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Positive association of the oriented percolation
cluster in randomly oriented graphs

François Bienvenu ∗†

November 23, 2017

Abstract

Consider any fixed graph whose edges have been randomly and indepen-
dently oriented, and write {S  i} to indicate that there is an oriented
path going from a vertex s ∈ S to vertex i. Narayanan (2016) proved that
for any set S and any two vertices i and j, {S  i} and {S  j} are
positively correlated. His proof relies on the Ahlswede-Daykin inequality, a
rather advanced tool of probabilistic combinatorics.

In this short note, I give an elementary proof of the following, stronger
result: writing V for the vertex set of the graph, for any source set S,
the events {S  i}, i ∈ V , are positively associated – meaning that the
expectation of the product of increasing functionals of the family {S  i}
for i ∈ V is greater than the product of their expectations.

To show how this result can be used in concrete calculations, I also
detail the example of percolation from the leaves of the randomly oriented
complete binary tree of height n. Positive association makes it possible to
use the Stein–Chen method to find conditions for the size of the percolation
cluster to be Poissonian in the limit as n goes to infinity.
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1 Introduction

Oriented percolation is the study of connectivity in a random oriented graph. In
most settings, one starts from a graph with a fixed orientation and then keeps
each edge with a given probability. Classical such models include the north-east
lattice [4] and the hypercube [6].

Another broad and natural class of random oriented graphs is obtained by starting
from a fixed graph and then orienting each edge, independently of the orientations
of other edges. Note that, in the general case, the orientations of the edges need
not be unbiased: some edges can be allowed to have a higher probability to point
towards one of their ends than towards the other. Percolation on such randomly
oriented graphs has been studied, e.g. in [8], and more recently in [9], which mo-
tivated the present work.

In [9], Narayanan showed that if the edges of any fixed graph are randomly and
independently oriented, then writing {S  i} to indicate that there is an oriented
path going from a vertex s ∈ S to vertex i, we have

P(S  i, S  j) > P(S  i)P(S  j) .

The aim of this note is to strengthen and simplify the proof of this result. More
specifically, let V be the vertex set of the graph. We prove that the events {S  i},
i ∈ V , are positively associated, without resorting to advanced results such as the
Ahlswede–Daykin inequality [1].

To illustrate the usefulness of positive association, we finish the paper by detail-
ing a simple but non-trivial model of percolation, where we let water percolate
from the leaves of the randomly oriented complete binary tree of height n. The
combinatorially simple structure of this graph makes it possible to bound the vari-
ance of the size of the percolation cluster. A classic application of the Stein–Chen
method [11, 3] then provides us with a bound on the total variation distance be-
tween the size of the percolation cluster and a Poisson variable. This method is
applicable to any graph where a bound on the variance of the size of the percolation
cluster can be obtained.

1.1 Positive association and related notions

There are many ways to formalize the idea of a positive dependency between the
random variables of a family X = (Xi)i∈I . A straightforward, weak one is to ask
that these variables be pairwise positively correlated, i.e.

∀i, j ∈ I, E(XiXj) > E(XiXj) .

A much stronger condition, due to [5], is known as positive association.

In the following definition and throughout the rest of this document, we use bold
letters to denote vectors, as in X = (Xi)i∈I , and we write X 6 X′ to say that
Xi 6 X ′i for all i. Finally, a function f : RI → R is said to be increasing when
X 6 X′ =⇒ f(X) 6 f(X′).
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Definition 1.1. The random vector X = (Xi)i∈I is said to be positively associated
when, for all increasing functions f and g,

E(f(X)g(X)) > E(f(X))E(g(X))

whenever these expectations exist.

In the rest of this document and without further mention, we only consider test
functions f and g for which E(f(X)), E(g(X)) and E(f(X)g(X)) exist.

When there is no possible confusion, we sometimes omit to explicitly distinguish
between an event and its indicator variable. Thus we say that the events Ai, i ∈ I,
are positively associated when the random variables 1Ai

are. Similarly, a random
subset R of the fixed set I is assimilated to the vector

R =
(
1{i∈R}

)
i∈I

so that R is positively associated when the events {i ∈ R}, i ∈ I, are. Clearly,
this is also equivalent to saying that for any increasing functions f and g from the
power set of I to R,

E(f(R)g(R)) > E(f(R))E(g(R)) ,

where f being increasing is understood to mean that r′ ⊂ r =⇒ f(r′) 6 f(r).

Positive association is famous for the FKG theorem, which states that it is im-
plied by a lattice condition that can sometimes be very easy to check [7]. In this
document however, we will work directly from Definition 1.1.

Positive association has many applications, in part because – being a very strong
form of positive dependence – it implies other more targeted positive dependence
conditions. One such condition is positive relation.

Definition 1.2. The vector of Bernoulli variables X = (Xi)i∈I is said to be posi-
tively related when, for each i ∈ I, there exists X(i), built on the same space as X,
such that

(i) X(i) has the conditional distribution of X given {Xi = 1}.

(ii) X(i) > X.

Equivalent characterizations of positive relation as well as a proof of the fact that
it is implied by positive association can be found, e.g., in [10].

Positive relation is very useful when using the Stein–Chen method, as the next
theorem shows. Proofs of this classic result and a more general introduction to
the Stein–Chen method can be found in [2] and [10].

Theorem A (Stein–Chen method). Let X1, . . . , Xn be positively related Bernoulli
variables, and pi = P(Xi = 1). Let W = ∑n

i=1Xi and λ = E(W ). Then,

dTV(W,Poisson(λ)) 6 min{1, λ−1}
(

Var(W )− λ+ 2
n∑
i=1

p2
i

)
,

where dTV denotes the total variation distance.
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1.2 Notation

Let us fix some notation to be used throughout the rest of this document.

We study the simple graph G = (V,E). Unless explicitly specified otherwise, V
is assumed to be finite and we denote by |V | its cardinal. The edges of G have a
random orientation that is independent of the orientations of other edges and we
write {i→ j} to indicate that the edge {ij} is oriented towards j. Formally, we
are thus given a family or events {i→ j}, {ij} ∈ E, such that {i→ j} = {j → i}c

and for all {ij} 6= {k`} ∈ E, {i→ j} ⊥⊥ {k → `}.

Finally, for every vertices i and j, we write {i j} for the event that there exists an
oriented path going from i to j. Similarly, for every source set S we let {S  i} =⋃
j∈S{j  i} be the event that there is an oriented path from S to i, and for every

target set T we let {i T} = ⋃
j∈T{i j} be the event that there is an oriented

path from i to T . If there is an ambiguity regarding which graph is considered for
these events, we will specify it with the notation {i G j}.

2 Positive association of the percolation cluster

2.1 Preliminary lemma

Lemma 2.1. Let Γ be a finite set and let R be a positively associated random subset
of Γ. Let Xr

i , r ⊂ Γ and i ∈ V , be a family of events on the same probability space
as R with the property that

(i) r′ ⊂ r =⇒ Xr′
i ⊂ Xr

i , ∀i ∈ V .

(ii) For all r ⊂ Γ, (Xr
i )i∈V is positively associated and independent of R.

For all i ∈ V , define XR
i by

XR
i :=

⋃
r⊂Γ
{R = r} ∩Xr

i .

Then, the events XR
i , i ∈ V , are positively associated.

Proof. Let f and g be two increasing functions. We have

E
(
f(XR)g(XR)

)
=
∑
r⊂Γ

E
(
f(Xr)g(Xr)1{R=r}

)
=
∑
r⊂Γ

E
(
f(Xr)g(Xr)

)
P(R = r)

>
∑
r⊂Γ

E(f(Xr))E(g(Xr))P(R = r) ,

because Xr ⊥⊥ R and Xr is positively associated. Now, let u : r 7→ E(f(Xr)) and
v : r 7→ E(g(Xr)), so that the last sum is E(u(R)v(R)). Note that u and v are
increasing, since f and g are and, by hypothesis, r′ ⊂ r =⇒ Xr′ 6 Xr. Therefore,
by the positive association of R,

E
(
u(R)v(R)

)
> E(u(R))E(v(R)) .
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Finally, using again the independence of Xr and R, we have E(u(R)) = E(f(XR))
and E(v(R)) = E(g(XR)), which terminates the proof.

2.2 Main result

Theorem 2.2. Let G be a finite graph with vertex set V , whose edges have been
randomly and independently oriented. Then, for any source set S, the events
{S  i}, i ∈ V , are positively associated, i.e., for all increasing functions f and
g and writing X = (1{S i})i∈V ,

E(f(X)g(X)) > E(f(X))E(g(X)) .

Proof. Our proof is essentially the same as Narayanan, i.e. we use the same induc-
tion on the number of vertices. The difference is that we use Lemma 2.1 rather
than the Ahlswede–Daykin inequality to propagate the positive dependence.

The theorem is trivial for the graph consisting of a single vertex (a family of a
single variable being positively associated) so let us assume that it holds for every
graph with strictly less than |V | vertices.

Let Γ be the neighborhood of S, i.e.

Γ =
{
v ∈ V \ S : ∃s ∈ S s.t. {vs} ∈ E

}
.

Then, let R be the random subset of Γ defined by

R =
{
v ∈ Γ : ∃s ∈ S s.t. s→ v

}
.

Observe that the events {i ∈ R}, i ∈ Γ are independent, so that the set R is
positively associated.

Next, let H be the subgraph of G induced by V \ S. Note that, for all i ∈ V \ S,{
S

G i
}

=
{
R

H i
}
.

For every fixed r ⊂ Γ, the family {r H i} for i ∈ V \S is independent of R because
it depends only on the orientations of the edges of H, while R depends only on
the orientations of the edges of G that go from S to Γ – and these two sets of
edges are disjoint. Moreover, by the induction hypothesis, the events {r H i},
i ∈ V \ S, are positively associated. Since for fixed sets r and r′ such that r′ ⊂ r,
{r′  i} =⇒ {r  i} for all vertices, we can apply Lemma 2.1 to conclude that
the events {R i}, i ∈ V \ S, are positively associated.

To terminate the proof, note that the events {S  i} are certain for i ∈ S and
that the union of a family of positively associated events and of a family of certain
events is still positively related.

2.3 Corollaries

Corollary 2.3. Let G be a finite graph with independently oriented edges. For
any target set T , the events {i T}, i ∈ V , are positively associated.
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Proof. Consider the randomly oriented graph H obtained by reversing the orien-
tation of the edges of G, i.e. such that {i H→ j} = {j G→ i}. Then for all i ∈ V ,

{i G T} = {T H i} ,

and we already know from Theorem 2.2 that the events {T H i}, i ∈ V , are
positively associated.

Corollary 2.4. Let G be an infinite graph with independently oriented edges. Let
f and g be increasing, non-negative functions on RV that depend only on a finite
number of coordinates (i.e. such that there exists a finite set U ⊂ V and f̃ : RU →
[0,+∞[ such that f = f̃ ◦ ϕ, where ϕ is the canonical surjection from RV to RU).
Then, for any source set S, letting X = (1{S i})i∈V ,

E(f(X)g(X)) > E(f(X))E(g(X)) .

Proof. Let Gn be an increasing sequence of graphs such that G = ⋃
nGn, and for

all i ∈ V , let
X

(n)
i =

{
S

Gn i
}
,

so that X(n)
i ⊂ X

(n+1)
i and Xi = ⋃

nX
(n)
i . Since the functions f and g are in-

creasing, so are the sequences f(X(n)) and g(X(n)). Thus, using Theorem 2.2 and
monotone convergence,

E

(
lim
n
f
(
X(n)

)
g
(
X(n)

))
> E

(
lim
n
f
(
X(n)

))
E

(
lim
n
g
(
X(n)

))
.

Finally, if f and g depend on a finite number of eventsXi, then for every realization
of X we have limn f(X(n)) = f(X) and limn g(X(n)) = g(X).

Corollary 2.5 (Narayanan, 2016). For any (possibly infinite) graph with indepen-
dently oriented edges, for any source set S and for any two vertices i and j,

P(S  i, S  j) > P(S  i)P(S  j)

Proof. Take f : (xk)k∈V 7→ xi and g : (xk)k∈V 7→ xj in Corollary 2.4.

3 Percolation from the leaves of a binary tree

In this section, we study percolation on the randomly oriented complete binary
tree of height n. We start by introducing this graph and some notation.

3.1 Setting and notation

3.1.1 The binary tree Tn

Let Vn be the set of words of length at most n on the alphabet {0, 1}, i.e.

Vn =
n⋃
k=0
{0, 1}k ,

where {0, 1}0 is understood to represent the empty word.
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A word v is said to be a successor of u when v = us, with s ∈ {0, 1}. Thus, every
word of length less than n has two successors in Vn. Similarly, every non-empty
word of Vn has exactly one predecessor. With this terminology, let

En =
{
{u, v} : (u, v) ∈ V 2

n , v is a successor of u
}
.

What we call the complete binary tree of height n is the graph Tn defined by
Tn = (Vn, En). Let us fix some vocabulary and notation for working with Tn.

The leaves of Tn are the vertices of degree 1, and its root is the only vertex of
degree 2. The root will always be denoted by r.

The level of a vertex is its distance from the leaf set. Thus, the leaves are the
level-0 vertices, and the root is the only vertex of level n. We will write `(v) for
the level of vertex v.

The unique path between two vertices u and v will be denoted by [u, v]. Sometimes,
we will need to remove one of its ends from [u, v], in which case we will write ]u, v]
for [u, v] \ {u} and [u, v[ for [u, v] \ {v}.

Finally, there is a natural order 4 on the vertices of Tn, defined, e.g, by

u 4 v ⇐⇒ v ∈ [u, r]

Thus ordered, (Vn,4) is a join-semilattice, i.e. we can define the join of any u and
v, denoted by u ∨ v, as

u ∨ v = inf
(
[u, r] ∩ [v, r]

)
= sup [u, v]

These definitions are illustrated in Figure 1A.

Figure 1: A, the complete binary tree T3. The black vertices are the leaves of the tree,
and r is the root. The numbers on the right indicate the levels of the vertices. The
path [u, v] between u and v has been highlighted and u ∨ v, the join of u and v, can be
seen to be the unique vertex of maximum level in [u, v]. B, percolation and downwards
percolation on T4. Water starts from the leaves and then flows downwards through black
edges and upwards through dotted edges. It does not reach the grayed-out portions of the
tree. The percolation cluster Cn consists of both black vertices and white vertices, while
the downwards percolation cluster C↓n consists of black vertices only. Note that the leaves
are excluded from both percolation clusters.
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3.1.2 Percolation and downwards percolation on Tn

Let every edge of Tn be oriented towards the root with probability p and towards
the leaf set with probability 1− p, independently of the other edges.

In this application, the source set L will be the leaf set of Tn. In other words,
we pump water into the leaves of Tn and let it flow through those edges whose
orientation matches that of the flow, as depicted in Figure 1B. For any vertex v,
write

Xv = {L v} ,

for the event that the water reaches v, and

π
(n)
k = P(Xv), where k = `(v)

for the probability of this event. In the special case where v = r is the root, we
use the notation

ρn = π(n)
n = P(Xr) .

Finally, let
Cn = {v ∈ Vn \ L : Xv}

denote the percolation cluster.

As will become clear, this percolation model is closely related to a simpler one
where, in addition to respecting the orientation of edges, water is constrained
to flow towards increasing levels of the tree. If we think of the root of Tn as
its bottom and of the leaves as its top, then water runs down from the leaves,
traveling through downwards-oriented edges; hence we refer to this second model
as downwards percolation. Again, this is represented in Figure 1B.

Let us write Yv for the event that that vertex v gets wet in downwards percolation,
and let

C↓n = {v ∈ Vn \ L : Yv}

be the downwards-percolation cluster.

How are percolation and downwards percolation related? First, it follows directly
from the definition that Yv ⊂ Xv. Second, note that

Yr = Xr

because every path from the leaf set to r is downwards-oriented. Furthermore,
letting T (4v)

n denote the subtree of Tn induced by v and the vertices that are above
it, then the randomly oriented trees T (4v)

n and T`(v) have the same law. As a result,
for all v ∈ Vn,

P(Yv) = ρ`(v) ,

from which the next proposition follows.

Proposition 3.1. Let |C↓n| be the number of wet vertices (not counting the leaves)
in the downwards-percolation model on Tn. We have

E
(
|C↓n|

)
=

n∑
k=1

2n−kρk .
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3.2 General results

3.2.1 Percolation threshold

If the probability p that an edge is oriented towards the root is sufficiently small,
the probability ρn of the root getting wet will go to zero as n goes to infinity.
Define the percolation threshold as

θc = sup {p : ρn → 0} .

Proposition 3.2. The probability ρn of the root of Tn getting wet in either perco-
lation model satisfies the following recurrence:

ρn+1 = 2pρn − (pρn)2 , with ρ0 = 1.

The percolation threshold is therefore θc = 1/2 and

(i) p 6 θc =⇒ ρn → 0.

(ii) p > θc =⇒ ρn → (2p− 1)/p2 > 0.

Proof. First, note that

Yr = (Y0 ∩ {0→ r}) ∪ (Y1 ∩ {1→ r}) ,

where 1 and 0 are the two successors of the root r. These four events are indepen-
dent and we have P(0→ r) = P(1→ r) = p and P(Y0) = P(Y1) = ρn−1, whence
the recurrence relation.

Now, let fp : x 7→ 2px − (px)2, so that ρn+1 = fp(ρn). For p 6 1/2, the only
solution to the equation fp(x) = x in [0, 1] is x = 0, and fp(x) < x for all
0 < x 6 1. This proves (i). For p > 1/2, the equation fp(x) = x has a non-zero
solution α = (2p− 1)/p2 in [0, 1]. Finally, fp(x) > x for 0 < x < α and fp(x) < x
for α < x < 1, proving (ii).

Remark. Another way to obtain Proposition 3.2 is to note that the existence of an
open path from the leaf set of Tn to its root is equivalent to the existence of a path
of length n starting from the root of a Galton–Watson tree with Binomial(2, p)
offspring distribution, i.e. to its non-extinction after n generations. In the limit
as n → ∞, the probability of non-extinction is strictly positive if and only if the
expected number of offspring is greater than 1 – i.e., in our case, 2p > 1.

3.2.2 Expected size of the percolation cluster

Let us clarify the relation between percolation and downwards percolation by ex-
pressing the probability π(n)

k that a vertex gets wet in (bidirectional) percolation
as a function of ρk, . . . , ρn.

Proposition 3.3. Let π(n)
k = P(Xv), where `(v) = k. We have

π
(n)
k = ρk + (1− ρk)α(n)

k ,

9



where
α

(n)
k = (1− p) p

n−1−k∑
i=0

(1− p)iρk+i

i−1∏
j=0

(1− pρk+j)

is the probability that water reaches v “from below” and ρk is the probability that
it reaches it “from above”.

Remark. To make sense of the expression of α(n)
k , it can also be written as

α
(n)
k =

n−k∑
i=1
P(M = k + i) , with P(M = k + i) = (1− p)ipρk+i−1

i−2∏
j=0

(1− pρk+j).

In this expression, M is the level of the highest (that is, minimal with respect
to 4) vertex u ∈ ]v, r] such that Yu ∩ {u v} (with M = +∞ if there is no such
vertex).

Proof. Water can reach v from above (i.e. coming from one of its successors) or
from below (coming from its predecessor). These two events are independent,
because they depend on what happens in disjoint regions of Tn.

Water reaches v from above if and only if v gets wet in downwards percolation.
To reach v from below, water had to travel through a portion of the path [v, r]
from v to the root. To enter this portion of the path, it had to reach at least one
vertex, say u, from above. Let ϕ(u) be the successor of u that does not belong to
[v, r]. The water had to get to ϕ(u) from above, flow to u, and from here to v.

This reasoning, which is illustrated in Figure 2A, leads us to rewrite Xv as

Xv = Yv ∪
⋃

u∈]v,r]

(
Yϕ(u) ∩ {ϕ(u)→ u} ∩ {u v}

)
In order to compute the probability of this event, we rewrite it as the disjoint
union

Xv = Yv ∪
⋃

u∈]v,r]

Yvc ∩
( ⋂
w∈]v,u[̃

Y c
w

)
∩ Ỹu ∩ {u v}

,
where

Ỹx = Yϕ(x) ∩ {ϕ(x)→ x} .
Next, we note that the factors of each term of the union over u ∈ ]v, r] are inde-
pendent, because they are determined by the orientations of disjoint sets of edges:
Yv depends only on the orientations of the edges of T (4v)

n ; each Ỹx of those of the
edges of T (4ϕ(x))

n and of {x, ϕ(x)}; and {u v} of the edges of [u, v]. Using that
P(Yv) = ρ`(v), P

(
Ỹx
)

= pρ`(x)−1 and P(u v) = (1−p)d(u,v) and replacing the sum
on the vertices of ]v, r] by a sum on their levels, we get the desired expression.

From Proposition 3.3, we get the following expression for the expected size of the
percolation cluster:

Proposition 3.4. Let |Cn| be the number of wet vertices, not counting the leaves,
in the (bidirectional) percolation model on Tn. Then,

E
(
|Cn|

)
=

n∑
k=1

2n−k
(
ρk + (1− ρk)α(n)

k

)
,

where α(n)
k is defined in Proposition 3.3.
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Using a similar reasoning, it is also possible to express P(XuXv) – and from there
Var(|Cn|) – as a function of p and ρ1, . . . , ρn only. However, the resulting expression
is rather complicated, and thus of little interest. We will therefore only give the
asymptotic estimates that are needed to apply Theorem 2.2.

Figure 2: A, the notations used in the proof of Proposition 3.3. Water can
reach v from above, i.e. traveling through T

(4v)
n , or from below, coming

from some vertex u ∈ ]v, r]. B, the notations used in the proof of Proposi-
tion 3.6. The arrows represent possible entry points for the water, and the
Ỹx the associated events, i.e., Ỹx is the event that x receives water from the
corresponding arrow.

3.3 Badly-subcritical regime

In this section, we focus on what happens when p = pn is allowed to depend
on n and made to go to zero as n goes to infinity. We are therefore in a “badly-
subcritical” regime, where only a negligible fraction of the vertices are going to get
wet.

Note that the results of the previous sections still hold, provided that ρk is under-
stood to depend on n as the solution of

ρk+1 = 2pnρk − (pnρk)2 , ρ0 = 1.

To avoid clutter, the dependence in n will remain implicit and we will keep the
notation ρk.

3.3.1 Asymptotic cluster size and maximum depth

Proposition 3.5. When pn → 0, then as n→∞,

ρk ∼ (2pn)k ,

where the convergence is uniform in k.

Proof. Clearly,
ρk 6 (2pn)k .

11



Plugging this first inequality into the recurrence relation for ρk, we get
ρk+1 >

(
2pn − p2

n(2pn)k
)
ρk ,

from which it follows that

ρk > (2pn)k
k−1∏
i=0

(
1− pn

2 (2pn)i
)

> (2pn)k
k∏
i=1

(
1− (2pn)i

)
,

Let us show that
P (k)
n =

k∏
i=1

(
1− (2pn)i

)
has a lower bound that goes to 1 uniformly in k as n→∞. For all k > 1,

log
(
P (k)
n

)
>

∞∑
i=1

log
(
1− (2pn)i

)
Now,

∞∑
i=1

log
(
1− (2pn)i

)
= −

∞∑
i=1

∞∑
j=1

1
j
(2pn)ij > −

∞∑
i=1

∞∑
j=1

(2pn)ij

and

−
∞∑
i=1

∞∑
j=1

(2pn)ij = −
∞∑
i=1

(2pn)i
1− (2pn)i > −

∞∑
i=1

(2pn)i
1− 2pn

= − 2pn
(1− 2pn)2 ,

so that P (k)
n > exp(−2pn/(1− 2pn)2). Putting the pieces together,

e
− 2pn

(1−2pn)2 (2pn)k 6 ρk 6 (2pn)k ,
which terminates the proof.

Proposition 3.6. When pn → 0, then as n→∞,

E
(
|Cn|

)
∼ E

(
|C↓n|

)
∼ 2n pn .

Proof. From the expression of α(n)
k given in Proposition 3.3,

α
(n)
k 6 pn

n−1−k∑
i=0

ρk+i .

But since ρk+i 6 (2pn)iρk,
α

(n)
k 6

pn ρk
1− 2pn

.

Using this in Propositions 3.1 and 3.4, we see that for n large enough,

E
(
|Cn|

)
6

(
1 + pn

1− 2pn

)
E
(
|C↓n|

)
,

Next, using again that ρk 6 (2pn)k−1ρ1,

2n−1ρ1 6
n∑
k=1

2n−kρk 6 2n−1ρ1

n∑
k=1

pk−1
n .

Since the sum in right-hand side is bounded above by 1/(1−pn) and since ρ1 ∼ 2pn,
this finishes the proof.
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Proposition 3.6 shows that, in the badly-subcritical regime, the overwhelming
majority of wet vertices are level-1 vertices. It is therefore natural to wonder:
how deep does water go?

Proposition 3.7. Let `(n)
max be the maximum level reached by water, and let

κn = log(2)n
log(1/pn) .

If pn → 0, then letting bxe = bx+ 1/2c denote the nearest integer to x,

P
(
`(n)

max = bκne − 1 or bκne
)
→ 1

as n→∞. In particular,

• If pn = n−α, then κn = cn/ log(n), with c = log(2)/α.

• If pn = γ−n, 1 < γ 6 2, then κn = log(2)
log(γ) .

Proposition 3.7 shows that the maximum level reached by water is remarkably
deterministic in the limit as n goes to infinity, independently of the speed of
convergence of pn to zero. It also shows that, even in the badly-subcritical regime,
water can go infinitely deep – even though these depths will always represent a
negligible fraction of the total height of Tn.

Before jumping to the proof, let us give a simple heuristic. Let

B
(n)
k = Card

{
v ∈ C↓n : `(v) = k

}
be the number of level-k vertices that get wet in downwards-percolation. Using
Proposition 3.5, we see that

E
(
B

(n)
k

)
= ρk 2n−k ∼ (pn)k 2n .

If k is such that this expectation goes to zero, then the probability that this level
will be reached by water will go to zero and k will be a lower bound on `(n)

max.
Conversely, if this expectation goes to infinity then it seems reasonable to expect
that B(n)

k > 1 with high probability, in which case we would have `(n)
max > k.

Proof. Let Lk be the set of level-k vertices. The event that water does not reach
level k is {

`(n)
max < k

}
=

⋂
v∈Lk

Yv
c .

Since each Yv depends only on T (4v)
n , these events are independent and we have

P
(
`(n)

max < k
)

= (1− ρk)2n−k

.

Whether this expression goes to 0 or to 1 is determined by whether ρk2n−k goes
to +∞ or to 0, respectively. Now let k = kn depend on n. By Proposition 3.5, we
have

ρkn2n−kn ∼ (pn)kn 2n .
Again, whether this quantity goes to +∞ or to 0 depends on whether

wn = log(pn) kn + log(2)n

goes to +∞ or to −∞, respectively. Setting κn = log(2)n
log(1/pn) , we see that:

13



(i) If there exists η > 0 such that kn < κn − η for all n, then wn → +∞ and as
a result P

(
`(n)

max > k
)
→ 1.

(ii) If there exists η > 0 such that kn > κn + η for all n, then wn → −∞ and as
a result P

(
`(n)

max < k
)
→ 1.

Finally, we note that

• bκne − 1 < κn − 1/2. By (i), this shows that P
(
`(n)

max > bκne − 1
)
→ 1.

• bκne+ 1 > κn + 1/2. By (ii), this shows that P
(
`(n)

max < bκne+ 1
)
→ 1.

As a result,
P
(
bκne − 1 6 `(n)

max 6 bκne
)
→ 1 ,

and the proof is complete.

3.3.2 Second moments and main result

We have seen in the previous section that level-1 vertices account for a fraction 1
of the expected size of both percolation clusters. But do they also account for a
fraction 1 of the variances?

For downwards percolation, it is not hard to convince oneself that it is. Indeed,
the number B(n)

1 of wet vertices of level 1 is a binomial variable with parameters
ρ1 and 2n−1. From here, if we neglect “collision” events, where a vertex receives
water from both vertices immediately above it, then the downwards percolation
cluster resembles B(n)

1 independent paths with geometric lengths, that is,

|C↓n| ≈
B

(n)
1∑
i=1

τi, where τi ∼ Geometric(1− pn) .

Since Var(τi) ∼ pn, by a simple application of the law of total variance we find
that

Var
(
|C↓n|

)
≈ Var

(
B

(n)
1

)
∼ pn 2n .

For bidirectional percolation however, things are not so obvious because there is
a very strong feedback from higher-level vertices to lower-level ones: if vertex v
gets wet, water will flow up from it to most vertices of T (4v)

n that are not already
wet. Thus, every rare event where water reaches a vertex of level k will results in
approximately 2k additional vertices getting wet – which it seems could increase
the variance of |Cn|. However we will see that this is not the case.

Proposition 3.8. In the regime pn → 0,

(i) If u 4 v then Cov(Xu, Xv) 6 π
(n)
`(v).

(ii) Otherwise, Cov(Xu, Xv) 6 d(u, v)ρ`(u ∨ v).

As a result, Var(|Cn|) ∼ 2n pn and

Var(|Cn|)− E(|Cn|) = O(2n p2
n) .
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Proof. Point (i) is clear, since

Cov(Xu, Xv) 6 P(Xu ∩Xv) 6 min{P(Xu),P(Xv)} = π
(n)
`(v) .

As a side note, this upper bound on P(Xu ∩Xv) is not as crude as it may seem.
Indeed, Xv∩{v  u} ⊂ Xu∩Xv and is it not hard to check that P(Xv ∩ {v  u})
is greater than (1− pn)d(u,v)ρ`(v)/2 ∼ π

(n)
`(v)/2.

To prove (ii), let us show that

P(Xu ∩Xv) 6 π(n)
u π(n)

v + d(u, v)ρ`(u ∨ v) .

As in the proof of Proposition 3.3, we start by re-expressing Xu. For every w ∈
]u, v[, let ϕ(w) be the successor of w that does not belong to [u, v], and for every
z ∈ ]u ∨ v, r], let ψ(z) be the successor of z that does not belong to [u ∨ v, r]. Then,
for every w ∈ [u, v], define Ỹw by

Ỹw =


Yw if w = u or w = v.⋃
z∈]u ∨ v, r]
Yψ(z) ∩ {ψ(z)→ z} ∩ {z  u ∨ v} if w = u ∨ v.

Yϕ(w) ∩ {ϕ(w)→ w} otherwise.

These definitions are illustrated in Figure 2B. Note that Ỹu ∨ v is simply the event
that u ∨ v receives water “from below”. Thus, using the notation of Proposition 3.3,
we have

P
(
Ỹu ∨ v

)
= α

(n)
`(u ∨ v).

For both s = u and s = v we have

Xs =
⋃

w∈[u,v]
Ỹw ∩ {w  s} .

Again, we rewrite this as the disjoint union

Xs =
⋃

w∈[u,v]
Zs
w ,

where
Zs
w =

( ⋂
z∈[s,w[̃

Y c
z

)
∩ Ỹw ∩ {w  s} .

Next, we note that for any vertices x and y in [u, v],

• If [u, x] ∩ [y, v] = O6 , then Zu
x ⊥⊥ Zv

y .

• If [u, x] ∩ [y, v] = {w}, then Zu
x ∩ Zv

y = Ỹw ∩ {w  u} ∩ {w  v}.

• Otherwise, Zu
x ∩ Zv

y = O6 .

As a result,

Xu ∩Xv =
⋃

x∈[u,v]

⋃
y∈[u,v]

Zu
x ∩ Zv

y

=
⋃

x∈[u,v]

(⋃
y∈]x,v]

Zu
x ∩ Zv

y

)
∪ (Zu

x ∩ Zv
x)
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It follows that

P(Xu, Xv) =
∑

x∈[u,v]

∑
y∈]x,v]

P(Zu
x )P(Zv

y ) + P
(
Ỹx, x u, x v

)
.

To bound this sum, first note that∑
x∈[u,v]

∑
y∈]x,v]

P(Zu
x )P(Zv

y ) 6
∑

x∈[u,v]

∑
y∈[u,v]

P(Zu
x )P(Zv

y ) = π(n)
u π(n)

v .

Next, Ỹx and {x u, x v} are independent and, writing m(x) = d(x, u ∨ v) for
the number of downwards-oriented edges in the unique configuration of the edges
of [u, v] such that {x u, x v},

P(x u, x v) = pm(x)
n (1− pn)d(u,v)−m(x)

while

P
(
Ỹx
)

=


α

(n)
`(u ∨ v) if x = u ∨ v

ρ`(x) if x = u or x = v

pn ρ`(x)−1 otherwise.

Since for x ∈ [u, v], `(x) = `(u ∨ v)−m(x), and that

ρ`(u ∨ v)−k ∼ (2pn)−kρ`(u ∨ v) 6 p−kn ρ`(u ∨ v) ,

we see that for every x ∈ [u, v], x 6= u ∨ v,

P
(
Ỹx, x u, x v

)
6 ρ`(u ∨ v) ,

while for x = u ∨ v we already know from Proposition 3.6 and its proof that

α
(n)
`(u ∨ v) 6 pn ρ`(u ∨ v) .

Discarding this negligible last contribution and summing these inequalities over
the d(u, v) vertices of [u, v] \ {u ∨ v}, we find that∑

x∈[u,v]
P
(
Ỹx, x u, x v

)
6 d(u, v) ρ`(u ∨ v) ,

which complete the proof of (ii).

Now let us show that Var(|Cn|) 6 E(|Cn|) + O(2np2
n). For w ∈ ]v, r], let ϕ(w)

denote the successor of w that does not belong to [v, r]. We decompose Var(|Cn|)
into

Var(|Cn|) =
∑
v∈Tn

∑
u∈T (4v)

n

Cov(Xv, Xu) +
∑

w∈]v,r]

(
Cov(Xv, Xw) +

∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx)
)

where it is understood that the sums exclude leaves. Using (i), we see that∑
u∈T (4v)

n

Cov(Xv, Xu) 6 (2`(v) − 1)π(n)
`(v) .
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Similarly, using (ii) we have∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx) 6
∑
x∈T (4ϕ(w))

n

(
d(v, w) + d(w, x)

)
ρ`(w)

6 (2`(w)−1 − 1)
(
d(v, w) + `(w)− 1

)
ρ`(w) .

Since Cov(Xv, Xw) 6 π
(n)
`(w), which is asymptotically equivalent to ρ`(w), we have

Cov(Xv, Xw) +
∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx) 6
(
`(w) + d(v, w)

)
2`(w)ρ`(w)

Replacing the sum on w by a sum on its level and letting k denote the level of v,
we get

∑
w∈]v,r]

(
Cov(Xv, Xw) +

∑
x∈T (4ϕ(w))

n

Cov(Xv, Xx)
)
6

n−k∑
i=1

(k + 2i) 2k+iρk+i

6 2kρk
(
k
n−k∑
i=1

(4pn)i + 2
n−k∑
i=1

i(4pn)i
)

6 (1 + ε) pn (k + 2) 2k+2ρk

For every ε > 0. Putting the pieces together, we find that

Var(|Cn|) 6
n∑
k=1

2n−k(2k − 1)π(n)
k + (1 + ε) pn

n∑
k=1

2n+2(k + 2) ρk .

The first sum is
n∑
k=1

2n−k(2k − 1) π(n)
k = E(|Cn|) +

n∑
k=1

2n−(k−1)(2k−1 − 1) π(n)
k

where
n∑
k=1

2n−(k−1)(2k−1 − 1) π(n)
k 6 2n

n∑
k=2

π
(n)
k = O(2np2

n) ,

since π(n)
k 6 (1 + ε)ρk and ρk 6 (2pn)k. Finally, the second sum is also clearly

O(2n p2
n), and the proof is complete.

With Proposition 3.8, Theorem 2.2 makes the following result immediate.

Proposition 3.9. In the regime pn → 0, we have

dTV
(
|Cn|, Poisson(2npn)

)
= O(pn)

where dTV denotes the total variation distance.

Proof. The proposition is a direct application of the Stein–Chen method (Theo-
rem A) to the positively related variables Xv, v ∈ Tn.
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