ≤ 1 2ζ T t ∂ψ j (s) ∂t 2 H ds + ζ 2 T t u j (s) -ψ j (s) 2 H ds + 1 2ζ T t g(s) 2 H ds + ζ 2 T t u j (s) -ψ j (s) 2 H ds + a (M) λ ζ 2 T t u j (s) -ψ j (s) 2 V ds + a (M) λ 2ζ T t ψ j (s) 2 V ds,
for any ζ > 0. Recall that ψ j = P j ψ, and so

ψ j (t) 2 V ≤ ψ(t) 2 V .
In the same way

∂ψj(t) ∂t 2 H ≤ ∂ψj(t) ∂t 2 V ≤ ∂ψ(t) ∂t 2 V . Choosing ζ = δ1 4+2 a (M ) λ
after simple calculations we deduce that there exists C > 0 independent of M , ε and j such that

1 4 u j (t) 2 H + δ1 8 T t u j (s) 2 V ds + 1 ε T t (ψ j (s) -u j (s)) + 2 H ds ≤ C ∂ψ ∂t 2 L 2 ([t,T ];V ) + g 2 L 2 ([t,T ];H) + ψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 H .
(3.20)

We now go back to (3.19) and we take v = ∂uj ∂t (t) so we get

- ∂u j ∂t (t) 2 H + āλ u j (t), ∂u j ∂t (t) + ã(M) u j (t), ∂u j ∂t (t) - 1 ε (ψ j (t) -u j (t)) + , ∂u j ∂t (t) H = g(t), ∂u j ∂t (t) H . Note that - 1 ε (ψ j (t) -u j (t)) + , ∂u j ∂t (t) H = 1 ε (ψ j -u j ) + , ∂(ψ j -u j ) ∂t (t) H - 1 ε (ψ j (t) -u j (t)) + , ∂ψ j ∂t (t) H = 1 2ε d dt (ψ j -u j ) + (t) 2 H - 1 ε (ψ j (t) -u j (t)) + , ∂ψ j ∂t (t) H .
Therefore, using the symmetry of āλ , we have

- ∂u j ∂t (t) 2 H + 1 2 d dt āλ (u j (t), u j (t)) + ã(M) u j (t), ∂u j ∂t (t) + 1 2ε ∂ ∂t (ψ j (t) -u j (t)) + 2 H - 1 ε (ψ j (t) -u j (t)) + , ∂ψ j ∂t (t) H = g(t), ∂u j ∂t (t) H .
Integrating between t and T , we obtain

T t ∂u j ∂t (s) 2 H ds + 1 2 āλ (u j (t), u j (t)) + 1 2ε (ψ j (t) -u j (t)) + 2 H = T t ã(M) u j (s), ∂u j ∂s (s) ds + 1 2 āλ (ψ j (T ), ψ j (T )) - T t 1 ε (ψ j (s) -u j (s) + , ∂ψ j ∂s (s) H ds - T t g(s), ∂u j ∂s (s) H ds.
Recall that āλ (u j (t),

u j (t)) ≥ δ1 2 u j (t) 2 V , āλ (ψ j (T ), ψ j (T )) = āλ (ψ(T ), ψ(T )) ≤ āλ ψ(T ) 2 V and |ã (M) (u, v)| ≤ K 1 O y ∧ M |∇u||v|dm, so that, for every ζ > 0, T t ∂u j ∂s (s) 2 H ds + δ 1 4 u j (t) 2 V + 1 2ε (ψ j (t) -u j (t)) + 2 H ≤ K 1 T t ds O y ∧ M |∇u j (s, .)| ∂u j ∂t (s, .) dm + āλ 2 ψ(T ) 2 V + 1 ε T t (ψ j (s) -u j (s)) + H ∂ψ j ∂s (s) H ds + T t g(s) H ∂u j ∂s (s) H ds ≤ K 1 2ζ T t u j (s) 2 V ds + K 1 M 2 ζ T t ∂u j ∂s (s) 2 H ds + āλ 2 ψ(T ) 2 V + ζ 2ε T t (ψ j (s) -u j (s)) + 2 H ds + 1 2ζε T t ∂ψ j ∂t (s) 2 H ds + 1 2ζ T t g(s) 2 H ds + ζ 2 T t ∂u j ∂s (s) 2 H ds.
From (3.20), we already know that

T t u j (s) 2 V ds+ 1 ε T t (ψ j (s)-u j (s)) + 2 H ds ≤ C ∂ψ ∂t 2 L 2 ([t,T ];V ) + g 2 L 2 ([t,T ];H) + ψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 H ,
then we can finally deduce

T t ∂u j ∂t (s) 2 H ds + u j (t) 2 V + 1 2ε (ψ j (t) -u j (t)) + 2 H ≤ C ε,M ∂ψ ∂t 2 L 2 ([t,T ];V ) + g 2 L 2 ([t,T ];H) + ψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 V , ( 3.21) 
where C ε,M is a constant which depends on ε and M but not on j.

We will also need a further estimation. If we denote ūj = ∂uj ∂t and we differentiate the equation (3.19) with respect to t for a fixed v independent of t, we obtain that ūj satisfies

- ∂ ūj ∂t (t), v H + a (M) λ (ū j (t), v) - 1 ε ∂ψ j ∂t (t) -ūj (t) ½ {ψj (t)≥uj (t)} , v H = ∂g ∂t (t), v H , v ∈ V j . (3.22)
As regards the initial condition, from (3.19) computed in t = T , for every v ∈ V j we have

∂u j (T ) ∂t , v H = a (M) λ (ψ(T ), v) -(g(T ), v) H . = -(Lψ(T ), v) H + λ ((1 + y)ψ(T ), v) H + (y ∧ M -y) j γ,µ ψ(T ) ∂x + k γ,µ ψ(T ) ∂y , v H + (g(T ), v) H . Choosing v = ∂uj (T )
∂t , we deduce that ∂u j (T ) ∂t

H ≤ C ( Lψ(T ) H + (1 + y)ψ(T ) H + (y -M ) + ∇ψ(T ) H + g(T ) H ) ≤ C ψ(T ) H 2 (O,m) + (1 + y)ψ(T ) H + g(T ) H ,
where we have used that Lψ(T

) H + (y -M ) + ∇ψ(T ) H ≤ C ψ(T ) H 2 (O,m) for a certain constant C > 0.
We can take v = ūj (t) in (3.22) and we obtain

- ∂ ūj ∂t (t), ūj (t) H +a (M) λ (ū j (t), ūj (t))- 1 ε ∂ψ j ∂t (t) -ūj (t) ½ {ψj (t)≥uj (t)} , ūj (t) H = ∂g ∂t (t), ūj (t) H , so that - 1 2 d dt ūj (t) 2 H + δ 1 2 ūj (t) 2 V ≤ 1 ε ∂ψ j ∂t (t) -ūj (t) ½ {ψj (t)≥uj } , ūj (t) H + ∂g ∂t (t), ūj (t) H ≤ 1 ε ∂ψ j ∂t (t)½ {ψj (t)≥uj } , ūj (t) H + ∂g ∂t (t), ūj (t) H .
Integrating between t and T , with the usual calculations, we obtain, in particular, that

ūj (t) 2 H + δ 1 2 T t ūj (s) 2 V ds ≤ C ε ψ(T ) 2 H 2 (O,m) + (1 + y)ψ(T ) 2 H + g(T ) 2 H + ∂ψ ∂t 2 L 2 ([t,T ];H) + ∂g ∂t 2 L 2 ([t,T ];H) , (3.23)
where C ε is a constant which depends on ε, but not on j.

Passage to the limit

Let ε and M be fixed. By passing to a subsequence, from (3.21) we can assume that ∂uj ∂t weakly converges to a function u ′ ε,λ,M in L 2 ([0, T ]; H). We deduce that, for any fixed t ∈ [0, T ], u j (t) weakly converges in

H to u ε,λ,M (t) = ψ(T ) - T t u ′ ε,λ,M (s)ds.
Indeed, u j (t) is bounded in V , so the convergence is weakly in V . Passing to the limit in (3.23) we deduce that

∂u ε,λ,M ∂t ∈ L 2 ([0, T ]; V ).
Moreover, from (3.21), we have that (ψ j -u j (t)) + weakly converges in H to a certain function χ(t) ∈ H. Now, for any v ∈ V we know that there exists a sequence (v j ) j∈N such that v j ∈ V j for all j ∈ N and v -v j V → 0. We have

- ∂u j ∂t (t), v j H + a (M) λ (u j (t), v j ) H - 1 ε ((ψ j (t) -u j (t)) + , v j ) H = (g(t), v j ) H so, passing to the limit as j → ∞, - ∂u ε,λ,M ∂t (t), v H + a λ (u ε,λ,M (t), v) H - 1 ε (χ(t), v) H = (g(t), v) H .
We only have to note that χ(t) = (ψ(t)-u ε,λ,M (t)) + . In fact, ψ j (t) → ψ(t) in V and, up to a subsequence,

½ U u j (t) → ½ U u ε,λ,M (t) in L 2 (U, m)
for every open U relatively compact in O. Therefore, there exists a subsequence which converges a.e. and this allows to conclude the proof.

We now want to get rid of the truncated operator, that is to pass to the limit for M → ∞. In order to do this we need some estimates on the function u ε,λ,M which are uniform in M . Lemma 3.10. Assume that, in addition to the assumptions of Proposition 3.9,

√ 1 + yψ ∈ L 2 ([0, T ]; V ), ∂ψ ∂t ≤ Ψ with Ψ ∈ L 2 ([0,
T ]; V ) and g satisfies Assumption H 0 . Let u ε,λ,M be the solution of (3.18). Then,

T t ∂u ε,λ,M ∂s (s) 2 H ds + u ε,λ,M (t) 2 V + 1 ε (ψ(t) -u ε,λ,M (t)) + 2 H ≤ C Ψ L 2 ([0,T ];V ) + √ 1 + yg L 2 ([0,T ];H) + √ 1 + yψ 2 L 2 ([0,T ];V ) + ψ(T ) 2 V , (3.24)
where C is a positive constant independent of M and ε.

Proof. To simplify the notation we denote u ε,λ,M by u and u ε,λ,M -ψ = u -ψ by w. For n ≥ 0, define

ϕ n (x, y) = 1 + y ∧ n. Since ϕ n and its derivatives are bounded, if v ∈ V , we have vϕ n ∈ V . Choosing v = (u -ψ)ϕ n = wϕ n in (3.18)
, with simple passages we get

- ∂w ∂t (t), w(t)ϕ n H + a (M) λ (w(t), w(t)ϕ n ) + (ζ ε (t, u(t)), w(t)ϕ n ) H = ∂ψ ∂t (t) + g(t), w(t)ϕ n H -a (M) λ (ψ(t), w(t)ϕ n ).
With the notation ϕ ′ n = ∂ϕn ∂y = 1 {y≤n} , we have

a (M) λ (w(t), w(t)ϕ n ) = O y 2 ∂w ∂x (t) 2 + 2ρσ ∂w ∂x (t) ∂w ∂y (t) + σ 2 ∂w ∂y (t) 2 ϕ n dm + λ O (1 + y)w 2 (t)ϕ n dm + O y 2 ρσ ∂w ∂x (t) + σ 2 ∂w ∂y (t) w(t)ϕ ′ n dm + O y ∧ M ∂w ∂x (t)j γ,µ + ∂w ∂y (t)k γ,µ w(t)ϕ n dm ≥ δ 1 O y |∇w(t)| 2 ϕ n dm + λ O (1 + y)w 2 (t)ϕ n dm -K 1 O y |∇w(t)| |w(t)|ϕ n dm -K 2 O y |∇w(t)| |w(t)|1 {y≤n} dm,
where

K 2 = √ ρ 2 σ 2 +σ 4 2
. Note that, if n = 0, the last term vanishes, and that, for all n > 0,

O y |∇w(t)| |w(t)|1 {y≤n} dm ≤ w(t) 2 V .
Therefore, for all ζ > 0,

a (M) λ (w(t), w(t)ϕ n ) ≥ δ 1 O y |∇w(t)| 2 ϕ n dm + λ O (1 + y)w 2 (t)ϕ n dm -K 1 O y ζ 2 |∇w(t)| 2 + 1 2ζ |w(t)| 2 ϕ n dm -K 2 w(t) 2 V ≥ δ 1 - K 1 ζ 2 O y |∇w(t)| 2 ϕ n dm + λ - K 1 2ζ O (1 + y)w 2 (t)ϕ n dm -K 2 w(t) 2 V ≥ δ 1 2 O y |∇w(t)| 2 + (1 + y)w 2 (t) ϕ n dm -K 2 w(t) 2 V ,
where, for the last inequality, we have chosen ζ = δ 1 /K 1 and used the inequality

λ ≥ δ1 2 + K 2 1 2δ1
. Again, in the case n = 0 the last term on the righthand side can be omitted.

Hence, we have, with the notation

v 2 V,n = O y |∇v| 2 + (1 + y)v 2 ϕ n dm, 1 2 d dt O w 2 (t)ϕ n dm + δ 1 2 w(t) 2 V,n + 1 ε O (-w(t)) 2 + ϕ n dm ≤ g(t) + ∂ψ ∂t (t), w(t)ϕ n H -a (M) λ (ψ(t), w(t)ϕ n ) + K 2 w(t) 2 V .
In the case n = 0, the inequality reduces to

- 1 2 
d dt O w 2 (t)dm + δ 1 2 w(t) 2 V + 1 ε O (ψ -u) 2 + dm ≤ g(t) + ∂ψ ∂t (t), w(t) H -a (M) λ (ψ(t), w(t)).
Now, integrate from t to T and use u(T ) = ψ(T ) to derive

1 2 O w(t) 2 ϕ n dm + δ 1 2 T t ds w(s) 2 V,n + 1 ε T t ds O (-w(s)) 2 + ϕ n dm ≤ T t g(s) + ∂ψ ∂t (s), w(s)ϕ n H ds + T t a (M) λ (ψ(s), w(s)ϕ n )ds + K 2 T t w(s) 2 V ds, (3.25)
and, in the case n = 0,

1 2 w(t) 2 H + δ 1 2 T t w(s) 2 V ds + 1 ε T t ds O (-w(s)) 2 + dm ≤ T t g(s) + ∂ψ ∂t (s), w(s) H ds + T t a (M)
λ (ψ(s), w(s)) ds.

(3.26)

We have, for all

ζ 1 > 0, T t g(s) + ∂ψ ∂t (s), w(s)ϕ n H ds ≤ ζ 1 2 T t ds O |w(s)| 2 ϕ n dm + 1 2ζ 1 T t ds O g(s) + ∂ψ ∂t (s) 2 ϕ n dm ≤ ζ 1 2 T t ds O |w(s)| 2 ϕ n dm + 1 ζ 1 1 + yg 2 L 2 ([t,T ];H) + 1 ζ 1 1 + y ∂ψ ∂t 2 L 2 ([t,T ];H)
.

Moreover, it is easy to check that, for all

v 1 , v 2 ∈ V , |a (M) λ (v 1 , v 2 ϕ n )| ≤ K 3 v 1 V,n v 2 V,n , with K 3 = δ 0 + K 1 + K 2 + λ, so that, for any ζ 2 > 0, T t |a (M) λ (ψ(s), w(s)ϕ n )|ds ≤ K 3 T t ds ψ(s) V,n w(s) V,n ≤ K 3 ζ 2 2 T t ds w(s) 2 V,n + K 3 2ζ 2 T t ds ψ(s) 2 V,n . Now, if we chose ζ 1 = K 3 ζ 2 = δ 1 /4
and we go back to (3.25) and (3.26), using ∂ψ ∂t ≤ Ψ we get

1 2 O w 2 (t)ϕ n dm + δ 1 4 T t w(s) 2 V,n ds + 1 ε T t ds O (-w(s)) 2 + ϕ n dm ≤ 4 δ 1 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 2K 2 3 δ 1 T t ψ(s) 2 V,n ds + K 2 w 2 L 2 ([t,T ];H) ds, ≤ 4 δ 1 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 4K 2 3 δ 1 1 + yψ 2 L 2 ([t,T ];V ) + K 2 w 2 L 2 ([t,T ];H) , (3.27)
where the last inequality follows from the estimate v 2 V,n ≤ 2 √ 1 + yv 2 V , and, in the case n = 0,

1 2 w(t) 2 H + δ 1 4 T t w(s) 2 V ds+ 1 ε T t ds O (-w(s)) 2 + dm ≤ 4 δ 1 g 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];H) + 2K 2 3 δ 1 ψ 2 L 2 ([t,T ];V ) . (3.28) From (3.28) recalling that w = u -ψ we deduce T t u(s) 2 V ds ≤ T t 2( w(s) 2 V + ψ(s) 2 V )ds ≤ 32 δ 2 1 g 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];H) + 16K 2 3 δ 2 1 + 2 ψ 2 L 2 ([t,T ];V ) . (3.29)
Moreover, combining (3.27) and (3.28), we have

1 2 O w 2 (t)ϕ n dm + δ 1 4 T t w(s) 2 V,n ds + 1 ε T t ds O (-w(s)) 2 + ϕ n dm ≤ 4 δ 1 + 16K 2 δ 2 1 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 4K 2 3 δ 1 1 + 2K 2 δ 1 1 + yψ 2 L 2 ([t,T ];V ) .
In particular,

T t ds O y|∇u(s)| 2 ϕ n dm ≤ T t u(s) 2 V,n ds ≤ 2 T t w(s) 2 V,n ds + 2 T t ds ψ(s) 2 V,n ds ≤ 8 δ 1 4 δ 1 + 16K 2 δ 2 1 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 32K 2 3 δ 2 1 1 + 2K 2 δ 1 + 4 1 + yψ 2 L 2 ([t,T ];V )
and, by using the Monotone convergence theorem, we deduce

T t y|∇u(s)| 2 H ds ≤ K 4 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 1 + yψ 2 L 2 ([t,T ];V ) , (3.30) 
where

K 4 = 8 δ1 4 δ1 + 16K2 δ 2 1 ∨ 32K 2 3 δ 2 1 1 + 2K2 δ1 + 4 .
We are now in a position to prove (3.24). Taking v = ∂u ∂t in (3.18), we have

- ∂u ∂t (t) 2 H + āλ u(t), ∂u ∂t (t) + ã(M) u(t), ∂u ∂t (t) - 1 ε (ψ(t) -u(t)) + , ∂u ∂t (t) H = g(t), ∂u ∂t (t) H .
Note that, since āλ is symmetric, d dt āλ (u(t), u(t)) = 2ā λ u(t), ∂u ∂t (t) . On the other hand,

(ψ(t) -u(t)) + , ∂u ∂t H = - 1 2 d dt (ψ(t) -u(t)) + 2 H + (ψ(t) -u(t)) + , ∂ψ ∂t (t) H , so that ∂u ∂t (t) 2 H - 1 2 
d dt āλ (u(t), u(t)) - 1 2ε d dt (ψ(t) -u(t)) + 2 H = ã(M) u(t), ∂u ∂t (t) -g(t), ∂u ∂t (t) H - 1 ε (ψ(t) -u(t)) + , ∂ψ ∂t (t) H ≤ ã(M) u(t), ∂u ∂t (t) + g(t) H ∂u ∂t (t) H + 1 ε ((ψ(t) -u(t) + , Ψ(t)) H ≤ (K 1 y|∇u(t)| H + g(t) H ) ∂u ∂t (t) H + 1 ε ((ψ(t) -u(t)) + , Ψ(t)) H .
Moreover, if we take v = Ψ(t) in (3.18), we get

- ∂u ∂t (t), Ψ(t) H + a (M) λ (u(t), Ψ(t)) - 1 ǫ ((ψ(t) -u(t)) + , Ψ(t)) H = (g(t), Ψ(t)) H , so that 1 ε ((ψ(t) -u(t)) + , Ψ(t)) H ≤ ∂u ∂t (t) H Ψ(t) H + a (M) λ u(t) V Ψ(t) V + g(t) H Ψ(t) H . (3.31) Therefore, ∂u ∂t (t) 2 H - 1 2 
d dt āλ (u(t), u(t)) - 1 2ε d dt (ψ(t) -u(t)) + 2 H ≤ (K 1 y|∇u(t)| H + g(t) H + Ψ(t) H ) ∂u ∂t (t) H + a (M) λ u(t) V Ψ(t) V + g(t) H Ψ(t) H , hence 1 2 ∂u ∂t (t) 2 H - 1 2 
d dt āλ (u(t), u(t)) - 1 2ε d dt (ψ(t) -u(t)) + 2 H ≤ 1 2 (K 1 y|∇u(t)| H + g(t) H + Ψ(t) H ) 2 + a (M) λ u(t) 2 V Ψ(t) 2 V + g(t) H Ψ(t) H .
Integrating between t and T , we get,

1 2 ∂u ∂s 2 L 2 ([t,T ];H) + 1 2 āλ (u(t), u(t)) + 1 2ε (ψ(t) -u(t)) + 2 H ≤ 1 2 āλ (ψ(T ), ψ(T )) + 2 g 2 L 2 ([t,T ];H) + 2 Ψ 2 L 2 ([t,T ];H) + 3K 2 1 2 y|∇u| 2 L 2 ([t,T ];H) + a (M) λ 2 u L 2 ([t,T ];V ) + a (M) λ 2 Ψ L 2 ([t,T ];V ) , so, recalling that āλ (u(t), u(t) ≥ δ 1 O y|∇u(t)| 2 dm + λ O (1 + y)u 2 dm ≥ (δ 1 ∧ λ) u(t) 2 V , 1 2 
∂u ∂s 2 L 2 ([t,T ];H) + δ 1 ∧ λ 2 u(t) 2 V + 1 2ε (ψ(t) -u(t)) + 2 H ≤ āλ 2 ψ(T ) 2 V + 2 g 2 L 2 ([t,T ];H) + 2 Ψ 2 L 2 ([t,T ];H) + 3K 2 1 2 y|∇u| 2 L 2 ([t,T ];H) + a (M) λ 2 u L 2 ([t,T ];V ) + a (M) λ 2 Ψ 2 L 2 ([t,T ];V ) ≤ āλ 2 ψ(T ) 2 V + 2 g 2 L 2 ([t,T ];H) + 2 Ψ 2 L 2 ([t,T ];H) + 3K 2 1 2 K 4 1 + yg 2 L 2 ([t,T ];H) + 1 + yΨ 2 L 2 ([t,T ];H) + 1 + yψ 2 L 2 ([t,T ];V ) + a (M) λ 2 32 δ 2 1 g 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];H) + 16K 2 3 δ 2 1 + 2 ψ 2 L 2 ([t,T ];V ) + a (M) λ 2 Ψ 2 L 2 ([t,T ];V ) ,
where the last inequality follows from (3.29) and (3.30). Rearranging the terms, we deduce that there exists a constant C > 0 independent of M and ε such that

1 2 ∂u ∂s 2 L 2 ([t,T ];H) + δ 1 ∧ λ 4 u(t) 2 V + 1 2ε (ψ(t) -u(t)) + 2 H ≤ C 1 + yg 2 L 2 ([t,T ];H) + Ψ 2 L 2 ([t,T ];V ) + 1 + yψ 2 L 2 ([t,T ];V ) + ψ(T ) 2 V ,
which concludes the proof.

Proof of Theorem 3.8: existence. Assume for a first moment that we have the further assumptions

ψ(T ) ∈ H 2 (O, m), (1 + y)ψ(T ) ∈ H, ∂ψ ∂t ∈ L 2 ([0, T ]; V ) and ∂g ∂t ∈ L 2 ([0, T ]; H).
Thanks to (3.24) we can repeat the same arguments as in the proof of Proposition 3.9 in order to pass to the limit in j, but this time as M → ∞. Therefore, we deduce the existence of a function

u ε,λ ∈ L 2 ([0, T ]; V ) with ∂u ε,λ ∂t ∈ L 2 ([0, T ]; H) and such that - ∂u ε,λ ∂t (t), v H + a λ (u ε,λ (t), v) H - 1 ε ((ψ(t) -u ε,λ (t)) + , v) H = (g(t), v) H .
The estimates (3.15), (3.16) and (3.17) directly follow from (3.24) as M → ∞.

We have now to weaken the assumptions on g and ψ. We can do this by a regularization procedure. In fact, let us assume that ψ satisfies Assumption H 1 (so, in particular, ∂ψ ∂t ≤ Ψ for a certain Ψ ∈ L 2 ([0, T ]; V )) and g satisfies Assumption H 0 . Then, by standard regularization techniques (see for example [5, Corollary A.12]), we can find sequences of functions (g n ) n , (ψ n ) n and (Ψ n ) n of class C ∞ with compact support such that, for any n ∈ N, n ∈ N, | ∂ψn ∂t | ≤ Ψ n and all the regularity assumptions required in the first part of the proof are satisfied. Moreover, [START_REF] Terenzi | American options in stochastic volatility models[END_REF] for the details). Therefore, the solution u n ε,λ,M of the equation (3.14) with source function g n and obstacle function ψ n satisfies

√ 1 + yg n - √ 1 + yg L 2 ([0,T ];H) → 0, √ 1 + yψ n - √ 1 + yψ L 2 ([0,T ];V ) → 0, Ψ n -Ψ L 2 ([0,T ];V ) → 0, ψ n (T ) -ψ(T ) V → 0 as n → ∞ (we refer to
T t ∂u n ε,λ,M ∂s (s) 2 H ds + u n ε,λ,M (t) 2 V + 1 ε (ψ n (t) -u n ε,λ,M (t)) + 2 H ≤ C √ 1 + yg n L 2 ([0,T ];H) + √ 1 + yψ n 2 L 2 ([0,T ];V ) + Ψ n 2 L 2 ([0,T ];V ) + ψ n (T ) 2 V .
(3.32)

Then, we can take the limit for n → ∞ in (3.32) and the assertion follows as in the first part of the proof.

Moreover, we have the following Comparison principle for the coercive penalized problem.

Proposition 3.11. 1. Assume that ψ i satisfies Assumption H 1 for i = 1, 2 and g satisfies Assumption H 0 . Let u i ε,λ be the unique solution of (3.14) with obstacle function ψ i and source function g.

If ψ 1 ≤ ψ 2 , then u 1 ε,λ ≤ u 2 ε,λ .
2. Assume that ψ satisfies Assumption H 1 and g i satisfy Assumption H 0 for i = 1, 2. Let u i ε,λ be the unique solution of (3.14) with obstacle function ψ and source function

g i . If g 1 ≤ g 2 , then u 1 ε,λ ≤ u 2 ε,λ .
3. Assume that ψ i satisfies Assumption H 1 for i = 1, 2 and g satisfies Assumption H 0 . Let u i ε,λ be the unique solution of (3.14) with obstacle function ψ i and source function g.

If ψ 1 -ψ 2 ∈ L ∞ , then u 1 ε,λ -u 2 ε,λ ∈ L ∞ and u 1 ε,λ -u 2 ε,λ ∞ ≤ ψ 1 -ψ 2 ∞ . Proposition 3.
11 can be proved with standard techniques introduced in [4, Chapter 3] so we omit the proof.

Coercive variational inequality

Proposition 3.12. Assume that ψ satisfies Assumption H 1 and g satisfies Assumption H 0 . Moreover, assume that 0

≤ ψ ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g ≤ -∂Φ ∂t -L λ Φ. Then, there exists a unique function u λ such that u λ ∈ L 2 ([0, T ]; V ), ∂u λ ∂t ∈ L 2 ([0, T ]; H) and      -∂u λ ∂t , v -u λ H + a λ (u λ , v -u λ ) ≥ (g, v -u λ ) H , a.e. in [0, T ] v ∈ L 2 ([0, T ]; V ), v ≥ ψ, u λ (T ) = ψ(T ), u λ ≥ ψ a.e. in [0, T ] × R × (0, ∞). (3.33) Moreover, 0 ≤ u λ ≤ Φ.
Proof. The uniqueness of the solution of (3.33) follows by a standard monotonicity argument introduced in [4, Chapter 3] (see [START_REF] Terenzi | American options in stochastic volatility models[END_REF]). As regards the existence of a solution, we follow the lines of the proof of [4, Theorem 2.1] but we repeat here the details since we use a compactness argument which is not present in the classical theory.

For each fixed ε > 0 we have the estimates (3.15) and (3.16), so, for every t ∈ [0, T ], we can extract a subsequence u ε,λ such that u ε,λ (t) ⇀ u λ (t) in V as ε → 0 and u ′ ε (t) ⇀ u ′ λ (t) in H for some function u λ ∈ V .

Note that u = 0 is the unique solution of (3.14) when ψ = g = 0, while u = Φ is the unique solution of (3.14) when ψ = Φ and g = -∂Φ ∂t -L λ Φ = -∂Φ ∂t -LΦ + λ(1 + y)Φ. Therefore, Proposition 3.11 implies that 0 ≤ u ε,λ ≤ Φ. Recall that u ε,λ (t) → u λ (t) in L 2 (U, m) for every relatively compact open U ⊂ O. This, together with the fact that dm is a finite measure, allows to conclude that we have strong convergence of u ε,λ to u λ in H. In fact, if δ > 0 and O δ := (-

1 δ , 1 δ ) × (δ, 1 δ ), T 0 ds O |u ε,λ (s) -u λ (s)| 2 dm ≤ T 0 ds O δ |u ε,λ (s) -u λ (s)| 2 dm + T 0 ds O c δ |u ε,λ (s) -u λ (s)| 2 dm ≤ T 0 ds O δ |u ε,λ (s) -u λ (s)| 2 dm + T 0 ds O c δ 4Φ 2 (s)dm
and it is enough to let δ goes to 0. From (3.17) we also have that (ψ(t) -u ε,λ (t)) + → 0 strongly in H as ε → 0 . On the other hand (ψ(t)u ε,λ (t)) + ⇀ χ(t) weakly in H and χ = (ψ -u λ ) + since there exists a subsequence of u ε,λ (t) which converges pointwise to u λ (t). Therefore, (ψ(t) -u λ (t)) + = 0, which means u λ (t) ≥ ψ(t).

Then we consider the penalized coercive equation in (3.14) 

replacing v by v -u ε,λ (t), with v ≥ ψ(t). Since ζ ε (t, v) = 0 and (ζ ε (t, v) -ζ ε (t, u ε,λ (t)), v -u ε,λ (t)) H ≥ 0 we easily deduce that - ∂u ε,λ ∂t (t), v -u ε,λ (t) H + a λ (u ε,λ (t), v -u ε,λ (t)) ≥ (g(t), v -u ε,λ (t)) H
so that, letting ε goes to 0, we have

- ∂u λ ∂t (t), v -u λ (t) H + a λ (u λ (t), v) ≥ (g(t), v -u λ (t)) H + lim inf ε→0 a λ (u ε,λ (t), u ε,λ (t)) ≥ (g(t), v -u λ (t)) H + a λ (u λ (t), u λ (t)).
Moreover, since 0 ≤ u ε,λ ≤ Φ for every ε > 0 and u λ = lim ε→0 u ε,λ , we have 0 ≤ u λ ≤ Φ and the assertion follows.

The following Comparison Principle is a direct consequence of Proposition 3.11,. Proposition 3.13.

1. For i = 1, 2, assume that ψ i satisfies Assumption H 1 , g satisfies Assumption H 0 and 0 ≤ ψ i ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g ≤ -∂Φ ∂t -L λ Φ. Let u i λ be the unique solution of (3.33) with obstacle function ψ i and source function g. If

ψ 1 ≤ ψ 2 , then u 1 λ ≤ u 2 λ . 2. For i = 1, 2, assume that ψ satisfies Assumption H 1 , g i satisfy Assumption H 0 and 0 ≤ ψ ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g i ≤ -∂Φ ∂t -L λ Φ.
Let u i λ be the unique solution of (3.33) with obstacle function ψ and source function

g i . If g 1 ≤ g 2 , then u 1 λ ≤ u 2 λ . 3. For i = 1, 2, assume that ψ i satisfies Assumption H 1 , g satisfies Assumption H 0 and 0 ≤ ψ i ≤ Φ with Φ ∈ L 2 ([0, T ]; H 2 (O, m)) such that ∂Φ ∂t + LΦ ≤ 0 and 0 ≤ g ≤ -∂Φ ∂t -L λ Φ.
Let u i λ be the unique solution of (3.33) with obstacle function ψ i and source function g.

If ψ 1 -ψ 2 ∈ L ∞ , then u 1 λ -u 2 λ ∈ L ∞ and u 1 λ -u 2 λ ∞ ≤ ψ 1 -ψ 2 ∞ .

Non-coercive variational inequality

We can finally prove Theorem 2.3. Again, we first study the uniqueness of the solution and then we deal with the existence.

Proof of uniqueness in Theorem 2.3. Suppose that there are two functions u 1 and u 2 which satisfy (2.5). As usual, we take v = u 2 in the equation satisfied by u 1 and v = u 1 in the one satisfied by u 2 and we add the resulting equations. Setting w := u 2 -u 1 , we get that, a.e. in [0, T ],

∂w ∂t (t), w(t) H -a(w(t), w(t)) ≥ 0.
From the energy estimate (3.4), we know that

a(u(t), u(t)) ≥ C 1 u(t) 2 V -C 2 (1 + y) 1 2 u(t) 2 H , so that 1 2 d dt w(t) 2 H + C 2 (1 + y) 1 2 w(t) 2 H ≥ 0.
By integrating from t to T , since w(T ) = 0, we have

w(t) 2 H ≤ C 2 T t (1 + y) 1 2 w(s) 2 H ds ≤ C 2 T t ds O ½ {y≤λ} (1 + y)w 2 (s)dm + T t ds O ½ {y>λ} (1 + y)w 2 (s)dm ≤ C T t ds O (1 + λ)w 2 (s)y β-1 e -γ|x| e -µy dxdy + T t ds O ½ {y>λ} (1 + y)w 2 (s)y β-1 e -γ|x| e -(µ-µ ′ )y e -µ ′ y dxdy ≤ C T t ds O dxdy(1 + λ)w 2 (s)y β-1 e -γ|x| e -µy + e -(µ-µ ′ )λ T t ds O dxdy(1 + y)Φ 2 (s)y β-1 e -γ|x| e -µ ′ y ,
where µ ′ < µ and λ > 0. Since C 2 = O dxdy(1 + y)Φ 2 (s)y β-1 e -γ|x| e -µ ′ y < ∞, we have

w(t) 2 H ≤ C(1 + λ) T t w(s) 2 H ds + C 2 (T -t)e -(µ-µ ′ )λ ,
so, by using the Gronwall Lemma,

w(t) 2 H ≤ C 2 T e -(µ-µ ′ )λ+C(T -t)(1+λ) .
Sending λ → ∞, we deduce that w(t) = 0 in [T, t] for t such that T -t < µ-µ ′ C . Then, we iterate the same argument: we integrate between t ′ and t with t -t ′ < µ-µ ′ C and we have w(t) = 0 in [T, t ′ ] and so on. We deduce that w(t) = 0 for all t ∈ [0, T ] so the assertion follows.

Proof of existence in Theorem 2.3. Given u 0 = Φ, we can construct a sequence (u n ) n ⊂ V such that

u n ≥ ψ a.e. in [0, T ] × O, n ≥ 1, (3.34) 
- ∂u n ∂t , v -u n H + a(u n , v -u n ) + λ((1 + y)u n , v -u n ) H ≥ λ((1 + y)u n-1 , v -u n ) H , v ∈ V, v ≥ ψ, a.e. on [0, T ] × O, n ≥ 1, (3.35 
)

u n (T ) = ψ(T ), in O, (3.36) Φ ≥ u 1 ≥ u 2 ≥ • • • ≥ u n-1 ≥ u n ≥ • • • ≥ 0, a.e. on [0, T ] × O. (3.37)
In fact, if we have 0 ≤ u n-1 ≤ Φ for all n ∈ N, then the assumptions of Proposition 3.12 are satisfied with

g n = λ(1 + y)u n-1 .
Indeed, since (1 + y)

3 2 Φ ∈ L 2 ([0, T ]; H), we have that g n and √ 1 + yg n belong to L 2 ([0, T ]; H) and, moreover, 0 ≤ g n ≤ λ(1 + y)Φ ≤ -∂Φ ∂t -L λ Φ.
Therefore, step by step, we can deduce the existence and the uniqueness of a solution u n to (3.35) such that 0 ≤ u n ≤ Φ. (3.37) is a simple consequence of Proposition 3.13. In fact, proceeding by induction, at each step we have

g n = λ(1 + y)u n-1 ≤ λ(1 + y)u n-2 = g n-1 so that u n ≤ u n-1 . Now, recall that u n L ∞ ([0,T ],V ) ≤ K, ∂u n ∂t L 2 ([0,T ];H) ≤ K, where K = C Ψ L 2 ([0,T ];V ) + √ 1 + yg n L 2 ([0,T ];H) + √ 1 + yψ L 2 ([0,T ];V ) + ψ(T ) V . Note that the con- stant K is independent of n since |g n | = |λ(1 + y)u n-1 , | ≤ λ(1 + y)Φ,
for every n ∈ N. Therefore, by passing to a subsequence, we can assume that there exists a function u such that u ∈ L 2 ([0, T ]; V ), ∂u ∂t ∈ L 2 ([0, T ]; H) and for every t ∈ [0, T ], u ′ n (t) ⇀ u ′ (t) in H and u n (t) ⇀ u(t) in V . Indeed, again thanks to the fact that 0 ≤ u n ≤ Φ, we can deduce that u n (t) → u(t) in H. Therefore we can pass to the limit in

- ∂u n ∂t , u n -v H + a(u n , v -u n ) + λ((1 + y)u n , v -u n ) H ≥ λ((1 + y)u n-1 , v -u n ) H
and the assertion follows.

Remark 3.14. Keeping in mind our purpose of identifying the solution of the variational inequality (2.5) with the American option price we have considered the case without source term (g = 0) in the variational inequality (2.5). However, under the same assumptions of Theorem 2.3, we can prove in the same way the existence and the uniqueness of a solution of

         -∂u ∂t , v -u H + a(u, v -u) ≥ (g, v -u) H , a.e. in [0, T ] v ∈ L 2 ([0, T ]; V ), v ≥ ψ, u ≥ ψ a.e. in [0, T ] × R × (0, ∞), u(T ) = ψ(T ), 0 ≤ u ≤ Φ,
where g satisfies Assumption H 0 and 0 ≤ g ≤ -∂Φ ∂t -LΦ. We conclude stating the following Comparison Principle, whose proof is a direct consequence of Proposition 3.13 and the proof of Proposition 2.3. Proposition 3.15. For i = 1, 2, assume that ψ i satisfies Assumption H 1 and 0 ≤ ψ i ≤ Φ with Φ satisfying Assumption H 2 . Let u i λ be the unique solution of (3.33) with obstacle function ψ i . Then:

1. If ψ 1 ≤ ψ 2 , then u 1 λ ≤ u 2 λ . 2. If ψ 1 -ψ 2 ∈ L ∞ , then u 1 λ -u 2 λ ∈ L ∞ and u 1 λ -u 2 λ ∞ ≤ ψ 1 -ψ 2 ∞ .

Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality (2.3), our aim is to prove that it matches the solution of the optimal stopping problem, that is

u(t, x, y) = u * (t, x, y), on [0, T ] × Ō,
where u * is defined by

u * (t, x, y) = sup τ ∈Tt,T E ψ(τ, X t,x,y τ , Y t,y τ ) ,
T t,T being the set of the stopping times with values in [t, T ]. Since the function u is not regular enough to apply Itô's Lemma, we use another strategy in order to prove the above identification. So, we first show, by using the affine character of the underlying diffusion, that the semigroup associated with the bilinear form a λ coincides with the transition semigroup of the two dimensional diffusion (X, Y ) with a killing term. Then, we prove suitable estimates on the joint law of (X, Y ) and L p -regularity results on the solution of the variational inequality and we deduce from them the probabilistic interpretation.

Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form a λ . With a natural notation, we define the following spaces

L 2 loc (R + ; H) = {f : R + → H : ∀t ≥ 0 t 0 f (s) 2 H ds < ∞}, L 2 loc (R + ; V ) = {f : R + → V : ∀t ≥ 0 t 0 f (s) 2 V ds < ∞}.
First of all, we state the following result:

Proposition 4.1. For every ψ ∈ V , f ∈ L 2 loc (R + ; H) with √ yf ∈ L 2 loc (R + ; H), there exists a unique function u ∈ L 2 loc (R + ; V ) such that ∂u ∂t ∈ L 2 loc (R + ; H), u(0) = ψ and ∂u ∂t , v H + a λ (u, v) = (f, v) H , v ∈ V. (4.1)
Moreover we have, for every t ≥ 0,

u(t) 2 H + δ 1 2 t 0 u(s) 2 V ds ≤ ψ 2 H + 2 δ 1 t 0 f (s) 2 H ds (4.2)
and

||u(t)|| 2 V + t 0 ||u t (s)|| 2 H ds ≤ C ||ψ|| 2 V + 1 2 t 0 || 1 + yf (s)|| 2 H ds , with C > 0.
The proof follows the same lines as the proof of Proposition 3.12 so we omit it. Moreover, we can prove a Comparison Principle for the equation (4.1) as we have done for the variational inequality.

We denote u(t) = P λ t ψ the solution of (4.1) corresponding to u(0) = ψ and f = 0. From (4.2) we deduce that the operator P λ t is a linear contraction on H and, from uniqueness, we have the semigroup property. Proposition 4.2. Let us consider f : R + → H such that √ 1 + yf ∈ L 2 loc (R + , H). Then, the solution of

∂u ∂t , v H + a λ (u, v) = (f, v) H , v ∈ V, u(0) = 0, is given by u(t) = t 0 P λ s f (t -s)ds = t 0 P λ t-s f (s)ds. Proof.
Note that V is dense in H and recall the estimate (4.2), so it is enough to prove the assertion for

f = 1 (t1,t2] ψ, with 0 ≤ t 1 < t 2 and ψ ∈ V . If we set u(t) = t 0 P λ t-s f (s)ds, we have u(t) = 1 {t≥t1} t∧t2 t1 P λ t-s ψds =      t2 t1 P λ t-s ψds = t-t1 t-t2 P λ s ψds if t ≥ t 2 t t1 P λ t-s ψds = t-t1 0 P λ s ψds if t ∈ [t 1 , t 2 )
.

Therefore, for every v ∈ V , we have

(u t , v) H + a λ (u, v) = 0 if t ≤ t 1 and, if t ≥ t 1 , ∂u ∂t , v H + a λ (u(t), v) =    P λ t-t1 ψ -P λ t-t2 ψ, v H + a λ t-t1 t-t2 P λ s ψds, v if t ≥ t 2 P λ t-t1 ψ, v H + a λ t-t1 0 P λ s ψds, v if t ∈ [t 1 , t 2 ) .
The assertion follows from

( P λ t ψ, v) H + t 0 a λ ( Ps ψ, v)ds = (ψ, v) H . Remark 4.3. It is not difficult to prove that P λ t : L p (O, m) → L p (O, m
) is a contraction for every p ≥ 2, and it is an analytic semigroup. This is not useful to our purposes so we omit the proof.

Transition semigroup

We define E x0,y0 ( ) = E( |X 0 = x 0 , Y 0 = y 0 ). Fix λ > 0. For every measurable positive function f defined on R × [0, +∞), we define

P λ t f (x 0 , y 0 ) = E x0,y0 e -λ t 0 (1+Ys)ds f (X t , Y t ) .
The operator P λ t is the transition semigroup of the two dimensional diffusion (X, Y ) with the killing term e -λ t 0 (1+Ys)ds .

Set E y0 ( ) = E( |Y 0 = y 0 ). We first prove some useful results about the Laplace transform of the pair (Y t , t 0 Y s ds). These results rely on the affine structure of the model and have already appeared in slightly different forms in the literature (see, for example, [2, Section 4.2.1]). We include a proof for convenience. Proposition 4.4. Let z and w be two complex numbers with nonpositive real parts. The equation

ψ ′ (t) = σ 2 2 ψ 2 (t) -κψ(t) + w (4.3)
has a unique solution ψ z,w defined on [0, +∞), such that ψ z,w (0) = z. Moreover, for every t ≥ 0,

E y0 e zYt+w t 0

Ysds

= e y0ψz,w(t)+θκφz,w(t) , with φ z,w (t) = t 0 ψ z,w (s)ds. Proof. Let ψ be the solution of (4.3). We define ψ 1 (resp. w 1 ) and ψ 2 (resp. w 2 ) the real and the imaginary part of ψ (resp. w). We have

ψ ′ 1 (t) = σ 2 2 ψ 2 1 (t) -ψ 2 2 (t) -κψ 1 (t) + w 1 , ψ ′ 2 (t) = σ 2 ψ 1 (t)ψ 2 (t) -κψ 2 (t) + w 2 .
From the first equation we deduce that ψ ′ 1 (t) ≤ σ 2 2 ψ 1 (t) -2κ σ 2 ψ 1 (t) + w 1 and, since w 1 ≤ 0, the function t → ψ 1 (t)e -σ 2 2 t 0 (ψ1(s)-2κ σ 2 )ds is nonincreasing. Therefore ψ 1 (t) ≤ 0 if ψ 1 (0) ≤ 0. Multiplying the first equation by ψ 1 (t) and the second one by ψ 2 (t) and adding we get

1 2 d dt |ψ(t)| 2 = σ 2 2 ψ 1 (t) -κ |ψ(t)| 2 + w 1 ψ 1 (t) + w 2 ψ 2 (t) ≤ σ 2 2 ψ 1 (t) -κ |ψ(t)| 2 + |w||ψ(t)| ≤ σ 2 2 ψ 1 (t) -κ |ψ(t)| 2 + ǫ|ψ(t)| 2 + |w| 2 4ǫ .
We deduce that |ψ(t)| cannot explode in finite time and, therefore, ψ z,w actually exists on [0, +∞). Now, let us define the function F z,w (t, y) = e yψz,w(t)+θκφz,w(t) . F z,w is C 1,2 on [0, +∞) × R and it satisfies by construction the following equation

∂F z,w ∂t = σ 2 2 y ∂ 2 F z,w ∂y 2 + κ(θ -y) ∂F z,w ∂y + wyF z,w .
Therefore, for every T > 0, the process (M t ) 0≤t≤T defined by

M t = e w t 0 Ysds F z,w (T -t, Y t ) (4.4)
is a local martingale. On the other hand, note that

|M t | = e w t 0
Ysds e Ytψz,w(T -t)+θκφz,w(T -t) ≤ 1 since w, ψ z,w (t) and φ z,w (t) = t 0 ψ z,w (s)ds all have nonpositive real parts. Therefore the process (M t ) t is a true martingale indeed. We deduce that F z,w (T, y 0 ) = E y0 e w T 0 Ysds e zYT and the assertion follows.

We also have the following result which specifies the behaviour of the Laplace transform of (Y t , t 0 Y s ds) when evaluated in two real numbers, not necessarily nonpositive. Proposition 4.5. Let λ 1 and λ 2 be two real numbers such that

σ 2 2 λ 2 1 -κλ 1 + λ 2 ≤ 0.
Then, the equation

ψ ′ (t) = σ 2 2 ψ 2 (t) -κψ(t) + λ 2 (4.5)
has a unique solution ψ λ1,λ2 defined on [0, +∞) such that ψ λ1,λ2 (0) = λ 1 . Moreover, for every t ≥ 0, we have

E y0 e λ1Yt+λ2 t 0 Ysds ≤ e y0ψ λ 1 ,λ 2 (t)+θκφ λ 1 ,λ 2 (t) ,
with φ λ1,λ2 (t) = t 0 ψ λ1,λ2 (s)ds. Proof. Let ψ be the solution of (4.5) with ψ(0) = λ 1 . We have

ψ ′′ (t) = (σ 2 ψ(t) -κ)ψ ′ (t).
Therefore, the function t → ψ ′ (t)e -t 0 (σ 2 ψ(s)-κ)ds is a constant, hence ψ ′ (t) has constant sign. Moreover, the assumption on λ 1 and λ 2 ensures that ψ ′ (0) ≤ 0. We deduce that ψ ′ (t) ≤ 0 and ψ(t) remains between the solutions of the equation

σ 2 2 λ 2 -κλ + λ 2 = 0.
This proves that the solution is defined on the whole interval [0, +∞). Now the assertion follows as in the proof of Proposition 4.4: just note that the process (M t ) t defined as in (4.4) is no more uniformly bounded, so we cannot directly deduce that it is a martingale. However, it remains a positive local martingale, hence a supermartingale.

Remark 4.6. Let us now consider two real numbers λ 1 and λ 2 such that

σ 2 2 λ 2 1 -κλ 1 + λ 2 < 0.
From the proof of Proposition 4.5, by using the optional sampling theorem we have

sup τ ∈T0,T E y e λ2 τ 0 Ysds e ψ λ 1 ,λ 2 (T -τ )Yτ +θκφ λ 1 ,λ 2 (T -τ ) ≤ e yψ λ 1 ,λ 2 (T )+θκφ λ 1 ,λ 2 (T ) .
Consider now ǫ > 0 and let

λ ǫ 1 = (1 + ǫ)λ 1 and λ ǫ 2 = (1 + ǫ)λ 2 . For ǫ small enough, we have σ 2 2 (λ ǫ 1 ) 2 -κλ ǫ 1 + λ ǫ 2 < 0. Therefore sup τ ∈T0,T E y e λ ǫ 2 τ 0 Ysds e ψ λ ǫ 1 ,λ ǫ 2 (T -τ )Yτ +θκφ λ ǫ 1 ,λ ǫ 2 (T -τ ) ≤ e yψ λ ǫ 1 ,λ ǫ 2 (T )+θκφ λ ǫ 1 ,λ ǫ 2 (T ) . If we have ψ λ ǫ 1 ,λ ǫ 2 ≥ (1 + ǫ)ψ λ1,λ2 , we can deduce that sup τ ∈T0,T E y e λ2(1+ǫ) τ 0 Ysds e (1+ǫ)(ψ λ 1 ,λ 2 (T -τ )Yτ +θκφ λ 1 ,λ 2 (T -τ )) ≤ e yψ λ ǫ 1 ,λ ǫ 2 (T )+θκφ λ ǫ 1 ,λ ǫ 2 (T ) ,
and, therefore, that the family e

λ2 τ 0 Ysds e ψ λ 1 ,λ 2 (T -τ )Yτ +θκφ λ 1 ,λ 2 (T -τ ) τ ∈T0,T
is uniformly integrable. As a consequence, the process (M t ) t is a true martingale and we have

E y e λ1Yt+λ2 t 0 Ysds = e yψ λ 1 ,λ 2 (t)+θκφ λ 1 ,λ 2 (t) .
So, it remains to show that

ψ λ ǫ 1 ,λ ǫ 2 ≥ (1 + ǫ)ψ λ1,λ2
. In order to do this we set

g ǫ (t) = ψ λ ǫ 1 ,λ ǫ 2 (t) -(1 + ǫ)ψ λ1,λ2 (t).
From the equations satisfied by ψ λ ǫ 1 ,λ ǫ 2 and ψ λ1,λ2 we deduce that

g ′ ǫ (t) = σ 2 2 ψ 2 λ ǫ 1 ,λ ǫ 2 (t) -(1 + ǫ)ψ 2 λ1,λ2 (t) -κ ψ λ ǫ 1 ,λ ǫ 2 (t) -(1 + ǫ)ψ λ1,λ2 (t) = σ 2 2 ψ 2 λ ǫ 1 ,λ ǫ 2 (t) -(1 + ǫ) 2 ψ 2 λ1,λ2 (t) -κg ǫ (t) + σ 2 2 (1 + ǫ) 2 -(1 + ǫ) ψ 2 λ1,λ2 (t) = σ 2 2 ψ λ ǫ 1 ,λ ǫ 2 (t) + (1 + ǫ)ψ λ1,λ2 (t) g ǫ (t) -κg ǫ (t) + σ 2 2 ǫ(1 + ǫ)ψ 2 λ1,λ2 (t) = f ǫ (t)g ǫ (t) + σ 2 2 ǫ(1 + ǫ)ψ 2 λ1,λ2 (t),
where

f ǫ (t) = σ 2 2 ψ λ ǫ 1 ,λ ǫ 2 (t) + (1 + ǫ)ψ λ1,λ2 (t) -κ.
Therefore, the function g ǫ (t)e -t 0 fǫ(s)ds is nondecreasing and, since g ǫ (0) = 0, we have g ǫ (t) ≥ 0.

We can now prove the following Lemma, which will be useful in Section 4.4 to prove suitable estimates on the joint law of the process (X, Y ). Lemma 4.7. For every q > 0 there exists C > 0 such that for all y 0 ≥ 0,

E y0 t 0 Y v dv -q ≤ C t 2q . ( 4.6) 
Proof. If we take λ 1 = 0 and λ 2 = -s with s > 0 in Proposition 4.5, we get

E y0 e -s t 0
Yv dv = e y0ψ0,-s(t)+θκφ0,-s(t) .

Since ψ ′ 0,-s (0) = -s < 0, we can deduce by the proof of Proposition 4.5 that ψ ′ 0,-s (t) = -se

t 0 (σ 2 ψ(u)-κ)du .
Therefore, since ψ 0,-s = 0, we have

ψ 0,-s (t) = -s t 0 e u 0 (σ 2 ψ(v)-κ)dv du. (4.7)
Again from the proof of Proposition 4.5,

ψ 0,-s (t) ≥ κ σ 2 - κ σ 2 2 + 2 s σ 2 ≥ -2s/σ 2 ,
so, by using (4.7), we deduce that

ψ 0,-s (t) ≤ -s t 0 e u 0 -(σ √ 2s+κ)dv du = -s t 0 e -λsu du = - s λ s (1 -e -tλs ).
where

λ s = σ √ 2s + κ. Since φ 0,-s (t) = t 0 ψ 0,-s (u)du, we have φ 0,-s (t) ≤ - s λ 2 s tλ s -1 + e -tλs .
Therefore, since ψ 0,-s (t) ≤ 0, for any y 0 ≥ 0 we get

E y0 e -s t 0 Yv dv ≤ e κθφ0,-s(t) ≤ e -κθs λ 2 s (tλs-1+e -tλs ) .
Now, recall that for every q > 0 we can write

1 y q = 1 Γ(q) ∞ 0 s q-1 e -sy ds. Therefore E y0 t 0 Y v dv -q = E y0 1 Γ(q) ∞ 0 s q-1 e -s t 0 Yvdv ds ≤ 1 Γ(q) 1 0 s q-1 e -κθs λ 2 s (tλs-1+e -tλs ) ds + 1 Γ(q) ∞ 1 s q-1 e -κθs λ 2 s
(tλs-1+e -tλs ) ds.

Recall that λ s = σ √ 2s + κ, so the first terms in the right hand side is finite. Moreover, for s > 1, we have

κθs λ 2 s ≤ C.
Then, by noting that the function u → tu -1 + e -tu is nondecreasing, we have

E y0 t 0 Y v dv -q ≤ C + 1 Γ(q) ∞ 1 s q-1 e -C(tσ √ 2s-1+e -tσ √ 2s ) ds ≤ C + 1 t 2q Γ(q) ∞ 0 v q-1 e -C(σ √ 2v-1+e -σ √ 2v ) dv ≤ C t 2q ,
which concludes the proof. Now recall that the diffusion (X, Y ) evolves according to the following stochastic differential system

dX t = ρκθ σ -Yt 2 dt + √ Y t dB t , dY t = κ(θ -Y t )dt + σ √ Y t dW t . If we set Xt = X t -ρ σ Y t , we have d Xt = ρκ σ -1 2 Y t dt + 1 -ρ 2 √ Y t d Bt , dY t = κ(θ -Y t )dt + σ √ Y t dW t . ( 4.8) 
where Bt = (1 -ρ 2 ) -1/2 (B t -ρW t ). Note that B is a standard Brownian motion with B, W t = 0.

Proposition 4.8. For all u, v ∈ R, for all λ ≥ 0 and for all (x 0 , y 0 ) ∈ R × [0, +∞) we have

E x0,y0 e iuXt+ivYt e -λ t 0 Ysds = e iux0+y0(ψ λ 1 ,µ (t)-iu ρ σ )+θκφ λ 1 ,µ (t) ,
where

λ 1 = i(u ρ σ + v), µ = iu ρκ σ -1 2 -u 2 2 (1 -ρ 2 )
-λ and the function ψ λ1,µ and φ λ1,µ are defined in Proposition 4.4.

Proof. We have

E x0,y0 e iuXt+ivYt-λ t 0 Ysds = E x0,y0 e iu( Xt+ ρ σ Yt)+ivYt-λ t 0 Ysds and Xt = x 0 - ρ σ y 0 + t 0 ρκ σ - 1 2 Y s ds + t 0 (1 -ρ 2 )Y s d Bs .
Since B and W are independent,

E e iu Xt | W = e iu x0-ρ σ y0+ t 0 ( ρκ σ -1 2 )Ysds -u 2 2 (1-ρ 2 ) t 0 Ysds and E x0,y0 e iuXt+ivYt-λ t 0 Ysds = e iu(x0-ρ σ y0) E y0 e i(u ρ σ +v)Yt+ iu( ρκ σ -1 2 )-u 2 2 (1-ρ 2 )-λ t 0 Ysds .
Then the assertion follows by using Proposition 4.4.

Identification of the semigroups

We now show that the semigroup P λ t associated with the coercive bilinear form can be actually identified with the transition semigroup P λ t . Recall the Sobolev spaces L p (O, m γ,µ ) introduced in Definition 2.1 for p ≥ 1. In order to prove the identification of the semigroups, we need the following property of the transition semigroup. Theorem 4.9. For all p > 1, γ > 0 and µ > 0 there exists λ > 0 such that, for every compact K ⊆ R × [0, +∞) and for every T > 0, there is C p,K,T > 0 such that

P λ t f (x 0 , y 0 ) ≤ C p,K,T t β p + 3 2p ||f || L p (O,mγ,µ) , (x 0 , y 0 ) ∈ K.
for every measurable positive function f on R × [0, +∞) and for every t ∈ (0, T ].

Theorem 4.9 will also play a crucial role in order to prove Theorem 2.4. Its proof relies on suitable estimates on the joint law of the diffusion (X, Y ) and we postpone it to the following section. Then, we can prove the following result. Proposition 4.10. There exists λ > 0 such that, for every function f ∈ H and for every t ≥ 0, P λ t f (x, y) = P λ t f (x, y), dxdy a.e.

Proof. We can easily deduce from Theorem 4.9 with p = 2 that, for λ large enough, if (f n ) n is a sequence of functions which converges to f in H, then the sequence (P λ t f n ) n converges uniformly to P λ t f on the compact sets. On the other hand, recall that P λ t is a contraction semigroup on H so that the function f → P λ t f is continuous and we have P λ t f n → P λ t f in H. Therefore, by density arguments, it is enough to prove the equality for f (x, y) = e iux+ivy with u, v ∈ R. We have, by using Proposition 4.8,

P λ t f (x, y) = E x,y e -λ t 0 (1+Ys)ds e iuXt+ivYt = e -λt e iux+y(ψ λ 1 ,µ (t)-iu ρ σ )+θκφλ 1 ,µ (t) , with λ 1 = i(u ρ σ + v), µ = iu ρκ σ -1 2 -u 2 2 (1 -ρ 2 ) -λ. The function F (t, x, y) defined by F (t, x, y) = e -λt e iux+y(ψ λ 1 ,µ (t)-iu ρ σ )+θκφλ 1 ,µ (t) satisfies F (0, x, y) = e iux+ivy and ∂F ∂t = (L -λ(1 + y)) F.
Moreover, since the real parts of λ 1 and µ are nonnegative, we can deduce from the proof of Proposition 4. 

Estimates on the joint law

In this section we prove Theorem 4.9. We first recall some results about the density of the process Y . With the notations

ν = β -1 = 2κθ σ 2 -1, y t = y 0 e -κt , L t = σ 2 4κ 1 -e -κt ,
it is well known (see, for example, [15, Section 6.2.2]) that the transition density of the process Y is given by

p t (y 0 , y) = e -y t 2L t 2y ν/2 t L t e -y 2L t y ν/2 I ν √ yy t L t ,
where I ν is the first-order modified Bessel function with index ν, defined by

I ν (y) = y 2 ν ∞ n=0 (y/2) 2n n!Γ(n + ν + 1)
.

It is clear that near y = 0 we have I ν (y) ∼ Proposition 4.11. There exists a constant C β > 0 (which depends only on β) such that, for every t > 0,

p t (y 0 , y) ≤ C β L β+ 1 2 t e -( √ y-√ y t ) 2 2L t y β-1 L 1/2 t + (yy t ) 1/4 , (y 0 , y) ∈ [0, +∞)×]0, +∞).
Proof. From the asymptotic behaviour of I ν near 0 and ∞ we deduce the existence of a constant C ν > 0 such that We are now ready to prove Theorem 4.9, which we have used in order to prove the identification of the semigroups in Proposition 4.10 and which we will use again later on in this paper.

I ν (x) ≤ C ν x ν 1 {x≤1} + e x √
Proof of Theorem 4.9. Note that

P λ t f (x 0 , y 0 ) = E x0,y0 e -λ t 0 (1+Ys)ds f ( Xt , Y t ) , where f (x, y) = f x + ρ σ y, y and Xt = X t - ρ σ Y t .
Recall that the dynamics of X is given by (4.8) so we have

Xt = x0 + κ t 0 Y s ds + ρ t 0 Y s d Bs , with x0 = x 0 - ρ σ y 0 , κ = ρκ σ - 1 2 , ρ = 1 -ρ 2 .
Recall that the Brownian motion B is independent of the process Y . We set Σ t = t 0 Y s ds and n(x) =

1 √ 2π e -x 2 /2 . Therefore

P λ t f (x 0 , y 0 ) = E y0 e -λt-λΣ 2 t f x0 + κΣ 2 t + ρΣ t z, Y t n(z)dz ≤ E y0 e -λΣ 2 t f x0 + κΣ 2 t + ρΣ t z, Y t n(z)dz = E y0 e -λΣ 2 t f (x 0 + z, Y t ) n z -κΣ 2 t ρΣ t dz ρΣ t .
Hölder's inequality with respect to the measure e -γ|z|-μYt dzdP y0 , where γ > 0 and μ > 0 will be chosen later on, gives, for every p > 1

P λ t f (x 0 , y 0 ) ≤ E y0 e -γ|z|-μYt f p (x 0 + z, Y t ) dz 1/p J q , ( 4.9) 
with q = p/(p -1) and (J q ) q = E y0 e (q-1)γ|z|+(q-1)μYt-qλΣ 2 t n q z -κΣ 2 t ρΣ t dz (ρΣ t ) q .

Using Proposition 4.11 we can write, for every z ∈ R,

E y0 e -μYt f p (x 0 + z, Y t ) = ∞ 0 dyp t (y 0 , y)e -μy f p (x 0 + z, y) ≤ C β σ 2 4κ + y 1/4 0 L β+ 1 2 t ∞ 0 dye -( √ y-√ y t ) 2 2L t -μy y β-1 1 + y 1/4 f p (x 0 + z, y) .
If we set L ∞ = σ 2 /(4κ), for every ǫ ∈ (0, 1) we have It is easy to see that e -y(μ+ 1-ǫ 2L∞ ) (1 + y 1/4 ) ≤ C ǫ,σ,κ e -y(μ+ 1-2ǫ 2L∞ ) . Therefore, we can write

e -( √ y-√ y t ) 2 2L t ≤ e -( √ y-√ y t ) 2 2L∞ = e -
E y0 e -μYt f p (x 0 + z, Y t ) ≤ C β e y 0 (1-ǫ) 2ǫL∞ σ 2 4κ + y 1/4 0 L β+ 1 2 t ∞ 0 dye -y(μ+ 1-ǫ 2L∞ ) y β-1 1 + y 1/4 f p (x 0 + z, y) ≤ C β,σ,κ,ǫ e y 0 (1-ǫ) ǫL∞ L β+ 1 2 t ∞ 0 dye -y(μ+ 1-2ǫ 2L∞ ) y β-1 f p (x 0 + z, y) .
As regards J q , setting z ′ = z-κΣ 2 t ρΣt , we have

(J q ) q = E y0 e (q-1)γ|z ′ ρΣt+κΣ 2 t |+(q-1)μYt-qλΣ 2 t n q (z ′ ) dz ′ (ρΣ t ) q-1 ≤ E y0
e (q-1)γ ρΣt|z|+(q-1)μYt+((q-1)|κ|γ-qλ)Σ 2 t n q (z) dz (ρΣ t ) q-1 .

Note that e (q-1)γ ρΣt|z| n q (z) dz = 1 ( √ 2π) q e (q-1)γ ρΣt|z| e -qz 2 /2 dz

≤ 2 √ 2π e (q-1)γ ρΣtz e -qz 2 /2 dz = 2 √ 2π e (q-1) 2 2q γ 2 ρ2 Σ 2 t e -1 2 √ qz- (q-1)γ ρΣ t √ q 2 dz = 2 √ q e (q-1) 2 2q γ 2 ρ2 Σ 2 t ,
so that (J q ) q ≤ 2 √ q E y0 e (q-1)μYt+ λqΣ 2 t 1 (ρΣ t ) q-1 ,

with λq = (q -1)|κ|γ + (q -1) 2 2q γ 2 ρ2 -qλ = 1 p -1 |κ|γ + 1 2p γ 2 ρ2 -pλ .
Using Hölder's inequality again we get, for every p 1 > 1 and q 1 = p 1 /(p 1 -1),

(J q ) q ≤ 2 q E y0 e p1(q-1)μYt+p1 λqΣ 2 t 1/p1 E y0 1 (ρΣ t ) q1(q-1) 1/q1 ≤ C q,q1 t q-1 E y0 e p1(q-1)μYt+p1 λqΣ 2 t 1/p1
, where the last inequality follows from Lemma 4.7.

We now apply Proposition 4.5 with λ 1 = p 1 (q -1)μ and λ 2 = p 1 λq . The assumption on λ 1 and λ 2 becomes

σ 2 2 p 1 (q -1)μ 2 -κμ + |κ|γ + 1 2p γ 2 ρ2 -pλ ≤ 0 or, equivalently, λ ≥ σ 2 2p(p -1) p 1 μ2 -κ μ p + |κ| γ p + 1 2p 2 γ 2 ρ2 .
Note that the last inequality is satisfied for at least a p 1 > 1 if and only if

λ > σ 2 2p(p -1) μ2 -κ μ p + |κ| γ p + 1 2p 2 γ 2 ρ2 . (4.10)
Going back to (4.9) under the condition (4.10), we have

P λ t f (x 0 , y 0 ) ≤ C p,ǫ L β p + 1 2p t t 1/p e Ap,ǫy0 dze -γ|z| ∞ 0 dye -y(μ+ 1-2ǫ 2L∞ ) y β-1 f p (x 0 + z, y) 1/p ≤ C p,ǫ e Ap,ǫy0 t β p + 3 2p dze -γ|z| ∞ 0 dye -y(μ+ 1-2ǫ 2L∞ ) y β-1 f p x0 + z + ρ σ y, y 1/p = C p,ǫ e Ap,ǫy0 t β p + 3 2p dze -γ|z-x0-ρ σ y| ∞ 0 dye -y(μ+ 1-2ǫ 2L∞ ) y β-1 f p (z, y) 1/p ≤ C p,ǫ e Ap,ǫy0+γ|x0| t β p + 3 2p dze -γ|z| ∞ 0 dye -y μ-γ |ρ| σ + 1-2ǫ 2L∞ y β-1 f p (z, y) 1/p .
If we choose ǫ = 1/2 and μ = µ + γ |ρ| σ , the assertion follows provided λ satisfies

λ > σ 2 2p(p -1) µ + γ |ρ| σ 2 -κ µ + γ |ρ| σ p + |κ| γ p + 1 p 2 γ 2 ρ2 .

Proof of Theorem 2.4

We are finally ready to prove the identification Theorem 2.4. We first prove the result under further regularity assumptions on the payoff function ψ, then we deduce the general statement by an approximation technique.

Case with a regular function ψ

The following regularity result paves the way for the identification theorem in the case of a regular payoff function.

Proposition 4.12. Assume that ψ satisfies Assumption H 1 and 0 ≤ ψ ≤ Φ with Φ satisfying Assumption H 2 . If moreover we assume ψ ∈ L 2 ([0, T ]; H 2 (O, m)) and ∂ψ ∂t + Lψ, (1 + y)Φ ∈ L p ([0, T ]; L p (O, m)) for some p ≥ 2, then there exist λ 0 > 0 and F ∈ L p ([0, T ]; L p (O, m)) such that for all λ ≥ λ 0 the solution u of (2.5) satisfies

- ∂u ∂t , v H + a λ (u, v) = (F, v) H , a.e. in [0, T ], v ∈ V. ( 4.11) 
Proof. Note that, for λ large enough, u can be seen as the solution u λ of an equivalent coercive variational inequality, that is

- ∂u λ ∂t , v -u λ H + a λ (u λ , v -u λ ) ≥ (g, v -u λ ) H ,
where g = λ(1 + y)u satisfies the assumptions of Proposition 3.12. Therefore, there exists a sequence (u ε,λ ) ε of non negative functions such that lim ε→0 u ε,λ = u λ and

- ∂u ε,λ ∂t , v H + a λ (u ε,λ , v) - 1 ε (ψ -u ε,λ ) + , v H = (g, v) H , v ∈ V.
Since both u ε,λ and ψ are positive and ψ belongs to

L p ([0, T ]; L p (O, m)), we have (ψ-u ε,λ ) + ∈ L p ([0, T ]; L p (O, m)).
In order to simplify the notation, we set w = (ψ -u ε,λ ) + . Taking v = w p-1 and assuming that ψ is bounded we observe that v ∈ L 2 ([0, T ]; V ) and we can write

- ∂u ε,λ ∂t , w p-1 H + a λ (u ε,λ , w p-1 ) - 1 ε w p L p (O,m) = g, w p-1 H , so that 1 p d dt w p L p (O,m) -a λ (ψ -u ε,λ , w p-1 ) - 1 ε w p L p (O,m) = g, w p-1 H - ∂ψ ∂t , w p-1 H + a λ (ψ, w p-1 ).
Integrating from 0 to T we get

- 1 p w(0) p L p (O,m) - T 0 a λ ((ψ -u ε,λ )(t), w p-1 (t))dt - 1 ε T 0 w(t) p L p (O,m) dt = T 0 g(t), w p-1 (t) H dt - T 0 ∂ψ ∂t (t), w p-1 + (t) H dt + T 0 a λ (ψ(t), w p-1 (t))dt.
(4.12)

Now, with the usual integration by parts, . Therefore, going back to (4.12) and using Holder's inequality,

a λ (w, w p-1 ) = O y 2 (p -1)w p-2 ∂w ∂x 2 + 2ρσ ∂w ∂x ∂w ∂y + σ 2 ∂w ∂y 2 dm + O y j γ,µ (x) ∂w ∂x + k γ,µ (x) ∂w ∂y w p-1 dm + λ O (1 + y)w p dm ≥ δ 1 (p -1) O yw p-2 ∂w ∂x 2 + ∂w ∂y 2 dm + O y j γ,µ (x) ∂w ∂x + k γ,µ (x) ∂w ∂y w p-1 dm + λ O yw p dm = O yw p-2 δ 1 (p -1) ∂w ∂x 2 + j γ,µ (x) ∂w ∂x w + λ 2 w 2 dm + O yw p-2 δ 1 (p -1) ∂w ∂y 2 + k γ,µ (x) ∂w ∂y w + λ 2 w 2 dm ≥ 0,
1 ε T 0 w(t) p L p (O,m) dt ≤   T 0 g(t) p L p (O,m) dt 1 p + T 0 ∂ψ ∂t (t) + L λ ψ(t) p L p (O,m) dt 1 p   T 0 w p L p (O,m) dt p-1 p
.

Recalling that w = (ψ -u ε,λ ) + , we deduce that

1 ε (ψ -u ε,λ ) + L p ([0,T ];L p (O,m)) ≤ C, ( 4.13) 
for a positive constant C independent of ε. Note that the estimate does not involve the L ∞ -norm of ψ (which we assumed to be bounded for the payoff) so that by a standard approximation argument, it remains valid for unbounded ψ. The assertion then follows passing to the limit for ε → 0 in

- ∂u ε,λ ∂t , v H + a λ (u ε,λ , v) = 1 ε (ψ -u ε,λ ) + , v H + (g, v) H , v ∈ V.
Now, note that we can easily prove the continuous dependence of the process X with respect to the initial state. Lemma 4.13. Fix (x, y) ∈ R × [0, +∞). Denote by (X x,y t , Y y t ) t≥0 the solution of the system

dX t = ρκθ σ -Yt 2 dt + √ Y t dB t , dY t = κ(θ -Y t )dt + σ √ Y t dW t ,
with X 0 = x, Y 0 = y and B, W t = ρt. We have, for every t ≥ 0 and for every (x, y),

(x ′ , y ′ ) ∈ R × [0, +∞), E Y y ′ t -Y y t ≤ |y ′ -y| and E X x ′ ,y ′ t -X x,y t ≤ |x ′ -x| + t 2 |y ′ -y| + t|y ′ -y|.
The proof of Lemma 4.13 is straightforward so we omit the details: the inequality E Y y ′ t -Y y t ≤ |y ′ -y| can be proved by using standard techniques introduced in [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] (see the proof of Theorem 3.2 and its Corollary in Section IV.3) and the other inequality easily follows.

Then, we can prove the following result. 

∈ R × [0, +∞). Then, if λ > ab|ρ|σ + b 2 σ 2 2 -κb + a 2 -a 2 ,
we have P λ t |ψ|(x, y) < ∞ for every t ≥ 0, (x, y) ∈ R × [0, +∞) and the function (t, x, y)

→ P λ t ψ(x, y) is continuous on [0, ∞) × R × [0, ∞).
Proof. We can prove, as in the proof of Proposition 4.8, that Thanks to Proposition 4.5, if

σ 2 2 a ρ σ + b 2 -κ a ρ σ + b + a( ρκ σ - 1 2 ) + a 2 2 (1 -ρ 2 ) -λ < 0, (4.14) 
we have, for any T > 0 and for any compact

K ⊆ R × [0, +∞[, sup (t,x,y)∈[0,T ]×K E x,y e aXt+bYt-λ t 0 Ysds < ∞. Note that (4.14) is equivalent to λ > abρσ + b 2 σ 2 2 -κb + a 2 -a 2 .
Therefore, under the assumptions of the Proposition, we have, for any T > 0 and for any compact set 

K ⊆ R × [0,
; H) ∩ L 2 ([0, T ]; V ), with ∂u ∂t ∈ L 2 ([0, T ]; H) such that ∂u ∂t , v H + a λ (u(t), v) = (f (t), v) H , v ∈ V, u(0) = ψ, with ψ continuous, ψ ∈ V , √ 1 + yf ∈ L 2 ([0, T ]; H) and f ∈ L p ([0, T ]; L p (O, m)).
Then, if ψ and λ satisfy the assumptions of Proposition 4.14, we have

1. For every t ∈ [0, T ], u(t) = P λ t ψ + t 0 P λ s f (t -s)ds. 2. The function (t, x, y) → u(t, x, y) is continuous on [0, T ] × R × [0, +∞). 3. If Λ t = λ t 0 (1 + Y s )ds, the process (M t ) 0≤t≤T , defined by M t = e -Λt u(T -t, X t , Y t ) + t 0 e -Λs f (T -s, X s , Y s )ds, with X 0 = x, Y 0 = y is a martingale for every (x, y) ∈ R × [0, +∞).
Proof. The first assertion follows from Proposition 4.2.

The continuity of (t, x, y) → P λ t ψ(x, y) is given by Proposition 4.14. The continuity of (t, x, y) →

t 0 P λ s f (t - s, .)(x, y)ds is trivial if (t, x, y) → f (t, x, y) is bounded continuous. If f ∈ L p ([0, T ]; L p (O, m
)), f is the limit in L p of a sequence of bounded continuous functions and we have

t 0 P λ s f n (t-s, •)ds → t 0 P λ s f (t-s, •)ds uniformly in [0, T ] × K for every compact K of R × [0, +∞)).
In fact, thanks to Theorem 4.9, we can write for t ∈ [0, T ] and (x, y) ∈ K The assumption p > β + 5 2 ensures the convergence of the integral in the right hand side. For the last assertion, note that M T = e -ΛT ψ(X T , Y T ) + T 0 e -Λs f (T -s, X s , Y s )ds. Then, we can prove that M t is integrable with the same arguments that we used to show the continuity of (t, x, y) → u(t, x, y). Moreover, by using the Markov property, 

t 0 P λ s |f n -f |(t -s, •, •)(x, y)ds ≤ t 0 C p,K,T s 2β+3 2p ds||(f n -f )(t -s, •, •)|| L p (O,m) ≤ C p,K,T t 0 ||(f n -f )(t -
E x,y (M T | F t ) =
H + a λ (u, v) = (F, v) H , v ∈ V, that is - ∂u ∂t , v H + a(u, v) = (F -λ(1 + y)u, v) H , v ∈ V.
On the other hand we know that

    
-∂u ∂t , v -u H + a(u, v -u) ≥ 0, a.e. in [0, T ] v ∈ V, v ≥ ψ, u(T ) = ψ(T ), u ≥ ψ a.e. in [0, T ] × R × (0, ∞).

From the previous relations we easily deduce that F -λ(1 + y)u ≥ 0 a.e. and, taking v = ψ, that (Fλ(1 + y)u, ψ -u) H = 0. Moreover, note that the assumptions of Proposition 4.15 are satisfied, so the process (M t ) 0≤t≤T defined by Since F -λ(1 + y)u ≥ 0 we can pass to the limit in the right hand side of (4.19) thanks to the monotone convergence theorem. Recall now that an adapted right continuous process (Z t ) t≥0 is said to be of class D if the family (Z τ ) τ ∈T0,∞ , where T 0,∞ is the set of all stopping times with values in [0, ∞), is uniformly integrable. Moreover, recall that 0 ≤ u(t, x, y) ≤ Φ(x, y) = C T (e x-ρκθ σ t + e Ly-κθLt ). The discounted and dividend adjusted price process (e -(r-δ)t S t ) t = (e Xt-ρκθ σ t ) t is a martingale (we refer to [START_REF] Ressel | Moment explosions and long-term behaviour of affine stochastic volatility models[END_REF] for an analysis of the martingale property in general affine stochastic volatility models), so we deduce that it is of class D. On the other hand, we can prove that the process (e LYt-κθt ) t is of class D following the same arguments used in Remark 4.6. Therefore, the process (Φ(t + s, X t,x,y s )) s∈[t,T ] is of class D for every (t, x, y) ∈ [0, T ] × R × [0, ∞). So we can pass to the limit in the left hand side of (4.19) and we get that lim n→∞ E x,y [u(τ ∧ τ n , X τ ∧τn , Y τ ∧τn )] = E x,y [u(τ, X τ , Y τ )]. Therefore, passing to the limit as n → ∞, we get E x,y [u(τ, X τ , Y τ )] = u(0, x, y) -E x,y τ 0 (F (s, X s , Y s ) -λ(1 + Y s )u(s, X s , Y s ))ds , for every τ ∈ T [0,T ] . Recall that F -λ(1 + y)u ≥ 0, so the process u(t, X t , Y t ) is actually a supermartingale. Since u ≥ ψ, we deduce directly from the definition of Snell envelope that u(t, X t , Y t ) ≥ u * (t, X t , Y t ) a.e. for t ∈ [0, T ].

M t = e -Λt u
In order to show the opposite inequality, we consider the so called continuation region so that u(t, X t , Y t ) = u * (t, X t , Y t ) a.e.. With the same arguments we can prove that u(t, x, y) = u * (t, x, y) and this concludes the proof.

C = {(t, x, y) ∈ [0, T ) × R × [0,

Weaker assumptions on ψ

The last step is to establish the equality u = u * under weaker assumptions on ψ, so proving Theorem 2.4. E e -r(τ -t) ψ(τ, X t,x,y τ , Y t,x,y τ ) thanks to the uniform convergence of ψ n to ψ. Therefore, it is enough to prove that, if ψ satisfies Assumption H * , then it is the uniform limit of a sequence of functions ψ n which satisfy the assumptions of Proposition 4.16. This can be done following the very same arguments of [START_REF] Jaillet | Variational inequalities and the pricing of American options[END_REF]Lemma 3.3] so we omit the technical details (see [START_REF] Terenzi | American options in stochastic volatility models[END_REF]).
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  Lu ≤ 0, u ≥ ψ, in [0, T ] × O, ∂u ∂t + Lu (ψ -u) = 0, in [0, T ] × O, u(T, x, y) = ψ(T, x, y).

O

  yu y (x, y)v(x, y)dm = -O yu(x, y)v y (x, y)dm -O (β -µy)u(x, y)v(x, y)dm.

Remark 3 . 6 .

 36 We stress that Lemma 3.5 gives us sup

2 ν

 2 while, for y → ∞, we have the asymptotic behaviour I ν (y) ∼ e y / √ 2πy (see[1, page 377]).

≤

  e -y 2L∞ e ǫ y 2L∞ e y t 2ǫL∞ e -y t 2L∞ = e -(1-ǫ) y 2L∞ e y t 2ǫL∞ (1-ǫ) ≤ e -(1-ǫ) y 2L∞ e y 0 2ǫL∞ (1-ǫ) .

  since, for λ large enough, the quadratic forms (a, b) → δ 1 (p -1)a 2 + j γ.µ ab + λ 2 b 2 and (a, b) → δ 1 (p -1)a 2 + k γ.µ ab + λ 2 b 2 are both positive definite. Recall that ψ ∈ L 2 ([0, T ]; H 2 (O, m)), ∂ψ ∂t +Lψ ∈ L p ([0, T ], L p (O, m)), (1+y)ψ ≤ (1+y)Φ ∈ L p ([0, T ], L p (O, m)) and g = (1+y)u ≤ (1+y)Φ ∈ L p ([0, T ]; L p (O, m))

Proposition 4 . 14 .

 414 Let ψ : R × [0, ∞) → R be continuous and such that there exist C > 0 and a, b ≥ 0 with |ψ(x, y)| ≤ Ce a|x|+by for every (x, y)

E x,y e aXt+bYt-λ t 0 Ysds=

 0 e a(x-ρ σ y) E y e (a ρ σ +b)Yt+ a( ρκ σ -

  s, •, •)|| p L p (O,m) ds n -f )(s, •, •)|| p L p (O,m) ds

E

  x,y [u(τ ∧ τ n , X τ ∧τn , Y τ ∧τn )] = u(0, x, y) -E x,y τ ∧τn 0 (F (s, X s , Y s ) -λ(1 + Y s )u(s, X s , Y s ))ds . (4.19)

Proof of Theorem 2 . 4 .

 24 First assume that there exists a sequence (ψ n ) n∈N of continuous functions on [0, T ] × R × [0, ∞) which converges uniformly to ψ and such that, for each n ∈ N, ψ n satisfies the assumptions of Proposition 4.16. For every n ∈ N, we set u n = u n (t, x, y) the unique solution of the variational inequality (2.3) with final condition u n (T, x, y) = ψ n (T, x, y) and u * n (t, x, y) = sup τ ∈Tt,T E[ψ n (τ, X t,x,y τ , Y t,y τ )]. Then, thanks to Proposition 4.16, for every n ∈ N we have u n (t, x, y) = u * n (t, x, y) on [0, T ] × Ō. Now, the left hand side converges to u(t, x, y) thanks to the Comparison Principle. As regards the right hand side, sup τ ∈Tt,T E ψ n (τ, X t,x,y τ , Y t,x,y τ ) → sup τ ∈Tt,T

  Lemma 3.2. Let us consider u, v : O → R locally square-integrable on O. Then, if the derivatives u x and v x are locally square-integrable on O and

	O

  By a closer look at the proof of Proposition 3.1 it is clear that the choice of c in (2.1) allows to avoid terms of the type (u x + u y )vdm in the associated bilinear form a. This trick will be crucial in order to obtain suitable energy estimates.

	Remark 3.3. Recall the well-known inequality		
					bc		
		3.1. By using Lemma 3.2 we have		
	and Recalling that	L =	y 2	O y ∂ 2 u y ∂ 2 u ∂x 2 vdm = -∂y 2 vdm = -O O y ∂ 2 u ∂x∂y vdm = -y O ∂u y ∂y y ∂u ∂x ∂v ∂y ∂u dm + ∂v ∂x ∂y ∂v -γsgn(x)v dm, (µy -β) ∂u vdm, ∂y O ∂x -γsgn(x)v dm O y O O ∂ 2 u ∂x∂y vdm = -O y ∂u ∂x ∂v ∂y dm + (µy -β) ∂u vdm. ∂x O ∂ 2 ∂x 2 + 2ρσ ∂ 2 ∂x∂y + σ 2 ∂ 2 ∂y 2 + ρκθ σ -y 2 ∂ ∂x + κ(θ -y)	∂ ∂y
	and using the equality β = 2κθ/σ 2 , we get		
	(Lu, v) H = -= -a(u, v). O y 2 + O 1 2	∂u ∂x ∂u ∂y	∂v ∂x µσ 2 y -βσ 2 + ρσyγsgn(x) vdm + + σ 2 ∂u ∂y ∂v ∂y + ρσ ∂u ∂x ∂v ∂y + ρσ ∂u ∂y ∂v ∂x O	dm + ρκθ σ	O -	1 2 y 2	∂u ∂x ∂u (yγsgn(x) + ρσ(µy -β)) vdm ∂x + κ(θ -y) ∂u vdm ∂y

  4 that the real part of the function t → ψ(t) is nonnegative. Then, it is straightforward to see that, for every t ≥ 0, we have F (t, •, •) ∈ H

	Therefore	
	∂F ∂t	, v

2 

(O, m) and t → F (t, •, •) is continuous, so that, for every v ∈ V , (LF (t, ., .), v) H = -a(F (t, ., .), v).

H + a λ (F (t, ., .), v) = 0 v ∈ V,

and F (t, ., .) = P λ t f .

  x

										1 {x>1} .
	Therefore								
	p t (y 0 , y) =		e -y t +y 2L t 2y ν/2 t L t	y ν/2 I ν	√ yy t L t
	≤		e -y t +y 2L t 2y ν/2 t L t	y ν/2 C ν	  (yy t ) ν/2 L ν t	1 {yyt≤L 2 t } +	√ yy t L t (yy t ) 1/4 /L e	1/2 t	1 {yyt>L 2 t }	 
	=		C ν 2	e -y t +y 2L t	  y ν L ν+1 t	1 {yyt≤L 2 t } +	y (y t ) ν 2 -1 4 e ν 2 + 1 √ yy t L t 4 L 1/2 t	1 {yyt>L 2 t }	  .
	On {yy t > L 2 t }, we have y -1 t	≤ y/L 2 t and, since ν + 1 > 0,
				y (y t ) ν 2 -1 4 ν 2 + 1 4	= y	1/4 t	y (y t ) ν 2 -1 4 ν 2 + 1 2	≤ y	1/4 t	y ν+ 1 4 t L ν+1	.
	So								
	p t (y 0 , y) ≤	C ν 2	e -y t +y 2L t	  y ν L ν+1 t	1 {yyt≤L 2 t } +	(yy t ) 1/4 y ν e L ν+ 3 2 t	√ yy t L t	1 {yyt>L 2 t }	 
	≤	C ν 2L ν+ 3 2 t	e -y t +y 2L t y ν e	√ yy t L t	L	1/2 t 1 {yyt≤L 2 t } + (yy t ) 1/4 1 {yyt>L 2 t }
	=	C ν 2L ν+ 3 2 t	e -( √ y-√ y t ) 2 2L t	y ν L	1/2 t 1 {yyt≤L 2 t } + (yy t ) 1/4 1 {yyt>L 2 t } ,
	and the assertion follows.								

  If ((t n , x n , y n )) n converges to (t, x, y), we deduce from Lemma 4.13 that Xxn,yn 

	tn tn ) converges to e → X x,y t , Y yn tn → Y y t and , Y yn -λ t 0 (1+Ys)ds ψ(X x,y t , Y y t ) in probability. The estimate (4.15) ensures the uniformly integrability of e tn 0 Y yn s ds → t 0 Y y s ds in probability. Therefore e -λ tn 0 (1+Ys)ds ψ(X xn,yn tn -λ tn 0 (1+Ys)ds ψ(X xn,yn tn , Y yn tn ) so that lim n→∞ P λ tn ψ(x n , y n ) = P λ t ψ(x, y) which concludes the proof.
	Proposition 4.15. Fix p > β + 5 2 and λ as in Theorem 4.9. Let us consider u ∈ C([0, T ]
	+∞[,						
	sup (t,x,y)∈[0,T ]×K	E x,y e	a|Xt|+bYt-λ	t 0	Ysds	< ∞.
	Moreover, for ǫ small enough,						
	sup (t,x,y)∈[0,T ]×K	E x,y e	a(1+ǫ)|Xt|+b(1+ǫ)Yt-λ(1+ǫ)	t 0	Ysds	< ∞.	(4.15)
				-λ	t 0	(1+Y y	

Then, let ψ be a continuous function on R × [0, +∞[ such that |ψ(x, y)| ≤ Ce a|x|+by . It is evident that P λ t |ψ|(x, y) < ∞ and we have P λ t ψ(x, y) = E e s )ds ψ(X x,y t , Y y t ) .

  e -Λt P λ T -t ψ(X t , Y t ) + We are now ready to prove the following proposition. Proposition 4.16. Assume that ψ satisfies Assumption H * . Moreover, fix p > β + 5 2 and assume that ψ ∈ L 2 ([0, T ]; H 2 (O, m)) and ∂ψ ∂t + Lψ ∈ L p ([0, T ]; L p (O, m)). Then, the solution u of the variational inequality (2.5) satisfies u(t, x, y) = u * (t, x, y), on [0, T ] × Ō, (4.17) where u * is defined by u * (t, x, y) = sup Proof. We first check that ψ satisfies the assumptions of Proposition 4.12. Note that, thanks to the growth condition (2.6), it is possible to write 0 ≤ ψ(t, x, y) ≤ Φ(t, x, y) with Φ(t, x, y) = C T (e x-ρκθ σ t + e Ly-κθLt ), where L ∈ 0, 2κ σ 2 and C T is a positive constant which depends on T . Moreover, recall the growth condition on the derivatives (2.7). Then, it is easy to see that we can choose γ and µ in the definition of the measure m (see (2.2.2)) such that ψ satisfies Assumption H 1 , Φ satisfies Assumption H 2 (note that ∂Φ ∂t + LΦ ≤ 0) and (1 + y)Φ, Therefore we can apply Proposition 4.12 and we get that, for λ large enough, there exists F ∈ L p ([0, T ]; L p (O, m)) such that u satisfies

	-	∂u ∂t	, v	0	t	e -Λs f (T -s, X s , Y s )ds + e -Λt E ψ(τ, X t,x,y τ , Y t,y τ ) . s-t f (T -s, ., .)(X τ ∈Tt,T T t P λ

t , Y t )ds = e -Λt P λ T -t ψ(X t , Y t ) + T -t 0 P λ s f (T -t -s, ., .)(X t , Y t )ds + t 0 e -Λs f (T -s, X s , Y s )ds = e -Λt u(T -t, X t , Y t ) + t 0 e -Λs f (T -s, X s , Y s )ds = M t . ∂ψ ∂t + Lψ ∈ L p ([0, T ]; L p (O, m)).

  (t, X t , Y t ) + -Λs F (s, X s , Y s )ds,(4.18) with X 0 = x, Y 0 = y is a martingale for every (x, y) ∈ R × [0, +∞). Then, we deduce that the processMt = u(t, X t , Y t ) + X s , Y s ) -λ(1 + Y s )u(s, X s , Y s )) dsis a local martingale. In fact, from (4.18) we can writed Mt = d e Λt M t -e Λt t 0 e -Λs F (s, X s , Y s )ds + F (t, X t , Y t )dt -λ(1 + Y t )u(t, X t , Y t )dt = e Λt dM t + λ(1 + Y t )e Λt M t -λ(1 + Y t )e Λt t 0 e -Λs F (s, X s , Y s )ds -e Λt e -Λt F (t, X t , Y t ) + F (t, X t , Y t ) -λ(1 + Y t )u(t, X t , Y t ) dt = e Λt dM t .

	t
	0 e t
	(F (s,
	0

So, for any stopping time τ there exists an increasing sequence of stopping times (τ n ) n such that lim n τ n = ∞ and