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Variational formulation of American option prices in the

Heston Model

Damien Lamberton∗

Giulia Terenzi†

Abstract

We give an analytical characterization of the price function of an American option in Heston-type models.
Our approach is based on variational inequalities and extends recent results of Daskalopoulos and Feehan
(2011). We study the existence and uniqueness of a weak solution of the associated degenerate parabolic
obstacle problem. Then, we use suitable estimates on the joint distribution of the log-price process and the
volatility process in order to characterize the analytical weak solution as the solution to the optimal stopping
problem. We also rely on semi-group techniques and on the affine property of the model.

Keywords: American options; degenerate parabolic obstacle problem; optimal stopping problem.

1 Introduction

The model introduced by S. Heston in 1993 ([9]) is one of the most widely used stochastic volatility models in
the financial world and it was the starting point for several more complex models which extend it. The great
success of the Heston model is due to the fact that the dynamics of the underlying asset can take into account
the non-lognormal distribution of the asset returns and the observed mean-reverting property of the volatility.
Moreover, it remains analytically tractable and provides a closed-form valuation formula for European options
using Fourier transform.

These features have called for an extensive literature on numerical methods to price derivatives in Heston-
type models. In this framework, besides purely probabilistic methods such as standard Monte Carlo and tree
approximations, there is a large class of algorithms which exploit numerical analysis techniques in order to solve
the standard PDE (resp. the obstacle problem) formally associated with the European (resp. American) option
price function. However, these algorithms have, in general, little mathematical support and in particular, as far
as we know, a rigorous and complete study of the analytic characterization of the American price function is
not present in the literature.

The main difficulties in this sense come from the degenerate nature of the model. In fact, the infinitesimal
generator associated with the two dimensional diffusion given by the log-price process and the volatility process is
not uniformly elliptic: it degenerates on the boundary of the domain, that is when the volatility variable vanishes.
Moreover, it has unbounded coefficients with linear growth. Therefore, the existence and the uniqueness of the
solution to the pricing PDE and obstacle problem do not follow from the classical theory, at least in the case in
which the boundary of the state space is reached with positive probability, as happens in many cases of practical
importance (see [3]). Moreover, the probabilistic representation of the solution, that is the identification with
the price function, is far from trivial in the case of non regular payoffs.

It should be emphasized that a clear analytic characterization of the price function allows not only to
formally justify the theoretical convergence of some classical pricing algorithms but also to investigate the
regularity properties of the price function (see [11] for the case of the Black and Scholes models).
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Concerning the existing literature, E. Ekstrom and J. Tysk in [6] give a rigorous and complete analysis of
these issues in the case of European options, proving that, under some regularity assumptions on the payoff
functions, the price function is the unique classical solution of the associated PDE with a certain boundary
behaviour for vanishing values of the volatility. However, the payoff functions they consider do not include the
case of standard put and call options.

Recently, P. Daskalopoulos and P. Feehan studied the existence, the uniqueness, and some regularity prop-
erties of the solution of this kind of degenerate PDE and obstacle problems in the elliptic case, introducing
suitable weighted Sobolev spaces which clarify the behaviour of the solution near the degenerate boundary.
Again, as regards the probabilistic representation, they only treat the case with heavy regularity assumptions
on the payoff function (see [7]).

The aim of this paper is to give a precise analytical characterization of the American option price function
for a large class of payoffs which includes the standard put and call options. In particular, we give a variational
formulation of the American pricing problem using the weighted Sobolev spaces and the bilinear form introduced
in [5]. The paper is organized as follows. In Section 2 we introduce our notations and we state our main results.
Then, in section 3 we study the existence and uniqueness of the solution of the associated variational inequality,
extending the results obtained in [5] in the elliptic case. The proof essentially relies on the classical penalization
technique introduced by Bensoussan and Lions [4] with some technical devices due to the degenerate nature of
the problem. We also establish a Comparison Theorem. Finally, in section 4, we prove that the solution of the
variational inequality with obstacle function ψ is actually the American option price function with payoff ψ,
with conditions on ψ which are satisfied, for example, by the standard call and put options. In order to do this,
we use the affine property of the underlying diffusion given by the log price process X and the volatility process
Y . Thanks to this property, we first identify the analytic semigroup associated with the bilinear form with a
correction term and the transition semigroup of the pair (X,Y ) with a killing term. Then, we prove regularity
results on the solution of the variational inequality and suitable estimates on the joint law of the process (X,Y )
and we deduce from them the analytical characterization of the solution of the optimal stopping problem, that
is the American option price.
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2 Notations and main results

2.1 The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset price S and the volatility
process Y are governed by the stochastic differential equation system

{
dSt

St
= (r − δ)dt+

√
YtdBt, S0 = s > 0,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt, Y0 = y ≥ 0,

where B and W denote two correlated Brownian motions with

d〈B,W 〉t = ρdt, ρ ∈ (−1, 1).

Here r ≥ 0 and δ > 0 are respectively the risk free rate of interest and the continuous dividend rate. The
dynamics of Y follows a CIR process with mean reversion rate κ ≥ 0 and long run state θ ≥ 0. The parameter
σ > 0 is called the volatility of the volatility. Note that we do not require the Feller condition 2κθ ≥ σ2: the
volatility process Y can hit 0 (see, for example, [2, Section 1.2.4]).

We are interested in studying the price of an American option with payoff function ψ. For technical reasons
which will be clarified later on, hereafter we consider the process

Xt = logSt − c̄t, with c̄ = r − δ − ρκθ

σ
, (2.1)

which satisfies {

dXt =
(
ρκθ
σ − Yt

2

)
dt+

√
YtdBt,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt.

(2.2)

Note that, in this framework, we have to consider payoff functions ψ which depend on both the time and
the space variables. For example, in the case of a standard put option (resp. a call option) with strike price K
we have ψ(t, x) = (K − ex+c̄t)+ (resp. ψ(t, x) = (ex+c̄t − K)+). So, the natural price at time t of an American
option with a nice enough payoff (ψ(t,Xt, Yt))0≤t≤T is given by P (t,Xt, Yt), with

P (t, x, y) = esssupθ∈Tt,T
E[e−r(θ−t)ψ(θ,Xt,x,y

θ , Y t,yθ )],

where Tt,T is the set of all stopping times with values in [t, T ] and (Xt,x,y
s , Y t,ys )t≤s≤T denotes the solution to

(2.2) with the starting condition (Xt, Yt) = (x, y).
Our aim is to give an analytical characterization of the price function P . We recall that the infinitesimal

generator of the two dimensional diffusion (X,Y ) is given by

L =
y

2

(
∂2

∂x2
+ 2ρσ

∂2

∂y∂x
+ σ2 ∂

2

∂y2

)

+ κ(θ − y)
∂

∂y
+

(
ρκθ

σ
− y

2

)
∂

∂x
,

which is defined on the open set O := R× (0,∞). Note that L has unbounded coefficients and is not uniformly
elliptic: it degenerates on the boundary ∂O = R × {0}.

2.2 American options and variational inequalities

2.2.1 Heuristics

From the optimal stopping theory, we know that the discounted price process P̃ (t,Xt, Yt) = e−rtP (t,Xt, Yt)
is a supermartingale and that its finite variation part only decreases on the set P = ψ. We want to have an
analytical interpretation of these features on the function P (t, x, y). So, assume that P ∈ C1,2((0, T ) × O).
Then, by applying Ito’s formula, the finite variation part of P̃ (t,Xt, Yt) is

(
∂P̃

∂t
+ LP̃

)

(t,Xt, Yt).
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Since P̃ is a supermartingale, we can deduce the inequality

∂P̃

∂t
+ LP̃ ≤ 0

and, since its finite variation part decreases only on the set P (t,Xt, Yt) = ψ(t,Xt, Yt), we can write

(
∂P̃

∂t
+ LP̃

)

(ψ − P ) = 0.

This relation has to be satisfied dt− a.e. along the trajectories of (t,Xt, Yt). Moreover, we have the two trivial
conditions P (T, x, y) = ψ(T, x, y) and P ≥ ψ.

The previous discussion is only heuristic, since the price function P is not regular enough to apply the Ito’s
formula. However, it suggests the following strategy:

1. Study the obstacle problem







∂u
∂t + Lu ≤ 0, u ≥ ψ, in [0, T ] × O,
(
∂u
∂t + Lu

)
(ψ − u) = 0, in [0, T ] × O,

u(T, x, y) = ψ(T, x, y).

(2.3)

2. Show that the discounted price function P̃ is equal to the solution of (2.3) where ψ is replaced by
ψ̃(t, x, y) = e−rtψ(t, x, y).

We will follow this program providing a variational formulation of system (2.3).

2.2.2 Weighted Sobolev spaces and bilinear form associated with the Heston operator

We consider the measure first introduced in [5]:

mγ,µ(dx, dy) = yβ−1e−γ|x|−µydxdy,

with γ > 0, µ > 0 and β := 2κθ
σ2 . It will be clear later on that this measure in some sense describes the

qualitative behaviour of the process (X,Y ) near the degenerate boundary. For u ∈ R
n we denote by |u| the

standard euclidean norm of u in R
n. The relevant Sobolev spaces are defined as follows (see [5]).

Definition 2.1. For every p ≥ 1 let Lp(O,mγ,µ) be the space of all measurable functions u : O → R for which

‖u‖pLp(O,mγ,µ) :=

∫

O
|u|pdmγ,µ < ∞,

and denote H0(O,mγ,µ) := L2(O,mγ,µ).

1. If ∇u := (ux, uy) and ux, uy are defined in the sense of distributions, we set

H1(O,mγ,µ) := {u ∈ L2(O,mγ,µ) :
√

1 + yu and
√
y|∇u| ∈ L2(O,mγ,µ)},

and

‖u‖2
H1(O,mγ,µ) :=

∫

O

(
y|∇u|2 + (1 + y)u2

)
dmγ,µ.

2. If D2u := (uxx, uxy, uyx, uyy) and all derivatives of u are defined in the sense of distributions, we set

H2(O,mγ,µ) := {u ∈ L2(O,mγ,µ) :
√

1 + yu, (1 + y)|∇u|, y|D2u| ∈ L2(O,mγ,µ)}

and

‖u‖2
H2(O,mγ,µ) :=

∫

O

(
y2|D2u|2 + (1 + y)2|∇u|2 + (1 + y)u2

)
dmγ,µ.
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For brevity and when the context is clear, we shall often denote

H := H0(O,mγ,µ), V := H1(O,mγ,µ)

and
‖u‖H := ‖u‖L2(O,mγ,µ), ‖u‖V := ‖u‖H1(O,mγ,µ).

Note that the spaces Hk(O,mγ,µ), for k = 0, 1, 2 are Hilbert spaces with the inner products

(u, v)H = (u, v)L2(O,mγ,µ) =

∫

O
uvdmγ,µ,

(u, v)V = (u, v)H1(O,mγ,µ) =

∫

O
(y (∇u,∇v) + (1 + y)uv) dmγ,µ

and

(u, v)H2(O,mγ,µ) :=

∫

O

(
y2
(
D2u,D2v

)
+ (1 + y)2 (∇u,∇v) + (1 + y)uv

)
dmγ,µ,

where (·, ·) denotes the standard scalar product in R
n. Moreover, note that

H2(O,mγ,µ) ⊂ H1(O,mγ,µ).

We can now introduce the bilinear form associated with the differential operator L.

Definition 2.2. For any u, v ∈ H1(O,mγ,µ) we define the bilinear form

aγ,µ(u, v) =
1

2

∫

O
y
(
uxvx(x, y) + ρσuxvy(x, y) + ρσuyvx(x, y) + σ2uyvy(x, y)

)
dmγ,µ

+

∫

O
y (jγ,µ(x)ux(x, y) + kγ,µ(x)uy(x, y)) v(x, y)dmγ,µ,

where

jγ,µ =
1

2
(1 − γsgn(x) − µρσ) , kγ,µ = κ− γρσ

2
sgn(x) − µσ2

2
.

We will prove that for every u ∈ H2(O,m) and for every v ∈ H1(O,m) , we have

(Lu, v)H = −aγ,µ(u, v).

In order to simplify the notation, from now on we fix γ and µ and we write m and a instead of mγ,µ and aγ,µ.

2.3 Variational formulation of the American price

Fix T > 0. We consider an assumption on the payoff function ψ which will be crucial in the discussion of the
penalized problem.

Assumption H1. We say that a function ψ satisfies Assumption H1 if ψ ∈ C([0, T ];H),
√

1 + yψ ∈ L2([0, T ];V ),

ψ(T ) ∈ V and there exists Ψ ∈ L2([0, T ];V ) such that
∣
∣
∣
∂ψ
∂t

∣
∣
∣ ≤ Ψ.

We will also need a domination condition on ψ by a function Φ which satisfies the following assumption.

Assumption H2. We say that a function Φ ∈ L2([0, T ];H2(O,m)) satisfies Assumption H2 if (1 + y)
3
2 Φ ∈

L2([0, T ];H), ∂Φ
∂t + LΦ ≤ 0 and

√
1 + yΦ ∈ L∞([0, T ];L2(O,mγ,µ′)) for some 0 < µ′ < µ.

The domination condition is needed to deal with the lack of corercivity of the bilinear form associated with
our problem. Similar conditions are also used in [5].

The first step in the variational formulation of the problem is to introduce the associated variational inequality
and to prove the following existence and uniqueness result.
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Theorem 2.3. Assume that ψ satisfies Assumption H1 together with 0 ≤ ψ ≤ Φ, where Φ satisfies Assumption
H2. Then, there exists a unique function u such that u ∈ C([0, T ];H) ∩ L2([0, T ];V ), ∂u∂t ∈ L2([0, T ];H) and







−
(
∂u
∂t , v − u

)

H
+ a(u, v − u) ≥ 0, a.e. in [0, T ] v ∈ V, v ≥ ψ,

u ≥ ψ a.e. in [0, T ] × R × (0,∞),

u(T ) = ψ(T ),

0 ≤ u ≤ Φ.

(2.4)

The proof is presented in Section 3 and essentially relies on the penalization technique introduced by Ben-
soussan and Lions (see also [8]) with some technical devices due to the degenerate nature of the problem. We
extend in the parabolic framework the results obtained in [5] for the elliptic case.

The second step is to identify the unique solution of the variational inequality (2.4) as the solution of the
optimal stopping problem, that is the (discounted) American option price.

Recall that an adapted right continuous process (Zt)t≥0 is said to be of class D if the family (Zτ )τ∈T0,∞ ,
where T0,∞ is the set of all stopping times with values in [0,∞), is uniformly integrable. We introduce the
following further assumption:

Assumption H∗. We say that a function Φ : [0, T ]×R× [0,∞) → R satisfies Assumption H∗ if Φ is continuous
and, for all (t, x, y) ∈ [0, T ] × R × [0,∞), the process (Φ(t+ s,Xt,x,y

s , Y t,ys ))s∈[0,T−t] is of class D.

Assumption H∗ is crucial in order to get the following identification result.

Theorem 2.4. Fix p > β + 5
2 . Assume that, in addition to the assumptions of Theorem 2.3, there exists a

sequence (ψn)n∈N of continuous functions on [0, T ] × R × [0,∞) which converges uniformly to ψ and satisfies
the following properties for each n ∈ N:

1. ψn satisfies Assumption H1 and 0 ≤ ψn ≤ Φn for some Φn satisfying Assumption H2, Assumption H∗

and (1 + y)Φn ∈ Lp([0, T ];Lp(O,m));

2. ψn ∈ L2([0, T ], H2(O,m)) and ∂ψn

∂t + Lψn ∈ Lp([0, T ];Lp(O,m)).

Then, the solution u of the variational inequality (2.4) associated with ψ is continuous and coincides with
the function u∗ defined by

u∗(t, x, y) = sup
τ∈Tt,T

E
[
ψ(τ,Xt,x,y

τ , Y t,x,yτ )
]
.

We conclude this overview with a natural remark. The assumptions on ψ in Theorem 2.3 and Theorem 2.4
seem to be very stringent but we will see that, by choosing γ large enough, they are satisfied by the class of
payoff functions ψ = ψ(t, x) = e−rtψ̄(x+ c̄t), where c̄ = r− δ− ρκθ

σ as defined in (2.1), ψ̄ is continuous, positive
and such that

|ψ̄| +
∣
∣ψ̄′∣∣ ≤ C (ex + 1) ,

with C > 0. Note that the standard call and put payoff functions fall into this category (see Remark 4.17).

3 Existence and uniqueness of solutions to the variational inequality

3.1 Integration by parts and energy estimates

The following result justifies the definition of the bilinear form a.

Proposition 3.1. If u ∈ H2(O,m) and v ∈ H1(O,m), we have

(Lu, v)H = −a(u, v). (3.1)

Before proving Proposition 3.1, we show some preliminary results. The first one is about the standard
regularization of a function by convolution.
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Lemma 3.2. Let ϕ : R × R → R
+ be a C∞ function with compact support in [−1,+1] × [−1, 0] and such

that
∫ ∫

ϕ(x, y)dxdy = 1. For j ∈ N we set ϕj(x, y) = j2ϕ(jx, jy). Then, for every function u locally square-
integrable on R × (0,∞) and for every compact set K, we have

lim
j→∞

∫ ∫

K

(ϕj ∗ u− u)2(x, y)dxdy = 0.

Proof. We first observe that
∫ ∫

K

(ϕj ∗ u)2(x, y)dxdy ≤
∫ ∫

K

dxdy

∫ ∫

ϕj(ξ, ζ)u
2(x− ξ, y − ζ)dξdζ

=

∫ ∫

ϕj(ξ, ζ)dξdζ

∫ ∫

1K(x+ ξ, y + ζ)u2(x, y)dxdy.

We deduce, for j large enough,
∫ ∫

K

(ϕj ∗ u)2(x, y)dxdy ≤
∫ ∫

K̄

u2(x, y)dxdy,

where K̄ = {(x, y) ∈ O|d∞
(
(x, y),K) ≤ 1

j }. Let ǫ be a positive constant and v be a continuous function such

that
∫ ∫

K̄
(u(x, y) − v(x, y))2dxdy ≤ ǫ. We have

∫ ∫

K

(ϕj ∗ u− u)2(x, y)dxdy

≤ 3

∫ ∫

K

(ϕj ∗ u− ϕj ∗ v)2(x, y)dxdy + 3

∫ ∫

K

(ϕj ∗ v − v)2(x, y)dxdy + 3

∫ ∫

K

(v − u)2(x, y)dxdy

≤ 3

∫ ∫

K̄

(v − u)2(x, y)dxdy + 3

∫ ∫

K

(ϕj ∗ v − v)2(x, y)dxdy + 3

∫ ∫

K̄

(v − u)2(x, y)dxdy

≤ 6ǫ+ 3

∫ ∫

K

(ϕj ∗ v − v)2(x, y)dxdy.

Since v is continuous, we have |ϕj ∗ v| ≤ supx,y∈K̄ |v(x, y)| and ϕj ∗ v(x, y) → v(x, y) on K. Therefore, by
Lebesgue Theorem, we can pass to the limit in the above inequality and we get

lim sup
j→∞

∫ ∫

K

(ϕj ∗ u− u)2(x, y)dxdy ≤ 6ǫ,

which completes the proof.

Then, the following two propositions justify the integration by parts formulas with respect to the measure
m.

Proposition 3.3. Let us consider u, v : O → R locally square-integrable on O, with derivatives ux and vx
locally square-integrable on O as well. Moreover, assume that

∫

O

(
|ux(x, y)v(x, y)| + |u(x, y)vx(x, y)| + |u(x, y)v(x, y)|

)
dm < ∞.

Then, we have ∫

O
ux(x, y)v(x, y)dm = −

∫

O
u(x, y) (vx(x, y) − γsgn(x)v) dm. (3.2)

Proof. First we assume that v has compact support in R× (0,∞). For any j ∈ N we consider the C∞ functions
uj = ϕj ∗u and vj = ϕj ∗ v, with ϕj as in Lemma 3.2. Note that supp vj ⊂ supp g+ supp ϕj and so, for j large
enough, supp vj ⊂ R × (0,∞). For any ǫ > 0, integrating by parts, we have

∫ ∞

−∞
(uj)x(x, y)vj(x, y)e−γ

√
x2+ǫdx = −

∫ ∞

−∞
uj

(

(vj)x(x, y) − γ
x√
x2 + ǫ

vj(x, y)

)

e−γ
√
x2+ǫdx,
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and, letting ǫ → 0,

∫ ∞

−∞
(uj)x(x, y)vj(x, y)e−γ|x|dx = −

∫ ∞

−∞
uj
(
(vj)x(x, y) − γsgn(x)vj(x, y)

)
e−γ|x|dx.

Multiplying by yβ−1e−µy and integrating in y we obtain

∫

O
(uj)x(x, y)vj(x, y)dm = −

∫

O
uj
(
(vj)x(x, y) − γsgn(x)vj(x, y)

)
dm.

Recall that, for j large enough, vj has compact support in R × (0,∞) and m is bounded on this compact. By
using Lemma 3.2, letting j → ∞ we get

∫

O
ux(x, y)v(x, y)dm = −

∫

O
u
(
vx(x, y) − γsgn(x)v(x, y

)
dm.

Now let us consider the general case of a function v without compact support. We introduce a C∞−function α
with values in [0, 1], α(x, y) = 0 for all (x, y) /∈ [−2,+2]× [−2,+2], α(x, y) = 1 for all (x, y) ∈ [−1,+1]× [−1,+1]
and a C∞−function χ with values in [0, 1], χ(y) = 0 for all y ∈ [0, 1

2 ], χ(y) = 1 for all y ∈ [+1,∞). We set

Aj(x, y) = α

(
x

j
,
y

j

)

χ(jy), j ∈ N.

For every j ∈ N, Aj has compact support in O and we have

∫

O
ux(x, y)Aj(x, y)v(x, y)dm

= −
∫

O
u(x, y)

(
ux(x, y) − γsgn(x)v(x, y)

)
Aj(x, y)dm −

∫

O
u(x, y)v(x, y)(Aj)x(x, y)dm.

The function Aj is bounded by ‖α‖∞‖χ‖∞ and limj→+∞ Aj(x, y) = 1 for every (x, y) ∈ O. Moreover

(Aj)x(x, y) = 1
jαx

(
x
j ,

y
j

)

χ(jy), so that

∣
∣
∣
∣

∫

O
u(x, y)v(x, y)(Aj)x(x, y)dm

∣
∣
∣
∣

≤ C

j

∫

O
1{|x|≥j}|u(x, y)v(x, y)|dm,

where C = ‖αx‖∞‖χ‖∞. Therefore, we obtain (3.2) letting j → ∞.

Proposition 3.4. Let us consider u, v : O → R locally square-integrable on O, with derivatives uy and vy locally
square-integrable on O as well. Moreover, assume that

∫

O
y
(
|uy(x, y)v(x, y)| + |u(x, y)vxy(x, y)|

)
+ |u(x, y)v(x, y)|dm < ∞.

Then, we have

∫

O
yuy(x, y)v(x, y)dm = −

∫

O
yu(x, y)vydm −

∫

O
(β − µy)u(x, y)v(x, y)dm. (3.3)

Proof. If v has compact support in O, we obtain (3.3) as in the proof of Proposition 3.3. On the other hand, if
v has not compact support,

∫

O
yuy(x, y)v(x, y)Aj(x, y)dm = −

∫

O
yu(x, y)vy(x, y)Aj(x, y)dm

−
∫

O
(β − µy)u(x, y)v(x, y)Aj(x, y)dm −

∫

O
yu(x, y)v(x, y)(Aj)y(x, y)dm,
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whereAj(x, y) = α(xj ,
y
j )χ(jy), as in the proof of Proposition 3.3 but choosing χ such that, moreover, ‖yχ′(y)‖∞ <

∞. We have (Aj)y(x, y) = 1
jαy(

x
j ,

y
j )χ(jy) + jα(xj ,

y
j )χ′(jy). Note that

∣
∣
∣
∣

∫

O
yu(x, y)v(x, y)jα

(
x

j
,
y

j

)

χ′(jy)dm

∣
∣
∣
∣

≤
∫

O
1y≤ 1

j
|u(x, y)v(x, y)|‖α‖∞ sup

ζ>0
|ζχ′(ζ)|dm.

The last expression goes to 0 as j → ∞ since
∫

O |u(x, y)v(x, y)|dm < ∞. The assertion follows by passing to
the limit j → ∞.

We can now prove Proposition 3.1.

Proof of Proposition 3.1. By using Proposition 3.3 and Proposition 3.4 we have

∫

O
y
∂2u

∂x2
vdm = −

∫

O
y
∂u

∂x

(
∂v

∂x
− γsgn(x)v

)

dm,

∫

O
y
∂2u

∂y2
vdm = −

∫

O
y
∂u

∂y

∂v

∂y
dmγ,µ +

∫

O
(µy − β)

∂u

∂y
vdm,

∫

O
y
∂2u

∂x∂y
vdmγ,µ = −

∫

O
y
∂u

∂y

(
∂v

∂x
− γsgn(x)v

)

dm

and ∫

O
y
∂2u

∂x∂y
vdmγ,µ = −

∫

O
y
∂u

∂x

∂v

∂y
dm +

∫

O
(µy − β)

∂u

∂x
vdm.

Recalling that

L =
y

2

(
∂2

∂x2
+ 2ρσ

∂2

∂x∂y
+ σ2 ∂

2

∂y2

)

+

(
ρκθ

σ
− y

2

)
∂

∂x
+ κ(θ − y)

∂

∂y

and using the equality β = 2κθ/σ2, we have

(Lu, v)H = −
∫

O

y

2

(
∂u

∂x

∂v

∂x
+ σ2 ∂u

∂y

∂v

∂y
+ ρσ

∂u

∂x

∂v

∂y
+ ρσ

∂u

∂y

∂v

∂x

)

dm

+

∫

O

1

2

∂u

∂x
(yγsgn(x) + ρσ(µy − β)) vdm

+

∫

O

1

2

∂u

∂y

(
µσ2y − βσ2 + ρσyγsgn(x)

)
vdm

+

∫

O

[(
ρκθ

σ
− y

2

)
∂u

∂x
+ κ(θ − y)

∂u

∂y

]

vdm

= −a(u, v).

Remark 3.5. It is now clear why we have considered the process Xt = logSt − c̄t instead of the standard log-
price process logSt. Actually, the choice of c̄ allows to avoid terms of the type

∫
(ux + uy)dm in the associated

bilinear form a. This trick will be crucial in order to obtain suitable energy estimates.

Recall the well known inequality

bc = (
√

ζb)

(
1√
ζc

)

≤ ζ

2
b2 +

1

2ζ
c2, b, c ∈ R, ζ > 0. (3.4)

Hereafter we will often apply (3.4) in the proofs even if it is not explicitly recalled each time.
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Proposition 3.6. For every u, v ∈ V , the bilinear form a(·, ·) satisfies

|a(u, v)| ≤ C1‖u‖V ‖v‖V , (3.5)

a(u, u) ≥ C2‖u‖2
V − C3‖(1 + y)

1
2u‖2

H , (3.6)

where

C1 = δ0 +K1, C2 =
δ1

2
, C3 =

δ1

2
+
K2

1

2δ1
,

with

δ0 = sup
s2

1+t21>0, s2
2+t22>0

|s1s2 + ρσs1t2 + ρσs2t1 + σ2t1t2|
2
√

(s2
1 + t21)(s2

2 + t22)
, (3.7)

δ1 = inf
s2+t2>0

s2 + 2ρσst+ σ2t2

2(s2 + t2)
, (3.8)

and

K1 = sup
(x,y)∈R×]0,+∞[

√

j2
γ,µ(x, y) + k2

γ,µ(x, y). (3.9)

Proof. Recall that

a(u, v) =
1

2

∫

O
y
(
uxvx + ρσuxvy + ρσuyvx + σ2uyvy

)
dm

+

∫

O
y (jγ,µ(x)ux(x, y) + kγ,µ(x)uy(x, y)) v(x, y)dm.

We can easily see that

∣
∣
∣
∣

1

2

∫

O
y
(
uxvx + ρσuxvy + ρσuyvx + σ2uyvy

)
dm

∣
∣
∣
∣

≤ δ0

∫

O
y|∇u||∇v|dm ≤ δ0‖u‖V ‖v‖V

and
∣
∣
∣
∣

∫

O
y (jγ,µ(x)ux(x, y) + kγ,µ(x)uy(x, y)) v(x, y)dm

∣
∣
∣
∣

≤ K1

∫

O
y|∇u||v|dm ≤ K1‖u‖V ‖v‖V .

Then (3.5) immediately follows. In order to prove (3.6), we note that

1

2

∫

O
y
(
uxvx + ρσuxvy + ρσuyvx + σ2uyvy

)
dm ≥ δ1

∫

O
y|∇u|2dm.

Therefore

a(u, u) ≥ δ1

∫

O
y|∇u|2dm −K1

∫

O
y|∇u||u|dm

≥ δ1

∫

O
y|∇u|2dm − K1ζ

2

∫

O
y|∇u|2dm − K1

2ζ

∫

O
(1 + y)u2dm

=

(

δ1 − K1ζ

2

)∫

O

(
y|∇u|2 + (1 + y)u2

)
dm −

(

δ1 − K1ζ

2
+
K1

2ζ

)∫

O
(1 + y)u2dm.

Choosing ζ = δ1/K1 we have

a(u, u) ≥ δ1

2
‖u‖2

V −
(
δ1

2
+
K2

1

2δ1

)

‖
√

1 + yu‖2
H

and the assertion is proved.
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3.2 Proof of Theorem 2.3

Among the standard assumptions required in [4] for the penalization procedure, there are the coercivity and
the symmetry of the bilinear form a and the boundedness of the coefficients. In the Heston-type models these
assumptions are no longer satisfied and this leads to some technical difficulties. In order to overcome them, we
introduce some auxiliary operators.

From now on, we set
a(u, v) = ā(u, v) + ã(u, v),

where

ā(u, v) =

∫

O

y

2

(
∂u

∂x

∂v

∂x
+ ρσ

∂u

∂x

∂v

∂y
+ ρσ

∂u

∂y

∂v

∂x
+ σ2 ∂u

∂y

∂v

∂y

)

dm,

ã(u, v) =

∫

O
y
∂u

∂x
jγ,µvdm +

∫

O
y
∂u

∂y
kγ,µvdm.

Note that ā is symmetric. We have, for every u, v ∈ V ,

|ā(u, v)| ≤ δ0

∫

O
y|∇u||∇v|dm,

ā(u, u) ≥ δ1

∫

O
y|∇u|2dm,

and

|ã(u, v)| ≤ K1

∫

O
y|∇u||v|dm,

with δ0, δ1 and K1 defined in Proposition 3.6. Then, we introduce for λ ≥ 0 and M > 0,

aλ(u, v) = a(u, v) + λ

∫

O
(1 + y)uvdm,

āλ(u, v) = ā(u, v) + λ

∫

O
(1 + y)uvdm,

ã(M)(u, v) =

∫

O
y ∧M

(
∂u

∂x
jγ,µ +

∂u

∂y
kγ,µ

)

vdm

and

a
(M)
λ (u, v) = āλ(u, v) + ã(M)(u, v).

Lemma 3.7. Let δ0, δ1, K1 be defined as in (3.7), (3.8) and (3.9) respectively. For any fixed λ ≥ δ1

2 +
K2

1

2δ1
the

bilinear forms aλ and a
(M)
λ are continuous and coercive. More precisely, we have

|aλ(u, v)| ≤ C‖u‖V ‖v‖V , u, v ∈ V, (3.10)

aλ(u, u) ≥ δ1

2
‖v‖2

V , u ∈ V, (3.11)

and
|a(M)
λ (u, v)| ≤ C‖u‖V ‖v‖V , u, v ∈ V, (3.12)

a
(M)
λ (u, u) ≥ δ1

2
‖v‖2

V , u ∈ V. (3.13)

where C = δ0 +K1 + λ.
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Proof. Note that, for every u, v ∈ V ,

|ã(M)(u, v)| ≤ K1

∫

O
y|∇u||v|dm,

so that

|a(M)
λ (u, v)| ≤ |ā(u, v)| + λ

∫

O
(1 + y)|u||v|dm +K1

∫

O
y|∇u||v|dm

≤ δ0

∫

O
y|∇u||∇v|dm + λ

∫

O
(1 + y)|u||v|dm +K1

∫

O
y|∇u||v|dm

≤ (δ0 + λ+K1)‖u‖V ‖v‖V .

On the other hand, for every ζ > 0,

a
(M)
λ (u, u) ≥ δ1

∫

O
y|∇u|2dm + λ

∫

O
(1 + y)u2dmγ,µ −K1

∫

O
y|∇u||u|dm

≥
(

δ1 − K1ζ

2

)∫

O
y|∇u|2dm +

(

λ− K1

2ζ

)∫

O
(1 + y)u2dm.

By choosing ζ = δ1/K1, we get

a
(M)
λ (u, u) ≥ δ1

2

∫

O
y|∇u|2dm+

(

λ− K2
1

2δ1

)∫

O
(1 + y)u2dm.

We deduce that, if λ ≥ δ1

2 +
K2

1

2δ1
,

a
(M)
λ (u, u) ≥ δ1

2
‖u‖2

V .

The same calculations hold for the bilinear form aλ and the assertion is proved.

Remark 3.8. Let ‖a‖ = supu,v∈V,u,v 6=0
|a(u,v)|

‖u‖V ‖v‖V
be the norm of a bilinear form a : V ×V → R. Then we stress

that Lemma 3.7 gives us

sup
M>0

‖a(M)
λ ‖ ≤ C,

where C = δ0 +K1 + λ.

From now on in the rest of this paper we assume λ ≥ δ1

2 +
K2

1

2δ1
as in Lemma 3.7.

Finally, we define
Lλ := L − λ(1 + y)

the differential operator associated with the bilinear form aλ, that is

(Lλu, v)H = −aλ(u, v), u ∈ H2(O,m), v ∈ V.

3.2.1 Penalized problem

For any fixed ε > 0 we define the penalizing operator

ζε(u) = −1

ε
(ψ − u)+ =

1

ε
ζ(u), u ∈ V. (3.14)

Since the function x 7→ −(ψ − x)+ is nondecreasing, we easily get the following monotonicity result.

Lemma 3.9. The penalizing operator (3.14) is monotone, in the sense that

(ζε(u) − ζε(v), u − v)H ≥ 0, u, v ∈ V.
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We now introduce the intermediate penalized coercive problem with a source term g. We consider the
following assumption:

Assumption H0. We say that a function g satisfies Assumption H0 if
√

1 + yg ∈ L2([0, T ];H).

Theorem 3.10. Assume that ψ satisfies Assumption H1 and g satisfies Assumption H0. Then, for every fixed
ε > 0, there exists a unique function uε,λ such that uε,λ ∈ C([0, T ];H) ∩L2([0, T ];V ),

∂uε,λ

∂t ∈ L2([0, T ];H) and

{

−
(
∂uε,λ

∂t (t), v
)

H
+ aλ(uε,λ, v) + (ζε(uε,λ(t)), v)H = (g(t), v)H , a.e. in [0, T ], v ∈ V,

uε,λ(T ) = ψ(T ).
(3.15)

Moreover, the following estimates hold:
‖uε,λ‖L∞([0,T ],V ) ≤ K, (3.16)
∥
∥
∥
∥

∂uε,λ
∂t

∥
∥
∥
∥
L2([0,T ];H)

≤ K, (3.17)

1√
ε

∥
∥(ψ − uε,λ)+

∥
∥
L∞([0,T ],H)

≤ K, (3.18)

where K = C
(
‖Ψ‖L2([0,T ];V ) + ‖√

1 + yg‖L2([0,T ];H) + ‖√
1 + yψ‖L2([0,T ];V ) + ‖ψ(T )‖2

V

)
, with C > 0 indepen-

dent of ε, and Ψ is given in Assumption H1.

We first prove uniqueness of the penalized coercive problem.

Proof of Theorem 3.10: uniqueness. Assume that there exist two functions u1 and u2 satisfying (3.15) and set
w = u1 − u2. If we choose v = u1 − u2 in the equation satisfied by u1 and v = u2 − u1 in the one satisfied by
u2 and then we add the resulting equations, we get

−
(
∂w

∂t
(t), w(t)

)

H

+ aλ(w(t), w(t)) + (ζε(u1(t)) − ζε(u2(t)), w(t))H = 0.

By the coercivity of aλ and the monotonicity of the penalized operator we deduce that

−
(
∂w

∂t
(t), w(t)

)

H

≤ 0 ⇒
(
∂w

∂t
(t), w(t)

)

H

=
1

2

∂

∂t
‖w(t)‖2

H ≥ 0.

But w(T ) = ψ(T ) − ψ(T ) = 0 , so w(t) = 0 a.e. in [0, T ], which means u1 = u2.

The proof of existence in Theorem 3.10 is quite long and technical, so we split it into two propositions. We
first consider the truncated penalized problem, which requires less stringent conditions on ψ and g.

Proposition 3.11. Let ψ ∈ C([0, T ];H) ∩ L2([0, T ];V ) and g ∈ L2([0, T ];H). Moreover, assume that ψ(T ) ∈
H2(O,m), ∂ψ

∂t ∈ L2([0, T ];V ) and ∂g
∂t ∈ L2([0, T ];H). Then, there exists a unique function uε,λ,M such that

uε,λ,M ∈ C([0, T ];V ) ∪ L2([0, T ];V ),
∂uε,λ,M

∂t ∈ L2([0, T ];V ) and

{

−
(
∂uε,λ,M

∂t (t), v
)

H
+ a

(M)
λ (uε,λ,M (t), v) + (ζε(uε,λ,M )(t), v)H = (g(t), v)H , a.e. in [0, T ), v ∈ V,

uε,λ,M (T ) = ψ(T ).

(3.19)

Proof. 1. Finite dimensional problem We use the classical Galerkin method of approximation, which
consists in introducing a nondecreasing sequence (Vj)j of subspaces of V such that dimVj < ∞ and, for
every v ∈ V, there exists a sequence (vj)j∈N such that vj ∈ Vj for any j ∈ N and ‖v − vj‖V → 0 as
j → ∞. Moreover, we assume that ψ(T ) ∈ Vj , for all j ∈ N. Let Pj be the projection of V onto Vj
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and ψj(t) = Pjψ(t). We have ψj(t) → ψ(t) strongly in V and ψj(T ) = ψ(T ) for any j ∈ N. The finite
dimensional problem is, therefore, to find uj : [0, T ] → Vj such that

{

−
(
∂uj

∂t (t), v
)

H
+ a

(M)
λ (uj(t), v) − 1

ε ((ψj(t) − uj(t))+, v)H = (g(t), v)H , v ∈ Vj ,

uj(T ) = ψ(T ).
(3.20)

This problem can be interpreted as an ordinary differential equation in Vj (dim Vj < ∞) and we can
easily deduce the existence and the uniqueness of a solution uj of (3.20), continuous from [0, T ] into Vj ,
a.e. differentiable and with bounded derivatives.

2. Estimates on the finite dimensional problem First, we take v = uj(t) − ψj(t) in (3.20). We get

−
(
∂uj
∂t

(t), uj(t) − ψj(t)

)

H

+ a
(M)
λ (uj(t), uj(t) − ψj(t)) − 1

ε
((ψj(t) − uj(t))+, uj(t) − ψj(t))H

= (g(t), uj(t) − ψj(t))H ,

which can be rewritten as

−1

2

d

dt
‖uj(t) − ψj(t)‖2

H −
(
∂ψj
∂t

(t), uj(t) − ψj(t)

)

H

+ a
(M)
λ (uj(t) − ψj(t), uj(t) − ψj(t))H

+
1

ε
((ψj(t) − uj(t))+, ψj(t) − uj(t))H + a

(M)
λ (ψj(t), uj(t) − ψj(t)) = (g(t), uj(t) − ψj(t))H .

We integrate between t and T and we use coercivity and uj(T ) = ψj(T ) to obtain

1

2
‖uj(t) − ψj(t)‖2

H +
δ1

2

∫ T

t

‖uj(s) − ψj(s)‖2
V ds+

1

ε

∫ T

t

‖(ψj(s) − uj(s))+‖2
Hds

≤
∫ T

t

∥
∥
∥
∥

∂ψj(s)

∂t

∥
∥
∥
∥
H

‖uj(s) − ψj(s)‖Hds+

∫ T

t

‖g(s)‖H‖uj(s) − ψj(s)‖Hds

+ ‖a(M)
λ ‖

∫ T

t

‖ψj(s)‖V ‖uj(s) − ψj(s)‖V ds

≤ 1

2ζ

∫ T

t

∥
∥
∥
∥

∂ψj(s)

∂t

∥
∥
∥
∥

2

H

ds+
ζ

2

∫ T

t

‖uj(s) − ψj(s)‖2
Hds+

1

2ζ

∫ T

t

‖g(s)‖2
Hds+

ζ

2

∫ T

t

‖uj(s) − ψj(s)‖2
V ds

+
‖a(M)
λ ‖ζ
2

∫ T

t

‖uj(s) − ψj(s)‖2
Hds+

‖a(M)
λ ‖
2ζ

∫ T

t

‖ψj(s)‖2
V ds,

for any ζ > 0. Recall that ψj = Pjψ, and so ‖ψj(t)‖2
V ≤ ‖ψ(t)‖2

V . In the same way ‖∂ψj(t)
∂t ‖2

H ≤
‖∂ψj(t)

∂t ‖2
V ≤ ‖∂ψ(t)

∂t ‖2
V . Choosing ζ = δ1

4

(

1+
‖a

(M)

λ
‖

2

) after simple calculations we deduce that there exists

C > 0 independent of M , ε and j such that

1
2 ‖uj(t)‖2

H + δ1

4

∫ T

t
‖uj(s))‖2

V ds+ 1
ε

∫ T

t
‖(ψj(s) − uj(s))+‖2

Hds

≤ C

(∥
∥
∥
∂ψ
∂t

∥
∥
∥

2

L2([t,T ];V )
+ ‖g‖2

L2([t,T ];H) + ‖ψ‖2
L2([t,T ];V )

)

.
(3.21)

We now go back to (3.20) and we take v =
∂uj

∂t (t). We have

−
(
∂uj
∂t

(t),
∂uj
∂t

(t)

)

H

+ a
(M)
λ

(

uj(t),
∂uj
∂t

(t)

)

− 1

ε

(

(ψj(t) − uj(t))+ ,
∂uj
∂t

(t)

)

H

=

(

g(t),
∂uj
∂t

(t)

)

H

,

14



so that

−1

2

∥
∥
∥
∥

∂uj
∂t

(t)

∥
∥
∥
∥

2

H

+ āλ

(

uj(t),
∂uj
∂t

(t)

)

+ ã(M)

(

uj(t),
∂uj
∂t

(t)

)

− 1

ε

(

(ψj(t) − uj(t))+ ,
∂uj
∂t

(t)

)

H

=

(

g(t),
∂uj
∂t

(t)

)

H

.

Note that

−1

ε

(

(ψj(t) − uj(t))+,
∂uj
∂t

(t)

)

H

=
1

ε

(

(ψj − uj)+,
∂(ψj − uj)

∂t
(t)

)

H

− 1

ε

(

(ψj(t) − uj(t))+,
∂ψj
∂t

(t)

)

H

=
1

2ε

d

dt
‖(ψj − uj)+(t)‖2

H − 1

ε

(

(ψj(t) − uj(t))+,
∂ψj
∂t

(t)

)

H

.

Therefore, using the symmetry of āλ, we have

−1

2

∥
∥
∥
∥

∂uj
∂t

(t)

∥
∥
∥
∥

2

H

+
1

2

d

dt
āλ(uj(t), uj(t)) + ã(M)

(

uj(t),
∂uj
∂t

(t)

)

+
1

2ε

∂

∂t
‖(ψj(t) − uj(t))+‖2

H

−1

ε

(

(ψj(t) − uj(t))+,
∂ψj
∂t

(t)

)

H

=

(

g(t),
∂uj
∂t

(t)

)

H

.

Integrating between t and T , we obtain

∫ T

t

1

2

∥
∥
∥
∥

∂uj
∂t

(s)

∥
∥
∥
∥

2

H

ds+
1

2
āλ(uj(t), uj(t)) +

1

2ε
‖(ψj(t) − uj(t))+‖2

H

=

∫ T

t

ã(M)

(

uj(s),
∂uj
∂s

(s)

)

ds+
1

2
āλ(ψj(T ), ψj(T )) −

∫ T

t

1

ε

(

(ψj(s) − uj(s)+,
∂ψj
∂s

(s)

)

H

ds

−
∫ T

t

(

g(s),
∂uj
∂s

(s)

)

H

ds.

Recall that āλ(uj(t), uj(t)) ≥ δ1‖uj(t)‖2
V , āλ(ψj(T ), ψj(T )) = āλ(ψ(T ), ψ(T )) ≤ ‖ ¯aλ‖‖ψ(T )‖2

V and
|ã(M)(u, v)| ≤ K1

∫

O y ∧M |∇u||v|dm, so that, for every ζ > 0,

1

2

∫ T

t

∥
∥
∥
∥

∂uj
∂s

(s)

∥
∥
∥
∥

2

H

ds+
δ1

4
‖uj(t)‖2

V +
1

2ε
‖(ψj(t) − uj(t))+‖2

H

≤ K1

∫ T

t

ds

∫

O
y ∧M |∇uj(s, .)|

∣
∣
∣
∣

∂uj
∂t

(s, .)

∣
∣
∣
∣
dm +

‖āλ‖
2

‖ψ(T )‖2
V +

1

ε

∫ T

t

‖(ψj(s) − uj(s))+‖H
∥
∥
∥
∥

∂ψj
∂s

(s)

∥
∥
∥
∥
H

ds

+

∫ T

t

‖g(s)‖H
∥
∥
∥
∥

∂uj
∂s

(s)

∥
∥
∥
∥
H

ds

≤ K1

2ζ

∫ T

t

‖uj(s)‖2
V ds+

K1M

2
ζ

∫ T

t

∥
∥
∥
∥

∂uj
∂s

(s)

∥
∥
∥
∥

2

H

ds+
‖āλ‖

2
‖ψ(T )‖2

V

+
ζ

ε

∫ T

t

‖(ψj(s) − uj(s))+‖2
Hds+

1

2ζ

∫ T

t

∥
∥
∥
∥

∂ψj
∂t

(s)

∥
∥
∥
∥

2

H

ds+
1

2ζ

∫ T

t

‖g(s)‖2
Hds+

ζ

2

∫ T

t

∥
∥
∥
∥

∂uj
∂s

(s)

∥
∥
∥
∥

2

H

ds.

From (3.21), we already know that

∫ T

t

‖uj(s)‖2
V ds+

1

ε

∫ T

t

‖(ψj(s) − uj(s))+‖2
Hds ≤ C

(∥
∥
∥
∥

∂ψ

∂t

∥
∥
∥
∥

2

L2([t,T ];V )

+ ‖g‖2
L2([t,T ];H) + ‖ψ‖2

L2([t,T ];V )

)

,
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then we can finally deduce

∫ T

t

∥
∥
∥
∥

∂uj
∂t

(s)

∥
∥
∥
∥

2

H

ds+ ‖uj(t)‖2
V +

1

2ε
‖(ψj(t) − uj(t))+‖2

H

≤ Cε,M

(∥
∥
∥
∥

∂ψ

∂t

∥
∥
∥
∥

2

L2([t,T ];V )

+ ‖g‖2
L2([t,T ];H) + ‖ψ‖2

L2([t,T ];V ) + ‖ψ(T )‖2
V

)

,

(3.22)

where Cε,M is a constant which depends on ε and M but not on j.

We will also need a further estimation. If we denote ūj =
∂uj

∂t and we differentiate the equation (3.20)
with respect to t for a fixed v independent of t, we obtain that ūj satisfies

−
(
∂ūj
∂t

(t), v

)

H

+ a
(M)
λ (ūj(t), v) − 1

ε

((
∂ψj
∂t

(t) − ūj(t)

)

1{ψj(t)≥uj (t)}, v

)

H

=

(
∂g

∂t
(t), v

)

H

, v ∈ Vj .

(3.23)
As regards the initial condition, from (3.20) computed in t = T , for every v ∈ Vj we have
(
∂uj(T )

∂t
, v

)

H

= a
(M)
λ (ψ(T ), v) − (g(T ), v)H .

= − (Lψ(T ), v)H + λ ((1 + y)ψ(T ), v)H + ((y ∧M − y)(jγ,µux + kγ,µuy), v)H + (g(T ), v)H .

Choosing v =
∂uj(T )
∂t , we deduce that

∥
∥
∥
∥

∂uj(T )

∂t

∥
∥
∥
∥

2

H

≤ C

∥
∥
∥
∥

∂uj(T )

∂t

∥
∥
∥
∥
H

(‖Lψ(T )‖H + ‖(1 + y)ψ(T )‖H + ‖(y −M)+∇ψ(T )‖H + ‖g(T )‖H)

≤ C

∥
∥
∥
∥

∂uj(T )

∂t

∥
∥
∥
∥
H

(‖Lψ(T )‖H + ‖(1 + y)ψ(T )‖H + ‖g(T )‖H) ,

that is,
∥
∥
∥
∂uj(T )
∂t

∥
∥
∥
H

≤ C (‖Lψ(T )‖H + ‖(1 + y)ψ(T )‖H + ‖g(T )‖H).

We can take v = ūj(t) in (3.23) and we obtain

−
(
∂ūj
∂t

(t), ūj(t)

)

H

+a
(M)
λ (ūj(t), ūj(t))−

1

ε

((
∂ψj
∂t

(t) − ūj(t)

)

1{ψj(t)≥uj(t)}, ūj(t)

)

H

=

(
∂g

∂t
(t), ūj(t)

)

H

,

so that

−1

2

d

dt
‖ūj(t)‖2

H +
δ1

2
‖ūj(t)‖2

V ≤ 1

ε

((
∂ψj
∂t

(t) − ūj(t)

)

1{ψj(t)≥uj}, ūj(t)

)

H

+

(
∂g

∂t
(t), ūj(t)

)

H

≤ 1

ε

(
∂ψj
∂t

(t)1{ψj(t)≥uj}, ūj(t)

)

H

+

(
∂g

∂t
(t), ūj(t)

)

H

.

Integrating between t and T , with the usual calculations, we obtain, in particular, that

∫ T

t

‖ūj(s)‖2
V ds ≤ Cε

(

‖Lψ(T )‖H + ‖(1 + y)ψ(T )‖2
H + ‖g(T )‖2

H +

∥
∥
∥
∥

∂ψ

∂t

∥
∥
∥
∥
L2([t,T ];H)

+

∥
∥
∥
∥

∂g

∂t

∥
∥
∥
∥
L2([t,T ];H)

)

,

(3.24)

where Cε is a constant which depends on ε, but not on j.

3. Passage to the limit

Let ε andM be fixed. By passing to a subsequence, from (3.22) we can assume that
∂uj

∂t weakly converges
to a function u′

ε,λ,M in L2([0, T ];H). We deduce that, for any fixed t ∈ [0, T ], uj(t) weakly converges in
H to

uε,λ,M (t) = ψ(T ) −
∫ T

t

u′
ε,λ,M (s)ds.
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Indeed, uj(t) is bounded in V , so the convergence is weakly in V . Passing to the limit in (3.24) we deduce

that
∂uε,λ,M

∂t ∈ L2([0, T ];V ). Moreover, from (3.22), we have that (ψj − uj(t))
+ weakly converges in H to

a certain function χ ∈ H . Now, for any v ∈ V we know that there exists a sequence (vj)j∈N such that
vj ∈ Vj for all j ∈ N and ‖v − vj‖V → 0. We have

−
(
∂uj
∂t

(t), vj

)

H

+ a
(M)
λ (uj(t), vj)H − 1

ε
((ψj(t) − uj(t))+, vj)H = (g(t), vj)H

so, passing to the limit as j → ∞,

−
(
∂uε,λ,M
∂t

(t), v

)

H

+ aλ(uε,λ,M (t), v)H − 1

ε
(χ(t), v)H = (g(t), v)H .

We only have to note that χ(t) = (ψ(t)−uε,λ,M (t))+. In fact, ψj(t) → ψ(t) in V and, up to a subsequence,
1Uuj(t) → 1Uuε,λ,M (t) in L2(U ,m) for every open U relatively compact in O. Therefore, there exists a
subsequence which converges a.e. and this allows to conclude the proof.

We want now to get rid of the truncated operator, that is to pass to the limit for M → ∞. In order to do
this we need some estimates on the function uε,λ,M which are uniform in M .

Lemma 3.12. Assume that, in addition to the assumptions of Proposition 3.11,
√

1 + yψ ∈ L2([0, T ];V ),
∣
∣
∣
∂ψ
∂t

∣
∣
∣ ≤ Ψ with Ψ ∈ L2([0, T ];V ) and g satisfies Assumption H0. Let uε,λ,M be the solution of (3.19). Then,

∫ T

t

∥
∥
∥
∂uε,λ,M

∂s (s)
∥
∥
∥

2

H
ds+ ‖uε,λ,M (t)‖2

V + 1
ε‖(ψ(t) − uε,λ,M (t))+‖2

H

≤ C
(

‖Ψ‖L2([0,T ];V ) + ‖√
1 + yg‖L2([0,T ];H) + ‖√

1 + yψ‖2
L2([0,T ];V ) + ‖ψ(T )‖2

V

)

,
(3.25)

where C is a positive constant independent of M and ε.

Proof. To simplify the notation we denote uε,λ,M by u. For n ≥ 0, define ϕn(x, y) = 1 + y ∧ n. Since ϕn and
its derivatives are bounded, if v ∈ V , we have vϕn ∈ V . Applying (3.19) with v = (uε,λ,M −ψ)ϕn = (u−ψ)ϕn,
we get

−
(
∂u

∂t
, (u− ψ)ϕM

)

H

+ a
(M)
λ (u, (u− ψ)ϕn) + (ζε(u), (u− ψ)ϕn)H = (g, (u− ψ)ϕn)H ,

so that

−
(
∂(u− ψ)

∂t
, (u− ψ)ϕn

)

H

+ a
(M)
λ ((u − ψ), (u− ψ)ϕn) + (ζε(u), (u− ψ)ϕn)H =

(
∂ψ

∂t
+ g, (u− ψ)ϕn

)

H

+ a
(M)
λ (ψ, (u − ψ)ϕn).

With the notation ϕ′
n = ∂ϕn

∂y = 1{y≤n}, we have

a
(M)
λ ((u − ψ), (u− ψ)ϕn) =

∫

O

y

2

[(
∂(u− ψ)

∂x

)2

+ 2ρσ
∂(u− ψ)

∂x

∂(u− ψ)

∂y
+ σ2

(
∂(u− ψ)

∂y

)2
]

ϕndm

+

∫

O

y

2

(

ρσ
∂(u − ψ)

∂x
+ σ2 ∂(u− ψ)

∂y

)

(u − ψ)ϕ′
ndm

+

∫

O
y ∧M

(
∂(u− ψ)

∂x
jγ,µ +

∂(u− ψ)

∂y
kγ,µ

)

(u− ψ)ϕndm

+λ

∫

O
(1 + y)(u− ψ)2ϕndm

≥ δ1

∫

O
y |∇(u− ψ)|2 ϕndm + λ

∫

O
(1 + y)(u− ψ)2ϕndm

−K1

∫

O
y |∇(u − ψ)| |u− ψ|ϕndm −K2

∫

O
y |∇(u− ψ)| |u− ψ|1{y≤n}dm,
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where K2 =

√
ρ2σ2+σ4

2 . Note that, if n = 0, the last term vanishes, and that, for all n > 0,

∫

O
y |∇(u− ψ)| |(u − ψ)|1{y≤n}dm ≤ ||(u − ψ)||2V .

Therefore, for all ζ > 0,

a
(M)
λ ((u − ψ), (u− ψ)ϕn) ≥ δ1

∫

O
y |∇(u − ψ)|2 ϕndm + λ

∫

O
(1 + y)(u − ψ)2ϕndm

−K1

(∫

O
y

(
ζ

2
|∇(u− ψ)|2 +

1

2ζ
|u− ψ|2

)

ϕndm

)

−K2||(u − ψ)||2V

≥
(

δ1 − K1ζ

2

)∫

O
y |∇(u − ψ)|2 ϕndm +

(

λ− K1

2ζ

)∫

O
(1 + y)(u− ψ)2ϕndm

−K2||(u− ψ)||2V
≥ δ1

2

∫

O

(

y |∇(u− ψ)|2 + (1 + y)(u− ψ)2
)

ϕndm −K2||(u− ψ)||2V ,

where, for the last inequality, we have chosen ζ = δ1/K1 and used the inequality λ ≥ δ1

2 +
K2

1

2δ1
. Again, in the

case n = 0 the last term on the righthand side can be omitted.

Hence, we have, with the notation ||v||2V,n =
∫

O

(

y |∇v|2 + (1 + y)v2
)

ϕndm,

−1

2

d

dt

∫

O
(u − ψ)2ϕndm +

δ1

2
||u− ψ||2V,n +

1

ε

∫

O
(ψ − u)2

+ϕndm ≤
(

g +
∂ψ

∂t
, (u− ψ)ϕn

)

H

−a(M)
λ (ψ, (u − ψ)ϕn) +K2||(u − ψ)||2V .

In the case n = 0, the inequality reduces to

−1

2

d

dt

∫

O
(u− ψ)2dm +

δ1

2
||u− ψ||2V +

1

ε

∫

O
(ψ − u)2

+dm ≤
(

g +
∂ψ

∂t
, (u− ψ)

)

H

− a
(M)
λ (ψ, (u − ψ)).

Now, integrate from t to T and use u(T ) = ψ(T ) to derive

1

2

∫

O
(u(t) − ψ(t))2ϕndm +

δ1

2

∫ T

t

ds||u(s) − ψ(s)||2V,n +
1

ε

∫ T

t

ds

∫

O
(ψ(s) − u(s))2

+ϕndm

≤
∫ T

t

(

g(s) +
∂ψ

∂t
(s), (u− ψ)(s)ϕn

)

H

ds+

∣
∣
∣
∣
∣

∫ T

t

a
(M)
λ (ψ(s), (u − ψ)(s)ϕn)ds

∣
∣
∣
∣
∣
+K2

∫ T

t

||u(s) − ψ(s)||2V ds,

(3.26)

and, in the case n = 0,

1

2
||u(t) − ψ(t)||2H +

δ1

2

∫ T

t

ds||u(s) − ψ(s)||2V +
1

ε

∫ T

t

ds

∫

O
(ψ(s) − u(s))2

+dm ≤
∫ T

t

(

g(s) +
∂ψ

∂t
(s), (u − ψ)(s)

)

H

ds

+

∫ T

t

∣
∣
∣a

(M)
λ (ψ(s), (u − ψ)(s))

∣
∣
∣ ds.

(3.27)

We have, for all ζ1 > 0,

∫ T

t

(

g(s) +
∂ψ

∂t
(s), (u(s) − ψ(s))ϕn

)

H

ds ≤ ζ1

2

∫ T

t

ds

∫

O
|u(s) − ψ(s)|2ϕndm +

1

2ζ1

∫ T

t

ds

∫

O

∣
∣
∣
∣
g(s) +

∂ψ

∂t
(s)

∣
∣
∣
∣

2

ϕndm

≤ ζ1

2

∫ T

t

ds

∫

O
|u(s) − ψ(s)|2ϕndm +

1

ζ1
‖
√

1 + yg‖2
L2([t,T ];H) +

1

ζ1

∥
∥
∥
∥

√

1 + y
∂ψ

∂t

∥
∥
∥
∥

2

L2([t,T ];H)

.
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Moreover, it is easy to check that, for all v, w ∈ V ,

|a(M)
λ (w, vϕn)| ≤ K3||w||V,n||v||V,n, with K3 = δ0 +K1 +K2 + λ,

so that, for any ζ2 > 0,

∫ T

t

|a(M)
λ (ψ(s), (u(s) − ψ(s))ϕn)|ds ≤ K3

∫ T

t

ds||ψ(s)||V,n||u(s) − ψ(s)||V,n

≤ K3ζ2

2

∫ T

t

ds||u(s) − ψ(s)||2V,n +
K3

2ζ2

∫ T

t

ds||ψ(s)||2V,n.

Now, choosing ζ1 = K3ζ2 = δ1/4 and going back to (3.26) and (3.27), we get

1

2

∫

O
(u(t) − ψ(t))2ϕndm +

δ1

4

∫ T

t

ds||u(s) − ψ(s)||2V,n +
1

ε

∫ T

t

ds

∫

O
(ψ(s) − u(s))2

+ϕndm

≤ 4

δ1

(

‖
√

1 + yg‖2
L2([t,T ];H) + ‖

√

1 + yΨ‖2
L2([t,T ];H)

)

+
2K2

3

δ1

∫ T

t

ds||ψ(s)||2V,n +K2

∫ T

t

||u(s) − ψ(s)||2V ds,

≤ 4

δ1

(

‖
√

1 + yg‖2
L2([t,T ];H) + ‖

√

1 + yΨ‖2
L2([t,T ];H)

)

+
4K2

3

δ1

∥
∥
∥

√

1 + yψ
∥
∥
∥

2

L2([t,T ];V )
+K2

∫ T

t

||u(s) − ψ(s)||2V ds,
(3.28)

where the last inequality follows from the estimate ||v||2V,n ≤ 2||√1 + yv||2V , and, in the case n = 0,

1

2
||u(t) − ψ(t)||2H+

δ1

4

∫ T

t

ds||u(s) − ψ(s)||2V +
1

ε

∫ T

t

ds

∫

O
(ψ(s) − u(s))2

+dm

≤ 4

δ1

(

‖g‖2
L2([t,T ];H) + ‖Ψ‖2

L2([t,T ];H)

)

+
2K2

3

δ1
‖ψ‖2

L2([t,T ];V ). (3.29)

From (3.29) we deduce

∫ T

t

‖u(s)‖2
V ds ≤ 2

∫ T

t

‖u(s) − ψ(s)‖2
V ds+ 2

∫ T

t

‖ψ(s)‖2
V ds

≤ 32

δ2
1

(

‖g‖2
L2([t,T ];H) + ‖Ψ‖2

L2([t,T ];H)

)

+

(
16K2

3

δ2
1

+ 2

)

‖ψ‖2
L2([t,T ];V ).

(3.30)

Moreover, combining (3.28) and (3.29), we have

1

2

∫

O
(u(t) − ψ(t))2ϕndm +

δ1

4

∫ T

t

ds||u(s) − ψ(s)||2V,n +
1

ε

∫ T

t

ds

∫

O
(ψ(s) − u(s))2

+ϕndm

≤
(

4

δ1
+

16K2

δ2
1

)(

‖
√

1 + yg‖2
L2([t,T ];H) + ‖

√

1 + yΨ‖2
L2([t,T ];H)

)

+
4K2

3

δ1

(

1 +
2K2

δ1

)

‖
√

1 + yψ‖2
L2([t,T ];V ).

In particular,

∫ T

t

ds

∫

O
y|∇u|2ϕndm ≤

∫ T

t

||u(s)||2V,nds ≤ 2

∫ T

t

ds||u(s) − ψ(s)||2V,n + 2

∫ T

t

ds||ψ(s)||2V,nds

≤ 8

δ1

(
4

δ1
+

16K2

δ2
1

)(

‖
√

1 + yg‖2
L2([t,T ];H) + ‖

√

1 + yΨ‖2
L2([t,T ];H)

)

+

(
32K2

3

δ2
1

(

1 +
2K2

δ1

)

+ 4

)

‖
√

1 + yψ‖2
L2([t,T ];V )

and, by using the Monotone convergence theorem, we deduce

∫ T

t

ds‖y|∇u|‖2
H ≤ K4

(

‖
√

1 + yg‖2
L2([t,T ];H) + ‖

√

1 + yΨ‖2
L2([t,T ];H) + ‖

√

1 + yψ‖2
L2([t,T ];V )

)

, (3.31)
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where K4 = 8
δ1

(
4
δ1

+ 16K2

δ2
1

)

∨
(

32K2
3

δ2
1

(

1 + 2K2

δ1

)

+ 4
)

.

We are now in a position to prove (3.25). Taking v = ∂u
∂t in (3.19), we have

−
∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

2

H

+ āλ

(

u,
∂u

∂t

)

+ ã(M)

(

u,
∂u

∂t

)

− 1

ε

(

(ψ − u)+,
∂u

∂t

)

H

=

(

g,
∂u

∂t

)

H

.

Note that, since āλ is symmetric, d
dt āλ (u, u) = 2āλ

(
u, ∂u∂t

)
. On the other hand,

(

(ψ(t) − u(t))+,
∂u

∂t

)

H

= −1

2

d

dt
||(ψ(t) − u(t))+||2H +

(

(ψ(t) − u(t))+,
∂ψ

∂t
(t)

)

H

,

so that

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

2

H

− 1

2

d

dt
āλ (u, u) − 1

2ε

d

dt
||(ψ − u)+||2H = ã(M)

(

u,
∂u

∂t

)

−
(

g,
∂u

∂t

)

H

− 1

ε

(

(ψ − u)+,
∂ψ

∂t

)

H

≤
∣
∣
∣
∣
ã(M)

(

u,
∂u

∂t

)∣
∣
∣
∣

+ ||g||H
∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥
H

+
1

ε
((ψ − u)+,Ψ)H

≤ (K1 ‖y|∇u|‖H + ‖g||H)

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥
H

+
1

ε
((ψ − u)+,Ψ)H .

Moreover, if we take v = Ψ in (3.19), we get

−
(
∂u

∂t
,Ψ

)

H

+ a
(M)
λ (u,Ψ) − 1

ǫ
((ψ − u)+,Ψ)H = (g,Ψ)H ,

so that

1

ε
((ψ − u)+,Ψ)H ≤

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥
H

‖Ψ‖H + ||a(M)
λ ||‖u‖V ‖Ψ‖V + ‖g‖H‖Ψ‖H . (3.32)

Therefore,

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

2

H

− 1

2

d

dt
āλ (u, u) − 1

2ε

d

dt
||(ψ − u)+||2H ≤ (K1 ‖y|∇u|‖H + ‖g||H + ‖Ψ‖H)

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥
H

+ ||a(M)
λ ||‖u‖V ‖Ψ‖V + ‖g‖H‖Ψ‖H ,

hence

1

2

∥
∥
∥
∥

∂u

∂t

∥
∥
∥
∥

2

H

− 1

2

d

dt
āλ (u, u) − 1

2ε

d

dt
||(ψ − u)+||2H ≤1

2
(K1 ‖y|∇u|‖H + ‖g||H + ‖Ψ‖H)

2

+ ||a(M)
λ ||‖u‖2

V ‖Ψ‖2
V + ‖g‖H‖Ψ‖H.

Integrating between t and T , we get,

1

2

∥
∥
∥
∥

∂u

∂s

∥
∥
∥
∥

2

L2([t,T ];H)

+
1

2
āλ (u(t), u(t)) +

1

2ε
‖(ψ(t) − u(t))+‖2

H ≤ 1

2
āλ(ψ(T ), ψ(T )) + 2‖g||2L2([t,T ];H) + 2‖Ψ‖2

L2([t,T ];H)

+
3K2

1

2
‖y|∇u|‖2

L2([t,T ];H) +
‖a(M)
λ ‖
2

‖u‖L2([t,T ];V ) +
‖a(M)
λ ‖
2

‖Ψ‖L2([t,T ];V ),
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so, recalling that āλ(u(t), u(t) ≥ (δ1 + λ)‖u(t)‖2
V ,

1

2

∥
∥
∥
∥

∂u

∂s

∥
∥
∥
∥

2

L2([t,T ];H)

+
δ1 + λ

2
‖u(t)‖2

V +
1

2ε
‖(ψ(t) − u(t))+‖2

H

≤ ‖āλ‖
2

‖ψ(T )‖2
V + 2‖g||2L2([t,T ];H) + 2‖Ψ‖2

L2([t,T ];H)

+
3K2

1

2
‖y|∇u|‖2

L2([t,T ];H) +
||a(M)

λ ||
2

‖u‖L2([t,T ];V ) +
||a(M)

λ ||
2

‖Ψ‖L2([t,T ];V )

≤ ‖āλ‖
2

‖ψ(T )‖2
V + 2‖g||2L2([t,T ];H) + 2‖Ψ‖2

L2([t,T ];H)

+
3K2

1

2
K4

(

‖
√

1 + yg‖2
L2([t,T ];H) + ‖

√

1 + yΨ‖2
L2([t,T ];H) + ‖

√

1 + yψ‖2
L2([t,T ];V )

)

+
||a(M)

λ ||
2

(
32

δ2
1

(

‖g‖2
L2([t,T ];H) + ‖Ψ‖2

L2([t,T ];H)

)

+

(
16K2

3

δ2
1

+ 2

)

‖ψ‖2
L2([t,T ];V )

)

+
||a(M)

λ ||
2

‖Ψ‖L2([t,T ];V ),

where the last inequality follows from (3.30) and (3.31). Rearranging the terms, we deduce that there exists a
constant C > 0 independent of M and ε such that

1

2

∥
∥
∥
∥

∂u

∂s

∥
∥
∥
∥

2

L2([t,T ];H)

+
δ1 + λ

4
‖u(t)‖2

V +
1

2ε
‖(ψ(t) − u(t))+‖2

H

≤ C

(

‖
√

1 + yg‖2
L2([t,T ];H) + ‖

√

1 + yΨ‖2
L2([t,T ];H) +

∥
∥
∥

√

1 + yψ
∥
∥
∥

2

L2([t,T ];V )
+ ‖ψ(T )‖2

V

)

,

which concludes the proof.

Proof of Theorem 3.10: existence. Assume for a first moment that we have the further assumptions ψ(T ) ∈
H2(O,m), ∂ψ∂t ∈ L2([0, T ];V ) and ∂g

∂t ∈ L2([0, T ];H). Thanks to (3.25) we can repeat the same arguments as
in the proof of Proposition 3.11 in order to pass to the limit in j, but this time as M → ∞. In fact, up to pass
to a subsequence, from (3.25) we can suppose that

∂uε,λ,M

∂t weakly converges to a function u′
ε,λ in L2([0, T ];H).

We deduce that, for any fixed t ∈ [0, T ], uj(t) converges weakly in H to

uε,λ(t) = ψ(T ) −
∫ T

t

u′
ε,λ(s)ds.

Indeed, uε,λ,M (t) is bounded in V , so the convergence is weakly in V . Moreover, again from (3.25) and from the
fact that there is a subsequence of uε,λ,M (t) which converges a.e. to uλ,M (t), we get that (ψ(t) − uε,λ,M (t))+

weakly converges in H to (ψ(t) − uε,λ(t))+. We have

−
(
∂uε,λ,M
∂t

(t), v

)

H

+ a
(M)
λ (uε,λ,M (t), v) + (ζε(uε,λ,M )(t), v)H = (g(t), v)H

and, passing to the limit as M → ∞, we get

−
(
∂uε,λ
∂t

(t), v

)

H

+ aλ(uε,λ(t), v)H − 1

ε
(χ, (ψ(t) − uε,λ(t))+)H = (g(t), v)H .

Finally we can prove that χ = uε,λ(t) as in the proof of Proposition 3.11. The estimates (3.16), (3.17) and
(3.18) directly follows from (3.25) as M → ∞.

We have now to weaken the assumptions on g and ψ. This is a standard regularization procedure. In fact, for
example for the function g, we can consider a sequence of functions gn = g ∗ϕn, where (ϕn)n ∈ C∞

c ([0, T ] × O),
∫

[0,T ]×O ϕn = 1 and limn→∞ ϕn(x) = δx. Then (gn)n ⊂ L2([0, T ];H), ∂gn

∂t ∈ L2([0, T ];H) ∀n ∈ N and

‖gn − g‖L2([0,T ];H) → 0 as n → ∞. In the same way, we can find a sequence ψn such that ψn(T ) ∈ H2(O,m)
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and ∂ψn

∂t ∈ L2([0, T ];V ) for every n ∈ N and
∫ T

0
‖ψn(t) − ψ(t)‖V ds → 0 as n → ∞. Therefore, the solution

unε,λ,M of the equation (3.15) with source function gn and obstacle function ψn satisfies

∫ T

t

∥
∥
∥
∂un

ε,λ,M

∂s (s)
∥
∥
∥

2

H
ds+ ‖unε,λ,M(t)‖2

V + 1
ε‖(ψn(t) − unε,λ,M (t))+‖2

H

≤ C
(

‖√
1 + ygn‖L2([0,T ];H) + ‖√

1 + yψn‖2
L2([0,T ];V ) + ‖Ψ|2L2([0,T ];V ) + ‖ψn(T )‖2

V

)

.
(3.33)

Then, we can take the limit for n → ∞ in (3.33) and the assertion follows as in the first part of the proof.

Moreover, we have the following Comparison principle for the coercive penalized problem.

Proposition 3.13. 1. Assume that ψi satisfies Assumption H1 for i = 1, 2 and g satisfies Assumption H0.
Let uiε,λ be the unique solution of (3.15) with obstacle function ψi and source function g. If ψ1 ≤ ψ2, then

u1
ε,λ ≤ u2

ε,λ.

2. Assume that ψ satisfies Assumption H1 and gi satisfy Assumption H0 for i = 1, 2. Let uiε,λ be the unique

solution of (3.15) with obstacle function ψ and source function gi. If g1 ≤ g2, then u
1
ε,λ ≤ u2

ε,λ.

3. Assume that ψi satisfies Assumption H1 for i = 1, 2 and g satisfies Assumption H0. Let uiε,λ be the unique

solution of (3.15) with obstacle function ψi and source function g. If ψ1 −ψ2 ∈ L∞, then u1
ε,λ−u2

ε,λ ∈ L∞

and ‖u1
ε,λ − u2

ε,λ‖∞ ≤ ‖ψ1 − ψ2‖∞.

Proof. 1. We take v = (u1
ε,λ − u2

ε,λ)+ in the variational equation satisfied by u1
ε,λ and u1

ε,λ. Subtracting the
second equation from the first one, we get

−
(

∂(u1
ε,λ − u2

ε,λ)

∂t
, (u1

ε,λ − u2
ε,λ)+

)

H

+ aλ(u1
ε,λ − u2

ε,λ, (u
1
ε,λ − u2

ε,λ)+)

−1

ε
((ψ1 − u1

ε,λ)+ − (ψ2 − u2
ε,λ)+, (u

1
ε,λ − u2

ε,λ)+)H = 0.

Now,
aλ(u1

ε,λ − u2
ε,λ, (u

1
ε,λ − u2

ε,λ)+) = aλ((u1
ε,λ − u2

ε,λ)+, (u
1
ε,λ − u2

ε,λ)+) ≥ 0,

and

−1

ε
((ψ1 − u1

ε,λ)+ − (ψ2 − u2
ε,λ)+, (u

1
ε,λ − u2

ε,λ)+)H ≥ 0,

the last inequality following from Lemma 3.9. Therefore

(

∂(u1
ε,λ − u2

ε,λ)+

∂t
, (u1

ε,λ − u2
ε,λ)+

)

H

=
1

2

d

dt
‖(u1

ε,λ − u2
ε,λ)+‖2

H ≥ 0.

But (u1
ε,λ(T ) − u2

ε,λ(T ))+ = (ψ1(T ) − ψ2(T ))+ = 0, so ‖(u1
ε,λ − u2

ε,λ)+‖2
H ≡ 0 and the proof is completed.

2. Again we consider v = (u1
ε,λ − u2

ε,λ)+ and we prove that v ≡ 0. With the same passages, this time we get

−
(

∂(u1
ε,λ − u2

ε,λ)

∂t
, (u1

ε,λ − u2
ε,λ)+

)

H

+ aλ(u1
ε,λ − u2

ε,λ, (u
1
ε,λ − u2

ε,λ)+)

+(ζε(u
1
ε,λ) − ζε(u

2
ε,λ), (u1

ε,λ − u2
ε,λ)+)H = (g1 − g2, (u

1
ε,λ − u2

ε,λ)+)H ≤ 0.

Again
aλ(u1

ε,λ − u2
ε,λ, (u

1
ε,λ − u2

ε,λ)+) = aλ((u1
ε,λ − u2

ε,λ)+, (u
1
ε,λ − u2

ε,λ)+) ≥ 0,

and
(ζε(u

1
ε,λ) − ζε(u

2
ε,λ), (u1

ε,λ − u2
ε,λ)+)H ≥ 0,
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thanks to the monotonicity of the penalized operator. Therefore we obtain
(

∂(u1
ε,λ − u2

ε,λ)+

∂t
, (u1

ε,λ − u2
ε,λ)+

)

H

=
1

2

d

dt
‖(u1

ε,λ − u2
ε,λ)+‖2

H ≥ 0,

and we can conclude the proof as before.

3. With the same procedure, we choose v = (u1
ε,λ − u2

ε,λ − C)+ , with C = ‖ψ1 − ψ2‖∞ and, with the usual
passages, we get

−
(
∂v

∂t
, v

)

H

+ aλ(v, v) +

∫

O
(r + λ(1 + y))Cvdm +

1

ε
((ψ2 − u2

ε,λ)+ − (ψ1 − u1
ε,λ)+, v)H = 0.

The last three terms are all positives so the assertion follows as in the other cases.

3.2.2 Coercive variational inequality

Proposition 3.14. Assume that ψ satisfies Assumption H1 and g satisfies Assumption H0. Moreover, assume
that 0 ≤ ψ ≤ Φ with Φ : [0, T ] → H2(O,m) such that ∂Φ

∂t + LΦ ≤ 0 and 0 ≤ g ≤ −∂Φ
∂t − LλΦ. Then, there exists

a unique function uλ such that uλ ∈ L2([0, T ];V ), ∂uλ

∂t ∈ L2([0, T ];H) and







−
(
∂uλ

∂t , v − uλ
)

H
+ aλ(uλ, v − uλ) ≥ (g, v − uλ)H , a.e. in [0, T ] v ∈ V, v ≥ ψ,

uλ(T ) = ψ(T ),

uλ ≥ ψ a.e. in [0, T ] × R × (0,∞).

(3.34)

Moreover, 0 ≤ uλ ≤ Φ.

Proof of uniqueness in Proposition 3.14. Suppose that there are two functions u1 and u2 which satisfy (3.34).
We can take v = u2 in the equation satisfied by u1 and v = u1 in the one satisfied by u2 and we get

−
(
∂u1

∂t
, u2 − u1

)

H

+ aλ(u1, u2 − u1) ≥ (g, u2 − u1)H ,

−
(
∂u2

∂t
, u1 − u2

)

H

+ aλ(u2, u1 − u2) ≥ (g, u1 − u2)H .

Setting w := u2 − u1 and adding the second equation from the first one we obtain
(
∂w

∂t
, w

)

H

− aλ(w,w) ≥ 0,

so that (
∂w

∂t
, w

)

H

=
1

2

d

dt
‖w‖H ≥ 0.

But w(T ) = u1(T ) − u2(T ) = ψ(T ) − ψ(T ) = 0 and, therefore, w ≡ 0, that is u1 = u2.

Proof of existence in Proposition 3.14. For each fixed ε > 0 we have the estimates (3.16) and (3.17), so, for
every t ∈ [0, T ], we can extract a subsequence uε,λ such that uε,λ(t) ⇀ uλ(t) in V as ε → 0 and u′

ε(t) ⇀ u′
λ(t)

in H for some function uλ ∈ V .
Note that u = 0 is the unique solution of (3.15) when ψ = g = 0, while u = Φ is the unique solution of

(3.15) when ψ = Φ and g = −∂Φ
∂t − LλΦ = −∂Φ

∂t − LΦ + λ(1 + y)Φ. Therefore, Proposition 3.13 implies that
0 ≤ uε,λ ≤ Φ. Recall that uε,λ(t) → uλ(t) in L2(U ,m) for every relatively compact open U ⊂ O. This, together
with the fact that dm is a finite measure, allows to conclude that we have strong convergence of uε,λ to uλ in
H . In fact, if δ > 0 and Oδ := (− 1

δ ,
1
δ ) × (δ, 1

δ ),
∫

O
|uε,λ − uλ|2dm ≤

∫

Oδ

|uε,λ − uλ|2dm +

∫

Oc
δ

|uε,λ − uλ|2dm ≤
∫

Oδ

|uε,λ − uλ|2dm +

∫

Oc
δ

4Φ2dm
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and it is enough to let δ goes to 0.
From (3.18) we also have that (ψ−uε,λ)+ → 0 strongly in H as ε → 0 . On the other hand (ψ−uε,λ)+ ⇀ χ

weakly in H and χ = (ψ − uλ)+ since there exists a subsequence of uε,λ which converges pointwise to uλ.
Therefore, (ψ − uλ)+ = 0, which means uλ ≥ ψ.

If we consider the penalized coercive equation in (3.15) replacing v by v − uε,λ, with v ≥ ψ, we have

−
(
∂uε,λ
∂t

, v − uε,λ

)

H

+ aλ(uε,λ, v − uε,λ)H + (ζε(uε,λ), v − uε,λ)H = (g, v − uε,λ)H .

Since ζε(v) = 0, we can write

−
(
∂uε,λ
∂t

, v − uε,λ

)

H

+ aλ(uε,λ, v − uε,λ)H − (ζε(v) − ζε(uε,λ), v − uε,λ)H
︸ ︷︷ ︸

≥0

= (g, v − uε,λ)H .

Therefore

−
(
∂uε,λ
∂t

, v − uε,λ

)

H

+ aλ(uε,λ, v − uε,λ) ≥ (g, v − uε,λ)H

and, letting ε goes to 0, we have

−
(
∂uλ
∂t

, v − uλ

)

H

+ aλ(uλ, v) ≥ (g, v − uλ)H + lim inf
ε→0

aλ(uε,λ, uε,λ)

≥ (g, v − uλ)H + aλ(uλ, uλ).

Moreover, since 0 ≤ uε,λ ≤ Φ for every ε > 0 and uλ = limε→0 uε,λ, we have 0 ≤ uλ ≤ Φ and the assertion
follows.

The following Comparison Principle is a direct consequence of Proposition 3.13,.

Proposition 3.15. 1. For i = 1, 2, assume that ψi satisfies Assumption H1, g satisfies Assumption H0 and
0 ≤ ψi ≤ Φ with Φ : [0, T ] → H2(O,m) such that ∂Φ

∂t + LΦ ≤ 0 and 0 ≤ g ≤ −∂Φ
∂t − LλΦ. Let uiλ be the

unique solution of (3.34) with obstacle function ψi and source function g. If ψ1 ≤ ψ2, then u
1
λ ≤ u2

λ.

2. For i = 1, 2, assume that ψ satisfies Assumption H1, gi satisfy Assumption H0 and 0 ≤ ψ ≤ Φ with
Φ : [0, T ] → H2(O,m) such that ∂Φ

∂t + LΦ ≤ 0 and 0 ≤ gi ≤ −∂Φ
∂t − LλΦ. Let uiλ be the unique solution of

(3.34) with obstacle function ψ and source function gi. If g1 ≤ g2, then u
1
λ ≤ u2

λ.

3. For i = 1, 2, assume that ψi satisfies Assumption H1, g satisfies Assumption H0 and 0 ≤ ψi ≤ Φ with
Φ : [0, T ] → H2(O,m) such that ∂Φ

∂t + LΦ ≤ 0 and 0 ≤ g ≤ −∂Φ
∂t − LλΦ. Let uiλ be the unique solution

of (3.34) with obstacle function ψi and source function g. If ψ1 − ψ2 ∈ L∞, then u1
λ − u2

λ ∈ L∞ and
‖u1

λ − u2
λ‖∞ ≤ ‖ψ1 − ψ2‖∞.

3.2.3 Non-coercive variational inequality

We can finally prove Theorem 2.3. Again, we first study the uniqueness of the solution and then we deal with
the existence.

Proof of uniqueness in Theorem 2.3. Suppose that there are two functions u1 and u2 which satisfies (2.4). As
usual, we take v = u2 in the equation satisfied by u1 and v = u1 in the one satisfied by u2 and we add the
resulting equations. Setting w := u2 − u1, we get

(
∂w

∂t
, w

)

H

− a(w,w) ≥ 0.

From the energy estimate (3.6), we know that

a(u, u) ≥ C1‖u‖2
V − C2‖(1 + y)

1
2u‖2

H ,
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so that
1

2

d

dt
‖w‖2

H + C2‖(1 + y)
1
2w‖2

H ≥ 0.

By integrating from t to T , since w(T ) = 0,we have

‖w(t)‖2
H ≤ C2

∫ T

t

ds‖(1 + y)
1
2w‖2

H

≤ C2

(∫ T

t

ds

∫

O
1{y≤λ}(1 + y)w2dm +

∫ T

t

ds

∫

O
1{y>λ}(1 + y)w2dm

)

≤ C

(∫ T

t

ds

∫

O
(1 + λ)w2yβ−1e−γ|x|e−µydxdy +

∫ T

t

ds

∫

O
1{y>λ}(1 + y)w2yβ−1e−γ|x|e−(µ−µ′)ye−µ′ydxdy

)

≤ C

(∫ T

t

ds

∫

O
dxdy(1 + λ)w2yβ−1e−γ|x|e−µy + e−(µ−µ′)λ

∫ T

t

ds

∫

O
dxdy(1 + y)Φ2yβ−1e−γ|x|e−µ′y

)

,

where µ′ < µ and λ > 0. Since C2 =
∫

O dxdy(1 + y)Φ2yβ−1e−γ|x|e−µ′y < ∞, we have

‖w(t)‖2
H ≤ C(1 + λ)

∫ T

t

‖w(s)‖2
Hds+ C2(T − t)e−(µ−µ′)λ,

so, by using the Gronwall Lemma,

‖w(t)‖2
H ≤ C2Te

−(µ−µ′)λ+C(T−t)(1+λ).

Sending λ → ∞, we deduce that w(t) = 0 in [T, t] for t such that T − t < µ−µ′

C . Then, we iterate the same

argument: we integrate between t′ and t with t − t′ < µ−µ′

C and we have w(t) = 0 in [T, t′] and so on. We
deduce that w(t) = 0 for all t ∈ [0, T ] so the assertion follows.

Proof of existence in Theorem 2.3. Given u0 = Φ, we can construct a sequence (un)n ⊂ V such that

un ≥ ψ a.e. in [0, T ] × O, n ≥ 1, (3.35)

−
(
∂un
∂t

, v − un

)

H

+ a(un, v − un) + λ((1 + y)un, v − un)H ≥ λ((1 + y)un−1, v − un)H ,

v ∈ V, v ≥ ψ, a.e. on [0, T ] × O, n ≥ 1,

(3.36)

un(T ) = ψ(T ), in O, (3.37)

Φ ≥ u1 ≥ u2 ≥ · · · ≥ un−1 ≥ un ≥ · · · ≥ 0, a.e. on [0, T ] × O. (3.38)

In fact, if we have 0 ≤ un−1 ≤ Φ for all n ∈ N, then the assumptions of Proposition 3.14 are satisfied with

gn = λ(1 + y)un−1,

since gn and
√

1 + ygn belong to L2([0, T ];H) and 0 ≤ gn ≤ λ(1 + y)Φ ≤ −∂Φ
∂t − LλΦ. Therefore, step by step,

we can deduce the existence and the uniqueness of a solution un to (3.36) such that 0 ≤ un ≤ Φ. (3.38) is a
simple consequence of Proposition 3.15. In fact, proceeding by induction, at each step we have

gn = λ(1 + y)un−1 ≤ λ(1 + y)un−2 = gn−1

so that un ≤ un−1. Now, recall that
‖un‖L∞([0,T ],V ) ≤ K,
∥
∥
∥
∥

∂un
∂t

∥
∥
∥
∥
L2([0,T ];H)

≤ K,

where K = C
(
‖Φ‖L2([0,T ];V ) + ‖√

1 + ygn‖L2([0,T ];H) + ‖√
1 + yψ‖L2([0,T ];V ) + ‖ψ(T )‖2

V

)
. Note that the con-

stant K is independent of n since |gn| = |λ(1 + y)un−1, | ≤ λ(1 + y)Φ, for every n ∈ N. Therefore, by passing
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to a subsequence, we can assume that there exists a function u such that u ∈ L2([0, T ];V ), ∂u∂t ∈ L2([0, T ];H)
and for every t ∈ [0, T ], u′

n(t) ⇀ u′(t) in H and un(t) ⇀ u(t) in V . Indeed, again thanks to the fact that
0 ≤ un ≤ Φ, we can deduce that un(t) → u(t) in H . Therefore we can pass to the limit in

−
(
∂un
∂t

, un − v

)

H

+ a(un, v − un) + λ((1 + y)un, v − un)H ≥ λ((1 + y)un−1, v − un)H

and the assertion follows.

Remark 3.16. Keeping in mind our purpose of identifying the solution of the variational inequality (2.4) with
the American option price we have considered the case without source term (g = 0) in the variational inequality
(2.4). However, under the same assumptions of Theorem 2.3, we can prove in the same way the existence and
the uniqueness of a solution of







−
(
∂u
∂t , v − u

)

H
+ a(u, v − u) ≥ (g, v − u)H , a.e. in [0, T ] v ∈ V, v ≥ ψ,

u ≥ ψ a.e. in [0, T ] × R × (0,∞),

u(T ) = ψ(T ),

0 ≤ u ≤ Φ,

where g satisfies Assumption H0 and 0 ≤ g ≤ −∂Φ
∂t − LΦ.

We conclude stating the following Comparison Principle, whose proof is a direct consequence of Proposition
3.15 and the proof of Proposition 2.3.

Proposition 3.17. For i = 1, 2, assume that ψi satisfies Assumption H1 and 0 ≤ ψi ≤ Φ with Φ satisfying
Assumption H2. Let uiλ be the unique solution of (3.34) with obstacle function ψi. Then:

1. If ψ1 ≤ ψ2, then u
1
λ ≤ u2

λ.

2. If ψ1 − ψ2 ∈ L∞, then u1
λ − u2

λ ∈ L∞ and ‖u1
λ − u2

λ‖∞ ≤ ‖ψ1 − ψ2‖∞.

4 Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality (2.3), our aim is to
prove that it matches the solution of the optimal stopping problem, that is

u(t, x, y) = u∗(t, x, y), on [0, T ] × Ō,

where u∗ is defined by
u∗(t, x, y) = sup

τ∈Tt,T

E
[
ψ(τ,Xt,x,y

τ , Y t,x,yτ )
]
,

Tt,T being the set of the stopping times with values in [t, T ]. Since the function u is not regular enough to
apply Ito’s Lemma, we use another strategy in order to prove the above identification. So, we first show, by
using the affine character of the underlying diffusion, that the semigroup associated with the bilinear form aλ
coincides with the transition semigroup of the two dimensional diffusion (X,Y ) with a killing term. Then, we
prove suitable estimates on the joint law of (X,Y ) and Lp-regularity results on the solution of the variational
inequality and we deduce from them the probabilistic interpretation.

4.1 Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form aλ. With a natural notation, we
define the following spaces

L2
loc(R

+;H) = {f : R+ → H : ∀t ≥ 0

∫ t

0

‖f(s)‖2
Hds < ∞},
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L2
loc(R

+;V ) = {f : R+ → V : ∀t ≥ 0

∫ t

0

‖f(s)‖2
V ds < ∞}.

First of all, we state the following result:

Proposition 4.1. For every ψ ∈ V , f ∈ L2
loc(R

+;H) with
√
yf ∈ L2

loc(R
+;H), there exists a unique function

u ∈ L2
loc(R

+;V ) such that ∂u
∂t ∈ L2

loc(R
+;H), u(0) = ψ and

(
∂u

∂t
, v

)

H

+ aλ(u, v) = (f, v)H , v ∈ V. (4.1)

Moreover we have, for every t ≥ 0,

||u(t)||2H +
δ1

2

∫ t

0

||u(s)||2V ds ≤ ||ψ||2H +
2

δ1

∫ t

0

||f(s)||2Hds (4.2)

and

||u(t)||2V +

∫ t

0

||ut(s)||2Hds ≤ C

(

||ψ||2V +
1

2

∫ t

0

||
√

1 + yf(s)||2Hds
)

,

with C > 0.

The proof follows the same lines as the proof of Proposition 3.14 so we omit it. Moreover, we can prove a
Comparison Principle for the equation (4.1) as we have done for the variational inequality.

We denote u(t) = P̄λt ψ the solution of (4.1) corresponding to u(0) = ψ and g = 0. From (4.2) we deduce
that the operator P̄λt is a linear contraction on H and, from uniqueness, we have the semigroup property.

Proposition 4.2. Let us consider f : R+ → H such that
√

1 + yf ∈ L2
loc(R

+, H). Then, the solution of

{(
∂u
∂t , v

)
+ aλ(u, v) = (f, v), v ∈ V,

u(0) = 0,

is given by u(t) =
∫ t

0
P̄λs f(t− s)ds =

∫ t

0
P̄λt−sf(s)ds.

Proof. Note that V is dense in H and recall the estimate (4.2), so it is enough to prove the assertion for

f = 1(t1,t2]ψ, with 0 ≤ t1 < t2 and ψ ∈ V . If we set u(t) =
∫ t

0
P̄λt−sf(s)ds, we have

u(t) = 1{t≥t1}

∫ t∧t2

t1

P̄λt−sψds

=







∫ t2
t1
P̄λt−sψds =

∫ t−t1
t−t2 P̄

λ
s ψds if t ≥ t2

∫ t

t1

P̄λt−sψds =

∫ t−t1

0

P̄λs ψds if t ∈ [t1, t2)
.

Therefore, for every v ∈ V , we have (ut, v) + aλ(u, v) = 0 if t ≤ t1 and, if t ≥ t1,

(
∂u

∂t
, v

)

+ aλ(u(t), v) =







(
P̄λt−t1ψ − P̄λt−t2ψ, v

)
+ aλ

(∫ t−t1
t−t2 P̄

λ
s ψds, v

)

if t ≥ t2
(
P̄λt−t1ψ, v

)
+ aλ

(∫ t−t1
0 P̄λs ψds, v

)

if t ∈ [t1, t2)
.

The assertion follows from (P̄λt ψ, v) +
∫ t

0
aλ(P̄sψ, v)ds = (ψ, v).

Remark 4.3. It is not difficult to prove that P̄λt : Lp(O,m) → Lp(O,m) is a contraction for every p ≥ 2, and
it is an analytic semigroup. This is not useful to our purposes so we omit the proof.
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4.2 Transition semigroup

We define Ex0,y0( ) = E( |X0 = x0, Y0 = y0). Fix λ > 0. For every measurable positive function f defined
on R × [0,+∞), we define

Pλt f(x0, y0) = Ex0,y0

(

e
−λ
∫

t

0
(1+Ys)ds

f(Xt, Yt)

)

.

The operator Pλt is the transition semigroup of the two dimensional diffusion (X,Y ) with the killing term

e
−λ
∫

t

0
(1+Ys)ds

.
Set Ey0( ) = E( |Y0 = y0). We first prove some useful results about the Laplace transform of the pair

(Yt,
∫ t

0 Ysds). These results rely on the affine structure of the model and have already appeared in slightly
different forms in the literature (see, for example, [2, Section 4.2.1]). We include a proof for convenience.

Proposition 4.4. Let α and β be two complex numbers with nonpositive real parts. The equation

ψ′(t) =
σ2

2
ψ2(t) − κψ(t) + β (4.3)

has a unique solution ψα,β defined on [0,+∞), such that ψα,β(0) = α. Moreover, for every t ≥ 0,

Ey0

(

e
αYt+β

∫
t

0
Ysds

)

= ey0ψα,β(t)+θκφα,β(t),

with φα,β(t) =
∫ t

0
ψα,β(s)ds.

Proof. Let ψ be the solution of (4.3). We define ψ1 (resp. β1) and ψ2 (resp. β2) the real and the imaginary
part of ψ (resp. β). We have

{

ψ′
1(t) = σ2

2

(
ψ2

1(t) − ψ2
2(t)

)
− κψ1(t) + β1,

ψ′
2(t) = σ2ψ1(t)ψ2(t) − κψ2(t) + β2.

From the first equation we deduce that ψ′
1(t) ≤ σ2

2

(
ψ1(t) − 2κ

σ2

)
ψ1(t) + β1 and, since β1 ≤ 0, the function

t 7→ ψ1(t)e
−
∫

t

0
(ψ1(s)− 2κ

σ2 )ds
is nonincreasing. Therefore ψ1(t) ≤ 0 if ψ1(0) ≤ 0. Multiplying the first equation by

ψ1(t) and the second one by ψ2(t) and adding we get

1

2

d

dt

(
|ψ(t)|2

)
=

(
σ2

2
ψ1(t) − κ

)

|ψ(t)|2 + β1ψ1(t) + β2ψ2(t)

≤
(
σ2

2
ψ1(t) − κ

)

|ψ(t)|2 + |β||ψ(t)|

≤
(
σ2

2
ψ1(t) − κ

)

|ψ(t)|2 + ǫ|ψ(t)|2 +
|β|2
4ǫ

.

We deduce that |ψ(t)| cannot explode in finite time and, therefore, ψα,β actually exists on [0,+∞). Moreover,

note that we have |ψ(t)|2 ≤ Cκ′e−κ′t for every κ′ < κ.
Now, let us define the function Fα,β(t, y) = eyψα,β(t)+θκφα,β(t). Fα,β is C1,2 on [0,+∞) × R and it satisfies

by construction the following equation

∂Fα,β
∂t

=
σ2

2
y
∂2Fα,β
∂y2

+ κ(θ − y)
∂Fα,β
∂y

+ βyFα,β .

Therefore, for every T > 0, the process (Mt)0≤t≤T defined by

Mt = e
β
∫

t

0
YsdsFα,β(T − t, Yt) (4.4)

is a local martingale. On the other hand, note that |Mt| ≤ 1, so the process (Mt)t is a true martingale indeed.

We deduce that Fα,β(T, y0) = Ey0

(

e
β
∫

T

0
YsdseαYT

)

and the assertion follows.
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Remark 4.5. If we take α = 0 and β = −s, with s > 0, we get

Ey0

(

e
−s
∫

t

0
Yvdv

)

= ey0ψ0,−s(t)+θκφ0,−s(t),

and, as we have seen in the proof of Proposition 4.4, ψ′
0,−s has constant sign. Since ψ′

0,−s(0) = −s < 0, the
function ψ0,−s is decreasing. Again from the proof of Proposition 4.4,

ψ0,−s(t) ≥ κ

σ2
−
√
( κ

σ2

)2

+ 2
s

σ2
≥ −

√

2s/σ2

and, integrating, φ0,−s(t) ≥ −t
√

2s/σ2.
We deduce that, for every y0 ≥ 0,

Ey0

(

e
−s
∫

t

0
Yvdv

)

≤ e−tκθ
√

2s/σ2
= e−tσβ

√
s/2,

and, for every q > 0,

Ey0

(∫ t

0

Yvdv

)−q
= Ey0

(
1

Γ(q)

∫ ∞

0

sq−1e
−s
∫

t

0
Yvdvds

)

≤ 1

Γ(q)

∫ ∞

0

sq−1e−tσβ
√
s/2ds

=
2q

t2q(σβ)2qΓ(q)

∫ ∞

0

sq−1e−√
sds =

2q+1Γ(2q)

t2q(σβ)2qΓ(q)
.

We also have the following result.

Proposition 4.6. Let λ1 and λ2 be two real numbers such that

σ2

2
λ2

1 − κλ1 + λ2 ≤ 0.

Then, the equation

ψ′(t) =
σ2

2
ψ2(t) − κψ(t) + λ2 (4.5)

has a unique solution ψλ1,λ2 defined on [0,+∞) such that ψλ1,λ2(0) = λ1. Moreover, for every t ≥ 0, we have

Ey0

(

e
λ1Yt+λ2

∫
t

0
Ysds

)

≤ ey0ψλ1,λ2
(t)+θκφλ1,λ2

(t),

with φλ1,λ2(t) =
∫ t

0 ψλ1,λ2 (s)ds.

Proof. Let ψ be the solution of (4.5) with ψ(0) = λ1. We have

ψ′′(t) = (σ2ψ(t) − κ)ψ′(t).

Therefore ψ′(t) has constant sign and the assumption on λ1 and λ2 ensures that ψ′(0) ≤ 0. We deduce that
ψ′(t) ≤ 0 and ψ(t) remains between the solutions of the equation

σ2

2
λ2 − κλ+ λ2 = 0.

This proves that the solution is defined on the whole interval [0,+∞). Now the assertion follows as in the
proof of Proposition 4.4: just note that the the process (Mt)t defined as in (4.4) is no more a martingale but it
remains a positive local martingale, hence a supermartingale.
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Remark 4.7. Let us now consider two real numbers λ1 and λ2 such that

σ2

2
λ2

1 − κλ1 + λ2 < 0.

From the proof of Proposition 4.6, by using the optimal stopping theorem we have

sup
τ∈T0,T

Ey

(

e
µ
∫

τ

0
Ysdseψλ,µ(T−τ)Yτ +θκφλ,µ(T−τ)

)

≤ eyψλ,µ(T )+θκφλ,µ(T ).

Consider now ǫ > 0 and let λǫ = (1+ǫ)λ and µǫ = (1+ǫ)µ. For ǫ small enough, we have σ2

2 λ
2
ǫ−κλǫ+µǫ < 0.

Therefore

sup
τ∈T0,T

Ey

(

e
µǫ

∫
τ

0
Ysdseψλǫ,µǫ (T−τ)Yτ +θκφλǫ,µǫ (T−τ)

)

≤ eyψλǫ,µǫ (T )+θκφλǫ,µǫ (T ).

If we have ψλǫ,µǫ
≥ (1 + ǫ)ψλ,µ, we can deduce that

sup
τ∈T0,T

Ey

(

e
µ(1+ǫ)

∫
τ

0
Ysdse(1+ǫ)(ψλ,µ(T−τ)Yτ +θκφλ,µ(T−τ))

)

≤ eyψλǫ,µǫ (T )+θκφλǫ,µǫ (T ),

and, therefore, that the family

(

e
µ
∫

τ

0
Ysdseψλ,µ(T−τ)Yτ +θκφλ,µ(T−τ)

)

τ∈T0,T

is uniformly integrable. As a conse-

quence, the process (Mt)t is a true martingale and we have

Ey

(

e
λYt+µ

∫
t

0
Ysds

)

= eyψλ,µ(t)+θκφλ,µ(t).

So, it remains to show that ψλǫ,µǫ
≥ (1 + ǫ)ψλ,µ. In order to do this we set gǫ(t) = ψλǫ,µǫ

(t) − (1 + ǫ)ψλ,µ(t).
From the equations satisfied by ψλǫ,µǫ

and ψλ,µ we deduce that

g′
ǫ(t) =

σ2

2

(
ψ2
λǫ,µǫ

(t) − (1 + ǫ)ψ2
λ,µ(t)

)
− κ (ψλǫ,µǫ

(t) − (1 + ǫ)ψλ,µ(t))

=
σ2

2

(
ψ2
λǫ,µǫ

(t) − (1 + ǫ)2ψ2
λ,µ(t)

)
− κgǫ(t) +

σ2

2

(
(1 + ǫ)2 − (1 + ǫ)

)
ψ2
λ,µ(t)

=
σ2

2
(ψλǫ,µǫ

(t) + (1 + ǫ)ψλ,µ(t)) gǫ(t) − κgǫ(t) +
σ2

2
ǫ(1 + ǫ)ψ2

λ,µ(t)

= fǫ(t)gǫ(t) +
σ2

2
ǫ(1 + ǫ)ψ2

λ,µ(t),

where

fǫ(t) =
σ2

2
(ψλǫ,µǫ

(t) + (1 + ǫ)ψλ,µ(t)) − κ.

Therefore, the function gǫ(t)e
−
∫

t

0
fǫ(s)ds

is nondecreasing and, since gǫ(0) = 0, we have gǫ(t) ≥ 0.

Now recall that the diffusion (X,Y ) evolves according to the following stochastic differential system

{

dXt =
(
ρκθ
σ − Yt

2

)

dt+
√
YtdBt,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt.

If we set X̃t = Xt − ρ
σYt, we have

{

dX̃t =
(
ρκ
σ − 1

2

)
Ytdt+

√

1 − ρ2
√
YtdB̃t,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt.

(4.6)

where B̃t = (1 − ρ2)−1/2 (Bt − ρWt). Note that B̃ is a standard Brownian motion with 〈B̃,W 〉t = 0.
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Proposition 4.8. For all u, v ∈ R, for all λ ≥ 0 and for all (x0, y0) ∈ R × [0,+∞) we have

Ex0,y0

(

eiuXt+ivYte
−λ
∫

t

0
Ysds

)

= eiux0+y0(ψλ1,µ(t)−iu ρ
σ

)+θκφλ1,µ(t),

where λ1 = i(u ρσ + v), µ = iu
(
ρκ
σ − 1

2

)
− u2

2 (1 − ρ2) − λ and the function ψλ1,µ and φλ1,µ are defined in
Proposition 4.6.

Proof. We have

Ex0,y0

(

e
iuXt+ivYt−λ

∫
t

0
Ysds

)

= Ex0,y0

(

e
iu(X̃t+ ρ

σ
Yt)+ivYt−λ

∫
t

0
Ysds

)

and

X̃t = x0 − ρ

σ
y0 +

∫ t

0

(
ρκ

σ
− 1

2

)

Ysds+

∫ t

0

√

(1 − ρ2)YsdB̃s.

Since B̃ and W are independent,

E

(

eiuX̃t | W
)

= e
iu
(
x0− ρ

σ
y0+
∫

t

0
( ρκ

σ
− 1

2 )Ysds
)

− u2

2 (1−ρ2)
∫

t

0
Ysds

and

Ex0,y0

(

e
iuXt+ivYt−λ

∫
t

0
Ysds

)

= eiu(x0− ρ
σ
y0)

Ey0

(

e
i(u ρ

σ
+v)Yt+

(
iu( ρκ

σ
− 1

2 )− u2

2 (1−ρ2)−λ
)∫

t

0
Ysds

)

.

Then the assertion follows by using Proposition 4.4.

4.3 Identification of the semigroups

We now show that the semigroup associated with the coercive bilinear form P̄λt can be actually identified with
the transition semigroup Pλt .

Proposition 4.9. We have, for every function f ∈ H and for every t ≥ 0,

P̄λt f(x, y) = Pλt f(x, y), dxdy a.e.

Proof. We only need to prove the equality for f(x, y) = eiux+ivy with u, v ∈ R. We then have, by using
Proposition 4.8,

Pλt f(x, y) = Ex,y

(

e
−λ
∫

t

0
(1+Ys)ds

eiuXt+ivYt

)

= e−λteiux+y(ψλ1,µ(t)−iu ρ
σ )+θκφλ1,µ(t),

with λ1 = i(u ρσ + v), µ = iu
(
ρκ
σ − 1

2

)
− u2

2 (1 − ρ2) − λ. The function F (t, x, y) defined by F (t, x, y) =

e−λteiux+y(ψλ1,µ(t)−iu ρ
σ )+θκφλ1,µ(t) satisfies F (0, x, y) = eiux+ivy and

∂F

∂t
= (L − λ(1 + y))F.

Moreover, for every t ≥ 0, we have
∫

O
(
y|D2F |2(t, x, y) + |∇F |2(t, x, y)

)
dm < ∞, so that, for every v ∈ V ,

(LF (t, ., .), v) = −a(F (t, ., .), v). Therefore

(
∂F

∂t
, v

)

+ aλ(F (t, ., .), v) = 0 v ∈ V,

and F (t, ., .) = P̄λt f .
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4.4 Estimates on the joint law

In this section we prove some estimates on the joint law of the diffusion (X,Y ) which will be crucial in order to
prove Proposition 2.4. With the notations

ν = β − 1 =
2κθ

σ2
− 1, yt = y0e

−κt, Lt =
σ2

4κ

(
1 − e−κt) ,

it is well known (see, for example, [13, Section 6.2.2]) that the transition density of the process Y is given by

pt(y0, y) =
e− yt

2Lt

2y
ν/2
t Lt

e− y
2Lt yν/2Iν

(√
yyt

Lt

)

,

where Iν is the first-order modified Bessel function with index ν, defined by

Iν(y) =
(y

2

)ν ∞∑

n=0

(y/2)2n

n!Γ(n+ ν + 1)
.

It is clear that near y = 0 we have Iν(y) ∼ 1
Γ(ν+1)

(
y
2

)ν
while, for y → ∞, we have the asymptotic behaviour

Iν(y) ∼ ey/
√

2πy (see [1, page 377]).

Proposition 4.10. There exists a constant Cβ > 0 (which depends only on β) such that, for every t > 0,

pt(y0, y) ≤ Cβ

L
β+ 1

2
t

e− (
√

y−√
yt)2

2Lt yβ−1
(

L
1/2
t + (yyt)

1/4
)

, (y0, y) ∈ [0,+∞)×]0,+∞).

Proof. From the asymptotic behaviour of Iν near 0 and ∞ we deduce the existence of a constant Cν > 0 such
that

Iν(x) ≤ Cν

(

xν1{x≤1} +
ex√
x
1{x>1}

)

.

Therefore

pt(y0, y) =
e− yt+y

2Lt

2y
ν/2
t Lt

yν/2Iν

(√
yyt

Lt

)

≤ e− yt+y

2Lt

2y
ν/2
t Lt

yν/2Cν




(yyt)

ν/2

Lνt
1{yyt≤L2

t } +
e

√
yyt

Lt

(yyt)1/4/L
1/2
t

1{yyt>L2
t }





=
Cν
2
e− yt+y

2Lt




yν

Lν+1
t

1{yyt≤L2
t } +

y
ν
2 − 1

4 e
√

yyt
Lt

(yt)
ν
2 + 1

4L
1/2
t

1{yyt>L2
t }



 .

On {yyt > L2
t}, we have y−1

t ≤ y/L2
t and, since ν + 1 > 0,

y
ν
2 − 1

4

(yt)
ν
2 + 1

4

= y
1/4
t

y
ν
2 − 1

4

(yt)
ν
2 + 1

2

≤ y
1/4
t

yν+ 1
4

Lν+1
t

.

So

pt(y0, y) ≤ Cν
2
e− yt+y

2Lt




yν

Lν+1
t

1{yyt≤L2
t } +

(yyt)
1/4yνe

√
yyt

Lt

L
ν+ 3

2
t

1{yyt>L2
t }





≤ Cν

2L
ν+ 3

2
t

e− yt+y

2Lt yνe
√

yyt
Lt

(

L
1/2
t 1{yyt≤L2

t } + (yyt)
1/4

1{yyt>L2
t }

)

=
Cν

2L
ν+ 3

2
t

e− (
√

y−√
yt)2

2Lt yν
(

L
1/2
t 1{yyt≤L2

t } + (yyt)
1/4

1{yyt>L2
t }

)

,

and the assertion follows.
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Theorem 4.11. For all p > 1, γ > 0 and µ > 0 there exists λ > 0 such that, for every compact K ⊆ R×[0,+∞)
and for every T > 0, there is Cp,K,T > 0 such that

Pλt f(x0, y0) ≤ Cp,K,T

t
β
p

+ 3
2p

||f ||Lp(mγ,µ), (x0, y0) ∈ K.

for every measurable positive function f on R × [0,+∞) and for every t ∈ (0, T ].

Proof. Note that

Pλt f(x0, y0) = Ex0,y0

(

e
−λ
∫

t

0
(1+Ys)ds

f̃(X̃t, Yt)

)

,

where
f̃(x, y) = f

(

x+
ρ

σ
y, y
)

and X̃t = Xt − ρ

σ
Yt.

Recall that the dynamics of X̃ is given by (4.6) so we have

X̃t = x̃0 + κ̄

∫ t

0

Ysds+ ρ̄

∫ t

0

√

YsdB̃s,

with

x̃0 = x0 − ρ

σ
y0, κ̄ =

ρκ

σ
− 1

2
, ρ̄ =

√

1 − ρ2.

Recall that the Brownian motion B̃ is independent of the process Y . We set Σt =
√
∫ t

0 Ysds and n(x) =
1√
2π
e−x2/2. Therefore

Pλt f(x0, y0) = Ey0

(

e−λt−λΣ2
t

∫

f̃
(
x̃0 + κ̄Σ2

t + ρ̄Σtz, Yt
)
n(z)dz

)

≤ Ey0

(

e−λΣ2
t

∫

f̃
(
x̃0 + κ̄Σ2

t + ρ̄Σtz, Yt
)
n(z)dz

)

= Ey0

(

e−λΣ2
t

∫

f̃ (x̃0 + z, Yt)n

(
z − κ̄Σ2

t

ρ̄Σt

)
dz

ρ̄Σt

)

.

Hölder inequality with respect to the measure e−γ|z|−µ̄YtdzdPy0 , where γ > 0 and µ̄ will be chosen later on
gives, for every p > 1

Pλt f(x0, y0) ≤
[

Ey0

(∫

e−γ|z|−µ̄Yt f̃p (x̃0 + z, Yt) dz

)]1/p

Jq, (4.7)

with q = p/(p− 1) and

Jqq = Ey0

(∫

e(q−1)γ|z|+(q−1)µ̄Yt−qλΣ2
tnq

(
z − κ̄Σ2

t

ρ̄Σt

)
dz

(ρ̄Σt)q

)

.

Using Proposition 4.10 we can write, for every z ∈ R,

Ey0

(
e−µ̄Yt f̃p (x̃0 + z, Yt)

)
=

∫ ∞

0

dypt(y0, y)e−µ̄y f̃p (x̃0 + z, y)

≤ Cβ(σ
2

4κ + y
1/4
0 )

L
β+ 1

2
t

∫ ∞

0

dye− (
√

y−√
yt)2

2Lt
−µ̄yyβ−1

(

1 + y1/4
)

f̃p (x̃0 + z, y) .
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If we set L∞ = σ2/(4κ), for every ǫ ∈ (0, 1) we have

e− (
√

y−√
yt)2

2Lt ≤ e− (
√

y−√
yt)2

2L∞

= e− y
2L∞ e

√
yyt

L∞ − yt
2L∞

≤ e− y
2L∞ eǫ

y
2L∞ e

yt
2ǫL∞ e− yt

2L∞

= e−(1−ǫ) y
2L∞ e

yt
2ǫL∞ (1−ǫ)

≤ e−(1−ǫ) y
2L∞ e

y0
2ǫL∞ (1−ǫ).

Therefore

Ey0

(
e−µ̄Yt f̃p (x̃0 + z, Yt)

)
≤ Cβe

y0(1−ǫ)

2ǫL∞ (σ
2

4κ + y
1/4
0 )

L
β+ 1

2
t

∫ ∞

0

dye−y(µ̄+ 1−ǫ
2L∞ )yβ−1

(

1 + y1/4
)

f̃p (x̃0 + z, y)

≤ Cβ,σ,κ,ǫe
y0(1−ǫ)

ǫL∞

L
β+ 1

2
t

∫ ∞

0

dye−y(µ̄+ 1−2ǫ
2L∞ )yβ−1f̃p (x̃0 + z, y) .

As regards Jq, setting z
′ =

z−κ̄Σ2
t

ρ̄Σt
, we have

Jqq = Ey0

(∫

e(q−1)γ|z′ρ̄Σt+κ̄Σ2
t |+(q−1)µ̄Yt−qλΣ2

tnq (z′)
dz′

(ρ̄Σt)q−1

)

≤ Ey0

(∫

e(q−1)γρ̄Σt|z|+(q−1)µ̄Yt+((q−1)|κ̄|γ−qλ)Σ2
tnq (z)

dz

(ρ̄Σt)q−1

)

.

Note that
∫

e(q−1)γρ̄Σt|z|nq (z)dz =

∫

e(q−1)γρ̄Σt|z|e−qz2/2 dz√
2π

≤ 2

∫

e(q−1)γρ̄Σtze−qz2/2 dz√
2π

= 2

∫

e(q−1)γρ̄Σtze−qz2/2 dz√
2π

=
2√
q
e

(q−1)2

q
γ2ρ̄2Σ2

t ,

so that

Jqq ≤ 2√
q
Ey0

(

e(q−1)µ̄Yt+λ̄qΣ2
t

1

(ρ̄Σt)q−1

)

,

with

λ̄q = (q − 1)|κ̄|γ +
(q − 1)2

q
γ2ρ̄2 − qλ =

1

p− 1

(

|κ̄|γ +
1

p
γ2ρ̄2 − pλ

)

.

Using Hölder’s inequality again we get, for every p1 > 1 and q1 = p1/(p1 − 1),

Jqq ≤ 2√
q

(

Ey0

(

ep1(q−1)µ̄Yt+p1λ̄qΣ2
t

))1/p1
(

Ey0

(
1

(ρ̄Σt)q1(q−1)

))1/q1

≤ Cq,q1

tq−1

(

Ey0

(

ep1(q−1)µ̄Yt+p1λ̄qΣ2
t

))1/p1

,

where the last inequality follows from Remark 4.5.
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We now apply Proposition 4.6 with λ1 = p1(q − 1)µ̄ et λ2 = p1λ̄q. The assumption on λ1 and λ2 becomes

σ2

2
p1(q − 1)µ̄2 − κµ̄+ |κ̄|γ +

1

p
γ2ρ̄2 − pλ ≤ 0

or, equivalently,

λ ≥ σ2

2p(p− 1)
p1µ̄

2 − κ
µ̄

p
+ |κ̄|γ

p
+

1

p2
γ2ρ̄2.

Note that the last inequality is satisfied for at least a p1 > 1 if and only if

λ >
σ2

2p(p− 1)
µ̄2 − κ

µ̄

p
+ |κ̄|γ

p
+

1

p2
γ2ρ̄2. (4.8)

Going back to (4.7) under the condition (4.8), we have

Pλt f(x0, y0) ≤ Cp,ǫ

L
β
p

+ 1
2p

t t1/p
eAp,ǫy0

(∫

dze−γ|z|
∫ ∞

0

dye−y(µ̄+ 1−2ǫ
2L∞ )yβ−1f̃p (x̃0 + z, y)

)1/p

≤ Cp,ǫe
Ap,ǫy0

t
β
p

+ 3
2p

(∫

dze−γ|z|
∫ ∞

0

dye−y(µ̄+ 1−2ǫ
2L∞ )yβ−1fp

(

x̃0 + z +
ρ

σ
y, y
))1/p

=
Cp,ǫe

Ap,ǫy0

t
β
p

+ 3
2p

(∫

dze−γ|z−x̃0− ρ
σ
y|
∫ ∞

0

dye−y(µ̄+ 1−2ǫ
2L∞ )yβ−1fp (z, y)

)1/p

≤ Cp,ǫe
Ap,ǫy0+γ|x̃0|

t
β
p

+ 3
2p

(∫

dze−γ|z|
∫ ∞

0

dye
−y
(
µ̄−γ |ρ|

σ
+ 1−2ǫ

2L∞

)

yβ−1fp (z, y)

)1/p

.

If we choose ǫ = 1/2 and µ̄ = µ+ γ |ρ|
σ , the assertion follows provided λ satisfies

λ >
σ2

2p(p− 1)

(

µ+ γ
|ρ|
σ

)2

− κ
µ+ γ |ρ|

σ

p
+ |κ̄|γ

p
+

1

p2
γ2ρ̄2.

Now, note that. we can easily prove the continuous dependence of the process X with respect to the initial
state.

Lemma 4.12. Fix (x, y) ∈ R × [0,+∞). Denote by (Xx,y
t , Y yt )t≥0 the solution of the system

{

dXt =
(
ρκθ
σ − Yt

2

)

dt+
√
YtdBt,

dYt = κ(θ − Yt)dt+ σ
√
YtdWt,

with X0 = x, Y0 = y and 〈B,W 〉t = ρt. We have, for every t ≥ 0 and for every (x, y), (x′, y′) ∈ R × [0,+∞),

E

∣
∣
∣Y

y′

t − Y yt

∣
∣
∣ ≤ |y′ − y| and

E

∣
∣
∣X

x′,y′

t −Xx,y
t

∣
∣
∣ ≤ |x′ − x| +

t

2
|y′ − y| +

√

t|y′ − y|.

The proof of Lemma 4.12 is straightforward so we omit the details: the inequality E

∣
∣
∣Y

y′

t − Y yt

∣
∣
∣ ≤ |y′ − y|

can be proved by using standard techniques for the CIR process introduced in [10, Section IV.3] and the other
inequality easily follows.

Then, thanks to Theorem 4.11, we have the following result.

Proposition 4.13. Fix p > 1 and λ as in Theorem 4.11. If ϕ ∈ Lp(O,m) then, (t, x, y) → Pλt ϕ(x, y) is
continuous on R

+ × R × R
+.
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Proof. If ((tn, xn, yn))n converges to (t, x, y), we deduce from Lemma 4.12 that Xxn,yn

tn → Xx,y
t , Y yn

tn → Y yt
and

∫ tn
0
Y yn
s ds →

∫ t

0
Y ys ds in probability. Therefore, the assertion is trivial if ϕ is bounded continuous. If

ϕ ∈ Lp(O,m), ϕ is the limit in Lp of a sequence of bounded continuous functions (ϕn)n. Moreover, thanks to
Theorem 4.11, for every compact K ⊆ R × [0,+∞), there is Cp,K,T > 0 such that

Pλt |ϕn − ϕ|(x, y) ≤ Cp,K,T

t
β
p

+ 3
2p

||ϕn − ϕ||Lp(mγ,µ), (x, y) ∈ K.

Therefore Pλt ϕn(x, y) converges locally uniformly to Pλt ϕ(x, y) and the assertion follows.

4.5 Proof of Theorem 2.4

We are finally ready to prove the identification Theorem 2.4. We first prove the result under further regularity
assumptions on the payoff function ψ, then we deduce the general statement by an approximation technique.

4.5.1 Case with a regular function ψ

The following two regularity results pave the way for the identification theorem in the case of a regular payoff
function.

Proposition 4.14. Assume that ψ satisfies Assumption H1 and 0 ≤ ψ ≤ Φ with Φ satisfying Assumption H2.
If moreover we assume ψ ∈ L2([0, T ];H2(O,m)) and ∂ψ

∂t + Lψ, (1 + y)Φ ∈ Lp([0, T ];Lp(O,m)) for p ≥ 2, then
there exists λ0 > 0 and F ∈ Lp([0, T ];Lp(O,m)) such that for all λ ≥ λ0 the solution u of (2.4) satisfies

−
(
∂u

∂t
, v

)

H

+ aλ(u, v) = (F, v)H , v ∈ V. (4.9)

Proof. Note that, for λ large enough, u can be seen as the solution uλ of an equivalent coercive variational
inequality, that is

−
(
∂uλ
∂t

, v − uλ

)

H

+ aλ(uλ, v − uλ) ≥ (g, v − uλ)H ,

where g = λ(1 + y)u satisfies the assumptions of Theorem 3.14. Therefore, there exists a sequence (uε,λ)ε of
non negative functions such that limε→0 uε,λ = uλ and

−
(
∂uε,λ
∂t

, v

)

H

+ aλ(uε,λ, v) + (ζε(uε,λ), v)H = (g, v)H , v ∈ V.

Since both uε,λ and ψ are positive and ψ belongs to Lp([0, T ];Lp(O,m)), we have (ψ−uε,λ)+ ∈ Lp([0, T ];Lp(O,m)).

Taking v = (ψ − uε,λ)p−1
+ and assuming that ψ is bounded we observe that v ∈ L2([0, T ];V ) and we can write

−
(
∂uε,λ
∂t

, (ψ − uε,λ)p−1
+

)

H

+ aλ(uε,λ, (ψ − uε,λ)p−1
+ ) − 1

ε
‖(ψ − uε,λ)+‖pLp(O,m) =

(

g, (ψ − uε,λ)p−1
+

)

H
,

so that
1

p

d

dt
‖(ψ − uε,λ)+‖pLp(O,m) − aλ(ψ − uε,λ, (ψ − uε,λ)p−1

+ ) − 1

ε
‖(ψ − uε,λ)+‖pLp(O,m)

=
(

g, (ψ − uε,λ)p−1
+

)

H
−
(
∂ψ

∂t
, (ψ − uε,λ)p−1

+

)

H

+ aλ(ψ, (ψ − uε,λ)p−1
+ ).

Integrating from 0 to T we get

−1

p
‖(ψ − uε,λ)+(0)‖pLp(O,m) −

∫ T

0

aλ((ψ − uε,λ)(t), (ψ − uε,λ)p−1
+ (t)dt− 1

ε

∫ T

0

‖(ψ − uε,λ)+(t)‖pLp(O,m)dt

=

∫ T

0

(

g(t), (ψ − uε,λ)p−1
+ (t)

)

H
dt−

∫ T

0

(
∂ψ

∂t
(t), (ψ − uε,λ)p−1

+ (t)

)

H

dt+

∫ T

0

aλ(ψ(t), (ψ − uε,λ)p−1
+ (t))dt.

(4.10)
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Now, with the usual integration by parts,

aλ((ψ − uε,λ)+, (ψ − uε,λ)p−1
+ )

=

∫

O

y

2
(p− 1)(ψ − uε,λ)p−2

+

[(
∂(ψ − uε,λ)+

∂x

)2

+ 2ρσ
∂(ψ − uε,λ)+

∂x

∂(ψ − uε,λ)+

∂y
+ σ2

(
∂(ψ − uε,λ)+

∂y

)2
]

dm

+

∫

O
y

(

jγ,µ(x)
∂(ψ − uε,λ)+

∂x
+ kγ,µ(x)

∂(ψ − uε,λ)+

∂y

)

(ψ − uε,λ)p−1
+ dm + λ

∫

O
(1 + y)(ψ − uε,λ)p+dm

≥ δ1(p− 1)

∫

O
y(ψ − uε,λ)p−2

+

[(
∂(ψ − uε,λ)+

∂x

)2

+

(
∂(ψ − uε,λ)+

∂y

)2
]

dm

+

∫

O
y

(

jγ,µ(x)
∂(ψ − uε,λ)+

∂x
+ kγ,µ(x)

∂(ψ − uε,λ)+

∂y

)

(ψ − uε,λ)p−1
+ dm + λ

∫

O
y(ψ − uε,λ)p+dm

=

∫

O
y(ψ − uε,λ)p−2

+

[

δ1(p− 1)

(
∂(ψ − uε,λ)+

∂x

)2

+ jγ,µ(x)
∂(ψ − uε,λ)+

∂x
(ψ − uε,λ)+ +

λ

2
(ψ − uε,λ)2

+

]

dm

+

∫

O
y(ψ − uε,λ)p−2

+

[

δ1(p− 1)

(
∂(ψ − uε,λ)+

∂y

)2

+ kγ,µ(x)
∂(ψ − uε,λ)+

∂y
(ψ − uε,λ)+ +

λ

2
(ψ − uε,λ)2

+

]

dm

≥ 0,

since, for λ large enough, the quadratic forms (a, b) → δ1(p − 1)a2 + jγ.µab + λ
2 b

2 and (a, b) → δ1(p − 1)a2 +

kγ.µab+ λ
2 b

2 are both positive definite.

Recall that ψ ∈ L2([0, T ];H2(O,m)), ∂ψ∂t
+Lψ ∈ Lp([0, T ], Lp(O,m)), (1+y)ψ ≤ (1+y)Φ ∈ Lp([0, T ], Lp(O,m))

and g = (1+y)u ≤ (1+y)Φ ∈ Lp([0, T ];Lp(O,m)). Therefore, going back to (4.10) and using Holder’s inequality,

1

ε

∫ T

0

‖ζ(uε,λ)‖pLp(O,m)dt ≤





(
∫ T

0

‖g‖pLp(O,m)dt

) 1
p

+

(
∫ T

0

∥
∥
∥
∥

∂ψ

∂t
+ Lλψ

∥
∥
∥
∥

p

Lp(O,m)

dt

) 1
p





(
∫ T

0

‖ζ(uε,λ)‖ppdt
)1− 1

p

.

We deduce that ∥
∥
∥
∥

1

ε
ζ(uε,λ)

∥
∥
∥
∥
Lp([0,T ];Lp(O,m))

≤ C, (4.11)

for a positive constant C independent of ε. Note that the estimate does not involve the L∞-norm of ψ (which
we assumed to be bounded for the payoff) so that by a standard approximation argument, it remains valid for
unbounded ψ. The assertion then follows passing to the limit for ε → 0 in

−
(
∂uε,λ
∂t

, v

)

H

+ aλ(uε,λ, v) =

(
1

ε
ζ(uε,λ), v

)

H

+ (g, v)H , v ∈ V.

Proposition 4.15. Fix p > β + 5
2 and λ as in Theorem 4.11. Let us consider u ∈ C([0, T ];H) ∩ L2([0, T ];V ),

with ∂u
∂t ∈ L2([0, T ];H) such that

{(
∂u
∂t , v

)
+ aλ(u(t), v) = (f(t), v), v ∈ V,

u(0) = ψ,

with ψ continuous, ψ ∈ V ,
√

1 + yf ∈ L2([0, T ];H) and f ∈ Lp([0, T ];Lp(O,m)). Then, if ψ and λ satisfy the
assumptions of Proposition 4.13, we have

1. For every t ∈ [0, T ], u(t) = Pλt ψ +
∫ t

0 P
λ
s f(t− s)ds.

2. The function (t, x, y) 7→ u(t, x, y) is continuous on [0, T ] × R × [0,+∞).
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3. If Λt = λ
∫ t

0
(1 + Ys)ds, the process (Mt)0≤t≤T , defined by

Mt = e−Λtu(T − t,Xt, Yt) +

∫ t

0

e−Λsf(T − s,Xs, Ys)ds,

with X0 = x, Y0 = y is a martingale for every (x, y) ∈ R × [0,+∞).

Proof. The first assertion follows from Proposition 4.2.
The continuity of (t, x, y) 7→ Pλt ψ(x, y) is given by Proposition 4.13, while the continuity of (t, x, y) 7→

∫ t

0 P
λ
s f(t − s, .)(x, y)ds can be proved with the same arguments. In fact, it is trivial if (t, x, y) 7→ f(t, x, y)

is bounded continuous. If f ∈ Lp([0, T ];Lp(O,m)), f is the limit in Lp of a sequence of bounded continuous

functions and we have
∫ t

0 P
λ
s fn(t− s, ·)ds →

∫ t

0 P
λ
s f(t− s, ·)ds uniformly in [0, T ] ×K for every compact K of

R × [0,+∞)). In fact, thanks to Theorem 4.11, we can write for t ∈ [0, T ] and (x, y) ∈ K

∫ t

0

Pλs |fn − f |(t− s, ·, ·)(x, y)ds ≤
∫ t

0

Cp,K,T

s
2β+3

2p

ds||(fn − f)(t− s, ·, ·)||Lp(O,m)

≤ Cp,K,T

(∫ t

0

||(fn − f)(t− s, ·, ·)||pLp(O,m)ds

)1/p(∫ t

0

ds

s
2β+3

2(p−1)

)1− 1
p

≤ Cp,K,T

(
∫ T

0

||(fn − f)(s, ·, ·)||pLp(O,m)ds

)1/p(∫ T

0

ds

s
2β+3

2(p−1)

)1− 1
p

.

(4.12)

The assumption p > β + 5
2 ensures the convergence of the integral in the right hand side.

For the last assertion, note that MT = e−ΛTψ(XT , YT ) +
∫ T

0
e−Λsf(T − s,Xs, Ys)ds. Then, we can prove

that Mt is integrable with the same arguments that we used to show the continuity of (t, x, y) 7→ u(t, x, y).
Moreover, by using the Markov property,

Ex,y (MT | Ft) = e−ΛtPλT−tψ(Xt, Yt) +

∫ t

0

e−Λsf(T − s,Xs, Ys)ds+ e−Λt

∫ T

t

Pλs−tf(T − s, ., .)(Xt, Yt)ds

= e−Λt

(

PλT−tψ(Xt, Yt) +

∫ T−t

0

Pλs f(T − t− s, ., .)(Xt, Yt)ds

)

+

∫ t

0

e−Λsf(T − s,Xs, Ys)ds

= e−Λtu(T − t,Xt, Yt) +

∫ t

0

e−Λsf(T − s,Xs, Ys)ds = Mt.

We are now ready to prove the following proposition.

Proposition 4.16. Fix p > β + 5
2 . Assume that ψ satisfies Assumption H1 and 0 ≤ ψ ≤ Φ, with Φ satisfying

Assumption H2, Assumption H∗ and (1 + y)Φ ∈ Lp([0, T ], Lp(O,m)). Moreover, assume that ∂ψ
∂t + Lψ ∈

Lp([0, T ];Lp(O,m)). Then, the solution u of the variational inequality (2.4) satisfies

u(t, x, y) = u∗(t, x, y), on [0, T ] × Ō, (4.13)

where u∗ is defined by
u∗(t, x, y) = sup

τ∈Tt,T

E
[
ψ(τ,Xt,x,y

τ , Y t,x,yτ )
]
.

Proof. Thanks to Proposition 4.14 we know that, for λ large enough, there exists F ∈ Lp([0, T ];Lp(O,m)) such
that u satisfies

−
(
∂u

∂t
, v

)

H

+ aλ(u, v) = (F, v)H , v ∈ V,

that is

−
(
∂u

∂t
, v

)

H

+ a(u, v) = (F − λ(1 + y)u, v)H , v ∈ V.
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On the other hand we know that






−
(
∂u
∂t , v − u

)

H
+ a(u, v − u) ≥ 0, a.e. in [0, T ] v ∈ V, v ≥ ψ,

u(T ) = ψ(T ),

u ≥ ψ a.e. in [0, T ] × R × (0,∞).

From the previous relations we easily deduce that F − λ(1 + y)u ≥ 0 a.e. and, taking v = ψ, that (F − λ(1 +
y)u, ψ − u) = 0. Moreover, from Proposition 4.15 we know that the process (Mt)0≤t≤T , defined by

Mt = e−Λtu(t,Xt, Yt) +

∫ t

0

e−ΛsF (s,Xs, Ys)ds, (4.14)

with X0 = x, Y0 = y is a martingale for every (x, y) ∈ R × [0,+∞). Then, we deduce that the process

M̃t = u(t,Xt, Yt) +

∫ t

0

(F (s,Xs, Ys) − λ(1 + Ys)u(s,Xs, Ys)) ds

is a local martingale. In fact, from (4.14) we can write

dM̃t = d

[

eΛtMt − eΛt

∫ t

0

e−ΛsF (s,Xs, Ys)ds

]

+ F (t,Xt, Yt)dt− λ(1 + Yt)u(t,Xt, Yt)dt

= eΛtdMt +
[

λ(1 + Yt)Mt − λ(1 + Yt)e
+Λt

∫ t

0

e−ΛsF (s,Xs, Ys)ds

− eΛte−ΛtF (t,Xt, Yt) + F (t,Xt, Yt) − λ(1 + Yt)u(t,Xt, Yt)
]

dt

= eΛtdMt.

So, for any stopping time τ there exists an increasing sequence of stopping times (τn)n such that limn τn = ∞
and

Ex,y[u(τ ∧ τn, Xτ∧τn
, Yτ∧τn

)] = u(0, x, y) − Ex,y

[∫ τ∧τn

0

(F (s,Xs, Ys) − λ(1 + Ys)u(s,Xs, Ys))ds

]

.

Since F − λ(1 + y)u ≥ 0 we can pass to the limit in the right hand side thanks to the monotone convergence
theorem. On the other hand, we have that limn→∞ Ex,y[u(τ ∧ τn, Xτ∧τn

, Yτ∧τn
)] = Ex,y[u(τ,Xτ , Yτ )] since

0 ≤ u(t, x, y) ≤ Φ(t, x, y) and (Φ(t + s,Xt,x,y
s , Y t,ys ))s∈[t,T ] is of class D for every (t, x, y) ∈ [0, T ] × R × [0,∞)

by assumption. Therefore, passing to the limit as n → ∞, we get

Ex,y[u(τ,Xτ , Yτ )] = u(0, x, y) − Ex,y

[∫ τ

0

eΛτ −λs (F (s,Xs, Ys) − λ(1 + Ys)u(s,Xs, Ys))ds

]

,

for every τ ∈ T[0,T ]. Recall that F − λ(1 + y)u ≥ 0, so the process u(t,Xt, Yt) is actually a supermartingale.
Since u ≥ ψ, we deduce directly from the definition of Snell envelope that u(t,Xt, Yt) ≥ u∗(t,Xt, Yt) a.e. for
t ∈ [0, T ].

In order to show the opposite inequality, we consider the so called continuation region

C = {(t, x, y) ∈ [0, T ) × R × [0,∞) : u(t, x, y) > ψ(t, x, y)},

its t-sections
Ct = {(x, y) ∈ R × [0,∞) : (t, x, y) ∈ C}, t ∈ [0, T ),

and the stopping time

τt = inf{s ≥ t : (s,Xs, Ys) /∈ C}
= inf{s ≥ t : u(s,Xs, Ys) = ψ(s,Xs, Ys)}.
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Note that u(x,Xs, Ys) > ψ(s,Xs, Ys) for t ≤ s < τt. Moreover, recall that (F − λ(1 + y)u, ψ − u) = 0
a.e., so Leb{(x, y) ∈ Ct : F − λ(1 + y)u 6= 0} = 0 dt a.e.. Since the two dimensional diffusion (X,Y ) has a
density, we deduce that E

[
F (s,Xs, Ys) − λ(1 + Ys)u(s,Xs, Ys)1{(Xs,Ys)∈Cs}

]
= 0, and so F (s,Xs, Ys) − λ(1 +

Ys)u(s,Xs, Ys) = 0 ds, dP − a.e. on {s < τt}. Therefore,

E [u(τt, Xτt
, Yτt

)] = E [u(t,Xt, Yt)] ,

and, since u(τt, Xτt
, Yτt

) = ψ(τt, Xτt
, Yτt

),

E [u(t,Xt, Yt)] = E [ψ(τt, Xτt
, Yτt

)] ≤ E [u∗(t,Xt, Yt)] ,

so that u(t,Xt, Yt) = u∗(t,Xt, Yt) a.e.. With the same arguments we can prove that u(t, x, y) = u∗(t, x, y) and
this concludes the proof.

4.5.2 Weaker assumptions on ψ

The last step is to establish the equality u = u∗ under weaker assumptions on ψ, so proving Theorem 2.4.

Proof of Theorem 2.4. For every n ∈ N, with natural notations, we have

un(t, x, y) = u∗
n(t, x, y) on [0, T ] × Ō.

The left hand side converges to u(t, x, y) thanks to the Comparison Principle. As regards the right hand side,

sup
τ∈Tt,T

E
[
ψn(τ,Xt,x,y

τ , Y t,x,yτ )
]

→ sup
τ∈Tt,T

E

[

e−r(τ−t)ψ(τ,Xt,x,y
τ , Y t,x,yτ )

]

thanks to the uniform convergence of ψn to ψ.

Remark 4.17. It is natural to ask if the assumptions of Theorem 2.4 are not vacuous and to look for payoff
functions for which they are indeed satisfied.

Let us consider, for example, the class of payoff functions ψ = ψ(t, x) = e−rtψ̄(x+ c̄t), where c̄ = r− δ− ρκθ
σ

as defined in (2.1) and ψ̄ is continuous, positive and such that

|ψ̄| +
∣
∣ψ̄′∣∣ ≤ C (ex + 1) ,

with C > 0. Note that the standard call and put options fall into this category.
We can show that ψ satisfies the assumptions of Theorem 2.4. In fact, fix p > β + 5

2 and assume γ > p in
the definition of the measure m. Note that

|ψ| +

∣
∣
∣
∣

∂ψ

∂t

∣
∣
∣
∣
+

∣
∣
∣
∣

∂ψ

∂x

∣
∣
∣
∣

≤ Φ(t, x),

where
Φ(t, x) = CT

(

ex− ρκθ
σ
t + 1

)

, (t, x) ∈ [0, T ] × R,

for some CT > 0. Then, ψ satisfies Assumption H1 since ψ ∈ C([0, T ];H),
√

1 + yψ ∈ L2([0, T ];V ), ψ(T ) ∈ V

and
∣
∣
∣
∂ψ
∂t

∣
∣
∣ ≤ Φ with Φ ∈ L2([0, T ];V ). Moreover, Φ satisfies Assumption H2 since Φ has values in H2(O,m),

(1 + y)
3
2 Φ ∈ L2([0, T ], H) and, by straightforward computations, ∂Φ

∂t + LΦ = 0. Therefore, ψ satisfies the
assumptions of Theorem 2.3 and there exists a unique solution of the variational inequality (2.4).

It remains to prove that ψ satisfies the further assumptions required in Theorem 2.4 in order to have the
probabilistic representation (4.13). Note that Φ ∈ Lp([0, T ];Lp(O,m)) and it satisfies Assumption H∗. In fact,

recall that the discounted and dividend adjusted price process (e−(r−δ)tSt)t = (eXt− ρκθ
σ
t)t is a martingale (we

refer to [12] for an analysis of the martingale property in general affine stochastic volatility models). Therefore,

the process (Φ(t,Xt))t∈[0,T ] = CT (eXt− ρκθ
σ
t + 1)t∈[0,T ] is a martingale, so that (Φ(s,Xs))s∈[t,T ] is of class D for

every (t, x, y) ∈ [0, T ] × R × [0,∞).
Then, recall the following result:
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Lemma 4.18. Let 0 < ν1 < ν2. If f ∈ W 1,p(R, e−ν1|x|) with p > 1, there exists a sequence (fn) such that
fn ∈ W 2,p(R, e−ν2|x|) and fn converges to f uniformly.

We refer to [11] for a proof. Since ψ̄ ∈ W 1,p(R, e−γ′|x|) for every γ′ > γ, from Lemma 4.18 we deduce the
existence of a sequence (ψ̄n)n ⊆ W 2,p(R, e−γ|x|) which uniformly converges to ψ̄. Hence, there exists a sequence
(ψn)n which converge uniformly to ψ and such that, for every n ∈ N, 0 ≤ ψn ≤ Φ and ψn satisfies Assumption
H1, ψn ∈ L2([0, T ], H2(O,m)) and ∂ψn

∂t + Lψn, Φ ∈ Lp([0, T ];Lp(O,m)).
Therefore, ψ satisfies all the assumptions required in Theorem 2.4 and we can identify the solution of the

variational inequality with the solution of the optimal stopping problem, that is the American option price.
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