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Abstract

One challenging problem with light field video editing is
the dreadful volume of data to process. Image and video
processing frequently rely on over-segmentation methods
to reduce the computational burden of subsequent editing
tasks. In this paper, we present the first approach for
video light field over-segmentation called dynamic super-
rays, which can be seen as temporally and angularly con-
sistent superpixels. Our algorithm is memory efficient and
fast. The results show timing close to editing time by lever-
aging GPU computational power.

1. Introduction
By imaging a scene from different viewpoints, a light

field enables advanced processing such as depth estimation,
refocusing, parallax shift, or super-resolution. The acquisi-
tion of such content is typically done with 3 classes of de-
vices. Plenoptic cameras [21, 17] use a microlens array in
front of a camera sensor to re-arrange by direction the light
rays coming from the camera main lens. Camera arrays [34]
are composed of a rig of cameras, often organized on a reg-
ular grid. Finally, camera gantries (e.g. Stanford’s Lego
gantry1) have a mechanical system to move a single camera
along a plane, taking photos at regular intervals. Despite
being aimed at different applications and having quite di-
verse spatial and angular resolutions, the content captured
by these devices is often described using a representation
called lumigraph [12], which describes all light rays as a set
of views taken with a regular baseline on a single plane.

Currently, most of light field content used in research is
static. This is perhaps due to the difficulties of capturing a
dynamic light field for either of the aforementioned devices.
Specifically, camera gantries are by design unable to record
dynamic light fields, and the available plenoptic cameras are
either limited to static light fields2 or cannot easily produce
a lumigraph3. Camera arrays require to build a synchro-

1http://lightfield.stanford.edu/lfs.html
2https://lytro.com
3http://raytrix.de type 2.0 plenoptic cameras with trifocal mi-

crolenses

nized camera acquisition system, which is a real technical
challenge.

However, latest advances in light field video acquisition
systems [8, 26] show that it is possible to capture quite
voluminous light fields in real time. The problem of effi-
ciently processing the captured 5D light field content is then
twofold. First, the amount of data to handle, already a prob-
lem for static light fields, reaches a critical point for video
light fields. As a consequence, computational efficiency is
a core aspect in many light fields processing tasks, such as
editing. Secondly, to enable editing via user interaction on
a single key frame, algorithms must consistently propagate
the edits angularly and temporally to the rest of the dynamic
light field.

In this paper we present an over-segmentation scheme
that exploits the light field redundancy in both the tempo-
ral and angular dimensions and leverages GPU computa-
tional power to enable easy and fast light field editing from
a single reference view and frame. The proposed over-
segmentation approach generalizes the concept of super-
rays, introduced in [14] for static light fields, to dynamic
super-rays for video light fields. Super-rays, seen as the
light field analog of superpixels [1], are a grouping of rays
captured in different views of the light field that are similar
in appearance and coming from the same scene area.

Several constraints are taken into consideration in the de-
sign of the proposed method. First, the approach is paral-
lelizable to take advantage of a GPU implementation. Sec-
ond, it processes different frames sequentially and on-the-
fly, so the memory footprint is reasonable, in contrast to
methods operating on sliding windows. This is mandatory
as the amount of data per frame is much greater than a
conventional 2D video. Finally, super-rays are consistent
across views and across frames in the temporal dimension.

Specifically, our contributions are:

• An end to end approach to create an angularly and tem-
porally consistent light field over-segmentation that we
call dynamic super-rays

• A new update term for creating and deleting superpix-
els and super-rays specially tailored for dynamic con-
tent
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• A new strategy for creating a temporal over-
segmentation that is consistent with the scene move-
ment

2. Related Work
We focus on the two areas of the literature that are re-

lated to the proposed method, namely image and video over-
segmentation and light field editing.
Image and Video Over-Segmentation: From the sem-
inal work of [23] that introduced the term superpixel,
many approaches have been proposed for still image over-
segmentation. Because superpixels are often used as a pre-
processing step to speed up other algorithms, it is not sur-
prising to see that superpixel methods yielding low run-time
are more popular. Historical approaches like the multi-scale
watershed segmentation [18], turbopixels [15] or quick shift
[30] are outperformed by modern algorithms, in terms of
performance over complexity. Among them, we can men-
tion Superpixels Extracted via Energy-Driven Sampling
(SEEDS) [28]. Starting from a regular lattice, the approach
iteratively computes the cost of reassigning pixels blocks to
neighborhoods superpixels. The cost function is designed to
encourage superpixels with uniform colors. The reassign-
ments are carried in a multi-scale fashion, starting from the
coarsest level. Unfortunately, the process involves a lot of
stochastic iterative operations, thus cannot take advantage
of massively parallel computation. The method called Sim-
ple Linear Iterative Clustering (SLIC) [1] adapts the Loyd’s
algorithm for k-means clustering of image pixels in terms
of spatial and color distance in the Lab space. In order
to speed up the algorithm, the clusters are contained in a
rather small local window corresponding to the size of the
initial uniform seeding. Arguably, the strongest advantage
of SLIC is its ability to leverage massively parallel com-
putation. Because each assignment and update step can be
carried out efficiently on the GPU, to the best of our knowl-
edge, SLIC is the only approach providing real-time perfor-
mances [22]. Many variations of this algorithm have been
proposed [2, 16, 31], but all loosing this computational ad-
vantage.

The problem of over-segmentation for multiview is a
rather unexplored topic, most of the proposed approaches
focus on computing a consistent segmentation rather than
an over-segmentation. These approaches usually generate
superpixels separately on each view and group them into
meaningful object segments afterwards [6, 19].

On the contrary, video over-segmentation is a more re-
searched topic. We can distinguish several video over-
segmentation categories. The first one assumes the entire
video sequence to be processed as a whole. For instance, in
[1], the temporal dimension is treated in the same way as the
spatial dimensions in order to create a single volume, where
volumetric superpixels are computed. Whereas in [10], su-

perpixels are computed separately on each frame, then tem-
poral correspondences between superpixels are established
using an affinity metric in order to extract object segments.
The second and more popular category aims at computing
the segmentation consistently, from a frame to another. Sev-
eral approaches have been proposed. In [7] a pre-computed
dense optical flow is used along with a Gaussian process
to update the labeling from a frame to another. The super-
pixels deletion or creation is done by inference using the
same Gaussian process. In [29], the framework proposed
in [28] is extended to videos. When a new frame arrives,
the same moves are performed to adapt for the new frame
geometry, using the previous frame assignments. Creation
and deletion of superpixels are done by looking at color his-
togram distances. In [24], the most related work to ours, dy-
namic SLIC superpixels are computed in a sliding window
of 20 frames. A dense flow is used to propagate the assign-
ment from a frame to another and several SLIC iterations
are run. The centroid color is shared between correspond-
ing superpixels on several frames of a sliding window. The
superpixel update criteria is solely based on the superpixel
size evolution. Unfortunately, none of the aforementioned
approaches are readily applicable for video light field over-
segmentation for different reasons. Loading all, or a large
amount of the frames of the video sequence as in [24, 1]
is prohibitive in the case of a light field. Performing a late
merge of frames superpixels as in [10] does not provide any
temporal consistency. Methods taking the assumption that
the temporal dimension is densely sampled, as in the tem-
poral propagation step of [7], will most likely fail in our
case, where objects with wide motion are involved. Finally,
all the approaches relying on a stack of granular operations
as in [29], are not suitable for a GPU implementation, nec-
essary to handle the large volume of data in editing time.

Light field editing: Because segmentation is the first step
of many editing algorithms, it is natural to see most light
field editing papers being centered around this topic. A
level set method is proposed in [5] to extract objects which
are assumed to be organized in layers in the scene. In [32],
the authors present a more flexible albeit more computa-
tionally expensive method to compute arbitrary object seg-
ments. The approach uses user scribbles on a reference view
to learn a joint color and depth object model that is used to
infer a label for each ray of the light field. These label as-
signments are further regularized inside and between views,
taking into account depth occlusions. In [20], a dense an-
gular sampling is assumed and the authors build a graph
with 4D anisotropic connectivity in order to use graph cuts
to assign a label to each ray. The color and depth model is
estimated using a SVM technique. In these two approaches,
because the regularization does not scale well with the size
of the input light field, the running times are rather high. To
solve this issue, in [13] rays coming from the same scene



point are represented in a single node on a ray-based graph
structure, before using a depth and color Gaussian mixture
model in a graph cut scheme. This reduces significantly the
size of the graph and scales well with the number of input
images. However, the quality and the run-time depends on
the quality of the dense depth estimation on all views, which
can be quite expensive to compute. Furthermore, as for con-
ventional 2D images, the approach does not scale with the
spatial resolution of the light field.

To overcome this problem, recent work focused on pro-
viding a light field over-segmentation. In [35], a depth
estimation is used to propagate an initial SLIC over-
segmentation on a reference view to all the views of the
light field. The initial segmentation is then iteratively re-
fined by optimizing an energy function based on segmen-
tation smoothness inside and between the views along with
a color, position and disparity uniformity prior. In [14], a
method to compute angularly consistent superpixels, named
super-rays is proposed. The approach does not require a
dense depth estimation and focuses on speed and paral-
lelism but still provides satisfactory segmentations. This
last algorithm has shown to be a good trade-off between
speed and accuracy for still light fields, so we consider it as
a starting point for our over-segmentation method for light
field videos. We summarize it in Sec. 3.

3. Static super-rays summary
In this section we briefly describe and give the main no-

tations of the super-rays algorithm for static light fields.
Further details can be found in [14].
Notations: Let r be a ray of the light field LF , and (s,x)
its coordinates using the two plane parametrization [12],
where s = (s, t) and x = (x, y) are the angular and spa-
tial coordinates respectively. Besides, each ray has an as-
sociated CIELab color value Labr. Let x′ := Pds′(x) be
the spatial pixel position in view s′ imaging the same scene
point, at a distance d, as x in view s. This is, r = (s,x)
and r′ = (s′,x′) are corresponding rays imaging the same
scene point in different views.

Given a light field, super-rays are all the perceptually
similar rays corresponding to the same scene area. That is,
the mapping A : LF ⊂ Z4 → Z, such that each ray r is
assigned a super-ray label c is computed. Let SRc be the
set of rays r such that A(r) = c.

The super-ray computation is inspired by SLIC [1] and
has the same main steps. One major difference is that each
super-ray SRc is characterized by a centroid ray rc with
angular coordinates corresponding to the reference view sc
and a depth dc associated to it.
Initialization: The spatial positions xc of the centroid rays
are initialized on a regular grid of step S in the reference
view. The corresponding CIELab color values on such po-
sitions are the initial color values of the centroid rays Labrc ,

and the depth dc of each centroid ray rc is estimated via
block-matching.
Assignment step: At each iteration, each ray r = (s,x)
of the light field is assigned a super-ray label A(r). First,
the depth estimated in the previous step is used to compute
r′c = (s′,Pdcs′ (xc)), the corresponding rays of rc. Then,
each ray in a neighborhood NS(r′c) of size S around r′c is
assigned to the super-ray SRc if it minimizes the color and
spatial distances:

A(r) = arg min
c

(
∆Lab(r, rc) + λ∆xy(r, r′c)

)
, (1)

where ∆Lab(r, rc) = ||Labr−Labrc ||2, ∆xy(r, r′c) = ||x−
Pdcs′ (xc)||2 and λ is the parameter weighting the color and
spatial distances.
Update step: Following the assignment step, the spatial co-
ordinates of the ray centroid and its corresponding Lab val-
ues are updated. Indeed, the new color value of rc is the
average of the color values of all rays in SRc and the new
spatial coordinates are the average coordinates of all light
rays r = (s,x) in SRc projected on the reference view us-
ing the depth dc:

xc =
1

|SRc|
∑
r∈SRc

Pdcsc (x). (2)

Note that the angular coordinates sc of the centroid rays
do not change along the iterations, while the spatial coordi-
nates are updated.
Iterations: As in SLIC, the two previous steps are repeated
until the centroids are stable. This happens within 10 to 15
iterations. A cleanup step is optionally run to reassign labels
to disconnected rays.

4. Dynamic super-rays
The proposed approach is inspired from techniques pro-

posed to generate temporally consistent superpixels [24, 7],
that can be decomposed into three main steps: (i) initialize
the current frame segmentation by temporally propagating
the segmentation of previous frames, (ii) adapt the segmen-
tation to changes in geometry and (iii) create and delete seg-
ments to take into account occlusions and objects entering
or leaving the scene.

Our algorithm is summarized in Alg. 1 and illustrated in
Fig. 1.

4.1. Sparse temporal propagation

Computing a dense and accurate optical flow for light
fields can be a quite tedious task, especially when memory
and time requirements are taken into account. Moreover,
because super-rays embed a depth information per segment,
the problem we aim to resolve is a scene flow estimation
problem. That is, we aim to find the displacements of 3D
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Figure 1. Illustration of our algorithm in a simple case. The red foreground super-ray is tracked over the consecutive frames of a 2 × 1
light field. Other super-rays do not move since the background is static. The depth d is used to enforce angular consistency from a view to
another, while the scene flow (δx, δd) guarantees temporal consistency. On the third frame, the moving red super-ray becomes too close
of the pink super-ray and too far from the green one, triggering the creation of the orange super-ray and the deletion of the pink one on the
next frame.

Algorithm 1: Dynamic super-ray algorithm

Data: Input light field frame LF f

Result: Super-ray assignments Af

if f == first frame then
Compute Af as in [14]

else
Move centroids with (δxc , δ

d
c ) (Sec . 4.1)

Delete and create centroids (Sec. 4.2)
for 5 iterations do

Do the assignment step Eq. 1
Do the update step (Sec 4.3)

points in the scene rather than pixels shifts in the image
plane. Fortunately, in the case of super-rays, the scene flow
estimation needs to be estimated only for centroids and not
for all rays of the light field. Formally, for two consecutive
light field frames f and f + 1, one could estimate the scene
flow (δxc , δ

d
c ) at the centroid ray rfc = (sc,xc) as

(δxc , δ
d
c ) = arg min

δx,δd

∑
s′

∆B
RGB(rf+1

c , r′f+1
c ) (3)

where

rf+1
c = (sc,xc + δx) ,

r′f+1
c =

(
s′,Pdc+δd

s′ (xc + δx)
)

;

and ∆B
RGB the color distance between two patches of size

B centered at rf+1
c and r′f+1

c .
However, this 3-dimensional cost function being quite

expensive to minimize, we have split the problem into opti-
cal flow and depth estimation, like other methods for light
field scene flow estimation in the literature [4, 27]. Besides,
it is not clear to which extent solving jointly the displace-
ment for x and d would be beneficial.

Now, in state of the art optical flow estimation methods
[3] Deep Flow [33] stands out for its performance in terms
of quality and run-time. Deep flow first searches for sparse
matches using Deep Match [25] between downsampled ver-
sions of the input frames, and then the matches are densi-
fied by regularizing a selected set of sparse matches. Deep
Match and has many properties which are interesting for
our problem. It is robust and efficient since it can be imple-
mented on GPU4 and the matches are searched in a limited
local window. Thus, we solve the sparse flow estimation us-
ing deep matches. In contrast to deep flow, we do not seek
to obtain a dense and precise optical flow, but rather a robust
and fast sparse flow for each centroid.

4http://lear.inrialpes.fr/src/deepmatching/



We compute the set of deep matches [25] from two
downsampled frames f and f + 1. Then, the estimated flow
δxm = xf+1

m − xfm, using the deep matches in the full res-
olution coordinate system, is used to compute the flow of
each centroid δxc using a simple and fast bilinear interpola-
tion. Precisely, δxc is the distance-weighted average flow δxm
of its 4 nearest matches.

Using the notation above, the depth is updated using the
same strategy as in [14]:

δdc = arg min
δ∈D

{
min
o∈Ω

∑
s′

o(s′) ∆B
RGB(rf+1

c , r′f+1
c )

}
,

(4)
where D is the small range of potential depth movements
and Ω is a family of spatio-angular patches.

4.2. Centroid creation and deletion

Because of object movements in the scene, the super-
ray topology can change in time. For instance, parts of the
super-rays can be occluded or disoccluded, or completely
appear or disappear due to objects entering or leaving the
scene. For this reason, creating and deleting super-rays
might be necessary. While the superpixel size or color con-
sistency has been used to determine the creation or deletion
in other research works, we propose to leverage the depth
information associated to the super-ray to detect occlusions
and disocclusions.

In particular, a new super-ray is candidate to be created at
the midpoint of two super-rays when their centroid distance
exceeds a given threshold S∗τ . Conversely, a super-ray will
be a candidate to be deleted if two super-rays are too close
from each other, i.e. their centroid distance is lower than a
threshold S/τ . In particular, the occluded super-ray (with
the smallest disparity or biggest depth) is the candidate for
deletion. For the sake of efficiency, and to avoid duplicates,
we search the candidate centroids to be deleted or created
in a 4-nearest neighborhood, computed as illustrated in Fig.
2. Specifically, the approximate neighborhood of a centroid
c is defined as N (c) = {cleft, cright, cup, cdown} where

cleft = arg min
ĉ

{
|yĉ − yc| s.t.

xĉ < xc, |yĉ − yc| < S
}
, (5)

and similarly for the other neighbor centroids.
Now, in order to maintain the number of super-rays con-

stant, we create the same number of super-rays we delete.
If the number of candidates for deletion is smaller (resp.
bigger) than the number of candidates for creation, only the
centroids with the biggest (resp. smallest) centroid distance
are created (resp. deleted).

Finally, because objects can move inside or outside of
the reference view, the super-rays near the image borders

S
c

cdown

cleft

cup

cright

Figure 2. Super-ray neighborhood. Each super-ray is represented
by a solid color and its centroid by a black dot. The search area
for the left neighbor cleft of the red super-ray c is represented by
the blue dots, and the final neighborhood connections of c by the
black lines.

are treated as follows. New super-rays are created in the ref-
erence view between the image borders and the closest cen-
troids. For instance, if a centroid c does not have a neigh-
bor cright, a new centroid will be (xc+M

2 , yc), M being the
reference view width. Super-rays that leaves the reference
view image plane are automatically deleted.

Note that the centroid neighborhood can be used for fur-
ther processing, as it is a convenient way of representing the
super-rays structure.

4.3. New frame over-segmentation

In the new frame, after defining the set of centroids in the
reference view, all the rays of the light field are assigned to
a centroid. Similarly to super-rays, the assignment is done
using Eq. 1 in an iterative process with color and position
centroid updates. While the centroid color is updated with
the same color average strategy as super-rays, the centroid
position update changes for dynamic super-rays. So Eq. 2
becomes

xf+1
c =

(
p

|SRf+1
c |

∑
r∈SRf+1

c

Pdcsc (xfr )

)
+ (1− p)(xfc + δxc )

(6)
where p is a parameter controlling how much the super-

rays are allowed to move from their theoretical position.
When p = 1, this step corresponds to the same SLIC it-
eration as in Eq. 2, and when p = 0, the super-ray centroids
are not updated at all, providing the best temporal consis-
tency. Newly created centroids (as described in Sec. 4.2)
are updated using p = 1, allowing them to adapt to scene
changes.



In [24], 5 SLIC iterations are run, where the centroids
are allowed to move freely. As a consequence, superpix-
els of static objects tend to move since they are affected by
the creation, deletion and movements of nearby superpixels.
On the contrary, our dynamic super-rays movement is con-
gruous with the objects movement in the scene, providing a
more consistent temporal over-segmentation.

5. Experiments
Currently, two datasets for video light fields captured

with camera arrays are available. The Fraunhofer dataset
[8], with sequences of 3× 3, 3× 5 and 4× 4 views, a cam-
era resolution of 1920×1080 pixels and sequences between
150 and 400 frames. On the other hand, the Technicolor
dataset [26] with sequences of 4×4 pseudo-rectified views,
a camera resolution of 2048 × 1088 pixels and sequences
between 300 and 390 frames. The cameras baseline is quite
important for the second dataset.

As hyper-parameters, fixed for all the datasets, we use a
down-sampling factor of 2 and a flow window of 30 pixels
for the computation of the deep matches. The δd search
range is limited to 1/10 of the depth search range, given
for each dataset. The depth block size is fixed to 11 × 11
pixels. The compactness parameter λ is fixed to 0.5 and τ
and p are fixed to 1.9 and 0.4 respectively. We generated
1500 super-rays for the Technicolor dataset and 2000 for
the Fraunhofer dataset. These number of super-rays offer
a good trade-off between segmentation accuracy and super-
ray tolerance to occlusions (as discussed in [14]) for each of
the datasets. Our dynamic super-rays are computed in the
whole sequences without fragmenting them.

Fig. 3 shows the output of our algorithm for a small
area of the dataset Birthday [26]. For the sake of visual-
ization, results are only shown for two views, the reference
view sc = (1, 1) and another view s = (1, 0), and three
non-consecutive frames f = 95, 100, 105. For each view,
we show the input image with the optical flow only on the
reference view (top left), the color-coded assignment (top
right), the super-ray average color (bottom left) and finally
the super-ray contours (bottom right).

Please note that it is hard to evaluate our over-
segmentation results on paper due to the reduced number
of frames or views we can illustrate compared with the full
light-field videos. We strongly encourage the reader to visu-
alize all our results on our web-page5. The resulting videos
show concatenated views with usual visualization methods,

5 Since the supplementary material space is too limited to fit all
our results, it only contains the two full sequences shown in this
paper. To respect the double blind policy, all our results are hosted
on an anonymous Youtube channel https://www.youtube.
com/channel/UCHFkXPUSiV3UFxlABRmQkNA/videos and
can be downloaded https://drive.google.com/open?id=
1L-txOlsgmP6AXkKsqbdwVK5GBZMl2PYD. All our results will be
available on our web-site upon publication.

namely, the super-ray average color, the color-coded super-
ray labels, and the super-ray contours (as in Fig. 3). We
also visualize the value of the flow for each centroid, as
well as the coarse depth of each super-ray, by assigning the
super-ray centroid depth to all the rays having the same la-
bel. Finally, we show the centroids neighborhood structure
in which the deleted or created centroids are differently col-
ored.

We compare our method with the algorithm in [24]
which is the state of the art for temporal consistent su-
perpixels on videos. Note that in this experiment we fo-
cus on the temporal aspect since it has already been shown
[14] that computing superpixels on each of the views sep-
arately does not guarantee angular consistency. So, here
we show our over-segmentation results for the reference
view only. Fig. 4 shows this comparison on five frames,
f = 260, 262, 263, 264, 265. In particular, on the top row,
we show the neighborhood structure described in Sec. 4.2.
Each centroid appears as a blue dot, and horizontal and ver-
tical neighborhoods are illustrated with cyan and magenta
edges respectively. Centroids of deleted super-rays are rep-
resented in red, while new super-rays are represented in yel-
low. The second and third rows correspond to our results
and the results of [24] respectively.

We observe that the update step in [24] allows the super-
pixels on the static background to move freely. On the con-
trary, our super-rays are not moving so the scene movement
is consistent with the super-rays movement. We believe this
is a major benefit if dynamic super-rays are to be used in
further editing tasks. We invite the reader to view the video
in the supplementary material where temporal consistency
is more visible5.

Besides the qualitative comparison with [24] we have
also observed considerable differences in terms of compu-
tational complexity. Depending on the datasets, the algo-
rithm in [24] takes several hours and up to one day (using
the original implementation) to run for all the frames of a
single view video. In our case, the biggest advantage is
the GPU friendliness. Indeed, the SLIC-based iterations,
the deep flow computation and the super-ray creation and
deletion, are highly parallelizable. On the same machine
(equipped with a Nvidia GTX 1080 GPU hosted by an Intel
Xeon E5-2630 CPU) our current Python/PyOpencl imple-
mentation gives an average running time for each iteration
of 0.157s and 0.059 to 0.083s (depending on the input size),
respectively on [26] and [8]. Further improvements are to
be expected by a more optimized implementation.

Dynamic super-rays with the neighborhood structure
presented in Sec. 4.3 offer a useful representation of the
scene captured by the light field videos. Temporal super-
rays can be seen as a powerful tool for efficient light-field
video editing in which the edits in one reference view of
the light-field can be easily propagated to other frames and

https://www.youtube.com/channel/UCHFkXPUSiV3UFxlABRmQkNA/videos
https://www.youtube.com/channel/UCHFkXPUSiV3UFxlABRmQkNA/videos
https://drive.google.com/open?id=1L-txOlsgmP6AXkKsqbdwVK5GBZMl2PYD
https://drive.google.com/open?id=1L-txOlsgmP6AXkKsqbdwVK5GBZMl2PYD
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Figure 3. Video super-rays for 3 frames and 2 views of the dataset Birthday [26].
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Figure 4. Over-segmentation comparison with [24] on the reference view over 5 frames. Our dynamic super-rays (second row) are consis-
tent with the scene movement while the superpixels in [24] (third row) move in static regions.

views. For example, in [14] it is presented how to use super-
rays to generate intermediate views to correct the angular
aliasing caused by the poor angular sampling of sparse light
fields. Similarly, dynamic super-rays can be used for tem-
poral image interpolation without flickering caused by an in-
consistent interpolation. Other examples of temporal super-
rays applications include light-field video compression (e.g.
adapting the approach in [9]), or light field color transfer
(e.g. using the algorithm in [11]).
Limitations: We have observed that our approach has some
limitations, in particular, when the depth or the flow esti-
mation becomes erroneous, the super-ray consistency is not
guaranteed from one view to another. Such failure case is
visible in the dataset Newspeaker [8], where a very uniform
green background challenges both the depth and flow esti-
mations. When the depth is inconsistent, the centroids are
wrongly projected, leading to large areas with no nearby
centroid for the rays to be assigned to.

The other failure case involves small moving objects, be-
cause of our sparse flow computation strategy, the optical
flow for small object can be wrongly evaluated to the flow
value of its surrounding. This is visible on the dataset Train
[26], where centroids struggle to follow the train wagons.

In conclusion, even if depth and flow estimation are
mature research topics we have observed that challenging
datasets may still produce inaccurate estimates. In particu-
lar, the images in the two datasets suffer heavily from mo-

tion blur, noise and over and under exposition. Furthermore,
the dataset in [8] has some large texture-less areas.

However, loosing consistency in flat areas is not critical.
Indeed, if the zone to edit is totally uniform, the editing be-
come trivial (e.g. using a simple color threshold), dismiss-
ing the needs for super-rays in the first place.

6. Conclusion
We presented an approach to generate angularly and tem-

porally consistent light field video over-segmentations. Our
algorithm design allows a GPU implementation, allowing
computational performances that are required to cope with
the high volume of data. To the best of our knowledge, this
is the first approach to deal with the problem of video light
field editing.
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