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Variational formulation of American option prices in the
Heston Model

DAMIEN LAMBERTON®
G1ULIA TERENZI

Abstract

We give an analytical characterization of the price function of an American option in Heston-type models.
Our approach is based on variational inequalities and extends recent results of Daskalopoulos and Feehan
(2011, 2016) and Feehan and Pop (2015). We study the existence and uniqueness of a weak solution of the
associated degenerate parabolic obstacle problem. Then, we use suitable estimates on the joint distribution
of the log-price process and the volatility process in order to characterize the analytical weak solution as the
solution to the optimal stopping problem. We also rely on semi-group techniques and on the affine property
of the model.

Keywords: American options; degenerate parabolic obstacle problem; optimal stopping problem.

1 Introduction

The model introduced by S. Heston in 1993 ([I1]) is one of the most widely used stochastic volatility models in
the financial world and it was the starting point for several more complex models which extend it. The great
success of the Heston model is due to the fact that the dynamics of the underlying asset can take into account
the non-lognormal distribution of the asset returns and the observed mean-reverting property of the volatility.
Moreover, it remains analytically tractable and provides a closed-form valuation formula for European options
using Fourier transform.

These features have called for an extensive literature on numerical methods to price derivatives in Heston-
type models. In this framework, besides purely probabilistic methods such as standard Monte Carlo and tree
approximations, there is a large class of algorithms which exploit numerical analysis techniques in order to solve
the standard PDE (resp. the obstacle problem) formally associated with the European (resp. American) option
price function. However, these algorithms have, in general, little mathematical support and in particular, as far
as we know, a rigorous and complete study of the analytic characterization of the American price function is
not present in the literature.

The main difficulties in this sense come from the degenerate nature of the model. In fact, the infinitesimal
generator associated with the two dimensional diffusion given by the log-price process and the volatility process is
not uniformly elliptic: it degenerates on the boundary of the domain, that is when the volatility variable vanishes.
Moreover, it has unbounded coefficients with linear growth. Therefore, the existence and the uniqueness of the
solution to the pricing PDE and obstacle problem do not follow from the classical theory, at least in the case in
which the boundary of the state space is reached with positive probability, as happens in many cases of practical
importance (see [3]). Moreover, the probabilistic representation of the solution, that is the identification with
the price function, is far from trivial in the case of non regular payoffs.

*Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), UPEM, UPEC, CNRS, Projet
Mathrisk INRIA, F-77454, Marne-la-Vallée, France - damien.lamberton@u-pem.fr

TUniversité Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), UPEM, UPEC, CNRS, Projet
Mathrisk INRIA, F-77454, Marne-la-Vallée, France, and Universitd di Roma Tor Vergata, Dipartimento di Matematica, Italy -
terenzi@mat.uniroma2.it



It should be emphasized that a clear analytic characterization of the price function allows not only to
formally justify the theoretical convergence of some classical pricing algorithms but also to investigate the
regularity properties of the price function (see [13] for the case of the Black and Scholes models).

Concerning the existing literature, E. Ekstrom and J. Tysk in [7] give a rigorous and complete analysis of
these issues in the case of European options, proving that, under some regularity assumptions on the payoff
functions, the price function is the unique classical solution of the associated PDE with a certain boundary
behaviour for vanishing values of the volatility. However, the payoff functions they consider do not include the
case of standard put and call options.

Recently, P. Daskalopoulos and P. Feehan studied the existence, the uniqueness, and some regularity prop-
erties of the solution of this kind of degenerate PDE and obstacle problems in the elliptic case, introducing
suitable weighted Sobolev spaces which clarify the behaviour of the solution near the degenerate boundary (see
[5, [6]). In another paper ([8]) P. Feehan and C. Pop addressed the issue of the probabilistic representation of
the solution, but we do not know if their assumptions on the solution of the parabolic obstacle problem are
satisfied in the case of standard American options. Note that Feehan and Pop did prove regularity results in
the elliptic case, see [9]. They also announce results for the parabolic case in [g].

The aim of this paper is to give a precise analytical characterization of the American option price function
for a large class of payoffs which includes the standard put and call options. In particular, we give a variational
formulation of the American pricing problem using the weighted Sobolev spaces and the bilinear form introduced
in [B]. The paper is organized as follows. In Section 2, we introduce our notations and we state our main results.
Then, in Section 3, we study the existence and uniqueness of the solution of the associated variational inequality,
extending the results obtained in [5] in the elliptic case. The proof relies, as in [5], on the classical penalization
technique introduced by Bensoussan and Lions [4] with some technical devices due to the degenerate nature of
the problem. We also establish a Comparison Theorem. Finally, in section 4, we prove that the solution of the
variational inequality with obstacle function v is actually the American option price function with payoff v,
with conditions on ¥ which are satisfied, for example, by the standard call and put options. In order to do this,
we use the affine property of the underlying diffusion given by the log price process X and the volatility process
Y. Thanks to this property, we first identify the analytic semigroup associated with the bilinear form with a
correction term and the transition semigroup of the pair (X,Y") with a killing term. Then, we prove regularity
results on the solution of the variational inequality and suitable estimates on the joint law of the process (X,Y)
and we deduce from them the analytical characterization of the solution of the optimal stopping problem, that
is the American option price.
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2 Notations and main results

2.1 The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset price S and the volatility
process Y are governed by the stochastic differential equation system

@ = (r—d)dt + VYidB,,  Sp=s>0,
d}/% = Ii(e - }/;f)dt + 0\/}715th7 Yb =Y 2 07

where B and W denote two correlated Brownian motions with
d<BaW>t :pdtv pE (_151)

We exclude the degenerate case p = £1, that is the case in which the same Brownian motion drives the dynamics
of X and Y. Actually, it can be easily seen that, in this case, S; reduces to a function of the pair (Y%, fot Yids)
and the resulting degenerate model cannot be treated with the techniques we develop in this paper. Moreover,
this particular situation is not very interesting from a financial point of view.

Here r > 0 and ¢ > 0 are respectively the risk free rate of interest and the continuous dividend rate. The
dynamics of Y follows a CIR process with mean reversion rate x > 0 and long run state > 0. The parameter
o > 0 is called the volatility of the volatility. Note that we do not require the Feller condition 2x6 > o2: the
volatility process Y can hit 0 (see, for example, [2] Section 1.2.4]).

We are interested in studying the price of an American option with payoff function 1. For technical reasons
which will be clarified later on, hereafter we consider the process

pKo

X: =logS; — ¢ct, withe=r—0 — —, (2.1)
o

which satisfies

{dXt = (20 _ Y\t + \/V,dBy, 22)

dY; = k(0 — Y3)dt + o/YdW;.

Note that, in this framework, we have to consider payoff functions ¢» which depend on both the time and
the space variables. For example, in the case of a standard put option (resp. a call option) with strike price K
we have ¥ (t,z) = (K — "), (resp. ¥(t,x) = (e*T¢* — K),). So, the natural price at time ¢ of an American
option with a nice enough payoff (¢(t, X;,Y:))o<i<r is given by P(t, X;,Y;), with

P(t,n,y) = sup Ele™=09(0, X", v5 ),
0T, r

where T; 7 is the set of all stopping times with values in [t,7] and (X.*¥,Y!¥),< <7 denotes the solution to
[22) with the starting condition (X¢,Y:) = (x,y).

Our aim is to give an analytical characterization of the price function P. We recall that the infinitesimal
generator of the two dimensional diffusion (X,Y) is given by

y [ 0% 0? 5 02 prl  y\ 0 0
L= +2p0— — — = = 0—y)—
2 (8902 * paay&v to Oy? + o 2 ) Ox + 1l —y) oy’
which is defined on the open set O := R x (0, 00). Note that £ has unbounded coefficients and is not uniformly
elliptic: it degenerates on the boundary 00 = R x {0}.



2.2 American options and variational inequalities
2.2.1 Heuristics

From the optimal stopping theory, we know that the discounted price process P(t, X;,Y;) = e "' P(t, X;,Y};) is
a supermartingale and that its finite variation part only decreases on the set P = 1 with respect to the time
variable . We want to have an analytical interpretation of these features on the function P(t,z,y). So, assume
that P € CY2((0,T) x ©). Then, by applying It&’s formula, the finite variation part of P(t, X;,Y;) is

oP .
(E + EP) (t,Xt,Y;g).

Since P is a supermartingale, we can deduce the inequality

oP -
— P <
e +LP <0

and, since its finite variation part decreases only on the set P(t, X, Y;) = ¢ (¢, X+, Y:), we can write

(aa—]:+£13>(¢—13)=0.

This relation has to be satisfied dt — a.e. along the trajectories of (¢, Xy, Y;). Moreover, we have the two trivial
conditions P(T,x,y) = (T, z,y) and P > 1.

The previous discussion is only heuristic, since the price function P is not regular enough to apply Ito’s
formula. However, it suggests the following strategy:

1. Study the obstacle problem

%—I—EUSO, u>1, in[0,T] x O,
(58 + Lu) (¥ —u) =0, in[0,T] x O, (2.3)
u(T,z,y) = P(T,x,y).

2. Show that the discounted price function P is equal to the solution of @3) where 1 is replaced by

U(t,z,y) = e "p(t,z,y).

We will follow this program providing a variational formulation of system (Z3]).

2.2.2 Weighted Sobolev spaces and bilinear form associated with the Heston operator
We consider the measure first introduced in [5]:
m, ,(dz,dy) = yPlem Ve T gy,

with v > 0, p> 0 and 3 := 25,

It is worth noting that in [5] the authors fix u = (21—'2‘ in the definition of the measure m, ,. This specification
will not be necessary in this paper, but it is useful to mention it in order to better understand how this measure
arises. In fact, recall that the density of the speed measure of the CIR process is given by 3° “lemoBY T hen,
the term 7 ~1e7%%Y in the definition of m, , has a clear probabilistic interpretation, while the exponential term
e~ 717l is classically introduced just to deal with the unbounded domain in the z—component.

For u € R™ we denote by |u| the standard Euclidean norm of w in R™. Then, we recall the weighted Sobolev
spaces introduced in [5]. The choice of these particular Sobolev spaces will allow us to formulate the obstacle
problem (Z3) in a variational framework with respect to the measure m, ,.

Definition 2.1. For every p > 1, let LP(O,m, ) be the space of all Borel measurable functions v: O — R for
which

40, 2= | P <

and denote H°(O,m., ,,) :== L*(O,m,_,).



1. If Vu = (ug, uy) and uy, u, are defined in the sense of distributions, we set

HY(O,m, )= {ue L*(O,m,,): /1+yu and /y|Vu| € L*(O,m, )},
and

4 0= [, G (1 ) i
2. If D*u = (Ugy, Usy, Uyz, Uyy) and all derivatives of u are defined in the sense of distributions, we set

H2(Ovm%u) ={ue L2(O=m%u) V1 +yu, (14+y)|[Val, y|D2u| € L2(Oummu)}
and

lulseom, ) = /O (PID%uf + (14 92 Vul + (1 + g)u?) dmo

For brevity and when the context is clear, we shall often denote
H:=H°O,m,,), V:=H'(0m,,)

and
lullzr == llullz2(0,m.. )0 lullv = [lullg10m., .-

Note that we have the inclusion
H2(Ovm'y,u) - Hl(O,m%#)

and that the spaces H*(O,m, ), for k = 0,1,2 are Hilbert spaces with the inner products

(u, ) = (U, V)20 ,m, ) :/ uvdm,, ,,,
o

(w0} = (0,0 ©ma = [ (0(V0 Vo) + (14 p)ur) dm
O

and
(u, V) 2(0,m.,. ) = / (v (D*u, D*v) + (14 y)* (Vu, Vo) + (1 + y)uv) dm,,,
o

where (-, ) denotes the standard scalar product in R™.
Moreover, for every T'> 0, p € [1,400) and i = 0,1, 2, we set

L*([0,T); H(O,m, ) = {u : [0, 7] x O — R Borel measurable : u(t,-,-) € H'(O,m., ) for a.e. t € [0,T]

T
and /0 |u(t,.,.)|1;ﬁ(o_’m%“)dt<oo}

and

dt.

T
el o730 ) —/0 lut -z (0,m, )

We also define L>°([0,T]; H*) with the usual essential sup norm.
We can now introduce the following bilinear form.

Definition 2.2. For any u,v € H'(O,m, ,,) we define the bilinear form
1
aypu(u,v) =3 /(9 Y (uzv5 (2, Y) + pougvy(z,y) + pouyvg(z,y) + 0 uyvy(z,y)) dm, ,

4 / G (22 (2,9) + by ()1t (5, ) 0, )iy,

G

where
1 —ysgn(x) — ppo) , ke~ u( ——m——fypasgn:v _ R . 2.4
Vo

DN | =

Jryu(x) =



We will prove that a, , is the bilinear form associated with the operator £, in the sense that for every
u € H*(O,m, ) and for every v € H'(O,m, ), we have

(Lu,v) g = —a~,,(u,v).

In order to simplify the notation, for the rest of this paper we will write m and a(-, -) instead of m, , and a (-, -)
every time the dependence on v and i does not play a role in the analysis and computations.

2.3 Variational formulation of the American price

Fix T > 0. We consider an assumption on the payoff function ¢) which will be crucial in the discussion of the
penalized problem.

Assumption H'. We say that a function ¢ satisfies Assumption H! if¢p € C([0,T]; H), VT + y € L*([0,T]; V),
»(T) € V and there exists ¥ € L%([0,7]; V) such that ’%—‘f <.

We will also need a domination condition on % by a function ® which satisfies the following assumption.

Assumption H2. We say that a function ® € L2([0,T]; H%(O, m)) satisfies Assumption H2 if (1 +y)2® €
L2([0,T]; H), & + L& < 0 and /T + y® € L>([0,T]; L>(O,m,,,)) for some 0 < p < p.

The domination condition is needed to deal with the lack of coercivity of the bilinear form associated with
our problem. Similar conditions are also used in [5].

The first step in the variational formulation of the problem is to introduce the associated variational inequality
and to prove the following existence and uniqueness result.

Theorem 2.3. Assume that 1 satisfies Assumption H' together with 0 < ¢ < ®, where ® satisfies Assumption
H2. Then, there exists a unique function u such that u € C([0,T); H) N L*([0,T]; V), 24 € L2([0,T); H) and

—(%,U—U)H—I—a(u,v—u)ZO, a.e. in[0,T] veL*[0,T;V), v>1b,
u>1 ae in[0,T] x R x (0,00),

u(T) = (T),

0<u<o.

(2.5)

The proof is presented in Section 3 and essentially relies on the penalization technique introduced by Ben-
soussan and Lions (see also [10]) with some technical devices due to the degenerate nature of the problem. We
extend in the parabolic framework the results obtained in [5] for the elliptic case.

The second step is to identify the unique solution of the variational inequality (23] as the solution of the
optimal stopping problem, that is the (discounted) American option price. In order to do this, we consider the
following assumption on the payoff function.

Assumption H*. We say that a function ¢ : [0, T] X R x [0, 00) — R satisfies Assumption H* if ¢ is continuous
K
52

and there exist constants C' > 0 and L € [O, (21 ) such that, for all (¢,z,y) € [0,T] x R x [0, 00),
0 < 9(t,z,y) < Cle” + M), (2.6)
and - - -
Z(t Z(t Z(t < alz|+by 9.
Srttnn)| + [ | + [t < et 27)

for some a,b € R.

Note that the payoff functions of a standard call and put option with strike price K (that is, respectively,
=1t z) = (K—e*T), and ¢ = (t,x) = (e*T¢ — K), ) satisfy Assumption H*. Moreover, it is easy to see
that, if 1) satisfies Assumption H*, then it is possible to choose v and p in the definition of the measure m, ,
(see (ZZ2)) such that ¢ satisfies the assumptions of Theorem [Z3] Then, for such v and p, we get the following
identification result.

Theorem 2.4. Assume that ¢ satisfies Assumption H* Then, the solution u of the variational inequality (23]
associated with 1 is continuous and coincides with the function u* defined by

u*(t,z,y) = sup E [1/1(77 X:JUU’Y:U)] '

TET,T



3 Existence and uniqueness of solutions to the variational inequality

3.1 Integration by parts and energy estimates

The following result justifies the definition of the bilinear form a.
Proposition 3.1. Ifu € H*(O,m) and v € H'(O, m), we have

(Lu,v)g = —a(u,v).

(3.1)

This result is proved with the same arguments of [5, Lemma 2.23] or [6] Lemma A.3] but we prefer to repeat
here the proof since it clarifies why we have considered the process X; = logS; — ¢t instead of the standard

log-price process log S;.

We first need the following result which justifies the integration by parts formulas with respect to the measure
m. The proof follows standard approximation techniques, so we omit it (see the proof of [5, Lemma 2.23] or [17]

for the details).

Lemma 3.2. Let us consider u,v : O — R locally square-integrable on O. Then, if the derivatives u, and vy

are locally square-integrable on O and

/O (It (, y)o (@, )| + Jul@, y)va (2, )] + [u(z, y)v(z, y)|)dm < oo,

we have
/O ug (2, y)v(z, y)dm = — /O u(z,y) (ve(x,y) — ysgn(x)v) dm.
Similarly, if the derivatives u, and v, are locally square-integrable on O and
/Oy(luy(way)v(ivay)l + |u(z, y)vay (@, y)l) + [u(z, y)v(z, y)ldm < oo,

we have

/O yuuy (2, y)o(z, y)dm = — /O yu(, y)o, (2, y)dm — /o (6 — py)ule, y)o(e, y)dm.

We can now prove Proposition B.11

Proof of Proposition[31]. By using Lemma [B:2] we have

Ou [ Ov
/ —vdm / o (8_ — ysgn(x)v )dm,
07u B Ju

and

Recalling that
0? 0? 0? prl y\ 0O 0
= 2 P9y 2 0 — )2
£ <a2+paa+ 8y>+<0 2)ax+”( "3y

and using the equality 3 = 2k0/0?, we get

ou Ov 5 0u Ov (9u ov ou Ov 10u
= — ]d — - d
(Lu,v)m / <8$ or "7 ayay  Paray 0y (9:5) m + /O 5 55 Wrsgn(a) + po(uy — B)) vdm

10
+/ wu (no*y — Bo® + poyysgn(x)) vdm+/

= —a(u,v).

prl Y\ Ou Ju
OKU 2)6 w0 =u)g, | vdm



Remark 3.3. By a closer look at the proof of Proposition [31] it is clear that the choice of ¢ in [Z1)) allows to
avoid terms of the type [(ugy + uy)vdm in the associated bilinear form a. This trick will be crucial in order to

obtain suitable energy estimates.

Recall the well-known inequality

be = (/<) (%) < gb2+2i<c2, bceR, ¢>0.

Hereafter we will often apply ([B.2]) in the proofs even if it is not explicitly recalled each time.
We have the following energy estimates.

Proposition 3.4. For every u,v € V, the bilinear form a(-,-) satisfies
la(u, v)| < Cullullvvllv,

1
a(u,u) > Callully, — Csl|(1 + y)2ullf,

where 5 5 )
K
Cr=00+ Ky, Cy=—, C3=—4—L
1 o+ K1, 2= 5 375 25,
with,
|8182 + posite + posaty + 02t1t2|
do = sup ;
>0, $3+13>0 2\/(s1 +17)(s3 + 3)
. 2 4 2post + o2t?
01 = inf )
524120 2(s% +2)
and

K; = sup \/],%#(SC) + k?y#(ac)

(3.5)

(3.6)

(3.7)

It is easy to see that the constants dg, 01 and K defined in (B3]) and (B7) are positive and finite (recall that

the functions j, , = jy u(x) and k. ,, = K ,(z) defined in ([24)) are bounded).

These energy estimates were already proved in [5, Lemma 2.40] with a very similar statement. Here we

repeat the proof for the sake of completeness, since we will refer to it later on.
Proof of Proposition [34} In order to prove ([B.4), we note that

1

3 / Yy (umvz + pouLVy + POy vy + azuyvy) dm > 6; / y|Vul*dm.
16) 16)

Therefore
a(u,u) > (51/ y|Vu|2dm—K1/ y|Vulu|dm
o o

K K
> 51/ Y|V — —14/ yIVuPdm — 22 [ (1 4 y)u2dm
o 2 Jo 2¢ Jo

Ki¢ K¢ Ky

= (51 - T) /(9 (y|Vul> + (1 + y)u®) dm — (51 - 7t Q_C) /0(1 +y)utdm.

The assertion then follows by choosing ¢ = 61/K;. B3] can be proved in a similar way.



3.2 Proof of Theorem

Among the standard assumptions required in [4] for the penalization procedure, there are the coercivity and
the boundedness of the coefficients. In the Heston-type models these assumptions are no longer satisfied and
this leads to some technical difficulties. In order to overcome them, we introduce some auxiliary operators.
From now on, we set
a(u,v) = a(u,v) + a(u,v),

where
a(u,v) = /g %@4— g@@—F U%@_FO-Q@@ dm
L,  Jo2 \0z0x P Ox Oy P Oy Ox Oy Oy ’
ou ou
7 = 22 gy, .
au,v) /OyaxhwdmﬂL/oyay S pvdm

Note that a is symmetric. As in the proof of Proposition [B.4]) we have, for every u,v € V,

la(u,v)] < 50/y|Vu||Vv|dm7
o

a(u,u) > 51/y|Vu|2dm,
o

and
(s v)| < K / |Vl joldm,
O

with g, 61 and K defined in Proposition 3.4l Moreover, for A > 0 and M > 0 we consider the bilinear forms

ax(u,v) = a(u,v)—i—)\/ (1 + y)uvdm,
o
ay(u,v) = d(u,v)—i—)\/ (1 + y)uvdm,
o
ou ou
aM) = M) =—j —k d
a (u’5v) L(yA ) (axj'77ﬂ+ ay ’)’1#) vam
and
a(AM)(u,v) = ax(u,v) +a™ (u,v).

The operator a) was introduced in [5] to deal with the lack of coercivity of the bilinear form a, while the
introduction of the truncated operator ag\M) with M > 0 will be useful in order to overcome the technical

difficulty related to the unboundedness of the coeflicients.

Lemma 3.5. Let &g, 61, K7 be defined as in (30), B.8) and BI) respectively. For any fived X > % + % the
. (M) ‘ ) .

bilinear forms ay and ay ' are continuous and coercive. More precisely, we have

lax(u, v)| < Cllullvllvlv,  wveV, (3.8)
01, 19
ax(w,u) 2 —lully,  ueV, (3.9)
and
a3 (o)l < Cllullvllellv,  wveV, (3.10)
o

™ (u,u) > %Hul\zv, ueV. (3.11)

where C'= 09 + K1 + A.



Proof. The proof for the bilinear form ay follows as in |5 Lemma 3.2]. We give the details for aE\M) to check
that the constants do not depend on M. Note that, for every u,v € V,

@ (w0)] < Ky [ y[Fuloldm,
o
so that by straightforward computations we get

a5 (u, )] < (B0 + A+ K)Jullv[[o]v-
On the other hand, for every ¢ > 0,

a™ (u,u)

Y

51/ y|Vu|2dm+/\/(1+y)u2dm—K1/ y|Vul|u|ldm
@] o (@]

(0= 5%) [vukan+ (x=51) [ @+ ppcam

Y

By choosing ¢ = 01/ K7, we get

(1) d1 > K7 2 01y 1o
ay (u,u) > ) Oy|Vu| dm + )\—2—61 O(l—i—y)u dm > EHUH\N

) K3
for every A > %—l—ﬁ. O

. . K? . .
From now on in the rest of this paper we assume \ > % + 55 as in Lemma [335 Moreover, we will denote

by [|b]] = Supy, yev.uv0 % the norm of a bilinear form b: V x V — R.

Remark 3.6. We stress that Lemma[3.1 gives us

sup Hag\M)H <C, (3.12)

M=>0
where C = 6o + K1 + . This will be crucial in the penalization technique we are going to describe in Section
[2.271l Roughly speaking, in order to prove the existence of a solution of the penalized coercive problem we will
itroduce in Theorem [3.8, we proceed as follows. First, we replace the bilinear form ay with the operator a(AM),
which has bounded coefficients, and we solve the associated penalized truncated coercive problem (see Proposition
[39). Then, thanks to B12), we can deduce estimates on the solution which are uniform in M (see Lemma
[210) and which will allow us to pass to the limit as M goes to infinity and to find a solution of the original
penalized coercive problem.

Finally, we define
LY=L - \1+7y)

the differential operator associated with the bilinear form a), that is

(L u,v) g = —ax(u,v), u€ H*(O,m),veV.

3.2.1 Penalized problem

For any fixed € > 0 we define the penalizing operator

Gt =~ (6(1) —u)e = 2C(hw), 1€ 0.ThueV. (3.13)

Since for every fixed ¢ € [0,7] the function x — —(¥(t) — x)4+ is nondecreasing, we have the following well
known monotonicity result (see [4]).
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Lemma 3.7. For any fized t € [0,T] the penalizing operator BI3) is monotone, in the sense that
(C&(tvu)_CE(tvv)vu_U)H 207 U,UEV

We now introduce the intermediate penalized coercive problem with a source term g. We consider the
following assumption:

Assumption H°. We say that a function g satisfies Assumption H° if \/T+ yg € L?([0,T]; H).

Theorem 3.8. Assume that 1) satisfies Assumption H' and g satisfies Assumption H®. Then, for every fived
e > 0, there exists a unique function uc x such that u.x € L*([0,T);V), aqgf € L*([0,T); H) and, for all
ve L*([0,TV),

- (%52 0.00) , + ar(erO.00) + Gt venO) v = GO 0O, we n0T)
ue \(T) = o(T).
Moreover, the following estimates hold:
luell Loo o,17,v) < K, (3.15)
H Fuie <K, (3.16)
2([0,T); H)
NG [ — u‘Ev)‘)+HL°°([O,T],H) < K, (3.17)

where K = C (||‘I’HL2 (o,r;v) + IIVI+ 9||L2(0T i) VT F Y8l ez o,mvy + 1O(T)IF), with C > 0 indepen-
dent of €, and V is given in Assumptzon HL.

The proof of uniqueness of the solution of the penalized coercive problem follows a standard monotonicity
argument as in [4], so we omit the proof.

The proof of existence in Theorem is quite long and technical, so we split it into two propositions. We
first consider the truncated penalized problem, which requires less stringent conditions on ¢ and g.

Proposition 3.9. Let v € C([0,T]; H) N L3([0,T};V) and g € L*([0,T]; H). Moreover, assume that ¥ (T) €
H?(O,m), (1+y)(T) € H, 8611/: € L?([0,T);V) and % € L?([0,T); H). Then, there exists a unique function

ue . such that ue x € L2([0,T]; V), au%% € L*([0,T); V) and for all v € L*([0,T); V)

{_ (5220, 00)) 4 a5 (e (1), 0(8) + (Gt uenna (), 0 = (9(8), 0@, ace. i [0.7),
ua,)\,M(T) = "/J(T)
(3.18)

Proof. 1. Finite dimensional problem We use the classical Galerkin method of approximation, which
consists in introducing a nondecreasing sequence (V;); of subspaces of V' such that dimV; < co and, for
every v € V, there exists a sequence (v;)jen such that v; € V; for any j € N and |v — vj|ly — 0 as
j — o0. Moreover, we assume that ¢(7') € V;, for all j € N. Let P; be the projection of V' onto V;
and ©;(t) = Pji(t). We have ¢;(t) — 1(t) strongly in V' and ¢;(T) = ¢(T') for any j € N. The finite
dimensional problem is, therefore, to find u; : [0,T] — V; such that

(B ®.0), +al™ w(0),0) = W) = wO)e, ) = (9t V), veV;,

(3.19)
{Uj(T) = (7).

This problem can be interpreted as an ordinary differential equation in V; (dim V; < 00), that is

{ G (0) + AL us () = 2Q5 (0 () — w5 (0)+) = Qu9(0),
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where A Aj) V; — Vj is a finite dimensional linear operator and @); is the projection of H onto Vj. It is
not difficult to prove that the function (¢,u) — Q;((¥;(t) — u(t))+) is continuous with values in V and
Lipschitz continuous with respect to the u variable and that the term Q;g belongs to L?([0,T; V7) (we
refer to [I7] for the details). Therefore, by the Cauchy-Lipschitz Theorem, we can deduce the existence
and the uniqueness of a solution u; of (B19), continuous from [0, 7] into Vj, a.e. differentiable and with
integrable derivative.

Estimates on the finite dimensional problem First, we take v = u;(t) — v;(t) in (319). We get
- (GO0 = 0) 5001500 = 550 = 250~ 150 150) — b5
H
= (9(), u;(t) = ¥;(t) m

which can be rewritten as

5l = 0Ol = (G200 =,0) + a0 = w5050 = b5 (0)

L) — ()5 00) — g 1))+ 0 (W50, 05 0) — 05(0)) = (9(8),u(0) 56 .
We integrate between ¢ and T and we use coercivity and u;(T") = v;(T) to obtain
T
30 = v, 0l + 52 [ o)~ wso s + 1 / 105 = (). s
Obits ¢ ¢
<o [ [ o / Jus(6) ~ s + e [ N+ S [ o) — s o)t

ay 4)
Lol ”C [ o) ~ v + 15 / o5 (6) I s,

for any ¢ > 0. Recall that ¢; = P9, and so [[¢;(0)||3 < [[¢(@)]3. In the same way ||a¢](t 1% <
125215 < 1252

||V . Choosing ¢ = % after simple calculations we deduce that there exists

442|ja
C > 0 independent of M, € and j such that ’

T T
s 013 + % 7 Fus(o) s+ £ 7 105505) = 056D+ s
<c(|%); 19y + 1 gz + I

We now go back to (BI9) and we take v = %(t) so we get

(3.20)

L2([t,T];V)

|| 9uy
5 (f)

o (w0 520) 2% (0. 520 ) - (0w, Fho)

g
- (o0 520) .

Note that

—2 (w0 -w Go) -

12



Therefore, using the symmetry of ay, we have

|

Ou;

1d
5 ()

+mak<uj<t>,uj<t>>+a<fw> (w5000 G20) + 52 1030 = w1

2 (0 -wwnGh0) = (s0.540) .

ot
Integrating between t and T', we obtain
T 1_ 1 )

/ s a0 5 (0)) 5 (W 0) — s

T _ T
= [ (uy5). 2 (5) ) s + Lan@y @0, - [ (W50) — (s 22 () ds

t ds 2 . € Os

T 8uj .
—/t (g(s),g(soHds.

Recall that a(u;(t),u;(t)) > 2lu;())%, ax(¥;(T),%;(T)) = ax((T),%(T)) < |ax||¥(T)|? and
|aM) (u,v)| < Ky foy A M|Vu||v|dm, so that, for every ¢ > 0,

/T 8uj
t

8Uj
W(S)

E(S)

ds + g (I + ol 05(6) — s )4

0 a T o
<k [ ds/yAMWuJ o1t i 2 [ 100 = st | G0 s
ou;
+ [ aoa]| 52|

|a

K
< 5 [ ptas + S 7% s By

T
* z—e/t 1005(6) = w56 s + v [

2Ce

0Y;
ot (s)

2

ds.
H

2
1
s o [+ [ |5

From ([B20), we already know that

[ s [ so)-u(6)- s < 0 (H ol

then we can finally deduce

’

+ 191Z 2 (e, 7:80) + 101722750y + 190(T )||%{> :
L2([t,T):V

8Uj
W(S)

<c€M<H 191 sz, + 112 zrery + (T2 )
L2([t,T);V)

where C; ) is a constant which depends on € and M but not on j

ds+ u; OV + 52 II(%( ) = ui(t)+ 1%

(3.21)

We will also need a further estimation. If we denote u; = % and we differentiate the equation (B.19)
with respect to t for a fixed v independent of ¢, we obtain that u; satisfies

_ (%(f),v)H +a™ (i (t),v) — = ((5(;?( ) — »(t)) l{wj(t)>uj(t)}7v)1{ (gi(t) v>H, vE V.

(3.22)
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As regards the initial condition, from BI9) computed in ¢ = T, for every v € V; we have

(%P’U)H - aE\M) ((T),v) = (9(T),v)n-

= @0y + MO+ 9D + (070 =) (1 + 1, D) o) a0y
Choosing v = aug—iT), we deduce that
|22 < w1+ ol + 1w = 42Tl + (Tl

< C(I¥D)lm20m) + 1A+ YD) 1 + lg(T) 1) |
where we have used that||£y(T)|| g +[|(y — M)+ Vi(T) ||z < Cly(T)|| g2(0,m) for a certain constant C' > 0.
We can take v = u;(t) in (3:22) and we obtain

_ (%(t),uj(t))Hm&M) (’ﬁj(t),’ﬁj(t))—é ((%(t) - uj(t)) n{wj(t)mj(t)},uj(t))H = (%(t),uj(t)) ,

H
((%@) - Uj(t)) L, (02 u;}- “j(f)> o (%(t)’ “j(t))

Y, _ 9, -
( ot {5 () 2u;}s Ui i ot J
Integrating between ¢ and 7', with the usual calculations, we obtain, in particular, that

_ o [T
a0+ 5% [ )l ds
t

so that
1d ,_ 9 01, 9
=52 @Ol + 5 lla; @Oy <
24t " 7VNH 2 .

IN
M= M=

H

2 (3.23)

o 0
<C. <||1/;(T)||§12(O7m) + 1A+ (D)7 + g7 + Hg + Ha_f
L2([t.T):H)

2
LQ([IZT];H))7
where C; is a constant which depends on £, but not on j.

. Passage to the limit

Let £ and M be fixed. By passing to a subsequence, from [B.2I)) we can assume that % weakly converges
to a function u. , ,, in L*([0,T]; H). We deduce that, for any fixed ¢ € [0,T], u;(t) weakly converges in
H to

T
ueam(t) = 9(T) — /t .y ar(8)ds.

Indeed, u;(t) is bounded in V, so the convergence is weakly in V. Passing to the limit in (3:23) we deduce

that w € L?([0,T]; V). Moreover, from ([B.21]), we have that (1; — u;(t))™ weakly converges in H to
a certain function x(t) € H. Now, for any v € V' we know that there exists a sequence (v;);en such that
v; € V; for all j € N and ||v — vj|ly — 0. We have

ou,; 1
~(G00) 4o 0,0 = 0 = 00 = 60,0
H
so, passing to the limit as 7 — oo,

_ (au&)\’M 1

S(0).0) e (000 = Z00-0)n = (0(0) 0

We only have to note that x(t) = (¢¥(t) —uea,m(t))+. In fact, ¥, (t) — ¢(¢) in V and, up to a subsequence,
Tyui(t) — Lyue x () in L2(U,m) for every open U relatively compact in O. Therefore, there exists a
subsequence which converges a.e. and this allows to conclude the proof.

O
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We now want to get rid of the truncated operator, that is to pass to the limit for M — oco. In order to do
this we need some estimates on the function wu. x 37 which are uniform in M.

Lemma 3.10. Assume that, in addition to the assumptions of Proposition[3.9, /T + y € L*([0,T]; V), ’%—f <
U with ¥ € L*([0,T); V) and g satisfies Assumption H®. Let u. x nr be the solution of [BI8). Then,

2
T || Qu,
S| 24521 9| s+ Nuenar ()1 + 2100 = wennr @)+
< C (Ml eo.mv) + IVITFF8l oo + IVTF 5813071y + DI )

(3.24)

where C' is a positive constant independent of M and .

Proof. To simplify the notation we denote u. xar by v and ue . — % = v — ¢ by w. For n > 0, define
on(x,y) = 1 4+ y An. Since ¢, and its derivatives are bounded, if v € V, we have vy, € V. Choosing

v=(u—1)p, =wyp, in BIJ), with simple passages we get
ow (M)
= (G wtren ) o o). uhen) + (oo, v

- (G +aru0e.) = a0, w0,

Jp
.7!

(M) o Y ow ow ,  Ow 5 [Ow 2 )
ot uthen) = [ [(%@)) 20520500+ (520 ]%dmu L0+ @)

5 (o020 4 22200 wirm [ 9 (22404 22
s [ 3 (w50 S0 ) uodin + [ yaar (G0 G0k ) wp.dn

> 01 / y |Vw(t)|2 Ppdm + )\/ (1+ y)wz(t)gondm - K3 / y |Vw(t)] |w(t)|p,dm
o o o

With the notation ¢/, =

=1y<ny, we have

e /O y [Vw(t)] ()L {ycnydm,
where Ky = Y———— pio Jm . Note that, if n = 0, the last term vanishes, and that, for all n > 0,
/O y (V)] [ L {y<nydm < [w(®)]?.
Therefore, for all ¢ > 0,
o w(®)wlt)e) > b1 [ 9Vl pudm+ ) [ (14 9P E)pndn
~ 61 [ v (5190 + 5w ) pudn — Kaluol}

> (555 [iur oim+ (A= 52 ) [+ @ - Kallutol
01

> 5 [ (yIVe@F + (14 5)w?(0)) ndm — Kol

2
where, for the last inequality, we have chosen ¢ = 0;/K; and used the inequality A > 571 + %. Again, in the
case n = 0 the last term on the righthand side can be omitted.
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Hence, we have, with the notation [[v[|{,,, = [, ( IVol? + (14 y)vz) opdm,
1d 01 1
535 [ wtOedm+ F ol + 2 [ (o) pnim <
o M
(90 + Gy 000, ) = Vw0, 000) + Kl
H
In the case n = 0, the inequality reduces to

~5ai [0 el + 2 [ = uam < (o6 + F000) —alwio.v0).

Now, integrate from ¢ to T" and use u(T') = ¢(T) to derive

1 ) 6 [T
—/ w(t) cpndm—i——/ ds||lw(s ||Vn / ds/ +gondm
2 Jo 2 J,

(3.25)
T 9 T
< | ( 0+ 20, w@m)HdH / o @(e)w(s)pn)ds| + Ko [ ()]s,
and, in the case n = 0,
el + % [ e+ [ as [ o
T (3.26)
g/t <g(s)+%—1f(s),ws) ds+/ \ (D) (4 ))‘ds.
We have, for all (; > 0,
T T 2
/t <g(s)+%—1f(s),w(s)gpn> ds < é/ ds/ |w(s)|2gpndm+2—cl ds Ondm

<8 [ [ P endn + EIVTTwl g + H*/”

Moreover, it is easy to check that, for all vy, vo € V,

(M)(

|a)\

L2([t,T); H)

v1, V20| < Ksllvi|lvinl|lvallvin, with K3 = dp + K1 + K2 + A,
so that, for any (3 > 0,

T M T
/t 108 (4 (5), w(s) o) ds < K / ds16(5) [v:ll ()

Ka( [T Ks [*
v <222 [ aslu) a5t [ dsloe)
t 27t

Now, if we chose (1 = K3(2 = d1/4 and we go back to (8:25)) and ([B.28]), using ‘%—f

1)
/wQ(t)cpndm—i-Zl/ lw(s)|I§nds + = / ds/ $))3 pndm
t
2K
(Hv1+ 9HL2 GernE) TV \IJ||L2(tT H)) 3/ 4 (s )”%/,nds"'KQHWHQN([]:,T];H)dSv (3.27)
4K
= (VT 331y + VI 90 mim) + ey i Nt §

where the last inequality follows from the estimate [[v][3,,, < 2||\/1 +yv||%, and, in the case n = 0,

IN

() + Ko llwl 219

4 2K2
w2 [ st [ [ oam < L (1ol nmn + 19 m )+ 2 61

(3.28)



From (328) recalling that w = u — ¢ we deduce

32 16 K
[ s < [ 21 R+ 16 s < 55 (ol + 190sguryn) + (S +2) Wl
1

(3.29)

Moreover, combining (327) and [B.2]), we have

[ 0enim 2 [ s+ [ as [ Cot)paan
< (5757 ) (WVTF a0y + VT 90 H>) -2 (1 2 Tl
In particular,
T T T T
[ s [vutPonin < [ luads <2 [ o)+ [ dstoRds
<5 (5 +7%) (WVTF s + VI 91 uryan)
+ (325?3 (1+ &) +4> VT + el 72
and, by using the Monotone convergence theorem, we deduce
/tT ly[Vu(s)|l|7ds < Kq (”mgH%?([t,T];H) VT + 9l ey + ||m¢||%2([t,:r];v>) ;o (3:30)

where K, = 58;1 ( + 16K2) v (?’2Kg (1 + 2K2) +4>.
We are now in a position to prove 24). Taking v = %% in BI8), we have
ou 1 ou

- } H +ax (u). 50) +a00 (w0, 5r0) - 2 (w(t) —u(t)e, 50)) - (900, 5 )) -

Note that, since ay is symmetric

ou
o (t)

d -
a%a’)\

(00— a5 ) =510 )l + ((W) ~u(t).. 2 <t>)H,
so that
|5r0] = 5o ) = 5o 1w — w0
= g™M) (u(t), %(f)) - (g(t), %(f))H — é ((w(t) —u(t))+, %—f(ﬂ)H
< [0 (w0 5e0) |+ o0 |10+ 2 @0 - w0,

ou H 1
_l’_ —
€

e ((0(8) = u(®)) 4, ¥(t)) s -

< (K [yIVa®)lls + lo(®) 1) ]

Moreover, if we take v = U(¢) in (BI]), we get

_ (%@, w)) a0 (lt), W) — (1) — ult)) U(0) 5 = (9(0), ¥ (D)
H

€
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so that

2 (@0 =)o w0y < | G0 19OL -+ 1 MO O + olalvOl 20
Therefore,
2
50| 550 000 = w0 = o)
< G T U+ o+ 19O |50+ 1L U@ ¥ Ol + o) ¥0)
hence
550|500 - £ 100 - ue)- I

<3 (K [y Vult M + gl + 1L O1a)* + al™ a1 O + g0l % ()]

Integrating between t and T', we get,
1] ou|® 1 1
5| 2 (), ult) + o 6(8) — u(t) [y <

N ax(P(T), (1)) + 2119l 22t 77:1)

N

L2([t,T);H)

3K?

M|
200 7,y + 5 NIVl Lo e 27,y +

w n%>n

lull 2,70y + 1l 22,770

oul?

so, recalling that ax(u(t), u(t) > 61 [, y|Vu(t)?dm + X [, (1 + y)u2dm > (61 AN |lu®)]3
1
2 || 0s

< ||(_1:)\|| T 2 9 2 2|1\ 2

=5 (D)5 + ||9||L2([t,T];H) + 2|l ||L2([t,T];H)

3K? ) eS|
+ Tl Y1V ulll 2 e,y + /\2

61/\)\

lu(@)II% + 2i5||<w<t> —u()+ %

L2([t>T];H)

lai™”|
lull L2 (e, 750y + ATH‘I’HQLz([t,T];V)

llaxll
< —||¢(T)||%/ + 209072y + 209N 2 ey
o

+— Ky (||\/ U+ yglZ2qery.my + IV + 9122y + V1 + y¢||%2([t,T];V))

a5 16K

™|
L (B (Mot + 190 i) + (S +2) Wl ) + 155

1% 2 e 70

where the last inequality follows from ([329) and B30). Rearranging the terms, we deduce that there exists a
constant C' > 0 independent of M and e such that

(51 AN 9 1 9
+ — t) —u(t
]bSmUT (O + o I6508) — (e s
(Hx/14- ol ryon + 19y + [VIF99] o+ 1D
which concludes the proof. [l

Proof of Theorem [3.8: existence. Assume for a first moment that we have the further assumptions ¢ (7T) €

H?(O,m), (1+y)y(T) € H, %f € L2([0,T]; V) and % € L?([0,T); H). Thanks to ([324) we can repeat the
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same arguments as in the proof of Proposition 3.9 in order to pass to the limit in 7, but this time as M — oo.

Therefore, we deduce the existence of a function u. y € L%([0,T]; V) with &gt’* € L*([0,T); H) and such that

- <615? (t>,v> Fax(uea(®), V)i — 200 — uea(®) s ) = (9(6), .
H

3

The estimates (315), B16) and B.IT) directly follow from B24) as M — oo.

We have now to weaken the assumptions on g and ). We can do this by a regularization procedure. In fact,
let us assume that v satisfies Assumption H' (so, in particular, ’%—ﬂ < W for a certain ¥ € L%([0,7);V)) and g
satisfies Assumption H°. Then, by standard regularization techniques (see for example [5, Corollary A.12]), we

can find sequences of functions (g, )n, (¥n)n and (¥,), of class C° with compact support such that, for any
neN nelN |68%| < ¥, and all the regularity assumptions required in the first part of the proof are satisfied.

Moreover, ||v1+ygn—vI+ygll2o,r1:m) = 0, VI 4 yton —VI+ y¥llL20,09v) = 0, [[Wn— | L2(0,77;v) — O,
190 (T) = (T)|[v — 0 asn — oo (we refer to [17] for the details). Therefore, the solution ul , ,, of the equation
(BI4)) with source function g,, and obstacle function ,, satisfies

ul \ m

2
T n n
(|52 ds + 2 as O + 10 (®) = w2 s 0 )+ 1
<C (H\/ T+ ygnHL2([O,T];H) + ”V T+ ywn”%%[oj];v) + ”‘I’n”%%[oyﬂ V) + Hwn(T)H%/> :

(3.32)

Then, we can take the limit for n — oo in ([332) and the assertion follows as in the first part of the proof. O
Moreover, we have the following Comparison principle for the coercive penalized problem.

Proposition 3.11. 1. Assume that v; satisfies Assumption H' for i = 1,2 and g satisfies Assumption H°.
Let u;k be the unique solution of BI4) with obstacle function 1; and source function g. If 11 < )9, then

1 2
us.,)\ < us,)\'

2. Assume that 1) satisfies Assumption H' and g; satisfy Assumption HO for i =1,2. Let ui))\ be the unique
solution of BI4) with obstacle function v and source function g;. If g1 < g2, then u;)\ < “g,,\-

3. Assume that 1; satisfies Assumption H' fori = 1,2 and g satisfies Assumption H®. Let u;A be the unique
solution of BI4) with obstacle function v; and source function g. If 11 —ipg € L, then u;_’A —ug_’A € L™

and ||ui>\ - ug.)\”oo < 11 — 2| oo-

Proposition BI1l can be proved with standard techniques introduced in [4, Chapter 3] so we omit the proof.

3.2.2 Coercive variational inequality

Proposition 3.12. Assume that v satisfies Assumption H' and g satisfies Assumption H°. Moreover, assume
that 0 < ¢ < ® with ® € L*([0,T); H*(O,m)) such that T2 + L& < 0 and 0 < g < -2 — L ®. Then, there
exists a unique function uy such that uy € L*([0,T]; V), % € L*([0,T]; H) and

— (%2 v —un) g +aa(ur,v —un) > (9,0 = ur)m, a.e. in [0,T] ve L2([0,T); V), v >,
ux(T) = ¢(T),
ux > a.e. in [0,T] x R x (0, 00).
(3.33)
Moreover, 0 < uy < P.

Proof. The uniqueness of the solution of ([B:33)) follows by a standard monotonicity argument introduced in [4}
Chapter 3] (see [IT]). As regards the existence of a solution, we follow the lines of the proof of [4, Theorem 2.1]
but we repeat here the details since we use a compactness argument which is not present in the classical theory.
For each fixed € > 0 we have the estimates B15) and (BI6), so, for every ¢ € [0,T], we can extract a
subsequence u.  such that u. x(t) = u(t) in V as ¢ — 0 and u.(t) — w)(¢) in H for some function uy € V.
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Note that v = 0 is the unique solution of BI4]) when ¢p = g = 0, while v = ® is the unique solution of
BI4) when ¢ = @ and g = —%—‘f - LA = —%—‘f — L® + A1 + y)®. Therefore, Proposition BTl implies that
0 < uen < ®. Recall that u. x(t) — ux(t) in L*(U, m) for every relatively compact open U C O. This, together
with the fact that dm is a finite measure, allows to conclude that we have strong convergence of u. y to uy in

H. In fact, if § > 0 and Oy := (—%, %) x (0, %)7

/()Tds/(9|us’/\(s>_u/\(s)|2dm§/onS/oé |u57A(s)—uA(s)|2dm+/0Tds/§|u57A(s)—uA(s)|2dm

T T
< / ds/ [us 2 (s) — ux(s)[*dm —|—/ ds/ 4®%(s)dm
0 Os 0 5
and it is enough to let § goes to 0.

From (BI7) we also have that (¢(t) — ue x(t))T — 0 strongly in H as e — 0 . On the other hand (¢(t) —
ue A (t))+ — x(t) weakly in H and x = (¢ — uy)+ since there exists a subsequence of u. x(¢) which converges
pointwise to uy(t). Therefore, (1(t) — ux(t))* = 0, which means wuy(t) > (t).

Then we consider the penalized coercive equation in (3I4) replacing v by v — ue (), with v > 1(¢). Since
Ce(t,v) =0 and (((t,v) — C(t,ue A (), v — ueA(t)) g > 0 we easily deduce that

(B0 ea®) a0 = 1er (1) 2 0000 = uea )

so that, letting € goes to 0, we have

Y

_ (%(ﬂ, v — ux(t)) " +ax(ua(t),v) > (g(t),v —ur(t))m + hrall}élf ax(uea(t), ue(t)

> (9(t),v —ux(®)) g + ax(ua(t), ur(t)).

Moreover, since 0 < u. y < @ for every € > 0 and uy = lim. g u. x, we have 0 < uy < @ and the assertion
follows. ([

The following Comparison Principle is a direct consequence of Proposition B.111.

Proposition 3.13. 1. Fori=1, 2, assume that 1; satisfies Assumption H', g satisfies Assumption _7-[0 and
0 <y < @ with ® € L*([0,T]; H*(O,m)) such that Z¢ + L& <0 and 0 < g < —Z2 — L2D. Let u} be the
unique solution of [B33) with obstacle function v; and source function g. If 11 < 1o, then u} < u3.

2. Fori = 1,2, assume that 1) satisfies Assumption H', g; satisfy Assumption H° and 0 < ¢ < ® with
® € L?([0,T); H*(O,m)) such that %—‘f + LD <0and0<g; < —%—‘f — L. Let ul be the unique solution
of B33) with obstacle function v and source function g;. If g1 < g2, then u} < u3.

3. Fori =1, 2, assume that v; satisfies Assumption H', g satisfies Assumption H° and 0 < 1; < & with
® € L2([0,T); H*(O,m)) such that %—‘f +LP<0and0<g< —%—‘f — L2®. Let ul, be the unique solution
of B33) with obstacle function v; and source function g. If 11 — s € L™, then u} —u3 € L™ and

uy = u3lloo < [1¥01 — 2lloo-

3.2.3 Non-coercive variational inequality

We can finally prove Theorem 23] Again, we first study the uniqueness of the solution and then we deal with
the existence.

Proof of uniqueness in Theorem[Z3 Suppose that there are two functions u; and us which satisfy ([2H). As
usual, we take v = wuo in the equation satisfied by u; and v = wu; in the one satisfied by us and we add the
resulting equations. Setting w := uy — uy, we get that, a.e. in [0, 7],

<%—Itu(t),w(t)) . —a(w(t),w(t)) > 0.
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From the energy estimate (4], we know that
1
a(u(t), u(t)) = Cillu()l} — C2ll(1 + )2 u(®) |,

so that
~—Jw®)|3 + Cal|(1 + y) Fw(t) |3 > 0.

By integrating from ¢ to T', since w(T") = 0, we have
T 1
)l < Co [ 10+ ) s
T T
< 02</ ds/ ]1{y9}(1+y)w2(s)dm+/ ds/ ]l{y>,\}(1+y)w2(s)dm>
t o t o
T T ) ,
< C(/ ds/ (14 Nw?(s)y? e 2le=m dady +/ ds/ Liysay(1+ Y w?(s)y’ e elem =y en yd:vdy)
t o t o
T ’ T ’
< C(/ ds/ dzdy(1 + Nw?(s)y’ " te ele=my 4 e=(n=n ))‘/ ds/ dzdy(1 +y)®2(s)y’ L Iele=r y),
t o t o
where p/ <y and A > 0. Since Cy = [, dedy(1 + y)®2(s)yP e ele 1Y < 00, we have
T ’
Ol < O+ ) [ Juw()fds + CalT e %,
t

so, by using the Gronwall Lemma,

lw(®)| < CaTe G MHe@=0a-x),

Sending A — oo, we deduce that w(t) = 0 in [T,¢] for ¢ such that T — ¢ < ”_T”/ Then, we iterate the same

argument: we integrate between ¢’ and ¢ with ¢t — ¢/ < “_T“/ and we have w(t) = 0 in [T,?'] and so on. We
deduce that w(t) = 0 for all ¢ € [0,T] so the assertion follows. O

Proof of existence in Theorem [2.3. Given uy = ®, we can construct a sequence (uy), C V such that

Up > ace. in [0,T] x O, n>1, (3.34)
oun,
—| —,v—u, + a(tp, v — ) + AN(1 +y)tun,v—up)g > M1+ y)up_1,v —up)y,
(Go—um) +a )+ AL+ ) )it > ML+ P10 — un) )
veV, v>1Y, ae onl0,T]xO0, n>1,
(@) =9(T), o, (3.36)
D>up >us > > Uy Uy > >0, a.e. on [0,7] x O. (3.37)

In fact, if we have 0 < u,_1 < ® for all n € N, then the assumptions of Proposition B.12] are satisfied with
gn = )‘(1 + y)un,l.

Indeed, since (1 +%)2® € L2([0,T); H), we have that g, and /T + yg, belong to L%([0,T]; H) and, moreover,

0<g, <A14y) < —%—‘f — L,®. Therefore, step by step, we can deduce the existence and the uniqueness

of a solution u, to (B3H) such that 0 < w,, < ®. (B37) is a simple consequence of Proposition In fact,
proceeding by induction, at each step we have

In = )‘(1 + y)un—l < )\(1 + y)un—Q = gn-1

so that u, < u,_1. Now, recall that
[wnll Lo 0, 11,v) < K,
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<K,

o
L2([0,T);H)

ot

where K = C (%] 2o,11:v) + VT T ygnllL2(o.13:m) + VT F 99l 2(0.11:v) + [[9(T)]lv). Note that the con-
stant K is independent of n since |g,| = [A(1 + y)un—1,| < A(1 + y)®, for every n € N. Therefore, by passing

to a subsequence, we can assume that there exists a function u such that v € L*([0,T]; V), % € L*([0,T); H)

and for every t € [0,T], u,(t) — u/(t) in H and u,(t) — w(t) in V. Indeed, again thanks to the fact that
0 < u, < @, we can deduce that uy, (t) — u(t) in H. Therefore we can pass to the limit in

Oun,
_ (%, Up, — v) + a(tn, v — ) + ML+ Y tn, v — up) g > M1+ Y)tp_1,0 — up) g
H

and the assertion follows. O

Remark 3.14. Keeping in mind our purpose of identifying the solution of the variational inequality (Z3]) with
the American option price we have considered the case without source term (g = 0) in the variational inequality
@3). However, under the same assumptions of Theorem [2.3, we can prove in the same way the existence and
the uniqueness of a solution of

—(%,v—u)H—i—a(u,v—u)z (g,v—wm, ae in[0,T] velL?[0,T];V), v>1,
u>1 ae in[0,T] x R x (0,00),

u(T) = (1),

0<u<a,

; ; 0 forsy
where g satisfies Assumption H° and 0 < g < —F7 — L.

We conclude stating the following Comparison Principle, whose proof is a direct consequence of Proposition
B.13 and the proof of Proposition 2.3

Proposition 3.15. For i = 1,2, assume that v; satisfies Assumption H' and 0 < ¢; < ® with ® satisfying
Assumption H?. Let ul be the unique solution of [B33) with obstacle function ;. Then:

1. If b1 < abg, then ul < u3.

2. If 1 —1pg € L, then u} —u3 € L™ and ||u} — u3|lco < |11 — Y2]lco-

4 Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality ([2.3]), our aim is to
prove that it matches the solution of the optimal stopping problem, that is

u(t,z,y) = u*(t,x,y), on [0,7] x O,

where u* is defined by
u*(t7x7y> = sup E [1/}(7-7 th_,ac,y7 Y:ﬂ/)] )
T€Te, T

T, 7 being the set of the stopping times with values in [t,T]. Since the function wu is not regular enough to
apply Itd’s Lemma, we use another strategy in order to prove the above identification. So, we first show, by
using the affine character of the underlying diffusion, that the semigroup associated with the bilinear form ay
coincides with the transition semigroup of the two dimensional diffusion (X,Y) with a killing term. Then, we
prove suitable estimates on the joint law of (X,Y) and LP-regularity results on the solution of the variational
inequality and we deduce from them the probabilistic interpretation.
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4.1 Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form ay. With a natural notation, we
define the following spaces

L (R H) = (/R — H W > o/ot 1F($)lEds < oo},

LRV ={f: Rt =V :Vvt> O/Ot I £(s)]3-ds < oo}

First of all, we state the following result:

Proposition 4.1. For every ¢ € V, f € L} (R*; H) with Vif e L} (RT; H), there exists a unique function
ue L} (RT;V) such that $ € L2 (R*; H), u(0) = ¢ and

0
(—“,v> Fax(wv) = (f,0)g, veV (4.1)
ot I
Moreover we have, for every t > 0,
t
[Ju(t HH+—/ u(s)|I3ds < |97 + 1/0 1f ()] ds (4.2)
and
lutt ||V+/ lue(s) s < c(||w||v+ / et ||Hds),
with C' > 0.

The proof follows the same lines as the proof of Proposition so we omit it. Moreover, we can prove a
Comparison Principle for the equation (@1l as we have done for the variational inequality.

We denote u(t) = P the solution of (@) corresponding to u(0) = ¢ and f = 0. From [&Z) we deduce
that the operator Pt)‘ is a linear contraction on H and, from uniqueness, we have the semigroup property.

Proposition 4.2. Let us consider f: RT™ — H such that /T+yf € L} (RT, H). Then, the solution of

{(%,U)HﬂLaA(u,v)—(f,v)H, vev,
u(0) =0,

is given by u(t fo PMf(t — s)ds = fo P} .f(s)ds.

Proof. Note that V is dense in H and recall the estimate (IE) so it is enough to prove the assertion for
f= ]l(t1 t2)¥, with 0 <t <ty and ¥ € V. If we set u(t fo P} f(s)ds, we have

tAtoy _
u(t) = ]1{@1}/ P} ds
PP wpds = [ PMpds ift >ty

t1

t— t1
/P{\,deds—/ PMpds  if t € [ty,t2)
tl 0

Therefore, for every v € V', we have (us, v) g + ax(u,v) =0 if t <ty and, if t > #;,

ou (Pr = PRy ) p +ax (S Pruds,v) it e =t
(50) +a@n=4 i | |
H (P1,0,0) gy +ax (fo Pswds,v) it 1€ [t o)

The assertion follows from (PM),v) g + fot ax(Psp,v)ds = (¥, v)g. O

Remark 4.3. It is not difficult to prove that P} : LP(O,m) — LP(O,m) is a contraction for every p > 2, and
it is an analytic semigroup. This is not useful to our purposes so we omit the proof.
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4.2 Transition semigroup

We define E, () =E( |Xo = 20,Yy = y0). Fix A > 0. For every measurable positive function f defined
on R x [0, +00), we define

X [f(1+4Y.)ds
PtAf('IOvyO) - Emo,yo (6 fo () f(Xta }/t)> .
The operator P} is the transition semigroup of the two dimensional diffusion (X,Y) with the killing term
X [F(14Y2)ds
e "Jo .

Set E,o( ) =E( |Yo = yo). We first prove some useful results about the Laplace transform of the pair

Yy, fot Yids). These results rely on the affine structure of the model and have already appeared in slightly
different forms in the literature (see, for example, [2] Section 4.2.1]). We include a proof for convenience.

Proposition 4.4. Let z and w be two complexr numbers with nonpositive real parts. The equation

2
o
W) = 03  mt) + (1.3
has a unique solution 1, ., defined on [0,+00), such that 1, ,(0) = z. Moreover, for everyt >0,

t
E,, (ezYﬁLw fo sts) — 0wz (0K w(t)

with ¢z w fO 1/}z w

Proof. Let ¢ be the solution of (£3). We define ¢; (resp. wy) and ¢ (resp. ws) the real and the imaginary
part of ¥ (resp. w). We have

{ P1(t) :%QW t) — Y3 (t)) — kbr(t) + wi,
V5(t) :0'21/11(15) 2(0 — Ko (t) 4+ w.

From the first equation we deduce that 1} (t) < U— (¥1(t) — 25) ¢1(t) + wy and, since wy < 0, the function

t—i(t)e = Jo (5= 25)ds is nonincreasing. Therefore 11 (t) < 0 if ¥1(0) < 0. Multiplying the first equation
by 1 (t) and the second one by 12 (t) and adding we get

N —
&.|g‘

0.2
L 0OF) = (G0 = 1) IR + wria(0) + waalt)
< (00 -x) WP +lullvo)

|w]®

< (G0 —r) P +dv? + 4

We deduce that [¢(¢)| cannot explode in finite time and, therefore, v, ,, actually exists on [0, +00).
Now, let us define the function F, ,(t,y) = eV¥=w®+05é=w®) [ s C12 on [0, +00) x R and it satisfies
by construction the following equation

OF . v o? 82Fz.w OF v

o 3 v
Therefore, for every T' > 0, the process (My)o<t<r defined by
M, =" h B (T = 1)) (4.4)

is a local martingale. On the other hand, note that

t
M| = | Jo Yeds| | Yithe o (T—) 4056 0 (T—1) <1
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since w, ¥, (t) and ¢, ., (t) = fot ¥2.w(8)ds all have nonpositive real parts. Therefore the process (My); is a
T

true martingale indeed. We deduce that F. (T, yo) = E,, (ew Jo YSdSeZYT) and the assertion follows. O

We also have the following result which specifies the behaviour of the Laplace transform of (Y%, fot Yids)
when evaluated in two real numbers, not necessarily nonpositive.

Proposition 4.5. Let A1 and Ao be two real numbers such that

02
7&—@ﬁ&§0

Then, the equation
2
W) = T () = () + Ao (4.5)

has a unique solution 1y, x, defined on [0, +00) such that ¥, r,(0) = A1. Moreover, for every t > 0, we have

t
MYi+Xe | Yids Yo xg () HOKPA, Xy (1)
Eyo (e fo ) <e 1,22 A2

with ¢A1,)\2 (t) = f(f 1/))\11)\2 (s)ds.
Proof. Let 1 be the solution of (L) with ¢(0) = A;. We have

U (t) = (o (t) — K)Y' (1)

to 2
Therefore, the function ¢t — ¥'(t)e Jote W(e)=m)dsig o constant, hence ¥'(t) has constant sign. Moreover, the
assumption on A; and Ay ensures that ¢'(0) < 0. We deduce that ¢/(¢t) < 0 and 1 (¢) remains between the
solutions of the equation

2
%ﬁ—m+hza

This proves that the solution is defined on the whole interval [0,+00). Now the assertion follows as in the
proof of Proposition [44} just note that the process (M;); defined as in ([@4) is no more uniformly bounded,
so we cannot directly deduce that it is a martingale. However, it remains a positive local martingale, hence a
supermartingale. [l

Remark 4.6. Let us now consider two real numbers A1 and Ao such that
o2
7&—@ﬁ&<o
From the proof of Proposition[{.5], by using the optional sampling theorem we have

sup Ey (6)\2 fo stsew/\l,/\z(T—T)Yr+9fi¢x1,/\2 (T—T)> < eyw/\l,/\z(T)+9H¢A1,A2(T)'
T€To,T

Consider now € > 0 and let \§ = (14 €)\1 and \§ = (1 +€)Aa. For e small enough, we have %2(/\§)2 — KA +
A5 < 0. Therefore

sup E, (e)‘z fo stsewxi,x;(T—‘F)Yr‘f‘@ﬁ%\i,x; (T—T)> < eywxi,xg(T)'f"gﬁ%\i,)\;(T)'

T€To,T

If we have Py g > (14 €)1a;. 00, we can deduce that

sup E,
T€T0, 7

— )

(e)\2(1+5) fOT stse(l-l-f)(wxl,/\g (T—7)Yr+0Kkpx; 2y (T—'r))) < eywxi,xg (T)+9’i¢>\§,x§ (T)
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and, therefore, that the family (e’\2 Jo YSdsew/\l’/\2(T_T)YT+0N¢/\1,/\2(T_T)) is uniformly integrable. As a
T7€To,T
consequence, the process (M), is a true martingale and we have

t
E, (ehYH-)\z I st5> _ Vanag (D086, g (1)

So, it remains to show that e xs > (14€)thx, x,- In order to do this we set ge(t) = Pxc xs (1) — (1+€)1ha, 2, (1)
From the equations satisfied by @b,\e xy and P, x, we deduce that

B = 2 (00510 = (149U, 0 (0) = (rg g (®) = (15 o 0 1)
(Ui (0 — (14 P05, (0) — re®) + S (14 = (14 ) 65,0,
a0+ (1 s na0) 0u(0) = rge(t) + 1+ R, 1, (1)
= 00D + Sell+ O, D

where 52
fe(t) = (¢A1,A (t) + (1 + €)a, 2, (1) — 5.
Therefore, the function g.(t)e™ o 7“V% s nondecreasing and, since g.(0) = 0, we have g(t) > 0.

We can now prove the following Lemma, which will be useful in Section [£4] to prove suitable estimates on
the joint law of the process (X,Y).

Lemma 4.7. For every q > 0 there exists C' > 0 such that for all yo > 0,

t —q O
E,, (/0 Yvdv) < (4.6)

Proof. If we take \y = 0 and A2 = —s with s > 0 in Proposition 5] we get

Eyo <€S fot Yvdv> _ eyowo’,s(t)+«9fc¢g,,s(t)-

to 2
Since ¢ _4(0) = —s < 0, we can deduce by the proof of Proposition 3] that p _(t) = —sefo (b () = r)du
Therefore, since 1y, s = 0, we have

k fu(crzw(v)fn)dv
0.—s(t) = —s eJo du. 4.7
Yo,—s(t)

0

Again from the proof of Proposition [4.3]

K K\ 2 s
¢0,—s(t) Z ﬁ - (ﬁ) +2§ Z —\/28/02,

so, by using ([@1), we deduce that

t
¢0 —s —S/ f 7<U\/E+K dvd = —S/ 6_>‘Sudu = _Ai(l — e_t)\s).
0

S

where \s = 0v/2s + k. Since ¢g (1) fo o, —s(u)du, we have

do.—s(t) < —% (tAs — 14 ).

S
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Therefore, since g, _s(t) < 0, for any yo > 0 we get

t KOs —tAs
Ey (e—s fo Yvdv) < 6K9¢0’7S(t) < 6_ 22 (tAs—1+4e )
0 > .

Now, recall that for every ¢ > 0 we can write

1 1 o
— = —/ s te™5Y s,
yi T'(q) Jo

Therefore

q [ee} t
]Eyo (/t Yvdv) _ Eyo <L/ SQ*le*S f() YUdUdS)
0 I'(q) Jo

- 1 /1Sqle%§(t>\31+e“5)ds+ 1 /°°Sqfleu;—eg(ﬁs—ure*“s)ds.
~ Ta) Jo I'(a) Jy

Recall that A; = 0v/2s + K, so the first terms in the right hand side is finite. Moreover, for s > 1, we have
’%5 < C. Then, by noting that the function u + tu — 1 4+ e~ is nondecreasing, we have

t —q [e’e)
Ey, (/ Yvdu) <O+ L/ Sq—le—c(to'\/g—l-l-e*fa\/ﬂ)ds
0

L(q) )1
1 o —oV2v
<C q—1_—C(cvV2v—1+e )d
<Ct g ), !
- C
= thv
which concludes the proof. [l

Now recall that the diffusion (X,Y") evolves according to the following stochastic differential system

dX, = (%fe - Y?) dt + /Y,dBy,
dY; = k(0 — Yy)dt + o/ Y dW,.
If we set X; = X; — 2Y;, we have

{df(t = (2 - Y)y,dt + /T p*VYidB,,

4.8
dY; = k(0 — Yy)dt + o/ YidW;. (48)

where B, = (1 — p?)~'/2 (B; — pW;). Note that B is a standard Brownian motion with (B, W); = 0.
Proposition 4.8. For all u, v € R, for all X\ > 0 and for all (zo,yo) € R x [0, 4+00) we have

t
Ezo-yo <€iuXt+ithe>\ fo sts) _ eiumoero(wkl,M(t)fiuS)Janqb)\lYM(t),

where Ay = i(ul +v), p = iu (& -1) - “2—2(1 — p%) — X and the function ¥y, , and ¢y, are defined in

Proposition [{.4)
Proof. We have

Eao,50 (fiiuXthAfot YSdS) = Ezq,50 (eiu(Xt+§Yt)+ith)\ IN sts>
and

- t 1 t _
X, =z — gyo +/ (ﬁ — 5) sts—i-/ vV (1 = p2)Y,dB;.
0 0

g
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Since B and W are independent,
E (eiuf(t | W) _ eiu(mo_gyﬁfot(%_%)ysds)—%(1_,)2)fotsts
and

E,,, (eiuxmm—x IN sts) _ iuleo-2w)p <ei(u§+v)m+(iu<%—%)—%(1—&)4) IN Yd>
0,Y0 0 .
Then the assertion follows by using Proposition [£.4] O

4.3 Identification of the semigroups

We now show that the semigroup P_’tA associated with the coercive bilinear form can be actually identified with
the transition semigroup P;. Recall the Sobolev spaces LP(O,m, ,,) introduced in Definition 2] for p > 1. In
order to prove the identification of the semigroups, we need the following property of the transition semigroup.

Theorem 4.9. For allp > 1, v > 0 and p > 0 there exists A > 0 such that, for every compact K C R x [0, +00)
and for every T > 0, there is Cp g, > 0 such that

Cpx,1

P} f(zo,90) < 2= fllo0m, . )» (w0,90) € K.
tp T2

for every measurable positive function f on R x [0, +00) and for every t € (0,T].

Theorem 9 will also play a crucial role in order to prove Theorem 2.4l Its proof relies on suitable estimates
on the joint law of the diffusion (X,Y’) and we postpone it to the following section. Then, we can prove the
following result.

Proposition 4.10. There exists A > 0 such that, for every function f € H and for every t > 0,
pg‘f(x,y) :Ptkf(xay)u d(Edy a.e.

Proof. We can easily deduce from Theorem 9 with p = 2 that, for A large enough, if (f,), is a sequence of
functions which converges to f in H, then the sequence (P} f,), converges uniformly to P} f on the compact
sets. On the other hand, recall that P} is a contraction semigroup on H so that the function f — P f is
continuous and we have P f, — P f in H.

Therefore, by density arguments, it is enough to prove the equality for f(x,y) = e+ with u, v € R. We
have, by using Proposition [4.8],

Ptkf(xu y) = Em,y (e)\fo (1+Ys)d56iuxt+ivn>

e—AteiU$+y(1ﬁ/\1,p(t)—i’U«§)+9'€¢/\1,;¢(t)7

with Ay = i(u2 4+ v), p = iu(Z-1) - “2—2(1 — p?) — X\. The function F(t,z,y) defined by F(t,x,y) =

e—kteium-‘ry(l/lxl,u(t)—iu§)+9ﬁ¢xl,u(t) satisfies F(O,x,y) — eiuztivy gnd

oF
— = (L-X(1 F.
= (L= A(1+y)
Moreover, since the real parts of A\; and p are nonnegative, we can deduce from the proof of Proposition 4]
that the real part of the function ¢ — ¢ (¢) is nonnegative. Then, it is straightforward to see that, for every
t >0, we have F(t,-,-) € H*(O,m) and t — F(t,-,-) is continuous, so that, for every v € V, (LF(t,.,.),v)yg =
—a(F(t,.,.),v). Therefore
oF
—.,v| 4ax(F(t,.,.),v)=0 veV,
ot "

and F(t,.,.) = Pf. O
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4.4 Estimates on the joint law

In this section we prove Theorem L9 We first recall some results about the density of the process Y.
With the notations
2k0 " o?

V:ﬂ_1:7_17 yt:yoeina Lt:ﬂ(l_eiﬁt)v

it is well known (see, for example, [I5] Section 6.2.2]) that the transition density of the process Y is given by
v
e 2Lt _ _y_ v/2] (\/yyt>
v k)

Pe(yo,y) = e iy
2y:/2Lt

where I, is the first-order modified Bessel function with index v, defined by
vV~ (/2"
= (L)'$ W2
() 2 nzzonlf(n—l-u—l-l)

It is clear that near y = 0 we have I, (y) ~ (%) while, for y — oo, we have the asymptotic behaviour

I,(y) ~ ¥ /\/Zr (see [I, page 377).

Proposition 4.11. There exists a constant Cg > 0 (which depends only on () such that, for every t >0,

F(u+1)

C _ I ﬁ) B
2o V(L w0 Y) . (w0,y) € 10, +00)x]0, +o0).

Pe(Yo,y) < 7+

Proof. From the asymptotic behaviour of I, near 0 and oo we deduce the existence of a constant C,, > 0 such
that

v e’
Iu(x) <, (.’II ]]-{xgl} + ﬁ]]-{x>l}> .

Therefore
yt+vy
e 2Ly v /yy
pt(yan) - v/2 /2Iv <—t)
2u; " Ly Ly
yHry ( ) gyt
€ YYi e bt
< V/2C ~———1 <+ ——— 51 L2
9 u/th LY {yy:<L?} (y yt)1/4/L§/2 {yy:>L7}
C vt+y yY y%_%e Ift
= —Ve_ ;Lf I/—]l L <L2 =+ ]l . L2
92 /1 {yy:<L{} (yt)%+4L1/2 {yye>L7}

On {yy: > L2}, we have y; * < y/L? and, since v + 1 > 0,

yi i _ 1/ ys 1 1/4?//—|ri
Ok R kB i
So
Nein
pt(yo y) e yt+y { Y . (yyt)1/4yue Ty { .,
5 >~ T+l <L 3 yys>L
Lu+ Yyt = L:+2 Yyt t
+ NePD 1/2
: 2LVV+% et (L ez + 000 o)
t
C, _wi-vw)? 1/2
B 2L”i% ‘ oy (Lt/ ]l{yytSLf} + (yyt)1/4]1{yyt>Lf}) ’
t
and the assertion follows. O
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We are now ready to prove Theorem 9 which we have used in order to prove the identification of the
semigroups in Proposition [.10] and which we will use again later on in this paper.

Proof of Theorem[{.9 Note that
P o) = Bay (BT )

where

f(%y):f(w—i-ﬁy,y) and X, =X, — 2v,.
g o

Recall that the dynamics of X is given by [{3X) so we have

t t
thfo-i-f?é/ stsm/ J/V.dB,,
0 0

with
_— p __ps 1 5
To=T0— =Y, K=——15, p=+1-—p°
o o 2

Recall that the Brownian motion B is independent of the process Y. We set ¥; = 4/ fg Yids and n(z) =

\/Lz—ﬂe_ﬁ/? Therefore

Pt)‘f(xo, yo) = Ey <e)‘t)‘25 /f (570 + RE? + pXyz, Yt) n(z)dz)

IN

E,, (eAEf /f (Zo + RX] + p¥ez, V) n(z)dz)

~ — k32N dz
E,, (e / 7 Yn [ Z2020) 22
v <e [Eotzyn(—25= ) 55,

Holder’s inequality with respect to the measure e~7/2I=#Y: dzdPy,, where v > 0 and & > 0 will be chosen later
on, gives, for every p > 1

1/p
P} f(zo,y0) < [Ey </ e“““fp(afoﬂ,mdz)] Jq. (4.9)

with ¢ =p/(p—1) and

_ — kY2 dz
IV =T /e(q71)7|2|+(¢171)uYrq>\Efnq (z _r t> _ > .
( q) Yo < pzt (pzt)q

Using Proposition [Z.IT] we can write, for every z € R,

Ey, (e " fP (@0 + 2, V1)) = / dypi(yo, y)e ™ f* (Zo + 2, y)
0
o2 1/4
Cﬁ( R"‘yo/) oo (V-T2 -
— Ty g1 1/4\ 7o~
< ; /dye 2Lt Yy (1+y )f (To +2,9).
Lﬂ"t‘g 0
¢
If we set Lo, = 02/(4k), for every € € (0,1) we have
_ I-viD?  (VI-vID)*
e 3L <e Py
y VYTt Yt

— ¢ 7L e Loo  2Los

Y ¥ Yt Yt
< e L ‘Pl e2¢Lc ¢ 2Loo

= e 195 oz (1-9)

< e_(l_e) 2EJ°O 62:2?00 (1_6)_
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It is easy to see that e_y(’_”?lL;;)(l +yt/4) < Ceﬁgy,{e_y(ﬁ"’;—:). Therefore, we can write

yo(l—e)
Cﬂe 2l o0 ( £+yé/4>

Ey, (eiﬁytfp (To+2,Y)) < / dye_y(’“'?lL;;)yﬁ*l (1 + y1/4) fP (&0 + 2,y)
0

Lo
C yo(Llfe) 50
€loo = 1—2¢ ~
CBomce T [ ey smE) 1 (50 4 2y
Lyts 0
As regards J, setting 2’ = Z;;??, we have
(J)! = E /e(q—l)vlz/ﬁzﬁ-ﬁﬁf\+(q—1)ﬁYt—Q/\23nq (') 7(12/
’ yo (pg)a1
_ = P 2 dz
< E, (/ e(@=DvpEe 2|+ (a—1)aYe+((a= 1Ry —aN) 27 ) a (2) — )
‘ (pEe)at
Note that
_ 1 _ 2
/ (g—1)vpZ¢|2| q( )d _ / (q—1)vp2t|2| ,—qz /2d
e n? (z)dz e e z
(Va2m)s
2 ~ 2
< = | la=D)vp%ez—az"/2 g,
V27 /
R AR /e—%(ﬁz—i(‘rl}%m)zdz
V2
_ ie(q;;)2 '72[)22?
\/q 9
so that
2 . 3 2 1
J)Y < R ela—DAYi+AS _ © ) ,
( q) — \/a Yo ( (pEt)‘Fl
with

3 = (¢ —1)? 2-2 1 = L 5
Ag=(¢g—1 —gA= —— — —pA .
g = (¢ — D[y + g P K|y + o) PP
Using Holder’s inequality again we get, for every p1 > 1 and ¢1 = p1/(p1 — 1),

2 — 3 2 1/p1 1 a
z p1(q—1)AYi+p1Ae3;
Va (Bl N (5 ()

Coan E €p1(q—1)ﬁYt+P15\qu e
= tq_ 1 Yo ’

IN

(Ja)?

where the last inequality follows from Lemma 71 B
We now apply Proposition L5l with Ay = p1(¢ — 1)@t and A2 = p1A;. The assumption on A; and Ay becomes

o2 _ _ N 1 5.
5Pl — Dp® — ki + |y + 2—p72p2 —pA<0

or, equivalently,

o? o vy 1
e 1T LT
2p(p—1) P p 2p?
Note that the last inequality is satisfied for at least a p; > 1 if and only if
A> Lﬁz’—n@+|k|1+i7252 (4.10)
2p(p—1) P p 2p?
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Going back to (A9) under the condition (ZI0), we have

A C € A o | 1-2e 17 1/p
Pt f(x07y0) < — P eArelo (/ dze_VIZI/ dyefy(“JFM)yﬂ_ f:D (jO + Z,y))
0

L?Fﬁtl/p
O Ap,eyf) e —ali —2€ 1/p
- % (/dzewlzl/ dye V() i1 g (560+z+ By,y))
tptas 0 o
C Ap eyo . o0 i —2e Y
_ % (/ dze—ﬂz—iﬂo_gy‘/ dyefy(lb%%)yﬂ_lfp (Z,y))
tp T 2p 0
Ap,eyo+7|Zol > i 2 v
< Spe T ( [z [ el <z,y>) |

If we choose e =1/2 and = p + *y|p|, the assertion follows provided A satisfies

o

o2 2 + Lol 1
A>—2 (u—l—wM) N
2p(p — 1) o P p P

4.5 Proof of Theorem 2.4

We are finally ready to prove the identification Theorem 24l We first prove the result under further regularity
assumptions on the payoff function ¢, then we deduce the general statement by an approximation technique.

4.5.1 Case with a regular function

The following regularity result paves the way for the identification theorem in the case of a regular payoff
function.

Proposition 4.12. Assume that v satisfies Assumption H' and 0 < < ® with ® satisfying Assumption H?.
If moreover we assume ¢ € L?([0,T]; H*(O,m)) and %—f + Ly, (1+y)® € LP([0,T]; LP(O,m)) for some p > 2,
then there exist \o > 0 and F € LP([0,T]; LP(O,m)) such that for all X > Ao the solution u of 23] satisfies

0

- —u,v +ax(u,v) = (F,v)m, a.e. in[0,T], veV. (4.11)
ot o

Proof. Note that, for A large enough, u can be seen as the solution uy of an equivalent coercive variational

inequality, that is

ou
— (2 v—ur) +ar(un,v—uy) > (g,v—ur)m,
o Y

where g = A\(1 + y)u satisfies the assumptions of Proposition B 12l Therefore, there exists a sequence (ue,x)e of
non negative functions such that lim._,o v » = u) and

Ou, 1
— ( gtv\,v) + ax(ue,v) — (—(w - ug),\)+,u) = (9,v)m, vevV.
H €

H

Since both u, » and ¢ are positive and 1) belongs to L? ([0, T']; L (O, m)), we have (¢—u. x)+ € LP([0,T]; LP (O, m)).
In order to simplify the notation, we set w = () — uc x)+. Taking v = wP~! and assuming that ¢ is bounded
we observe that v € L2([0,7]; V) and we can write

e,z -1 -1 1 —1
- (T,w” . +ax(uen, wP™ ") — g”w”if)(o,m) - (g’wp )H’
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so that

1d _ 1 _ oY _
Tl 0.y = a7 (8 = e n ™) = w0y = (90" ") = (at v ) +ar(,u ),
p € H

Integrating from 0 to T we get

T T
= 10O o ~ [ (= )0 e = 2 [ Ol o i

= [ )i [ (S Jut @) are | " a0, w O)i

Now, with the usual integration by parts,

2 2
vty [ Yoy | (O Jwow | o (0w
a)(w,wP™") /O 2(p Dw [(8:1:) + 2po a9z 3y +o ay dm
—I—/ j (x)a—w +k (x)a—w wP™tdm + /\/ (14 y)wPdm
Oy Jrn\T) 5 1T o Y
ow\? ow\’
> _ p—2 e el
> 61(p 1)/wa l( $> +(8y)

:/ywpf2 0i(p—1) gw 2+j (Js)a—ww—l-éw2 dm
o ! ox T O 2

+/ 2[5 -1) (22 4+ ka0 0+ 22 dm > 0
wa 1P 8y Yo lb 8yw 2'LU = U,

(4.12)

ow ow
d (1) S 4 ke (2) 22 ) wP Pd
m+/0y (jw,u(x) P +ky () 6y> w m+)\/oyw m

since, for A large enough, the quadratic forms (a,b) — &1(p — 1)a® + j,..ab + 3b* and (a,b) — §1(p — 1)a® +
kv pab 4 %b2 are both positive definite.

Recall that ¢ € L2([0, T]; H*(O,m)), Z4-Lys € LP([0,T], L7(O, m)), (14+)v> < (14)® € LP([0,T], L?(O, m))
and g = (1+y)u < (14+y)® € LP([0,T); ( m)). Therefore, going back to ([@I2]) and using Holder’s inequality,

T
/||w HLpom)dt< (/ lg(t) HLp(om) ) </0

Recalling that w = (¢ — ue 1)+, we deduce that

ya

p P
/ loll o mt ]
Lr (O, m)

<, (4.13)
Lr([0,T];LP(O,m))

3

o )+ £2v()

1
Hg(d’ — Ue x)+

for a positive constant C' independent of . Note that the estimate does not involve the L*°-norm of ¢ (which
we assumed to be bounded for the payoff) so that by a standard approximation argument, it remains valid for
unbounded 1. The assertion then follows passing to the limit for ¢ — 0 in

Ou, 1
— ( g”\,v) + ax(ue,,v) = <—(1/) - Us,/\)+,v> +(9,v)m, veV.

H

O

Now, note that we can easily prove the continuous dependence of the process X with respect to the initial
state.
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Lemma 4.13. Fiz (x,y) € R x [0,+00). Denote by (X;"Y,YY)i>0 the solution of the system

o

ax, = (22 — %) dt + VVidB,,
dY; = k(0 — Y,)dt + o/Y,dW,

with Xo =z, Yo =y and (B,W), = pt. We have, for every t > 0 and for every (x,y), (z',y") € R x [0, +00),
E ‘Y;y, _ Y;y

<y’ —yl and

E|x;"V - Xxp

t
<2’ —al+ 5ly —yl+ Vily —yl.

The proof of Lemma H.T3] is straightforward so we omit the details: the inequality E }Yty, - Yty’ <y -yl

can be proved by using standard techniques introduced in [I2] (see the proof of Theorem 3.2 and its Corollary
in Section IV.3) and the other inequality easily follows.
Then, we can prove the following result.

Proposition 4.14. Let ¢ : R x [0,00) — R be continuous and such that there exist C > 0 and a, b > 0 with
[ (x,y)| < Ce®®IF for every (x,y) € R x [0,+00). Then, if

2 2 2

b —
A > ablplo + 20 b+ Z 5 a,

we have P}MY|(z,y) < oo for every t > 0, (x,y) € R x [0,+00) and the function (t,z,y) — PMp(z,y) is
continuous on [0,00) x R x [0, 00).

Proof. We can prove, as in the proof of Proposition .8, that

E,, (eaXﬁbYtAf;sts) _ ale-tu)p (e(a§+b)n+(a(%%)+%(1p2)x) fotysds)

Y

Thanks to Proposition 5] if

2 2 1 2
% (ag —i—b) —K (ag +b) + (a(% - 5) + %(1 - - )\) <0, (4.14)

we have, for any T > 0 and for any compact K C R x [0, +0o0],

t
sup E.., <eaXt+bYt—>\ IA sts) < .
(t.z,y)€[0,T]x K

Note that ([@I4) is equivalent to
b2o? a’®—a
A>ab — —rb .
po + 5 + 2
Therefore, under the assumptions of the Proposition, we have, for any 7" > 0 and for any compact set K C

R x [0, +00],

t
Xi|+0Yi-A [ Vid
sup Ezy <ea YA f] S) < 0.
(t,2.9) €[0,T] X K

Moreover, for € small enough,

sip  Ea, (ea<1+e>xt|+b<1+emA<1+e> I sts) . (4.15)
(t,z,y)€e[0,T]x K

Then, let 1 be a continuous function on R x [0, +oo[ such that [i(z,y)| < Ce*I+tv Tt is evident that
PMi|(2,y) < oo and we have

PMj(z,y) =E (6% YDy v, Yf’)) .
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If ((tn,®n,Yn))n converges to (t,z,y), we deduce from Lemma T3 that X/ — XY, V" — Y and
fg” Y¥rds — fot Y¥ds in probability. Therefore e Jo" (1+n)dsw(an"’y", Y,/") converges to e fo’(HY‘”‘)dsw(Xz’y, YY)
in probability. The estimate (£135]) ensures the uniformly integrability of e Jo (1+Y3)ds1/)(X JmYm Y so that
limy, 00 P2 (2, yn) = P)(2,y) which concludes the proof. O

Proposition 4.15. Fiz p > f+ 3 and X as in Theorem[[.9 Let us consider u € C([0,T]; H) N L*([0,T}; V),
with 9% € L*([0,T]; H) such that

with v continuous, ¥ € V, /T +yf € L*([0,T); H) and f € LP([0,T]; LP(O,m)). Then, if 1 and X satisfy the
assumptions of Proposition we have

1. For every t € [0,T], u(t) = PM) + f(f PMf(t — s)ds
2. The function (t,z,y) — u(t,x,y) is continuous on [0,T] x R x [0, 400).

3 If Ay = /\fg(l + Ys)ds, the process (My)o<i<T, defined by

t
My = e Mu(T — £, X,,Y:) + / e N J(T = s, X, Yo)ds,
0

with Xo = x, Yo =y is a martingale for every (z,y) € R x [0, +00).

Proof. The first assertion follows from Proposition

The continuity of (¢, z,y) — P )(z,y) is given by Proposition @14l The continuity of (¢, z,y) fg PMf(t—
s, )z, y)ds is trivial if (¢, 2,y) — f(t,z,y) is bounded continuous. If f € LP([0,T]; LP(O,m)), f is the limit in
LP of a sequence of bounded continuous functions and we have fot P fo(t—s,-)ds — fg P} f(t—s,-)ds uniformly

in [0,7] x K for every compact K of R x [0,400)). In fact, thanks to Theorem [£9] we can write for ¢ € [0, T
and (z,y) € K

t t
C
/Pz|fn—f|<t—s,-,-><x,y>dss/ B ds||(fo — F)(t = 5., )|r(0,m)
0

0 s 2p

t 1/p togs \'®
<G ([ M= D=5 Momts) ([ ) s
0 0 gZr-D
T LAY 1-3
<Cp 1 (/ (fn = ) w0,y D8 ) (/ W) :
0 0 §2p-D

The assumption p > 5+ g ensures the convergence of the integral in the right hand side.

For the last assertion, note that My = e~ (X7, Yr) + fOT e M f(T — 5, X,,Y,)ds. Then, we can prove
that M; is integrable with the same arguments that we used to show the continuity of (¢,z,y) — u(t,x,y).
Moreover, by using the Markov property,

t T
E., (Mr|F) = eMP) (X, V) + / NPT — 5, X, Y)ds + e / PX L F(T = 5,.,)(X,, Yo)ds
0 t

T—t t
N (p%_tht, Yo+ [Pt (X mds> b [ et = s X Yds
0

0

t
e_A‘u(T —t, X, Y3) + / e_ASf(T -8, X,,Y)ds = M.
0
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We are now ready to prove the following proposition.

Proposition 4.16. Assume that v satisfies Assumption H*. Moreover, fix p > § + % and assume that ¢ €
L3([0,T); H*(O,m)) and %—‘f + Ly € LP([0,T; LP(O,m)). Then, the solution u of the variational inequality (2.5
satisfies _

u(t,z,y) =u(t,z,y),  onl[0,T]x 0O, (4.17)

where u* is defined by
u*(t,x,y) = sup E [¢(r,X0™Y, YY),
T€Te,T
Proof. We first check that i satisfies the assumptions of Proposition Note that, thanks to the growth
condition (2], it is possible to write 0 < ¥ (¢, z,y) < ®(t, z,y) with ®(¢,z,y) = CT(e””’paﬁt + eLy=rOLY) wwhere
L e [0, i—'j) and C7p is a positive constant which depends on T'. Moreover, recall the growth condition on the

derivatives (Z7). Then, it is easy to see that we can choose v and p in the definition of the measure m (see
(Z22)) such that 1 satisfies Assumption H!, @ satisfies Assumption 2 (note that 22 + L& < 0) and (1 +y)®,

%—‘f + L4 € LP([0,T]; LP(O,m)). Therefore we can apply Proposition d.12 and we get that, for A large enough,
there exists F' € LP([0,T]; LP(O, m)) such that u satisfies

0
—(—u,v) + ax(u,v) = (F,v)m, veV,
ot "
that is
Ev
On the other hand we know that

. <a“ U)H talu,v) = (F-A1+yu,v)g, veV.

— (%0 —u), +a(u,v—u) >0, ae. in[0,T]  wveV, v29,
u(T) = ¢(T),

u > ae. in[0,T] x R x (0,00).
From the previous relations we easily deduce that F — A(1 + y)u > 0 a.e. and, taking v = ¢, that (F —

A1+ y)u, v — u)g = 0. Moreover, note that the assumptions of Proposition 15| are satisfied, so the process
(Mi)o<i<r defined by

¢
M, = e Mu(t, X, Yr) +/ e M F(s, X, Y, )ds, (4.18)
0
with X = x, Yo = y is a martingale for every (z,y) € R x [0, +00). Then, we deduce that the process
t
M= 0t X0 V) [ (5, X0 ¥e) = N1+ Youls, X, Y2)) ds
0
is a local martingale. In fact, from ([@I8]) we can write

t
dM, = d [eAfMt — e / e N F(s, X, Ys)ds] + F(t, Xy, Yi)dt — M1+ Yy)u(t, X¢, Yy)dt
0

t
= eMdM, + [)\(1 +Yi)et My — AL+ Vi) / e M F(s, X, Y)ds
0

—eMeTMP (X0, V) + F(t, X, Vi) — M1+ Yo)ult, Xo, Yt)} dt
= eMdM.

So, for any stopping time 7 there exists an increasing sequence of stopping times (7, ),, such that lim,, 7, = oo
and

TNTn
Ey y[u(T A 7oy Xenr,, Yonr,)] = w(0,2,y) — Eq oy [/ (F(s,Xs,Ys) = M1+ Ys)u(s, Xs,Y5))ds| . (4.19)
0
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Since F' — A(1 + y)u > 0 we can pass to the limit in the right hand side of @I9) thanks to the monotone
convergence theorem. Recall now that an adapted right continuous process (Z;):>o is said to be of class D if
the family (Z;)re7; .., Where To o is the set of all stopping times with values in [0, c0), is uniformly integrable.
Moreover, recall that 0 < u(t, z,y) < ®(z,y) = Cr (e””_pth +elv=r9Lt)  The discounted and dividend adjusted
price process (e~ ("=9S,), = (eXf*pTﬁet)t is a martingale (we refer to [I4] for an analysis of the martingale
property in general affine stochastic volatility models), so we deduce that it is of class D. On the other hand, we
can prove that the process (eXYt =), is of class D following the same arguments used in Remark L6l Therefore,
the process (®(t + s, X)) e 1 is of class D for every (t,2,y) € [0,T] x R x [0,00). So we can pass to the
limit in the left hand side of ([A.I9) and we get that lim, oo Ey o [w(T A 7o, Xoar,, Yenr, )] = Eoylu(r, X7, Y2
Therefore, passing to the limit as n — oo, we get

E, yu(r, X, Y:)] =u(0,2,y) — E; [/ (F(s,Xs,Ys) = M1+ Yy)u(s, X, Ys))ds|
0

for every 7 € Tjo 7. Recall that F' — A(1 + y)u > 0, so the process u(t, X;,Y;) is actually a supermartingale.
Since u > 1, we deduce directly from the definition of Snell envelope that w(t, X;,Y;) > w*(¢, X4, Y;) a.e. for
te[0,T].

In order to show the opposite inequality, we consider the so called continuation region

C={(t,z,y) €0,T) x R x [0,00) : u(t,z,y) >t z,y)},

its t-sections
Ct ={(z,y) e R x[0,00) : (t,x,y) € C}, te[0,T),

and the stopping time
7 =inf{s >t:(s,X;,Ys) ¢ C} =inf{s >t :u(s, Xs,Ys) = (s, X5, Y5)}

Note that u(zr, X, Ys) > (s, X, Ys) for t < s < 7. Moreover, recall that (F — A1 + y)u,p —u) = 0
a.e., so Leb{(z,y) € C; : F — A(1 + y)u # 0} = 0dt a.e.. Since the two dimensional diffusion (X,Y") has a
density, we deduce that E [F(s, X5, Ys) — M1 + Y3)u(s, X5, Ys)1(x, viyec.t] = 0, and so F(s, X, Ys) — A(1 +
Ys)u(s, Xs,Ys) =0ds, dP —a.e. on {s < 7, }. Therefore,

E[u(r, X;,,Yr)] = Elu(t, X3, Y)],
and, since u(r, Xr,,Yr,) = (7, X+,, Yr,) thanks to the continuity of u and ),
Elu(t, Xy, Yy)] = E[¢(r, X7, Y7,)] S Eu”(t, X3, V7)),
so that u(t, Xy, Y:) = uw* (¢, X4, Y:) a.e.. With the same arguments we can prove that u(t, z,y) = u*(¢,z,y) and
this concludes the proof. O

4.5.2 Weaker assumptions on v

The last step is to establish the equality u = u* under weaker assumptions on 1), so proving Theorem [Z.4]

Proof of Theorem[2.} First assume that there exists a sequence (¢, )nen of continuous functions on [0,T7] X
R X [0,00) which converges uniformly to 1) and such that, for each n € N, 1, satisfies the assumptions of
Proposition I6 For every n € N, we set u,, = u,(t, x, y) the unique solution of the variational inequality (23]
with final condition w, (T, z,y) = ¢¥n(T,z,y) and u;,(t,2,y) = sup, e, ,. B[thn (7, X2®¥, Y1¥)]. Then, thanks to
Proposition [£I0] for every n € N we have

un(t,z,y) = ui(t,z,y)  on[0,7] x O.

Now, the left hand side converges to u(t, z,y) thanks to the Comparison Principle. As regards the right hand
side,
sup E i (r, X020, V)] sup B [e 70Dy (r, X Lo, yhen)]

TETs, T TET,T
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thanks to the uniform convergence of 1, to .
Therefore, it is enough to prove that, if ¢ satisfies Assumption H*, then it is the uniform limit of a sequence
of functions 1, which satisfy the assumptions of Proposition L I6l This can be done following the very same

arguments of [I3] Lemma 3.3] so we omit the technical details (see [17]). O
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