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Variational formulation of American option prices in the
Heston Model

DAMIEN LAMBERTON®
G1ULIA TERENZI

Abstract

We give an analytical characterization of the price function of an American option in Heston-type models.
Our approach is based on variational inequalities and extends recent results of Daskalopoulos and Feehan
(2011). We study the existence and uniqueness of a weak solution of the associated degenerate parabolic
obstacle problem. Then, we use suitable estimates on the joint distribution of the log-price process and the
volatility process in order to characterize the analytical weak solution as the solution to the optimal stopping
problem. We also rely on semi-group techniques and on the affine property of the model.

Keywords: American options; degenerate parabolic obstacle problem; optimal stopping problem.

1 Introduction

The model introduced by S. Heston in 1993 ([d]) is one of the most widely used stochastic volatility models in
the financial world and it was the starting point for several more complex models which extend it. The great
success of the Heston model is due to the fact that the dynamics of the underlying asset can take into account
the non-lognormal distribution of the asset returns and the observed mean-reverting property of the volatility.
Moreover, it remains analytically tractable and provides a closed-form valuation formula for European options
using Fourier transform.

These features have called for an extensive literature on numerical methods to price derivatives in Heston-
type models. In this framework, besides purely probabilistic methods such as standard Monte Carlo and tree
approximations, there is a large class of algorithms which exploit numerical analysis techniques in order to solve
the standard PDE (resp. the obstacle problem) formally associated with the European (resp. American) option
price function. However, these algorithms have, in general, little mathematical support and in particular, as far
as we know, a rigorous and complete study of the analytic characterization of the American price function is
not present in the literature.

The main difficulties in this sense come from the degenerate nature of the model. In fact, the infinitesimal
generator associated with the two dimensional diffusion given by the log-price process and the volatility process is
not uniformly elliptic: it degenerates on the boundary of the domain, that is when the volatility variable vanishes.
Moreover, it has unbounded coefficients with linear growth. Therefore, the existence and the uniqueness of the
solution to the pricing PDE and obstacle problem do not follow from the classical theory, at least in the case in
which the boundary of the state space is reached with positive probability, as happens in many cases of practical
importance (see B]) Moreover, the probabilistic representation of the solution, that is the identification with
the price function, is far from trivial in the case of non regular payoffs.

It should be emphasized that a clear analytic characterization of the price function allows not only to
formally justify the theoretical convergence of some classical pricing algorithms but also to investigate the
regularity properties of the price function (see ﬂl_l|] for the case of the Black and Scholes models).
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Concerning the existing literature, E. Ekstrom and J. Tysk in ﬂa] give a rigorous and complete analysis of
these issues in the case of European options, proving that, under some regularity assumptions on the payoff
functions, the price function is the unique classical solution of the associated PDE with a certain boundary
behaviour for vanishing values of the volatility. However, the payoff functions they consider do not include the
case of standard put and call options.

Recently, P. Daskalopoulos and P. Feehan studied the existence, the uniqueness, and some regularity prop-
erties of the solution of this kind of degenerate PDE and obstacle problems in the elliptic case, introducing
suitable weighted Sobolev spaces which clarify the behaviour of the solution near the degenerate boundary.
Again, as regards the probabilistic representation, they only treat the case with heavy regularity assumptions
on the payoff function (see [7]).

The aim of this paper is to give a precise analytical characterization of the American option price function
for a large class of payoffs which includes the standard put and call options. In particular, we give a variational
formulation of the American pricing problem using the weighted Sobolev spaces and the bilinear form introduced
in ﬂﬂ] The paper is organized as follows. In Section 2 we introduce our notations and we state our main results.
Then, in section 3 we study the existence and uniqueness of the solution of the associated variational inequality,
extending the results obtained in ﬂﬂ] in the elliptic case. The proof essentially relies on the classical penalization
technique introduced by Bensoussan and Lions M] with some technical devices due to the degenerate nature of
the problem. We also establish a Comparison Theorem. Finally, in section 4, we prove that the solution of the
variational inequality with obstacle function v is actually the American option price function with payoff v,
with conditions on ¥ which are satisfied, for example, by the standard call and put options. In order to do this,
we use the affine property of the underlying diffusion given by the log price process X and the volatility process
Y. Thanks to this property, we first identify the analytic semigroup associated with the bilinear form with a
correction term and the transition semigroup of the pair (X,Y") with a killing term. Then, we prove regularity
results on the solution of the variational inequality and suitable estimates on the joint law of the process (X,Y)
and we deduce from them the analytical characterization of the solution of the optimal stopping problem, that
is the American option price.
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2 Notations and main results

2.1 The Heston model

We recall that in the Heston model the dynamics under the pricing measure of the asset price S and the volatility
process Y are governed by the stochastic differential equation system

&t = (r—08)dt + VY, dBy, So=s>0,
d}/% = KJ(@ - Y;&)dt + 0\/}715th7 YVO =Y 2 07

where B and W denote two correlated Brownian motions with
d(B,W), = pdt, pe(—1,1).

Here » > 0 and § > 0 are respectively the risk free rate of interest and the continuous dividend rate. The
dynamics of Y follows a CIR process with mean reversion rate x > 0 and long run state > 0. The parameter
o > 0 is called the volatility of the volatility. Note that we do not require the Feller condition 2x6 > o?: the
volatility process Y can hit 0 (see, for example, ﬂa, Section 1.2.4]).
We are interested in studying the price of an American option with payoff function 1. For technical reasons
which will be clarified later on, hereafter we consider the process
pKo

X: =logS; — ¢ct, withe=r—0 — —, (2.1)
o

which satisfies

{dXt = (22 _ Y0)gt + \/V;dB,, 22)

dY, = k(0 — Y,)dt + o/YidW,.

Note that, in this framework, we have to consider payoff functions ¢» which depend on both the time and
the space variables. For example, in the case of a standard put option (resp. a call option) with strike price K
we have ¥ (t,z) = (K — "), (resp. ¥(t,x) = (e*T¢* — K),). So, the natural price at time ¢ of an American
option with a nice enough payoff (¢(t, X;,Y?))o<i<r is given by P(t, X;,Y;), with

P(t,@,y) = esssupper, , Ble™ 7000, X5V, V),

where T 7 is the set of all stopping times with values in [t,T] and (X5%Y, YY), <s<r denotes the solution to
[22) with the starting condition (X%, Y:) = (x,y).

Our aim is to give an analytical characterization of the price function P. We recall that the infinitesimal
generator of the two dimensional diffusion (X,Y) is given by

_y (& @ 20 2 (e v 0
L= (x +2p08y8x+0 Oy? + (0 y)8y+ o 2 ) 0z’

which is defined on the open set O := R x (0, 00). Note that £ has unbounded coefficients and is not uniformly
elliptic: it degenerates on the boundary 00 = R x {0}.

2.2 American options and variational inequalities
2.2.1 Heuristics

From the optimal stopping theory, we know that the discounted price process P(t, X;,Y;) = e "' P(t, X;,Y;)
is a supermartingale and that its finite variation part only decreases on the set P = 1. We want to have an
analytical interpretation of these features on the function P(t,z,y). So, assume that P € C»%((0,T) x O).
Then, by applying Ito’s formula, the finite variation part of P(t, X, Y:) is

oP .
(E + EP) (t,Xt,Y;g).



Since P is a supermartingale, we can deduce the inequality

oP -
— P <
e +LP <0

and, since its finite variation part decreases only on the set P(t, X, Y;) = ¢(¢, X+, Y:), we can write

(88—1;+£15>(1/;—P)_0,

This relation has to be satisfied dt — a.e. along the trajectories of (¢, X, Y;). Moreover, we have the two trivial
conditions P(T,z,y) = (T, x,y) and P > 1.

The previous discussion is only heuristic, since the price function P is not regular enough to apply the Ito’s
formula. However, it suggests the following strategy:

1. Study the obstacle problem
YUt Lu<0, u>v, in[0,T]xO0,
(%% +Lu) (¥ —u)=0, in[0,T]x O, (2.3)
u(T,z,y) = P(T,x,y).

2. Show that the discounted price function P is equal to the solution of 23) where ¢ is replaced by

U(t,z,y) = e "Y(L, x,y).

We will follow this program providing a variational formulation of system (Z3)).

2.2.2 Weighted Sobolev spaces and bilinear form associated with the Heston operator
We consider the measure first introduced in ﬂﬂ]
m, ,(dz,dy) = yP eVl mm gy,

with v > 0, o > O0and 8 := 20%9. It will be clear later on that this measure in some sense describes the

qualitative behaviour of the process (X,Y’) near the degenerate boundary. For u € R™ we denote by |u| the
standard euclidean norm of v in R™. The relevant Sobolev spaces are defined as follows (see ﬂﬂ])

Definition 2.1. For every p > 1 let LP(O,m,, ;) be the space of all measurable functions u : O — R for which

[0 = [ fiP < o
and denote H°(O,m,, ,,) :== L*(O,m,_,).
1. If Vu = (ug, uy) and ug, u, are defined in the sense of distributions, we set

HY(O,m, ) = {u € L*(O,m, ) : /1 +yu and \/y|Vu| € L*(O,m, )},
and
[ 0= [, G (1 ) i

2. If D*u = (Ugy, Usy, Uyz, Uyy) and all derivatives of u are defined in the sense of distributions, we set

H2(Ovm%u) ={ue L2(O=m%u) V1 +yu, (14y)|[Val, y|D2u| € L2(Oummu)}

and
lalZre0m, = /O (2ID%uP + (14 92 IVul + (1 + y)u2) dmo



For brevity and when the context is clear, we shall often denote
H:=H°O,m,,), V:=H"(Om,,)

and
lullzr == llullz2(0,m.. )0 lullv = [lullg10m., .-

Note that the spaces H* (O,m, ), for k =0,1,2 are Hilbert spaces with the inner products

(u,v)g = (u,v)Lz(@ym%“) :/ wodm,,
o

(0} = (0,0 ©me = [ (0(V0 Vo) + (14 pur) dm
o

and
(U, ) 52(0,m,. ) ;:/ (y* (D*u, D*v) + (1 4+ y)* (Vu, Vo) + (1 + y)uv) dm,
(@]

where (-, ) denotes the standard scalar product in R™. Moreover, note that
H*(O,m,,) C H'(O,m, ).
We can now introduce the bilinear form associated with the differential operator L.

Definition 2.2. For any u,v € H'(O,m, ,,) we define the bilinear form

1
ey (U, 0) =3 /0 Y (uav5(2,Y) + pougvy(z,y) + pouyvg(z,y) + o uyvy(z,y)) dm,,,

+/ymww%@w+mww%www@mme

G

where 2
Ypo o
(L —ysgn(@) = ppo), Ky =K — —=sgn(z) — ——.

DN =

Ty =
We will prove that for every u € H*(O, m) and for every v € H'(O, m) , we have
(Lu,v)g = —ay,,(u,v).

In order to simplify the notation, from now on we fix v and p and we write m and a instead of m, , and a ,.

2.3 Variational formulation of the American price

Fix T > 0. We consider an assumption on the payoff function ¢) which will be crucial in the discussion of the
penalized problem.

Assumption H'. We say that a function ¢ satisfies Assumption H! if¢p € C([0,T]; H), /T + y € L*([0,T]; V),
(T) € V and there exists ¥ € L?([0,7]; V) such that ‘%—‘f <.

We will also need a domination condition on % by a function ® which satisfies the following assumption.

Assumption H2. We say that a function ® € L2([0,T]; H2(O, m)) satisfies Assumption H2 if (1 +y)2® €
L2([0,T]; H), 2 + L& < 0 and /T + y® € L>([0,T]; L>(O,m,,,)) for some 0 < p' < p.

The domination condition is needed to deal with the lack of corercivity of the bilinear form associated with
our problem. Similar conditions are also used in ﬂﬂ]

The first step in the variational formulation of the problem is to introduce the associated variational inequality
and to prove the following existence and uniqueness result.



Theorem 2.3. Assume that ¢ satisfies Assumption H' together with 0 < ¢ < ®, where ® satisfies Assumption
H2. Then, there exists a unique function u such that u € C([0,T]; H) N L*([0,T]; V), 2% € L([0,T); H) and

— (%, v —u), +a(u,v—u)
u> ae in0,T] xR x (0,
w(T) = ¢(T),

0<u<ao.

>0, ae n[0,T] veEV, v>1,
00),

(2.4)

The proof is presented in Section 3 and essentially relies on the penalization technique introduced by Ben-
soussan and Lions (see also B]) with some technical devices due to the degenerate nature of the problem. We
extend in the parabolic framework the results obtained in E] for the elliptic case.

The second step is to identify the unique solution of the variational inequality (2.4]) as the solution of the
optimal stopping problem, that is the (discounted) American option price.

Recall that an adapted right continuous process (Z;);>o is said to be of class D if the family (Z:),e7 .,
where 7o« is the set of all stopping times with values in [0, 00), is uniformly integrable. We introduce the
following further assumption:

Assumption H*. We say that a function @ : [0, 7] x R x [0, 00) — R satisfies Assumption H* if ® is continuous
and, for all (¢,z,y) € [0,T] x R x [0,00), the process (D(t + s, XY, YY) scpo0,0—y is of class D.

Assumption H* is crucial in order to get the following identification result.

Theorem 2.4. Fizp > §+ % Assume that, in addition to the assumptions of Theorem [2.3, there exists a
sequence (Yn)nen of continuous functions on [0,T] x R x [0, 00) which converges uniformly to 1 and satisfies
the following properties for each n € N:

1. 1, satisfies Assumption H' and 0 < ¥, < ®,, for some ®,, satisfying Assumption H?, Assumption H*
and (1 +y)®,, € LP([0,T]; LP(O,m));

2. ¢ € L2([0,T), H2(O,m)) and %% + L4, € LP(0,T); LP(O, m)).

Then, the solution u of the variational inequality (2.4) associated with 1) is continuous and coincides with
the function u* defined by
w (t,z,y) = sup E [¢(r, Xp™¥, YE2Y)].

TET:, T

We conclude this overview with a natural remark. The assumptions on ¢ in Theorem and Theorem 2.4]
seem to be very stringent but we will see that, by choosing v large enough, they are satisfied by the class of
payoff functions 1 = 9 (t,2) = e "*4p(x + ct), where ¢ = r — 6 — p%e as defined in (Z]), ¢ is continuous, positive
and such that - ~

[|+ || < C (" +1),

with C' > 0. Note that the standard call and put payoff functions fall into this category (see Remark ETT]).

3 Existence and uniqueness of solutions to the variational inequality

3.1 Integration by parts and energy estimates
The following result justifies the definition of the bilinear form a.
Proposition 3.1. Ifu € H*(O,m) and v € H'(O,m), we have
(Lu,v)g = —alu,v). (3.1)

Before proving Proposition Bl we show some preliminary results. The first one is about the standard
regularization of a function by convolution.



Lemma 3.2. Let ¢ : R x R — RT be a C™ function with compact support in [—1,+1] x [=1,0] and such
that [ [ p(z,y)dzdy = 1. For j € N we set ¢;(z,y) = j%¢(jz, jy). Then, for every function u locally square-
integrable on R x (0,00) and for every compact set K, we have

lim // (¢ *u —u)?(z,y)dzdy = 0.
K

j—o0

Proof. We first observe that

//K(%' *u)Q(I,y)d:cdyS//Kd:cdy//¢j(§7<)u2(x_§7y_od§d<
://<Pj(€v<)d§dC//IK(I—F{,y—I—C)uQ(x,y)d:rdy.

We deduce, for j large enough,

//K(Sﬁj*U)2(x,y)dardyS//RUQ(:Z:,y)d:cdy,

where K = {(z,y) € Olds((z,y), K) < %} Let € be a positive constant and v be a continuous function such
that [ [ (u(z,y) —v(z,y))?dedy < e. We have

[ [ tieu =i ydady
§3//K(gpj*u—(pj*v)z(x,y)d:rdy—l—3//K(<pj*v—v)Q(x,y)da:dy—F?)//K(v—u)z(x,y)da:dy

< 3//}_{(1; —w)?(z,y)dzdy + 3//}((% x v —v)2(z,y)dedy + 3//1_((0 —u)?(x,y)dzdy
< 6e + 3//}((%- xv — )2 (x,y)drdy.

Since v is continuous, we have |¢; * v| < sup, ,cx [v(z,y)| and ¢; * v(z,y) = v(z,y) on K. Therefore, by
Lebesgue Theorem, we can pass to the limit in the above inequality and we get

lim sup// (j *u —u)?(z,y)dzdy < 6e,
Jj—ro0 K
which completes the proof. [l

Then, the following two propositions justify the integration by parts formulas with respect to the measure
m.

Proposition 3.3. Let us consider u,v : O — R locally square-integrable on O, with derivatives u, and v,
locally square-integrable on O as well. Moreover, assume that

/O (Jua (2, y)o(z, )| + |u(z, y)ve(z, y)| + |[u(z, y)v(z,y)|)dm < oo

Then, we have

/ Uy (2, y)v(z, y)dm = —/ u(z,y) (vz(x,y) — ysgn(x)v) dm. (3.2)
o

(@]

Proof. First we assume that v has compact support in R x (0, 00). For any j € N we consider the C*° functions
uj = @; *u and v; = @;*v, with ¢; as in Lemma 321 Note that supp v; C supp g+ supp ¢; and so, for j large
enough, supp v; C R x (0,00). For any € > 0, integrating by parts, we have

o0

> - €T € z —YVvVZI €
| e ye T =~ [ (<vj>m<w,y>—7ij<w,y>>e e



and, letting € — 0,

| welw e e = = [ ()00~ rsgnta)e; ) .

— 0o — 00

Multiplying by y®~'e~#¥ and integrating in y we obtain
L @in = = [ w((@)s(a.) = 50w, o.0) don

Recall that, for j large enough, v; has compact support in R x (0,00) and m is bounded on this compact. By
using Lemma [B.2] letting j — oo we get

/ g (x, y)v(z, y)dm = —/ u(vz(:zz,y) —’ysgn(a:)v(x,y)dm.
O O

Now let us consider the general case of a function v without compact support. We introduce a C*° —function «
with values in [0, 1], a(x,y) = 0 for all (z,y) ¢ [—2, +2] x [-2,+2], a(x,y) = 1 for all (z,y) € [-1,+1] x[-1,+1]
and a C°°—function y with values in [0,1], x(y) =0 for all y € [0, ], x(y) = 1 for all y € [+1, 00). We set

T . .
Aj(z,y) = @ (3, g) x(jy),  jeN.

For every j € N, A; has compact support in O and we have

/um(x,y)Aj(x,y)v(:zr,y)dm
O

_ / u(e, ) (ua (i, y) — ysgn(@)o(z, y)) A; (z, y)dm — / u(e, )0 (@, ) (Ay)a (2, y)dm.
(@) O

The function A; is bounded by ||| collX|lec and lim; 4o Aj(z,y) = 1 for every (z,y) € O. Moreover
(4))a(,y) = tau (2,4) x(jy), so that

[ et anatoiin] < S [ Lo ot i,
o J Jo

where C' = ||az||oo || X||co- Therefore, we obtain ([B2) letting j — oo. O

Proposition 3.4. Let us consider u,v : O — R locally square-integrable on O, with derivatives u, and v, locally
square-integrable on O as well. Moreover, assume that

/Oy(|uy($7y)v(11?,y)| + Ju(z, y)vey(@,y)|) + lu(z,y)o(z,y)|dm < oo.
Then, we have
/Oyuy(x,y)v(;v,y)dm = —/Oyu(:b,y)vydm— /O(ﬂ — py)u(x, y)v(z, y)dm. (3.3)

Proof. If v has compact support in O, we obtain (33)) as in the proof of Proposition[33l On the other hand, if
v has not compact support,

[ vyt st pdm = = [ yute,)o, (o)A (. g)dm
(@) (@)

- / (6 — py)ulz, y)o(e, y)A; (@, y)dm — / yu(z, )o(z, ) (A7), @, y)dm,
O O



*, £)x(jy), as in the proof of Proposition.3but choosing x such that, moreover, [|yx’(y)[/oc <
0. We have (A7), (2,) = Loy (%, 2)x(jy) + ja(%, £)x'(jy). Note that

J

[ e sote.mio (£.8) inin| < [ 1, lutote ol sup o ©lan

The last expression goes to 0 as j — oo since [, [u(x,y)v(z,y)|dm < oo. The assertion follows by passing to
the limit j — oo. O

We can now prove Proposition B.11

Proof of Proposition[31]. By using Proposition B.3] and Proposition B.4] we have

0%u ou [ Ov
/wavdm = / o (8_ — ysgn(x)v )dm,

9%u 8u ov ou
ya—yzvdm = 8 8ydm7 m + /O(uy - ﬂ)a—yvdm,
2 ou [ Ov
; vy 8yvdm%“ / 8y (8_ - 75971(96)1}) dm
and 9? ou 0 0
u u Ov u
o yax—ay’l}dmwﬁu = — o ya'r 8 dm + ‘/O(/,Ly — ﬂ)%vdm

Recalling that

02 0? 5 02 pkf  y\ O 0
L=Z (82+2p88 +Ua—y2>+(7—§)a—x+ﬁ(9—y)a—y

and using the equality 8 = 2xkf/0?, we have

(Lo, = _/ 8u8v+02@@+ %@4_ Ou Ov dJm
H Ox Ox Oy Oy Ox Oy By oz

+/ %g—(yvsgn( )+ po(uy — B)) vdm
/ ou

56—(W y — Bo® + poyysgn(x)) vdm
K ——> + k(0 - y)g:]vdm

O

Remark 3.5. It is now clear why we have considered the process X; = log Sy — ¢t instead of the standard log-
price process log Sy. Actually, the choice of ¢ allows to avoid terms of the type [(uy + uy)dm in the associated
bilinear form a. This trick will be crucial in order to obtain suitable energy estimates.

Recall the well known inequality

be = (v/Ch) <ﬁ) <b2 214‘ 2, beceR, (>0 (3:4)

Hereafter we will often apply ([B.4]) in the proofs even if it is not explicitly recalled each time.



Proposition 3.6. For every u,v € V, the bilinear form a(-,-) satisfies
la(u, v)| < Cullullvv]lv,

1
a(u,u) > Collullf, = Csll(1 +y)2ulF,

where 5 5 )
K
Cr=00+K;, Cy=—, C3=—4—L
1 o+ K1, 2 5 3 5 + 95,
with
|s182 + posita + posaty + o?tita|
oo = sup
$242>0, s2+12>0 2¢/(s2 +13)(s2 + t2)
. 52 + 2post + o2t?
01 = inf ,
5241250 2(s? +t?)
and
Ky=  sup \/ﬁ,u(w,y) + kS ().

(z,y) R X]0, 400

Proof. Recall that

a(u,v) =

N =

/ Y (uxvz + POULVy + POUYV, + Jzuyvy) dm
O

3

4 / Y (e ()10 (2, 9) + By (2t (2, ) (2, ).
(@]

We can easily see that

1
2

and

‘/Oy(jw(fr)ux(x,y) +kw,u(x)uy(x,y))v(x,y)dm‘ < K1/Oy|VUI|v|dm < Killullvlvflv-

Then [B.3) immediately follows. In order to prove ([B.6), we note that

1
2

Therefore

a(u,u)Zél/ y|Vu|2dm—K1/ y|Vulu|dm
o

251/y|Vu|2dm 1</y|Vu|2 ——5/ 1+ y)u®dm

(51 K21<>/O(y|Vu|2 (14 y)u

Choosing ¢ = 61 /K; we have

2

é 1) K?
ofuwn) 2 Flully — (5 + 55 ) IVIF ol

and the assertion is proved.

10

K K
5, - ¢ K

2¢

‘—/ Y (UzVs + poUuzvy + potyvg + 0 uyvy) dm} < 50/ y|Vul||Vo|dm < dol|ul|v||v]|v
o o

— / Yy (uxvz + poULVy + poUy VL + Jzuyvy) dm > 01 / y|Vul?dm.
O O

) / (1+ y)u’dm.



3.2 Proof of Theorem

Among the standard assumptions required in @] for the penalization procedure, there are the coercivity and
the symmetry of the bilinear form a and the boundedness of the coefficients. In the Heston-type models these
assumptions are no longer satisfied and this leads to some technical difficulties. In order to overcome them, we
introduce some auxiliary operators.
From now on, we set
a(u,v) = a(u,v) + a(u,v),

where
ORI Y (LT LT TG T3 P
nw.v) = 02 \ 0z oz paaxay paayax Uayay ’
ou ou
a = — g~ vd —k~ ,vdm.
a(u,v) /Oyax],wv m+/oyay ~ podm

Note that a is symmetric. We have, for every u,v € V,

la(u,v)] < 50/y|Vu||Vv|dm7
o

a(uu) > 6 / y|Vul2dm,
(@)

and
(s v)] < K / |Vl jo]dm,
(@)

with g, 61 and K defined in Proposition 3.6l Then, we introduce for A > 0 and M > 0,

ax(u,v) = alu,v)+ )\/ (14 y)uvdm,
o
ax(u,v) = alu,v)+ )\/ (14 y)uvdm,
o
~ ou . ou
aM (u,v) = /0 yANM (%J%u + 8_ka’“> vdm
and
o) = a ) +a (. 0).

Lemma 3.7. Let dg, 01, K be defined as in (310), B) and B9) respectively. For any fived A > 571 + % the
(M)

bilinear forms ay and ay ' are continuous and coercive. More precisely, we have

lax(u,v)] < C|lu|lv|v|v, w,v €V, (3.10)
51, o
ax(uu) 2 Flolly,  uweV, (3.11)
and
1M (u,0)] < Cllullvvllv,  wweV, (3.12)
5
™ (u,u) > %Hvll%/, ueV. (3.13)

where C'= 09 + K1 + A.

11



Proof. Note that, for every u,v € V|
10D (u,v)| < K /O |V [v]dim,
so that
™ (w, 0)| < [a(u,v)| +>\/O(1 +y)lullvlderKl/OyIVUIIUIdm

gao/ y|Vu||Vv|dm+/\/(1+y)|u||v|dm+K1/ Y|V o] dm
O O O

< (60 + A+ Ki)[ullvv|v.
On the other hand, for every ¢ > 0,

M
a"(

Y

U, u) 51/ y|Vu|2dm+/\/(1+y)u2dm7,H—K1/ y|Vulu|dm
o o o

(4~15) fomme (-8

Y

By choosing ¢ = 01/ K7, we get

1) K?

ag\M) (u,u) > —1/ y|Vul2dm 4+ [ A — - / (1 +y)u?dm.

2 Jo 201 ) Jo

We deduce that, if \ > %1 + 35
M 1
o (ww) = FJul-

The same calculations hold for the bilinear form a) and the assertion is proved. O

Remark 3.8. Let ||a|| = sup, yev,u vz0 m be the norm of a bilinear form a : V. xV — R. Then we stress
that Lemma[37] gives us
M
sup (|} < €,
M>0

where C = 09 + K1 + \.

. . K} .
From now on in the rest of this paper we assume \ > % + 35 asin Lemma 3.7

Finally, we define
LY =L - M1+y)

the differential operator associated with the bilinear form ay, that is

(L u,v) g = —ax(u,v), u€ H*(O,m),veV.

3.2.1 Penalized problem

For any fixed € > 0 we define the penalizing operator

G =10 -u) = 2Cw),  weV. (314)

Since the function x — —(v» — x)4 is nondecreasing, we easily get the following monotonicity result.

Lemma 3.9. The penalizing operator [BI4]) is monotone, in the sense that

(C(u) = C(v),u —v)g >0, u,v € V.

12



We now introduce the intermediate penalized coercive problem with a source term g. We consider the
following assumption:

Assumption H°. We say that a function g satisfies Assumption H° if /T + yg € L*([0,T]; H).

Theorem 3.10. Assume that 1 satisfies Assumption H' and g satisfies Assumption H°. Then, for every fived
e > 0, there exists a unique function uc \ such that u. x € C([0,T); H) N L*([0,T]; V), ues ¢ L3([0,T); H) and

ot
{— (%52 0.0) , + orer) + Celwer®) 0 = 6O, ae D T] veV,
ue \(T') = o(T).
Moreover, the following estimates hold:

lueallLoe(o.17,v) < K, (3.16)

H Ouie,» <K, (3.17)

Ot 2o ry )
1
ﬁ H(?/} - UE,)\)+"L00([01T]7H) S K7 (318)

where K = C (||| z20,11,v) + VT Fy9ll 2o, 160y + VT F 90l 220,190y + [9(DF), with C > 0 indepen-
dent of €, and W is given in Assumption H .

We first prove uniqueness of the penalized coercive problem.

Proof of Theorem[310: uniqueness. Assume that there exist two functions u; and uy satisfying (BI0]) and set
w = u; — ug. If we choose v = u; — ug in the equation satisfied by w3 and v = uy — u; in the one satisfied by
us and then we add the resulting equations, we get

~(Fr000)) +ar@O.00) + 0 (0) = ). wo)s =

By the coercivity of a) and the monotonicity of the penalized operator we deduce that

- (Groun) o= (o) = 5ol >0

But w(T) =(T) —(T) =0, so w(t) =0 a.e. in [0,T], which means u; = us. O

The proof of existence in Theorem is quite long and technical, so we split it into two propositions. We
first consider the truncated penalized problem, which requires less stringent conditions on ¢ and g.

Proposition 3.11. Let ¢ € C([0,T]; H) N L3([0,T); V) and g € L?([0,T); H). Moreover, assume that ¢(T) €
H?(O,m), %—f € L*([0,T};V) and 5% € L*([0,T]; H). Then, there exists a unique function ue xn such that
e € C10,T; V) UL2([0,T]; V), 24220 € 12([0,T); V) and

{— (W(U,U)H + aE\M) (UE,A,M(t)vv) + (CE(UE,A,M)(t)v’U)H = (g(t)vv)Ha a.e. in [OvT)v veV,

ue M (T) = (7). -
3.19

Proof. 1. Finite dimensional problem We use the classical Galerkin method of approximation, which
consists in introducing a nondecreasing sequence (V;); of subspaces of V' such that dimV; < co and, for
every v € V, there exists a sequence (v;)jen such that v; € V; for any j € N and |lv — vj|ly — 0 as
j — o0. Moreover, we assume that ¢(7') € V;, for all j € N. Let P; be the projection of V' onto V;

13



and ©;(t) = Pjy(t). We have ¢;(t) — 9(t) strongly in V' and ¢;(T) = ¢(T') for any j € N. The finite
dimensional problem is, therefore, to find u; : [0,T] — V; such that

du; M —
{ (Fe@.v) +al w(0),0) = 2@ 0 = w®)e,0)m = (90, V), veV;,
uy(T) = (7).
This problem can be interpreted as an ordinary differential equation in V; (dim V; < co) and we can

easily deduce the existence and the uniqueness of a solution u; of (B20), continuous from [0, T] into Vj,
a.e. differentiable and with bounded derivatives.

(3.20)

2. Estimates on the finite dimensional problem First, we take v = u;(t) — ¢;(t) in (320). We get

- (GO0 - 0) 5000500 = 550 = 250~ 150 150) ~ b5
H

= (9(8),u;(t) = ;D)) u

which can be rewritten as

~5 a0 =001 = (G200 =5,0) + a0 = w5050 = b5 (0)

+ g((dfj (8) = 1wy (8)) 405 (8) = (8 + a8 (5 (), 5 (8) = 5 () = (9(8), 5 () — (1))

We integrate between ¢ and T and we use coercivity and u;(T") = v;(T) to obtain

T T
Sl =0+ 3 [ @) = ws s+ 2 [ 1050 = w00 s
3%‘ (s)

T
Huj(s) —;(s)||ads + /t lg(s)llzllu; (s) — i (s) || mrds

t

+MXW/|% vlhus(s) = s(s)vas
0
<o [ ]2 Hd+</|% M + e [ Mot s + 5 [ us(s) — vyl s

oM
'X'K/n] (5 + 1 ”/H% s,

for any ¢ > 0. Recall that 1; = Pj3, and so [[¢;(t)]|3 < |[(t)]|3. In the same way |

O;(t 12 .
25015 < 12583 . Choosing ¢ = ——Sr

af 14+ —2—

8wj(t)||2
ot H —

after simple calculations we deduce that there exists

C > 0 independent of M, € and j such that

%%U%+&ﬁWww2%+lfM%@—w@M%%

<C H (3.21)

2
L2([t,T);V) Hg”L2 ([t,T);H) + HwHL2([t,T];V)

We now go back to F20) and we take v = %4 (¢). We have
_ (%(t), %(t))H +al™ (u (1), 581? (t)) ((wg( ) —u;(8), %(t))H = (g(t), %@))H,

14



so that

Note that

—2 (w0 -wen Go) -

2

Integrating between t and T', we obtain
[ %ﬂﬁ “+§®WNMMW+§Www—w@nm
T . T
—[éﬂﬂ@x%%§@>@+;mwamwaw—1 (00 = 190, 520)

(09, 25 9)) s
/t< Os H

Recall that ax(u;j(t), u;(t)) > 01llu; ()%, ax(;(T),¢;(T)) = ax((T), v(T)) < |ax|[|&(T)|?3 and
|aM) (u,v)| < K foy/\ M |Vu||v|dm, so that, for every ¢ > 0,

2[5

0
SK{/(B/yAAﬂVW@JWE#@wﬂd L+ 2 [ e - | S|
t (@]

8uj

Hd+ g 1+ 5 5 6) — 5 01

ds

% s)

T
+ [ ot ds
KlM Ouj Hd,\|| 5
<30 hutepras + S [ g dm— ()1}
T
C/ij-wm»AM@+% gs (z+—/|m s + 5

From (3ZI)), we already know that

[ stertas+ 2 [ o - Amw<cw

) + gl ey + ||1/}|%2([t,T];V)> ;

15



then we can finally deduce

’

du; ? d 2 1 ¢ 2
T s+ IOl + 100 ~ w0)-

<C€M (H

where C; s is a constant which depends on € and M but not on j.

(3.22)

+||9HL2(tT H)+|W||L2(tT + [l (T )H )
L2([t,T];V)

We will also need a further estimation. If we denote u; = % and we differentiate the equation ([B.20])

with respect to t for a fixed v independent of ¢, we obtain that u; satisfies

_<%(t),v>H+aE\M)(ﬂj(t),v)—_(<6(;/:(t)—aj(t)>1{wj(t)2uj(t)},v)H (gf@ v>H, vev

(3.23)
As regards the initial condition, from (320 computed in ¢ = T, for every v € V; we have

(24 0) =)0 - @) 00

= = (LY(T),0) g + AL+ 9)U(T),0) g + (Y AM = y) Gyt + oy utty),0) g + (9(T),0) g -
du, (T)

Choosing v = —§,—, we deduce that
|22 <[P ol + 10+ el + = 30T + o))
SC‘ Buy(T) H LOT@) i + 11+ )o@ + o))

that is, ’

24| < € LD+ 11+ )T+ lg(T) ).
We can take v = u;(t) in (3:23)) and we obtain

- <%(t)’ﬂj(t))H“L“(M)(“J(t)’ﬂj(t”“ <<a(;/f( ) - '(t))1{wj<t>2uj<t>},ﬂj(t)) = <%(t),ﬂj(t)) :

so that

g O + 100 < 2 ((F0 5000z a,0) -+ (F0rw0)
- (%(t)l{wj<t>>uj}v“j(t)) + (gi() ! (t)>

Integrating between ¢ and 7', with the usual calculations, we obtain, in particular, that

H

e 2 2 2 oY
/t las(s)[ds < C (nw(T)nH + 11+ )T 3 + 9T I3 + HE

L2([t,T); H) >7

(3.24)
where C; is a constant which depends on &, but not on j.
. Passage to the limit
Let € and M be fixed. By passing to a subsequence, from ([3.22]) we can assume that 2% Weakly converges

to a function u! , 5, in L*([0,T]; H). We deduce that, for any fixed ¢ € [0,T], u;(t) Weakly converges in
H to

T
werni(t) = $(T) — /t sy (s)ds.
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Indeed, u;(t) is bounded in V, so the convergence is weakly in V. Passing to the limit in (3:24) we deduce

that W € L2([0,T]; V). Moreover, from ([B.22), we have that (1; — u;(t))" weakly converges in H to
a certain function y € H. Now, for any v € V we know that there exists a sequence (v;);en such that
v; € Vj for all j € N and [jv — vy — 0. We have

ou; 1
H
so, passing to the limit as j — oo,

_ (aua,k,M

T (t),v)H + ax(ue xm(t),v)m —

200, 0 = (9l0), )

We only have to note that x(t) = (¢¥(t) —uea,m(t))+. Infact, ¥,(t) — ¢(t) in V and, up to a subsequence,
Lyu;(t) — lyue o (t) in L?(U, m) for every open U relatively compact in O. Therefore, there exists a
subsequence which converges a.e. and this allows to conclude the proof.

O

We want now to get rid of the truncated operator, that is to pass to the limit for M — oco. In order to do
this we need some estimates on the function wu. x 37 which are uniform in M.

Lemma 3.12. Assume that, in addition to the assumptions of Proposition [Z11, /T + yy» € L*([0,T];V),
‘%—ﬂ < W with ¥ € L*([0,T]; V) and g satisfies Assumption H°. Let us x r be the solution of @I). Then,

2
T || Oue
S| (0)|| ds 4 luenar (1 + 2@ = e ar (0)+ 15
< C (Il oy + IVTF 9920 m1:0 + IVTF G9IB o myry + G

(3.25)
where C' is a positive constant independent of M and .

Proof. To simplify the notation we denote ug x as by u. For n > 0, define ¢, (x,y) = 1 +y An. Since ¢, and
its derivatives are bounded, if v € V, we have vy, € V. Applying BI9) with v = (uex,m — ¥)@n = (u—1Y)pn,
we get

- (% (u — ww) a5 (u, (= )pn) + (Ge(), (u = V)pn)r = (9, (u —)pn) .

H
so that
- (W (u— wm)H + a0 (= ), (= ¥)on) + (Ce(w), (u = ©)pn)nr = (%—f +9.(u— wm)
(M)

+ax (¥, (u—P)pn).

H

With the notation ¢!, = 86% =1,<n}, we have

y | (0u—v)) A(u — ) du — 1) Au— )\
(=0 =)o) = | 5[(T) +ope 2O +a2(8—y)]%dm

O(u — o(u —
—i—/og (po (uﬁx ¥) +0? (uﬁy 1/})) (u — 1)) dm
o(u — o(u —
+ /O yANM (%jmu + (uTyw)k%M> (u —P)pndm

A /O (1+9)(u— $)2pndm

Y

51/Oy|V<u—¢>|2wndm+A/o<1+y)(u—¢)2wndm

e / Y IV — )| fu— Plpndm — K / Y1V~ )| u— YL gynpdm,
O O
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where Ko = 7Vp2022+a4. Note that, if n = 0, the last term vanishes, and that, for all n > 0,

/Oy 19 (u = )] — )L gy dim < [|(u — )] 2.

Therefore, for all ¢ > 0,

o8 (=), (u—P)pn) > 6 / YV (u— 6)|? pndm + A / (1+ y)(u — )% pndm
(@] O

5 ([ (5190 0P + Gl o) pudm) — Kalla - )1

(61 —%)/@ylvw—w%dw (A—ﬁ)/um(u—w)%ndm

2¢
—Ks||(u = )|

zf% (s 00 =)+ (4 )= 9)2) onm = Kl (= )1
@]

Y

2
where, for the last inequality, we have chosen ( = §;/K; and used the inequality A > % + %. Again, in the
case n = 0 the last term on the righthand side can be omitted.

Hence, we have, with the notation |[v|[3,,, = [, (y [Vol® + (1 + y)vz) opdm,

1d ) 5 ) 1/ ) o

_ _ ey — — _ < - _

st Jo 0 P endmt Sl =l 42 [ - wiendm < (04 G -0
(M)

—ay" (¥, (u = ¥)en) + Kal[(u = )|

In the case n = 0, the inequality reduces to

5 [ rdm e i+ 2 [(@mwtin < (o4 Frw) — o)
Now, integrate from ¢ to T" and use u(T") = ¢ (T) to derive
1 2 01 T
3 [0 0)pnim+ 2 [ asliuts) ~ s+ L [ s [ @06) et
T T T
< [ (a4 Gron =) s+ / () (= 0 g )ds| + Ko [ luls) = v,
(3.26)
and, in the case n =0,
T T
gt~ o+ 2 [ asots) - v+ 2 [ as [ -utam< [ (a6 + B -0 as
T
+ [ [l ) (a = (s s
(3.27)

We have, for all {; > 0,

T )
/t (g(s)—l—a—zf(s),(u(s)—z/}(s))gon)Hds< —/ ds/ |u(s) cpndm—i— 2_C1/ ds/ ’ (s) gondm
< [ s [ )~ 60 Poim + LTSl + H¢1+
L2t H)
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Moreover, it is easy to check that, for all v, w € V,
6™ (w, vip,)| < Ks|[w]|vn||v][van, with K3 = 6o+ K1 + Ky + A,

so that, for any (3 > 0,

T M T
1800 ) = (s enlds < Ky [ asllvollvalluts) = ol

t
K T K r
<552 [ asllute) = 0l + 52 [ O

Now, choosing (; = K3(2 = §1/4 and going back to (3:26) and B27), we get

1

T
[0 v@ppuim+ 2 [ st w6+ [ s [ @06) - )

S—

4 2K?2 ’
< 5 (IVTF00laqmyan + IVIF 90 g + 5—13 [ AN+ o [ ate) vty s
4 T
< = (IWTF ol aqeran + IVIF 9 ) + 75 2 W I oy 2 [ I0(6) = 0 s,
(3.28)
where the last inequality follows from the estimate [[v[[{,,, < 2||\/T+ |}, and, in the case n = 0,
1 0 2 e 2
Slu) = eI+ d5||u(5) — Y@ +- [ ds | (¥(s) —uls))idm
2 4 Ji eJt o
4 2K?
< A (Hg||2L2([t,T];H) + ”\I/H%?([t,T];H)) + T3||1/}H%2([t,T];V)' (3.29)
From ([B:29) we deduce
T T T
[ @l <2 [ uts) = wlds +2 [ os)7ds
! ¢ ! (3.30)

32 16K2
< 2 (1ol + 19 arim) + (2532 +2) 191y

Moreover, combining [3:28) and ([B3.29), we have

3 ) =60+ G /tTdsHu(s) ()0 + / s [ (05) = ) i

4 16K 4K?2 2K
< (a ) (IVIF 09y + VT Y ) + 5 <1+_2) IVI+ 9l vy

In particular,
T T T T
s [ ovaonam < [ uofads <2 [ dsliuts) = o)l +2 [ sl fds
t t t t
8 (4 16K
<3 (5 +75) (WVTF el + VI 99 e ryn)
32K32 2K
+ < 52 2 <1 + 5—2> + 4> IV + vl 220
1

and, by using the Monotone convergence theorem, we deduce

T
/ asllyVull < Ka (IVITF 593y +IVTF 08B + IWIF 98l3eyy) (331
t
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where K4:%( +16K2)\/(32K (1+2K2)+4)
We are now in a position to prove (8:25). Taking v = %—1; in (319), we have

2
ou ou 1 ou ou
_ g g 5 (M) it I _ g — =
} H+a/)\ (U, 8t> +a (’LL, 8t> c ((d} ’U,)_;,_, 8t>H <97 8t)H

Note that, since a) is symmetric, %&,\ (u,u) = 2ay ( u, Bt) On the other hand,

ou

ot

(o - e 5) = =500 =u@)elfr+ (00 w1 5700

so that
oull> 1d_ ) ou ou 1 o,
) 22 _ — (M) 27 - i _Z _ hihd
15| -5 - gl =i = (w5) - (a5) -1 (w-wn5r)
_ ou ou 1
0 (w5 )| il |55+ 2w - 0w,
Ju 1

<KHMVMM+wmmﬂ -0y,

ot

Moreover, if we take v = ¥ in [BI9]), we get

_(Z“0H+dmmw%~BW—w%wH=@ﬂmw

so that
1 ou
g((¢—U)+,‘I’) ||, 190+ S el 1y + gl el 9 - (3.32)
Therefore,
ou ] 1d 1d ou
|| —s-a - Ky |y|V v
\atH Y [ [ = (1M|MMH4MM+HIM‘m
M
+ a0 el 12 v+ lgle 12,
hence
1[oul® 14 1d , 1 )
=l —=z5a - —— — <= (K v \J
55| = 5 ) = gl = w0 < s otV + il -+ 1)

+ a1l 191 + gla 19

Integrating between ¢ and 7', we get,

1][oul?
2

Js

2 ax(P(T), (1)) + 2||g||2L2([t,T];H) + 2|\‘I’||2L2([t,T];H)
L2([t, T];H)

3K i a{™]
S IVl ez + 25— Il 2y + 19| L2 (e, 75v)
2 2
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so, recalling that ax(u(t), u(t) > (61 + \)|lu(t)|?

(514—)\

lu®)IIF + %II(#)(U —u(t)+ ]I

H Js

L2([t,T) H)

l[axl
< —||¢(T)||%/ + 20|gl1Z 278y + 209072 5,790

M
3K |a >||

1aM0]]
+ ||y|VU|HL2 (t,7):E) T

a/\

lull 2 e, vy + 1] L2 (e, 750

_ ||aA||

lv(D)II3 + 2||9||%2 (1, 7):H) T 2||‘I’||%2 ([t,T); H)
+—1K4(||\/1+ Y93 qeirrien + IV 98y + IVT+ vl )
[la5™ 16K3 [la5™
+ 25 (5 (Mol + 190y + (T2 +2) Wl ) + = 1.

where the last inequality follows from ([30) and (B31]). Rearranging the terms, we deduce that there exists a
constant C' > 0 independent of M and e such that

514—)\ , 1 )
+ — t) —u(t
2 o O+ 52 608) — (e s
<C(||\/1+ ol + VIO + [VIF w0+ IR )
which concludes the proof. [l

Proof of Theorem [310: existence. Assume for a first moment that we have the further assumptions ¢(T') €
H?(O,m), %—f € L*([0,T);V) and % € L2([0,T); H). Thanks to [25) we can repeat the same arguments as
in the proof of Proposition B.I1] in order to pass to the limit in 7, but this time as M — oo. In fact, up to pass
to a subsequence, from ([B:25) we can suppose that Que M weakly converges to a function ul y in L*([0,T); H).
We deduce that, for any fixed ¢t € [0, T, u;(t) converges weakly in H to

T
ue(t) = O(T) - / ul \(5)ds.

Indeed, wue  a(t) is bounded in V', so the convergence is weakly in V. Moreover, again from [325]) and from the
fact that there is a subsequence of wu. x ar(t) which converges a.e. to ux ar(t), we get that (¢¥(t) — ue x am(t))+
weakly converges in H to (¢(t) — ue A(t))+. We have

. (%if%u),v) " (e 20 (1), ) + (G n) (1), 0)1 = (9(0),0)m
H

and, passing to the limit as M — oo, we get

- <81{;€t1A (), U>H + ax(uea(t),v)m — %(Xa (1) = uen(®)+ ) = (9(t), v)H-

Finally we can prove that x = uc x(t) as in the proof of Proposition BIIl The estimates B.I6), BI7) and
BI]) directly follows from (B2H) as M — oo.

We have now to weaken the assumptions on g and . This is a standard regularization procedure. In fact, for
example for the function g, we can consider a sequence of functions g, = g * ¢, where (¢, )n € C°([0,T] x O),
f[O,T]XO ¢n = 1 and lim, o0 n(2) = 5. Then (gn), C L3([0,7);H), %= € L2([0,T];H) ¥n € N and
llgn — gll 20, 77;1) = 0 as n — oco. In the same way, we can find a sequence 1, such that ¢, (T) € H*(O,m)
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and %Lt" € L*([0,T); V) for every n € N and fOT [lton (t) — ¥(t)|[vds — 0 as n — oo. Therefore, the solution
uf \ pr of the equation (BI8) with source function g,, and obstacle function ,, satisfies

n
oul \.m

2
T n n
(=52 @) ds 4z s as O + 100 = w2y 0 )+ 1
< C (IWTF ggallzaqo.men + IWTF 9nlBao ) + 190w + 18n(DIF ) -

)

(3.33)

Then, we can take the limit for n — oo in ([B:33]) and the assertion follows as in the first part of the proof. O
Moreover, we have the following Comparison principle for the coercive penalized problem.

Proposition 3.13. 1. Assume that v; satisfies Assumption H' for i = 1,2 and g satisfies Assumption H°.
Let ug , be the unique solution of BI9) with obstacle function v; and source function g. If Y1 < 1o, then
1 2
U’s)\ S us,)\'

2. Assume that 1 satisfies Assumption H* and g; satisfy Assumption H® for i =1,2. Let u’ , be the unique
solution of BIR) with obstacle function v and source function g;. If g1 < g2, then ui))\ < ugﬁA.

3. Assume that 1); satisfies Assumption H' fori = 1,2 and g satisfies Assumption H®. Let u;A be the unique
solution of (BID) with obstacle function v; and source function g. If 11 —ipg € L, then u;»\ —ug»\ € L™
and [[ug \ —uZ \lloo < [[¥1 — V2o

Proof. 1. We take v = (u;/\ — u§7)\)+ in the variational equation satisfied by ui.)/\ and u;)\. Subtracting the
second equation from the first one, we get

B <8(ui))\ - UEA) 1 5

It s (uz\ — us,A)+> + CLA(U;,)\ - U?,Av (U;A - ug,A)+)
0

1
—g(@/fl - Ui,A)Jr — (2 — ug,)\)Jr’ (UiA - ug,)\)Jr)H =0.

Now,

aA(Ui,,\ - U?,,\v (U;,,\ - U?,,\)H = a,\((u;,\ - U?,,\)Jm (U;,,\ - ug,,\)+) >0,

and

1
—g(wl —ul )y = (W2 —uZ )4, (uly —ul\)4)m >0,

the last inequality following from Lemma [3.91 Therefore

O(ug \ —u2 )+
(T (o —122)s ) =

H

1 (uz n = uZ )+ 7 > 0.

| =
Sl

But (ul \(T) —uZ \(T))+ = (¢1(T) = ¢2(T))+ = 0, so [|(ul  —uZ )43 = 0 and the proof is completed.

2. Again we consider v = (u;)\ — ugyl\)Jr and we prove that v = 0. With the same passages, this time we get

_ (8(1@,)\ - U?A)

ot ) (U;A - “g,A)Jr) + a/\(ui,A - Ug,m (U;A - “g,A)+)
H

F(Ce(uly) = C(ul ), (ul y —uZ ) )m = (91— g2, (ul \ —uZ )4 ) <O.

Again
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thanks to the monotonicity of the penalized operator. Therefore we obtain

O(ug \ —u2 )+
<%, (ufy —uZ )y ) =3 dt”( —ul \)+llH >0,

and we can conclude the proof as before.
3. With the same procedure, we choose v = (ul y —uZ, — C); , with C' = [[¢)1 — 2[|ec and, with the usual

passages, we get

_(%,v)H—l—a,\(U,v)+/O(r+)\(1—|—y))0vdm+ ((wg_u )+—(1/11—u Vs 0)pr = 0.

The last three terms are all positives so the assertion follows as in the other cases.

3.2.2 Coercive variational inequality

Proposition 3.14. Assume that 1 satisfies Assumption H' and g satisfies Assumption HO. Moreover, assume
that 0 < ¢ < ® with ® : [0,T] — H*(O, m) such that Z2 + L& <0 and 0 < g < —92 — L ®. Then, there exists

a unique function uy such that uy € L?([0,T]; V), 8“? 6 L3([0,T); H) and

(agt*,v—uA) +ax(ux,v —uy) > (9,v —up)m, a.e. in [0,T] veV, v>a,
ux(T) = ¢(T), (3.34)

uy > ¢ ae. in[0,T] x R x (0,00).
Moreover, 0 < uy < P.

Proof of uniqueness in Proposition [3-1]] Suppose that there are two functions u; and ug which satisfy (3:34]).
We can take v = ug in the equation satisfied by u; and v = w; in the one satisfied by us and we get

6’11,1
—| = ue—ur | Fan(ur,ue —ur) > (g,u2 — w1)m,
ot .

ot ’

Setting w := ug — u; and adding the second equation from the first one we obtain

ow
- — >
(8t’w>H a)(w,w) >0,

Ow Lol > o.
o), T za M

But w(T) = u1(T) — u2(T) = (T) — (T) = 0 and, therefore, w = 0, that is u; = us. O

ou
( 2 —uz> + ax(ug,u; —uz2) > (g,u1 —u2)y.
H

so that

Proof of existence in Proposition [3.14] For each fixed ¢ > 0 we have the estimates (310) and (BI7), so, for
every t € [0,T], we can extract a subsequence u. » such that u. z(t) = ux(t) in V as e — 0 and u(t) — u)(t)
in H for some function uy € V.

Note that u = 0 is the unique solution of (BIH) when ) = g = 0, while u = & is the unique solution of
BI5) when v = ® and g = 8_ - LD = %—f — L& + (1 + y)®. Therefore, Proposition BI3 implies that
0 < uen < ®. Recall that u. x(t) — ux(t) in L*(U, m) for every relatively compact open U C O. This, together
with the fact that dm is a finite measure, allows to conclude that we have strong convergence of u.  to uy in

H. In fact, if § > 0 and O5 := (—%,3) x (4, 1),

/ |u5,)\—u)\|2dm§ / |u57)\—U)\|2dm—|—/ |u57)\—U)\|2dm§ / |u5,)\—u)\|2dm+/ 4<I)2dm
(@] Os S Os 5
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and it is enough to let § goes to 0.

From (BI8) we also have that (¢) —uc )t — 0 strongly in H as ¢ — 0. On the other hand (¢ —ue )T — x
weakly in H and x = (¢ — uy)" since there exists a subsequence of u. x which converges pointwise to wy.
Therefore, (1) — ux)™ = 0, which means uy > .

If we consider the penalized coercive equation in (I5]) replacing v by v — u. x, with v > ¢, we have

ou by
- ( 8? U — Us,)\) + ax(uer, v —uen)m + (G (uer), v —us ) = (9,0 — ue \)H-
H

Since (. (v) = 0, we can write

ot

ou by
- ( R ua,,\> +ax(uen, v —ue ) g — (((v) = C(ten), v —ue \) g = (9, — Ue \)H-
H

>0
Therefore
ot ’

and, letting € goes to 0, we have

ou by
- ( S0y — Ua,)\) +ax(uen, v —uc ) > (9,0 —uc ) H
H

ou .
- <—)‘,v - uA) +ax(ux,v) > (g,v —ux)g + liminf ay (ue x, ue,x)
ot H e—0

> (g,v —ux)m + ax(ux, ur).

Moreover, since 0 < u. y < @ for every € > 0 and uy = lim. g u. x, we have 0 < uy < @ and the assertion
follows. O

The following Comparison Principle is a direct consequence of Proposition B.13].

Proposition 3.15. 1. Fori=1, 2, assume that 1; satisfies Assumption H', g satisfies Assumption H° and
0 <t <@ with ®:[0,T] = H*(O,m) such that 22 + L& <0 and 0 < g < =22 — L D, Let uf be the
unique solution of [B34) with obstacle function v; and source function g. If 11 < s, then u} < u3.

2. Fori = 1,2, assume that 1) satisfies Assumption H', g; satisfy Assumption H° and 0 < ¢ < ® with
®:[0,7] — H*(O,m) such that %—f +LP <0 and0 < g; < —%—f — L2®. Let ul be the unique solution of
B34) with obstacle function ¢ and source function g;. If g1 < ga, then u} <u3.

3. Fori =1, 2, assume that v; satisfies Assumption H', g satisfies Assumption H° and 0 < 1; < & with

®: [0, 7] — H?(O,m) such that %—‘f +LP <0and0<g< —%—‘f — L. Let ul be the unique solution

of B34) with obstacle function v; and source function g. If 11 — s € L™, then u} —u3 € L™ and
lux — uXlloo < I1¥o1 = Y2l

3.2.3 Non-coercive variational inequality

We can finally prove Theorem 2.3 Again, we first study the uniqueness of the solution and then we deal with
the existence.

Proof of uniqueness in Theorem[Z.3 Suppose that there are two functions u; and ue which satisfies ([24]). As
usual, we take v = wo in the equation satisfied by u; and v = w; in the one satisfied by us and we add the
resulting equations. Setting w := us — u1, we get

ow
— — > 0.
<8t’w>H a(w,w) >0

From the energy estimate ([3.0]), we know that

1
a(u,u) > Crllully, — Call(1 + y)2ullf,
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so that

| =

1
lwllF + Call(1 + y)2wl|F > 0.

N =
S

t
By integrating from ¢ to T, since w(T") = 0,we have

T
o)l < Co [ dsl+ ) tuil
T T

< 02</ ds/ 1{y9}(1+y)w2dm+/ ds/ 1{y>,\}(1—|—y)w2dm)
t o t o
T T , )

< C’(/ ds/ (1 + Nw?y?~te M2l drdy +/ ds/ Lrysay(1+ Yw?yP e Nzle ==y e yd:cdy)
t o t o
T ’ T ’

< C(/ ds/ dedy(1 + Nw?yP~teNwlemry 4 o= )A/ ds/ dedy(1 4 y)®2yPLe N I2ler y),
t o t o

where ' < g and A > 0. Since Cy = [, dedy(1 + y)®2yP~te=zle= 1Y < 50, we have

T
lw(®)lIF < C(L+ /\)/ [ w(s)||3rds + Co(T — t)e=W=HIA,
t

so, by using the Gronwall Lemma,

w(®)||3 < CQTef(u*u’)HC(T*t)(lH\)'

Sending A — oo, we deduce that w(t) = 0 in [T,¢] for ¢ such that T —t < “%’ Then, we iterate the same

argument: we integrate between ¢’ and ¢ with ¢t — ¢/ < “%‘, and we have w(t) = 0 in [T,t'] and so on. We
deduce that w(t) =0 for all ¢ € [0,7] so the assertion follows. O

Proof of existence in Theorem [2.3. Given uy = ®, we can construct a sequence (uy), C V such that

Up > ace. in [0,T] x O, n>1, (3.35)
oun,
— | —,v—u, + a(tn, v — up) + A(1 + ) tUn, v — up)g > A1+ y)up_1,v — up) o,
(5 )H ( )+ A1 +9) it = ML+ 91,0 — )i )
veV, v>1Y, ae onl0,T]xO0, n>1,
un(T) = 9(T), O, (3.37)
D>up >us > > Uy Uy > >0, a.e. on [0,7] x O. (3.38)

In fact, if we have 0 < u,_1 < ® for all n € N, then the assumptions of Proposition [3.14] are satisfied with
In = )‘(1 + y)unflv

since g, and /T + ygn belong to L?([0,T]; H) and 0 < g, < A(1 +y)® < —%—‘f — L£,®. Therefore, step by step,
we can deduce the existence and the uniqueness of a solution u,, to 30 such that 0 < u,, < ®. B3]) is a
simple consequence of Proposition B. I8l In fact, proceeding by induction, at each step we have

gn = A1+ un—1 <M1+ y)up—2 = gn1

so that u, < wu,_1. Now, recall that
wnll Lo 0,11,v) < K,
H ouy,

e <K
ot -

L2([0,T];H)

where K = C (@] z20,73:v) + VT +ygnll L2010 + VT F 9l L2 (o,71:v) + [¥(T)]3,). Note that the con-
stant K is independent of n since |g,| = |[A(1 4+ y)un—1,| < M1 + y)®, for every n € N. Therefore, by passing
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to a subsequence, we can assume that there exists a function u such that u € L*([0,T]; V), % € L*([0,T); H)
and for every t € [0,T], u,,(t) — «/(t) in H and uy,(t) — u(t) in V. Indeed, again thanks to the fact that
0 < u, < @, we can deduce that u,(t) — u(t) in H. Therefore we can pass to the limit in

dun,
_ (%, Up — v> + a(tn, v —up) + M1+ 9)tn, v — up)g > M1+ Y)tn_1,v — un) g
H

and the assertion follows. O

Remark 3.16. Keeping in mind our purpose of identifying the solution of the variational inequality ([2.4) with
the American option price we have considered the case without source term (g = 0) in the variational inequality
@4). However, under the same assumptions of Theorem [Z3, we can prove in the same way the existence and
the uniqueness of a solution of

—(%—;‘,v—u)H—i—a(u,v—u)Z(g,v—u)H, a.e. in[0,T] veV, v>,
u> ae inf0,T] xR x (0,00),

U(T):"/J(T)v

0<u<o

)

: : 0 2d
where g satisfies Assumption H” and 0 < g < —5¢ — L.

We conclude stating the following Comparison Principle, whose proof is a direct consequence of Proposition
3.15] and the proof of Proposition 2.3

Proposition 3.17. For i = 1,2, assume that v; satisfies Assumption H' and 0 < ¢; < ® with ® satisfying
Assumption H?. Let ul be the unique solution of [B34) with obstacle function ;. Then:

1. If ¥y < 1o, then u%\ < u%\

2. If Yy —pg € L, then ui - ui € L>® and Hu%\ - u§\||00 < l1 — 2|0 -

4 Connection with the optimal stopping problem

Once we have the existence and the uniqueness of a solution u of the variational inequality (23], our aim is to
prove that it matches the solution of the optimal stopping problem, that is

u(t,z,y) = u*(t,x,y), on [0,7] x O,

where u* is defined by
W (ta,y) = sup E[p(r, X020, yEew)]
T€Te, T

T, 7 being the set of the stopping times with values in [t,T]. Since the function wu is not regular enough to
apply Ito’s Lemma, we use another strategy in order to prove the above identification. So, we first show, by
using the affine character of the underlying diffusion, that the semigroup associated with the bilinear form ay
coincides with the transition semigroup of the two dimensional diffusion (X,Y") with a killing term. Then, we
prove suitable estimates on the joint law of (X,Y") and LP-regularity results on the solution of the variational
inequality and we deduce from them the probabilistic interpretation.

4.1 Semigroup associated with the bilinear form

We introduce now the semigroup associated with the coercive bilinear form ay. With a natural notation, we
define the following spaces
loc

L} (R+;H)—{f:R+—>H:VtZO/Ot 1 £(s)||3ds < oo},
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LRV ={f: Rt =V :vt> O/Ot I £(s)]|2-ds < oo}

First of all, we state the following result:

Proposition 4.1. For every ¢y € V, f € L7 (RT; H) with \/yf € L}, .(RT; H), there exists a unique function
we€ L} (RT;V) such that ‘9“ €L (RY H), u(0) =1 and

0
<—“,v> +ax(u,v) = (f,v)g, veV. (4.1)
ot "
Moreover we have, for every t > 0,
2 o1 ' 2 2 2 [ 2
Nlu®|F + 5 [ Nus)ds < |[ll5+ = [ [1f(s)l|Hds (4.2)
2 Jo o1 Jo
and
Il + [ oas < (0l + 3 [ IVIFRGds).
with C' > 0.

The proof follows the same lines as the proof of Proposition B.14] so we omit it. Moreover, we can prove a
Comparison Principle for the equation (@1l as we have done for the variational inequality.

We denote u(t) = P} the solution of (@I corresponding to u(0) = v and g = 0. From [@Z) we deduce
that the operator Pf‘ is a linear contraction on H and, from uniqueness, we have the semigroup property.

Proposition 4.2. Let us consider f : R — H such that \/T+ yf € L} (R*, H). Then, the solution of

)—!— A(w,v) = (fv), vev,
=0,

is given by u( fO PMf(t — s)ds = fO P} . f(s)ds.

Proof. Note that V is dense in H and recall the estimate ([Z), so it is enough to prove the assertion for
=1, 100, with 0 < &) < to and ¢ € V. If we set u(t) = fg P} . f(s)ds, we have

tAt2 -~
U(t) = ]]‘{tZtl}/ Pt)\_s1/}d8

t1

"2 pA ds = fj "PMpds  ift >ty

ty

4
/ P} pds = / PMpds  if t € [ty,ta)
Therefore, for every v € V, we have (ug,v) + ay(u,v) =0 if t < ¢; and, if t > ¢,

o (Pr = PRy, ) +ax (20 PMods,v) it t =1
( )m(() =" L | .
ot’ (P, v) + ax (fo Ppds, v) if t € [t1,t2)

The assertion follows from (P),v) + fot ax(Psp,v)ds = (¢, v). O

Remark 4.3. It is not difficult to prove that P} : LP(O,m) — LP(O,m) is a contraction for every p > 2, and
it 1s an analytic semigroup. This is not useful to our purposes so we omit the proof.
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4.2 Transition semigroup

We define E, () =E( |Xo = 20,Yy = y0). Fix A > 0. For every measurable positive function f defined
on R x [0, +00), we define

X [f(1+4Y.)ds
PtAf('IOvyO) - Emo,yo (6 fo () f(Xta }/t)> .
The operator P is the transition semigroup of the two dimensional diffusion (X,Y) with the killing term
X [F(14Y2)ds
e “Jo .

Set E,o( ) =E( |Yo = yo). We first prove some useful results about the Laplace transform of the pair

Yy, fo Yids). These results rely on the affine structure of the model and have already appeared in slightly
different forms in the literature (see, for example, [2, Section 4.2.1]). We include a proof for convenience.

Proposition 4.4. Let a and 3 be two complex numbers with nonpositive real parts. The equation

2
o
¥(0) = TUR0) — slt) + B (13)
has a unique solution Vg, defined on [0,400), such that s 5(0) = a. Moreover, for every t > 0,

t
E,, (antJrﬁ A sts) — Uotba, 5 () H0rda,5(1).

wzth gf)a ﬁ fO 1/)a 5

Proof. Let ¢ be the solution of ([@3]). We define ¢y (resp. (1) and s (resp. f2) the real and the imaginary
part of ¥ (resp. 8). We have

{%t:%(% —3(t)) — k1 (t) + B,
Py(t) = o (t)y ()—ﬁ¢2()+52.

2

From the first equation we deduce that ¢} (t) < % (¢1(t) — 2%) ¢1(t) + B1 and, since B < 0, the function

t— 1 (t f (W1(s)=28)ds nonincreasing. Therefore 11 (¢) < 0 if ¢1(0) < 0. Multiplying the first equation by
P1(t) and the second one by 93(t) and adding we get

1d

s (wor) = (Fuw-x)

(For0 - w) 160 + 181vte)
< (Tt =) WOE + o + 2L

- 2 4e

We deduce that [¢(t)| cannot explode in finite time and, therefore, 1, g actually exists on [0, +00). Moreover,
note that we have [¢(t)]> < Crre ™" for every k' < k.

Now, let us define the function F, g(t,y) = e¥¥=s(0F08baslt) F 5 is C12 on [0,4+00) x R and it satisfies
by construction the following equation

[(t)|> + Bror () + Barba(t)

IN

8Fa[3 0’2 82Fa[5 8 a,f
) —_ ) 9 _ ) " .
5 2V o2 T k(0 —y) Dy 8
Therefore, for every T > 0, the process (M)o<i<7 defined by
M, = J B, T 1)) (4.4)

is a local martingale. On the other hand, note that |M;| < 1, so the process (M;); is a true martingale indeed.

T
We deduce that Fi, g(T, yo) = Ey, (eﬁ Jo YSdSeO‘YT> and the assertion follows. g
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Remark 4.5. If we take « = 0 and g = —s, with s > 0, we get

E

Yo )

<€_S fot Yvd”) — Yoo, —s(B)+0r¢o, s (t)

and, as we have seen in the proof of Proposition L4 v _ has constant sign. Since ¢ _((0) = —s < 0, the
function g, s is decreasing. Again from the proof of Proposition [£.4]

K K\ 2 s
o (t) > = — (§)+%32ﬂMyﬁ

g

and, integrating, ¢o,—s(t) > —t\/2s/02.
We deduce that, for every yg > 0,

t
Eyo (esfo Yvdv) < e—tn@ 2s/0% _ 6—150,8\/5/27

and, for every ¢ > 0,

q e3¢} £
Eyo (/t Yvdv) _ Euo (L/ 1178 fo Yvdvds)
‘ 0 " \I'(q) Jo

< 1 / Sq—le—ta,@\/s/2d8

I'(q) Jo »
q oo q
- e T A
We also have the following result.

Proposition 4.6. Let A1 and Ao be two real numbers such that

o2

7ﬁ—MﬁM§0
Then, the equation ,

¥() = T (E) = KU() + Ao (4.5)

has a unique solution 1y, x, defined on [0, +00) such that ¥x, r,(0) = A1. Moreover, for every t > 0, we have

t
AMYit+Az | Vsds YoUay,ag () +0KPA, A, (1)
Eyo (e fo ) <e 1,22 A2

with ¢)\17)\2 (t) = f(; ’(/J>\1)>\2 (s)ds.
Proof. Let v be the solution of (LX) with ¢(0) = A;. We have

U (t) = (o (t) — k)Y (t).

Therefore ¢’(t) has constant sign and the assumption on A\; and Ay ensures that ¢/(0) < 0. We deduce that
() <0 and ¢ (t) remains between the solutions of the equation

2
%ﬁ—m+hza

This proves that the solution is defined on the whole interval [0,40c). Now the assertion follows as in the
proof of Proposition @4} just note that the the process (M), defined as in (£4) is no more a martingale but it
remains a positive local martingale, hence a supermartingale. O
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Remark 4.7. Let us now consider two real numbers A1 and Ao such that
2
o
7A§ — KA1+ A2 < 0.
From the proof of Proposition by using the optimal stopping theorem we have

“up EU (eufoT stse’l/})\’u(T—T)Yq—-‘rOK:(i),\,“(T—T)) < eyw,\,“(T)-i-GmbA,u(T)'
T€To, T

Consider now e > 0 and let A\c = (14+€)X and pe = (1+€)u. For e small enough, we have %2)\2—/1/\64—#6 < 0.
Therefore

sup E, (e#efo stsewxé,h<T—T>YT+9~¢A6,M<T—r>) < Ve (D) 4050r (1)
T€To,T

If we have ¥y, . > (14 €)r,,, we can deduce that

sup E, (e#<1+f>f;ysdse<1+e><wx,u<T—T>Yf+e~¢x,u<T—T>>) < eUPrene (T)H050x e (T)
T€To,T

and, therefore, that the family (e” fo stsewvﬂ(TT)YT*e“@w(TT)) is uniformly integrable. As a conse-
T€To,T
quence, the process (My): is a true martingale and we have

E, <€m+# I sts> _ a (D F0Rbx (1)

So, it remains to show that ¥, u. > (1 + €)¥n,,. In order to do this we set ge(t) = ¥, . (t) — (1 + €)a (2).

From the equations satisfied by ¥x_ .. and Py, we deduce that

90 = 5 (O = 0+ R u0) = K (r () = (1+ au(®)
= T (R (O = (14 %3 ,(0) = rge®) + T (140 = (1+) ] ,(0)
0'2 0’2
= T W () + (L i (8)) 9elt) = rge(t) + Toell+ w3 (1)

o2
= Jet)ge(®) + el + U (),

where
2

Je(®) = T (r () + L+ (1)) = .

Therefore, the function ge(t)e Jo Fe()ds is nondecreasing and, since g.(0) =0, we have g.(t) > 0.
Now recall that the diffusion (X,Y") evolves according to the following stochastic differential system
ax, = (22 — %) dt + VVidB,
dY; = k(0 — Y;)dt + o/ Y dW;.
If we set X; = X; — 2Y;, we have

{df(t = (2 - LYYidt + /1 p2\/YidB,,

4.6
dY; = k(0 — Yy)dt + o/ YidW,. (4.6)

where B, = (1 — p?)~'/2 (B; — pW;). Note that B is a standard Brownian motion with (B, W); = 0.
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Proposition 4.8. For all u, v € R, for all X\ > 0 and for all (xo,y0) € R X [0, 400) we have

t
iuX:+ivYy —A Ysds \ _  juzo+ t)—iuL)+0k t
E., . <e e — gm0ty (r, (D)~ L) +0kbr, (1)

where Ay = i(ul +v), p = iu (2 -1) - “2—2(1 — p%) — X and the function ¥y, , and ¢y, are defined in
Proposition [{.6]

Proof. We have

Ewo;yo = Ewo,yo

. . t
(equterYt)\ fo st5>

(eiu(XtJrth)Jrith)\ fot sts>
and

. p “lpr 1 ! .

X =20 — —yo —I—/ <— — —) sts—l-/ V(1 = p?)Y,dBs.

g 0 ag 2 0

Since B and W are independent,

£ (65 ) = e )0
and

E (emXﬁwYtAf; sts) _ giu(zo—Lyo) g (ei(u§+v)n+(m(%é)%(lpz)A) IN sts>
T0,Y0 - Yo °
Then the assertion follows by using Proposition 4] O

4.3 Identification of the semigroups

We now show that the semigroup associated with the coercive bilinear form Pﬁ can be actually identified with
the transition semigroup P}

Proposition 4.9. We have, for every function f € H and for every t > 0,
P f(z,y) = P f(x,y), dedy a.e.

Proof. We only need to prove the equality for f(x,y) = e™*+ with u, v € R. We then have, by using
Proposition [£]]

PtAf(;g,y) = E., (e/\fo (1+Ys)dseiuxt+wyt>

ef)\teium-l-y(w/\l,u(t)_iug)+9'€¢/\1,u(t)7

with Ay = i(u2 4+ v), p = iu(Z-1) - “2—2(1 — p%) — X\. The function F(t,z,y) defined by F(t,x,y) =

g
e—kteium-‘ry(l/lxl,u(t)—iu§)+9ﬁ¢xl,u(t) satisfies F(O,x,y) — eiuztivy gnd

OF
5 = (L=M1+y)F

Moreover, for every t > 0, we have [, (y|D?*F|*(t,z,y) + [VF|*(t,z,y)) dm < oo, so that, for every v € V,
(LE(t,.,.),v) = —a(F(t,.,.),v). Therefore

(%—ZZ,U) +ax(F(t,.,.),v) =0 veV,

and F(t,.,.) = P}f. O
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4.4 Estimates on the joint law

In this section we prove some estimates on the joint law of the diffusion (X,Y") which will be crucial in order to
prove Proposition 2.4l With the notations

2l€9 —kKt 02 — kKt
Vzﬁ—lzﬁ—la Yt = Yo€ Ltzﬂ(l—e )7
it is well known (see, for example, , Section 6.2.2]) that the transition density of the process Y is given by

Yt

T 2Ly Y
Pe(o,y) = ey/z e iy /2, (@) 7
2yt Lt Lt

where I, is the first-order modified Bessel function with index v, defined by

s (2
LW =(3) Xt

n=0

It is clear that near y = 0 we have I, (y) ~ F(u1+1) (%)U while, for y — oo, we have the asymptotic behaviour
L(y) ~ e/ /27y (see [1, page 377)).

Proposition 4.10. There exists a constant Cg > 0 (which depends only on () such that, for everyt >0,

T—JUE)2
Cs —(ﬁzf) yﬂ_l(

Pe(yo,y) < e

< —=h L+ wu)) s (o,y) € 0,400)x]0, +00).
L; *

Proof. From the asymptotic behaviour of I, near 0 and co we deduce the existence of a constant C,, > 0 such
that

eil)

I,(x) <C, <$V]l{mg1} + \/E]J-{m>1}> :

Therefore
ytty
e 2Ly 9 \/@
pe(yo,y) = » v/2, (—)
2 t/QLt Ly
vty VYUt
e s (y9)""? %
< y”/2C,, 7u]l{yyt<L2} + 7]1{yyt>L2}
2y, /2Lt Ly - (yyt)1/4/Lz/2 '
Co ~ue [ " 4 J ey
= 5°¢ | o < L2 5 > L2
9 L/t {yy:<L}} (yt)7+%L,}/2 {yy:>L7}

On {yy: > L7}, we have y; * < y/L? and, since v + 1 > 0,

yi1 1/4 y$-1 1/42/”ri
ot Y% T i =W i
(yt)2+4 (yt)2+2 Ly
So
Nein
(yo,y) < Cv -4 [ Y 4 n (yy) " tyveE
belYo, Y = D) € Ltu-',-l {yy:<L2} Lter% {yy:>L?}
C _yttv v VYYt 1/2
- 2L”l:r%e e (L a0 )
t
C _ WI-viD? 1/2
- 2L”:-% € ey (Lt/ ]l{yytSLf} + (yyt)1/4]l{yyn>Lf}) ’
t
and the assertion follows. O
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Theorem 4.11. Forallp > 1, > 0 and p > 0 there exists A > 0 such that, for every compact K C Rx [0, +00)
and for every T > 0, there is Cp g, > 0 such that

Cp k.1

P} f (o, 90) < 5o 1 fllzrm. 0 (z0,90) € K.
tp T 2p

for every measurable positive function f on R x [0,4+00) and for every t € (0,T].

Proof. Note that
P f(20,90) = Eapms (e”fo“*“’“f()?t,m),

where

f(%y):f(w—i-ﬁy,y) and X, =X, — 2v,.
g o

Recall that the dynamics of X is given by ([#8) so we have

with

o p -
Lo ="To— —Yo, K=
o
Recall that the Brownian motion B is independent of the process Y. We set ¥; = 4/ fot Yids and n(z) =

\/%76*9“2/2. Therefore

P f(zo,50) = Ey (e—xt—xzf /f(;io +RY] 4 piz, Y)) n(z)dz)

IN

]Eyo <6_)\Zf /f (i‘o —+ E)E% —+ [)Etz, }/t) n(z)dz)

_ —RY2\ dz
- K —,\23/ - Y, z— KX\ dz '
o (e f(@o+2,Y)n %, >,

Holder inequality with respect to the measure e~ 7I*I=#Y: dzdP,,, where v > 0 and p will be chosen later on
gives, for every p > 1

L 1/p
P f(zo,y0) < []Eyo </6““Y*fp (5:0+2,Yt)d2>] Jgs (4.7)

with ¢ = p/(p — 1) and

_ — kY2 dz
JI—F /e(qfl)v\Z\Jr(qfl)uYrqAE?nq <Z _ t) i ) '
c ( Pt ) (pDh)"

Using Proposition [4.10] we can write, for every z € R,

Ey, (e f7 (30 + 2,Y;)) = / dypi(yo, y)e ™" 7 (&0 + 2,y)
0
C ﬁ+y1/4 R Ve et T _ rp (A
< %/ dye™ " e HYyP 1(1+y1/4) fP(xo + 2,9).
L 0
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If we set Lo, = 02/(4k), for every € € (0,1) we have

_ Wi—viD? _ WI-viD)?
2L¢ 2L oo

(&

_ e_(l_e)ﬁe—%y;oo (1—e)

< e_(l_e) 2EJ°O 62:2?00 (1_6)_

Therefore

yo(l—e)

1/4

2

L Cge 2¢fs (& + < e -~ -

Eyo (7 P (10 +2,1) < L Lﬁ(fg 20 )/ dye 032y (144 P (3 + 2,)
0

t

yo(l—¢)
Cp,om,e€ Foo

o0
_ = 1—2e 1w ~

= 541 dye VST )y L (7 + 2,).

Lte 0

2
z—kX]

o

As regards J,, setting 2’ = , we have

P _ dz'
Ji = R (q=D)7|2' PR +REZ [+ (a— DAY —aASF pa (1 92
q Yo (/6 n (Z) (pzt)q—l

_ _ - dz
E (a=Dv0%e] 2+ (g=DaYe+((a=D|&ly—aNSF pa () 4% )
-/ ) e

IN

Note that

(q-1Dv5542] g _ (q-1Dvp542] ,—g22/2_TZ
e nt(z)dz = e e —
/ ( ) / V2T
_ dz

< 9 e(qfl)’YPEtze*qzz/Q
o / V2T
= dz
— 9 [ la=D)VpSezp—qz?/2 4%
/ V2T

2 (@=1D?% 2252
_ 7Pz
= e «a by

Va
so that

Jg < %]Eyo (e<q—1)ﬁm+iq2§ (pztl)ql) ,
with
A = (a = D)[Rly + () P G (IRIW N p/\> :
q p—1 p
Using Holder’s inequality again we get, for every p1 > 1 and ¢1 = p1/(p1 — 1),

_ 1/q
o< 2 (B (e”%q—l)nmquf))” . (IEUO (71 )) 1
! Va o P\ (pEy)nlaD)

C _ < 1/p
< tqq;qll (Eyo (em(q*l)uYterMqu)) !

IN

3

where the last inequality follows from Remark
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We now apply Proposition L6l with A\ = p1(¢ — 1) et Ao = pl/_\q. The assumption on A\; and Ay becomes
o’ —2 == L 5
5 Pilg = A" — v+ |Rly + SV P —PAZ0

or, equivalently,
2

o
A>—

2p(p — 1)

Note that the last inequality is satisfied for at least a p; > 1 if and only if

_ m Y 1 5.
i — k= + |R|= + 5707
p p D
i 1
— kBRI + 54202 (4.8)
p p p
Going back to ([@7) under the condition (L), we have

A Chp,e A o _ . 1-2c 17 1/p
PM f(zo,y0) < —5———efneto (/dze_ﬂ'z'/ dye*y(*“rm)yﬂ— fr (fo+2,y)>

L7t ’
C Ap Yo o0 = —2¢ e
< Gpeelr (/ dze—w|z|/ dye~Y(A+3TE) -1 pp (gzo +2z+ By,y)>
tp T2 0 7
C Ap eyo ~ > —uli —=€ e
_ p:ﬁCﬁ (/dze—ﬂz—mo—gy/ dye y(#Jr%)yﬂ—lfP (Z,y))
p ' 2p 0
Ap, cyo+7|Zo| e p—rylel 4 1-2¢ v
< Opée+ (/dZe"z/ e ) W (%y)) '

ol

If we choose € = 1/2 and i = p + -2+, the assertion follows provided X satisfies

o2 2 + Lol 1
A> —— <,u+’ym> —nu+|k|z+—272/32.
2p(p—1) o p pop

O

Now, note that. we can easily prove the continuous dependence of the process X with respect to the initial
state.

Lemma 4.12. Fiz (z,y) € R x [0,4+00). Denote by (X;”,Y)t>0 the solution of the system

o

aX, = (Pﬂ _ %) dt + \/Y;dB,,
dY; = k(0 — Y;)dt + o/Y,dW,

with Xo =z, Yo =y and (B,W), = pt. We have, for every t > 0 and for every (x,y), (z',y") € R x [0, +00),

EYY -Y!| <y —y| and

’ ’ t
E[XF"Y - X7 < Ja' —al + 5y’ -yl + VAlY — 4.

The proof of Lemma 12 is straightforward so we omit the details: the inequality E ‘Yty/ — Yty‘ <y — vyl

can be proved by using standard techniques for the CIR process introduced in m, Section IV.3] and the other
inequality easily follows.
Then, thanks to Theorem [£.11] we have the following result.

Proposition 4.13. Fiz p > 1 and X\ as in Theorem [[.11} If ¢ € LP(O,m) then, (t,x,y) — Plp(z,y) is
continuous on RT x R x RT.
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Proof. If ((tn,®n,Yn))n converges to (t,z,y), we deduce from Lemma EI2 that X% — X V" = V)

and fg" YVds — fg YYds in probability. Therefore, the assertion is trivial if ¢ is bounded continuous. If
@ € LP(O,m), ¢ is the limit in L? of a sequence of bounded continuous functions (¢, ),. Moreover, thanks to
Theorem FTT] for every compact K C R x [0, +00), there is Cp g7 > 0 such that

Cp k.1

R
tp 1z

Plon — ¢l(z,y) < len — @llLeim, ) () €K.

Therefore P, (x,7) converges locally uniformly to P}¢(z,y) and the assertion follows. O

4.5 Proof of Theorem [2.4]

We are finally ready to prove the identification Theorem 2.4l We first prove the result under further regularity
assumptions on the payoff function ¢, then we deduce the general statement by an approximation technique.

4.5.1 Case with a regular function

The following two regularity results pave the way for the identification theorem in the case of a regular payoff
function.

Proposition 4.14. Assume that v satisfies Assumption H' and 0 < < ® with ® satisfying Assumption H?.
If moreover we assume 1 € L*([0,T]; H*(O,m)) and %—If + Ly, (1+y)® e LP([0,T]; LP(O,m)) for p > 2, then
there exists Ao > 0 and F € LP([0,T]; LP(O,m)) such that for all X > \o the solution u of (24) satisfies

ou

— | =,v ] +ax(u,v) = (Fv)m, veV (4.9)
ot I

Proof. Note that, for A large enough, u can be seen as the solution u) of an equivalent coercive variational

inequality, that is

8’(1,)\
_<a—,v—u>\) + ax(ux,v —uy) > (g,v —un)m,
t H

where g = A1 + y)u satisfies the assumptions of Theorem B.I4l Therefore, there exists a sequence (ug y)e of
non negative functions such that lim._,o u. » = u) and

due,
- ( gt'A,v) + ax(uen, v) + (C(uen), v)a = (9,0)m, vevV.
H

Since both u. » and ¢ are positive and 1) belongs to L? ([0, T']; LP(O, m)), we have (¢—u. x)4+ € LP([0,T]; L (O, m)).
Taking v = (¢ — us_))ffl and assuming that 1 is bounded we observe that v € L2([0,7]; V) and we can write

811,57)\ _ _ 1 _
o G e B N A e L L iy I

so that
1d
pdt

_ 1
16 = ) 1 0 my = 008 = e r, (9 = e 5™ = 216 = ) 0

= (00 -wa), - (%_f w- “svﬂ’il)H (@, (6 —ue )7,

Integrating from 0 to T we get

1 T o 1 (T )
2106 = e+ O o, m - / an () — wen) (), (4 — e )2 (E)dt — 2 / 10 = 1)+ (D2 0yt

3

T . T/ o . T .
= [ o= @) b= [ (0.0 —uen0) drr [ oo, -t O
(4.10)
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Now, with the usual integration by parts,
ax((¢ — u&)\)_;,_, (¥ — Ua,k)ﬁ-_l)
2 2
_ / Yip— 1) — ue )2 [(5(¢ - Ua,x)+) n 2p05(¢ — e, )+ O() — uep)+ e (5(¢ —(?ua,,\)+) ] dm
o

Ox ox y Y

. 8 - UWUe 8 - UWeg, —
+/Oy (M("”)W +k%#(x)(¢673*)+) (‘/’—Us«\)i 1dm+,\/o(1+y)(1/;—u5_))ﬁdm

>01(p—1) /O Yy — ue )i [<%)2 * <W>2] "

[ () 2 b ) X ) (4 [ 0= et
(@] (@]

T Jy
2
= [t = uear -1 (TR ) 0 M ) 4 50 - ue
8(1/) - us,A) ° 8(1/} - Us,)\) A 2
# [t —uar -0 (2 ) 0 2 )+ S0 e

>0

)

since, for A large enough, the quadratic forms (a,b) — d1(p — 1)a® + j,..ab + 5b% and (a,b) — 61(p — 1)a® +
ky..ab + 5b% are both positive definite.

Recall that ¢ € L2([0, T); H*(O,m)), %4—&/} € Lr([0,T],LP(O,m)), (1+y)y < (1+y)® € Lr([0,T], LP(O, m))
and g = (14+y)u < (1+y)® € LP([0,T]; LP(O,m)). Therefore, going back to (ZI0) and using Holder’s inequality,

1 T 5 5 T 1-3
I ot < (/ |g||Lp<Omdt> +</ dt) (/ ||C(ua,A)||§dt> .
0 Lr(O,m) 0

We deduce that
<, (4.11)

Lr([0,T;LP(O,m))

o

A
ot Ew

|2¢tuen

for a positive constant C' independent of . Note that the estimate does not involve the L*°-norm of ¢ (which
we assumed to be bounded for the payoff) so that by a standard approximation argument, it remains valid for
unbounded 1. The assertion then follows passing to the limit for ¢ — 0 in

Ou, 1
—< “) +ax<us,x,v>—<—<<us,n,v) (g, wvev.
ot I € I

(I
Proposition 4.15. Fiz p > 3+ 2 and X as in Theorem[J.11] Let us consider v € C([0,T); H) N L*([0,T}; V),
with 9% € L*([0,T]; H) such that
(50) +axu(t),v) = (f®).v),  veV,
u(0) =1,
with 1 continuous, ¥ € V, T+ yf € L2([0,T]; H) and f € LP([0,T]; LP(O,m)). Then, if 1 and \ satisfy the
assumptions of Proposition [{.13, we have
1. For every t € [0,T], u(t) = P + fot P)Mf(t— s)ds

2. The function (t,z,y) — u(t,x,y) is continuous on [0,T] x R x [0, 400).
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3 If Ay = /\fot(l + Ys)ds, the process (My)o<i<T, defined by
t
M, = e_A‘u(T —t, X, V) + / e_ASf(T — 5, X, Ys)ds,
0

with Xo = x, Yo =y is a martingale for every (z,y) € R x [0, +00).

Proof. The first assertion follows from Proposition .21

The continuity of (t,z,y) + PM(x,y) is given by Proposition I3, while the continuity of (¢,z,y) —
fot P)Mf(t — s,.)(x,y)ds can be proved with the same arguments. In fact, it is trivial if (¢,z,9) = f(t,2,7)
is bounded continuous. If f € LP([0,T]; L?(O,m)), f is the limit in LP of a sequence of bounded continuous
functions and we have fg PMfo(t —s,-)ds — fot P f(t — s,-)ds uniformly in [0, T] x K for every compact K of
R x [0,400)). In fact, thanks to Theorem [L1T], we can write for ¢ € [0,7] and (x,y) € K

t t
C
/0P?Ifn—fl(t—s,',')(x,y)dsS/ G B 41 (f = )t 52| o(om)

0 s 2p

t 1/p b s 1-4
<G ([ M= D=5 Momes) ([ )
0 0 §3-D
1 1-1
T » /p T ds P
< Corer [ [ 110 = D50, )
0 0 g2(k-1)

The assumption p > 5 + g ensures the convergence of the integral in the right hand side.

For the last assertion, note that My = e A7) (X7, Yr) + fOT e M f(T — 5, X,,Y,)ds. Then, we can prove
that M; is integrable with the same arguments that we used to show the continuity of (¢,x,y) — u(t,z,y).
Moreover, by using the Markov property,

By y (M| Ft)

t T
e—AtP%,ty;(Xt,Yt)Jr/ e‘ASf(T—s,XS,YS)ds+e_A‘/ P} (T —s,.,) (X, Yy)ds
0 t

T—t t
= e_At <PT>\t1/}(Xt5}/t)+/ P;\f(T_t_va)(Xh}/t)dS> +/ e_ASf(T_SaX&}/S)dS
0 0

¢
e_A‘u(T —t, X, Y3) + / e_ASf(T — 8, X,,Y)ds = M.
0

We are now ready to prove the following proposition.

Proposition 4.16. Fixp > 0+ g Assume that 1 satisfies Assumption H' and 0 < 1) < ®, with <I> satisfymg
Assumption H2, Assumption H* and (1 + y)® € LP([0,T], L?(O,m)). Moreover, assume that 22 —i— Ly €
LP([0,T]; LP(O,m)). Then, the solution u of the variational inequality (Z4) satisfies

u(t,x,y) = u(t, x,y), on [0,T] x O, (4.13)

where u* is defined by

w(tay) = suwp B [(r, Xp00 v,
TET:, T

Proof. Thanks to Proposition [£.14] we know that, for A large enough, there exists F' € LP([0,T]; L?(O, m)) such

that u satisfies

—(@,U) + ax(u,v) = (F,v)m, v eV,
ot o

that is

—<%,’U) +a(u,v) = (F — M1+ y)u,v)m, veV.
o’ )y
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On the other hand we know that

— (20—, +alu,v —u) >0, a.e. in [0,7]  wveV,v>1,
u(T) = (T),

u > ae. in [0,7] x R x (0, 00).

From the previous relations we easily deduce that F' — A(1 4+ y)u > 0 a.e. and, taking v = 1, that (F —

y)u, ¥ — u) = 0. Moreover, from Proposition [L.I5] we know that the process (M;)o<i<7, defined by
t
My = e Mt Xe Vi) + [ e M B (s, X, Vi),
0
with X = z, Yy = y is a martingale for every (z,y) € R x [0,400). Then, we deduce that the process
B t
M= 0t X0 V) [ (G5, X0 ¥e) = N1+ Youls, X, Y2)) ds
0
is a local martingale. In fact, from [@I4]) we can write
B t
dM, = d [eAfMt — e / e M F(s, X, Ys)ds] + F(t, X4, Yi)dt — M1+ Yy)u(t, Xy, Yy)dt
0

t
= eMdM, + [)\(1 +Y)M; — A1+ Y,)et™M / e M F(s, X,, Y, )ds
0

MNP XY + Bt X, Ys) — ML+ Yo ult, X, Yt)} dt
= GAtht.

A1+

(4.14)

So, for any stopping time 7 there exists an increasing sequence of stopping times (74,),, such that lim,, ,, = co

and

TNTn
Ey y[u(T A 7o, Xenr,, Yonr,)] = w(0,2,y) — Eqy {/ (F(s, X4, Ys) — M1+ Ys)u(s, Xs, YS))ds] .
0

Since F' — A(1 4+ y)u > 0 we can pass to the limit in the right hand side thanks to the monotone convergence
theorem. On the other hand, we have that lim, o Eqz y[u(T A T, Xoar,, Yonr, )] = Eg y[u(r, X7, Y;)] since
0 < u(t,z,y) < ®(t,z,y) and (O(t + s, X0V, YY) e 1) is of class D for every (t,z,y) € [0,T] x R x [0, 00)

by assumption. Therefore, passing to the limit as n — oo, we get

B y[u(, Xr, Y7)] = u(0,2,y) — By, U e A (F(s, X, Ye) — M1+ Yo)u(s, X, Y;))ds] ,
0

for every 7 € Tjo ). Recall that F' — A(1 + y)u > 0, so the process u(t, X;,Y;) is actually a supermartingale.
Since u > 1, we deduce directly from the definition of Snell envelope that w(t, Xz, Y:) > u*(¢, X¢, Y:) a.e. for

te[0,7].
In order to show the opposite inequality, we consider the so called continuation region

C={(t,z,y) €0,T) x R x [0,00) : u(t,z,y) >t z,y)},

its t-sections
Co={(z,y) eRx[0,00): (t,x,y) €C},  t€[0,T),

and the stopping time

7 =inf{s >t:(s,Xs,Y;) ¢ C}
- inf{s Z t : U(S,XS7}/S) = w(‘s)XS;}/S)}'
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Note that u(z, X, Ys) > (s, X, Ys) for t < s < 7. Moreover, recall that (F — A1 + y)u,p —u) = 0
a.e., so Leb{(z,y) € C; : F — A(1 + y)u # 0} = 0dt a.e.. Since the two dimensional diffusion (X,Y") has a
density, we deduce that E [F(S,XS,YS) - A1+ YS)U(S,XS,Ys)l{(xs,ys)ecs}] =0, and so F(s, X, Ys) — A(1 +
Ys)u(s, Xs,Ys) =0ds, dP — a.e. on {s < 7 }. Therefore,

E [U(Tt7 XT” Yﬂ)] =K [u(t7 Xt7 th)] )
and, since u(7, X.,,Yr,) = (1, X4, Y7,),
E [u(ta X, }/t)] =E [1/)(7'757 XTt? YTt)] <E [u*(ta Xt }/t)] )

so that u(t, Xy, Y:) = u*(t, X4, ;) a.e.. With the same arguments we can prove that u(t, z,y) = u*(¢,z,y) and
this concludes the proof. [l

4.5.2 Weaker assumptions on v
The last step is to establish the equality u = u* under weaker assumptions on 1), so proving Theorem [Z.4]
Proof of Theorem[2} For every n € N, with natural notations, we have

un(t,x,y) = ur (t, z,y) on [0,7] x O.

The left hand side converges to u(t, z,y) thanks to the Comparison Principle. As regards the right hand side,

sup E [i(r, X2, V1)) sup B [e7 0y (r, XL, v
T€7—t,T TG’Tt’T

thanks to the uniform convergence of 1, to . O

Remark 4.17. It is natural to ask if the assumptions of Theorem are not vacuous and to look for payoff
functions for which they are indeed satisfied.

Let us consider, for example, the class of payoff functions ¥ = (t,x) = e "(x +¢ct), where ¢ = r—§
as defined in 1) and Y is continuous, positive and such that

_ pkb
o

[+ |[&'] < C(e” +1),

with C > 0. Note that the standard call and put options fall into this category.
We can show that 1 satisfies the assumptions of Theorem[24) In fact, fitp > B + % and assume y > p in
the definition of the measure m. Note that

o0 |0
] + 'E + '%’ < O(t,2),
where »
o(t,z) = Cr (em_th + 1) . (t,z)e[0,T] xR,

for some Cp > 0. Then, 1 satisfies Assumption H' since ¢ € C([0,T); H), /T +y¢ € L2([0,T]; V), w(T) € V
%’ < @ with ® € L*([0,T); V). Moreover, ® satisfies Assumption H? since ® has values in H*(O, m),

(14+1y)2® e L2([0,T],H) and, by straightforward computations, %—f + L® = 0. Therefore, 1 satisfies the
assumptions of Theorem[Z3 and there exists a unique solution of the variational inequality (2.

It remains to prove that v satisfies the further assumptions required in Theorem in order to have the
probabilistic representation [@I3). Note that ® € LP(]0,T]; LP(O,m)) and it satisfies Assumption H*. In fact,
recall that the discounted and dividend adjusted price process (e~ (T=9S,), = (eXf_gt)t is a martingale (we
refer to l@/ for an analysis of the martingale property in general affine stochastic volatility models). Therefore,
the process (®(t, Xt))iefo,r] = CT(eXf_p_:et + D)iejo,r) is a martingale, so that (P(s, Xs))sep,r) is of class D for
every (t,z,y) € [0,T] x R x [0, 00).

Then, recall the following result:

and
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Lemma 4.18. Let 0 < vy < vo. If f € WY'P(R,e 1121y with p > 1, there exists a sequence (f,) such that
fn € W2P(R,e="21%l) and f, converges to f uniformly.

We refer to / for a proof. Since p € WHP(R, e~V 12} for every ' > ~, from Lemma [f-18 we deduce the
existence of a sequence (z/;n)n C W2P(R, 6_7‘1‘) which uniformly converges to 1. Hence, there exists a sequence
(¥n)n which converge uniformly to ¥ and such that, for every n € N, 0 <1, < ® and 1, satisfies Assumption
HY, by, € L2([0,T), HX(O,m)) and 2o + L4, ® € LP([0,T]; LP(O,m)).

Therefore, v satisfies all the assumptions required in Theorem [2]) and we can identify the solution of the
variational inequality with the solution of the optimal stopping problem, that is the American option price.
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