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Abstract

The development of high throughput single-cell technologies now allows the
investigation of the genome-wide diversity of transcription. This diversity has
shown two faces: the expression dynamics (gene to gene variability) can be quan-
tified more accurately, thanks to the measurement of lowly-expressed genes. Sec-
ond, the cell-to-cell variability is high, with a low proportion of cells expressing
the same gene at the same time/level. Those emerging patterns appear to be
very challenging from the statistical point of view, especially to represent and
to provide a summarized view of single-cell expression data. PCA is one of the
most powerful framework to provide a suitable representation of high dimensional
datasets, by searching for new axis catching the most variability in the data. Un-
fortunately, classical PCA is based on Euclidean distances and projections that
work poorly in presence of over-dispersed counts that show zero-inflation. We
propose a probabilistic Count Matrix Factorization (pCMF) approach for single-
cell expression data analysis, that relies on a sparse Gamma-Poisson factor model.
This hierarchical model is inferred using a variational EM algorithm. We show
how this probabilistic framework induces a geometry that is suitable for single-cell
data, and produces a compression of the data that is very powerful for clustering
purposes. Our method is competed to other standard representation methods like
t-SNE, and we illustrate its performance for the representation of single-cell data.
We especially focus on a publicly available data set, being single-cell expression
profile of neural stem cells.
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1 Introduction
The combination of massive parallel sequencing with high-throughput cell biology tech-
nologies has given rise to single-cell Genomics, which refer to techniques that now
provide genome-wide measurements of a cell’s molecular profile either based on DNA
(Zong et al., 2012), RNA (Picelli et al., 2013), or chromatin (Buenrostro et al., 2015;
Rotem et al., 2015). Similar to the paradigm shift of the 90s characterized by the
first molecular profiles of tissues (Golub et al., 1999), it is now possible to characterize
molecular heterogeneity at the cellular level. A tissue is now viewed as a population of
cells of different types, and many fields have now identified intra-tissue heterogeneities,
in T cells (Buettner et al., 2015), lung cells (Trapnell et al., 2014), or myeloid progeni-
tors (Paul et al., 2015). The construction of a comprehensive atlas of human cell types
is now within our reach (Wagner et al., 2016).

The statistical characterization of heterogeneities in single-cell expression data thus
requires an appropriate model, since the abundance transcripts is quantified for each
cell using read counts. Hence, standard model based on Gaussian assumptions are
likely to fail to catch the biological variability of lowly expressed genes, and Poisson
or Negative Binomial distributions constitute an appropriate framework. Moreover,
dropouts, either technical (due to sampling difficulties) or biological (no expression or
stochastic transcriptional activity), constitute another major source of variability in
scRNA-seq (single-cell RNA-seq) data, which has motivated the development of the
so-called Zero-Inflated models (Pierson & Yau, 2015).

A standard an popular way of quantifying and visualizing the variability within a
dataset is dimension reduction, principal component analysis (PCA) being the most
widely used technique in practice. It consist in approximating the observation ma-
trix X[n×p] (n cells, p genes), by a factorized matrix of reduced rank, denoted UVT

where U[n×K] and V[p×K] represent the latent structure in the observation and variable
spaces respectively. This projection onto a lower-dimensional space (of dim. K) allows
to catch gene co-expression patterns and clusters of individuals. PCA is probably one
of the most studied data analysis techniques, and can be viewed either geometrically
or through the light of a statistical model (Collins et al., 2001; Landgraf & Lee, 2015).
Model-based PCA offers the unique advantage to be adapted to the data distribution
and to be based on an appropriate metric, the Bregman divergence. It consists in spec-
ifying the distribution of the data X[n×p] through a statistical model, and to factorize
E(X) instead of X. On the contrary, standard PCA is based on an implicit Gaussian
distribution with the `2 distance as a metric (Eckart & Young, 1936). Many distribu-
tions have been considered, especially for count data such as the Non-negative Matrix
Factorization (NMF) introduced in a Poisson-based framework by Lee & Seung (1999)
or the Gamma-Poisson factor model (Cemgil, 2009; Févotte & Cemgil, 2009; Landgraf
& Lee, 2015). However, none of the currently available dimension reduction methods
fully model single-cell expression data.

Our method is based on probabilistic count matrix factorization (pCMF). We pro-
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pose a dimension reduction method that is dedicated to over-dispersed counts with
dropouts, in high dimension. Our factor model takes advantage of the Poisson Gamma
representation, with the use of Gamma priors on the distribution of principal com-
ponents. We model dropouts with a Zero-Inflated Poisson distribution (Simchowitz,
2013), and we introduce sparsity in the model thanks to a spike-and-slab approach
(Malsiner-Walli & Wagner, 2011) that is based on a two component sparsity-inducing
prior on loadings (Titsias & Lázaro-Gredilla, 2011). The model is inferred using a
variational EM algorithm that scales favorably to data dimension, as compared with
Markov Chain Monte Carlo (MCMC) methods (Hoffman et al., 2013; Blei et al., 2016).
Then we propose a new criterion to assess the quality of fit of the model to the data,
as a percentage of explained deviance, because the standard variance reduction that is
used in PCA needs to be adapted to the new framework dedicated to counts.

We show that pCMF better catches the variability of simulated data, as compared
with available methods. Since PCA is widely used as a primary step for further analysis,
such as clustering, we also show how pCMF increases the performance of methods that
are classically using PCA as a first step, especially the popular t-SNE (van der Maaten
& Hinton, 2008; Amir et al., 2013). Using experimental published data, we show
how pCMF provides a dimension reduction that is adapted to scRNA-seq data, by
providing a better representation of the heterogeneities within datasets, which appears
to be extremely helpful to characterize cell types. Finally, pCMF is available in the
form of a R package available at https://gitlab.inria.fr/gdurif/pCMF (in beta
version) and soon on the CRAN.

2 Results
We compare our method with standard approaches for unsupervised dimension re-
duction: the Poisson-NMF (Lee & Seung, 1999), applied to raw counts (model-based
matrix factorization approach based on the Poisson distribution), and the sparse PCA
(Witten et al., 2009) on log counts (based on an `1 penalty in the optimization prob-
lem defining the PCA to induce sparsity in the loadings V). In addition, we use the
Zero-Inflated Factor Analysis (ZIFA) by Pierson & Yau (2015), a dimension reduction
approach that is specifically designed to handle dropout events in single-cell expres-
sion data (based on a zero-inflated Gaussian factor model applied to log-transformed
counts). We present quantitative clustering results and qualitative visualization results
on simulated and experimental scRNA-seq data. Another tool for dimension reduc-
tion and data visualization called t-SNE (van der Maaten & Hinton, 2008) is used for
data visualization. It requires to choose a “perplexity” hyper-parameter that cannot
be automatically calibrated, thus being less appropriate for a quantitative analysis.

2.1 Simulated data analysis

Details about data generation are given in appendix (c.f. Section A.3). We generate
synthetic multivariate Negative Binomial counts, with n = 100 individuals and p =
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1000 recorded variables. We artificially create clusters of individuals and groups of
dependent variables. Then we set different levels of zero-inflation in the data (i.e.
low or high probabilities of dropout events, corresponding to random null values in
the data), and some part of the p variables are generated as random noise that do
not induce any latent structure. Thus, we can test the performance of our method in
different realistic data configurations.

2.1.1 Clustering in the observation space

Effect of zero-inflation. We first question the robustness of the different approaches
to the level of zero-inflation (ZI) in the data (no ZI, low ZI, high ZI corresponding to
a probability of dropout events being 0 or in [0.4; 0.6] or in [0.6; 0.8] respectively).
We generate data with 3 groups of observations and train the different methods with
K = 3 (fixed in this design). We also consider low and high separability between the
groups of observations (c.f. Section A.3 in appendix). The quality of the clustering
based on the reconstructed matrix Û (see material and methods) will assess the ability
of each method to retrieve the group structure in the observation space despite the
dropout events. We measure the adjusted Rand Index (Rand, 1971) quantifying the
accordance between the predicted clusters and original groups of individuals. Contrary
to other approaches (Figure 1), pCMF adapts to the level of zero-inflation in the data
and perfectly recovers the original groups of observations when the separability is high
(adjusted Rand Index close to 1 in the different ZI configuration). The results of
ZIFA indicates that using a zero-inflated Gaussian model is not sufficient to retrieve
the groups in our count data. Indeed, methods based on transformed counts (like
ZIFA and SPCA on log) do not account for the discrete nature of the data neither for
their over-dispersion (O’Hara & Kotze, 2010). As for the Poisson-NMF method, its
performance are comparable to pCMF for no dropout, but decrease as soon as there is
zero-inflation in the data.

Effect of noisy genes. To quantify the impact of noisy genes on the retrieval of the
individual groups, we consider data generated with different proportion (0%, 40% or
70%) of noisy genes that do not induce any structure in the data. We again consider two
configurations where groups of individuals or lowly of highly separated (c.f. Section A.3
in appendix). The level of zero-inflation is set such that the probability of dropout
events lies [0.4; 0.6]. In this setting, we train different models and compute the adjusted
Rand Index for increasing values of K (number of components) to check the quality of
the clustering of individuals when noisy genes are present and when introducing new
components. Similarly to previous simulations, the clustering accuracy of pCMF is
globally better than other methods, but all methods seem to be resilient to the addition
of noisy genes, except for ZIFA whose performance decreases in this case. However,
the performance of pCMF are not decreased by the introduction of new components,
contrary to ZIFA or NMF, which means that our methods seems more robust to the
choice of K.
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Figure 1: Adjusted Rand Index comparing clusters found by a κ-means algorithm (applied
to Û with κ = 3) and the original groups of individuals, for different levels of zero-inflation
and different levels of separation between groups of individuals in the data. The number
of components is set to K = 3. Data are generated with n = 100, p = 1000, 3 groups of
individuals and 70% of noisy variables. Average values and deviation are estimated across
100 repetitions.

2.1.2 Data visualization

The question of the data visualization is central in many recent single-cell transcrip-
tomic studies (e.g. Llorens-Bobadilla et al., 2015; Segerstolpe et al., 2016). The purpose
is especially to represent a high dimensional data set in a low dimensional space that
we can visualize (generally in 2 or 3 dimensions), in order to identify groups of cells
or to illustrate the cell diversity. In the matrix factorization framework, we repre-
sent observation coordinates (ûi1, ûi2)i=1,...,n from the matrix Û when the dimension is
K = 2 (see material and methods). We consider the same simulated data as previously
(n = 100, p = 1000, 3 groups of observations, 70% of noisy variables, dropout proba-
bility in [0.6; 0.8]).

Our visual results are consistent with the previous clustering results (c.f. Figure 3).
In this challenging context (high zero-inflation and numerous noisy variables), by us-
ing our pCMF approach, we are able to graphically identify the groups of individuals
in the simulated zero-inflated count data. On the contrary, the 2-D visualization is
not successful with the sparse PCA, ZIFA and Poisson-NMF, illustrating the inter-
est of our data-specific approach compared to others. We mention that we represent
the individual coordinates Û in log scale for our method pCMF, because the natural
representation associated to the Gamma distribution in the exponential family is the
logarithm.

When considering t-SNE, it is generally used with a preliminary PCA step to reduce
the dimension. It appears (c.f. Figure 3) that using our approach pCMF as a prelimi-
nary step before t-SNE gives better results for data visualization, This point supports
our claim that using data-specific model improves the quality of the reconstruction in
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Figure 2: Adjusted Rand Index comparing clusters found by a κ-means algorithm (applied to
Û with κ = 2) and the original groups of individuals, depending on the number of components
(K = 1, . . . , 10), for different proportions of noisy genes and different levels of separation
between groups of individuals in the data. Data are generated with n = 100, p = 1000, 2
groups of individuals and a probability of dropout events in [0.4; 0.6]. Average values and
deviation are estimated across 100 repetitions.

the latent space. Here, we used K = 20 for the preliminary dimension reduction before
t-SNE (both for PCA and pCMF). Using other dimensions (for instance K = 50 as in
the default behavior of t-SNE) gives similar results.

2.1.3 Additional results

Additional results regarding computation time comparison with state-of-the-art ap-
proaches and performance enhancement of our zero-inflated sparse Gamma-Poisson
factor model compared to standard Gamma-Poisson factor model are given in ap-
pendix (Section A.4). Although figures are not joined, we also mention that standard
PCA does not give better quantitative or qualitative results than sparse PCA.

2.2 Analysis of single-cell data

We illustrate the performance of pCMF on a publicly available scRNA-seq dataset on
neuronal stem cells (Llorens-Bobadilla et al., 2015). Neural stem cells (NCS) consti-
tute an essential pool of adult cells for brain maintenance and repair. Llorens-Bobadilla
et al. (2015) proposed a study to unravel the molecular heterogeneities of NCS pop-
ulations based on scRNA-seq, and particularly focused on quiescent cells (qNSC). In
their experiment, qNSC were transplanted in vivo in order to study their neurogenic
activity. Following transplantation, 92 qNSC produced neuroblasts and olfactory neu-
rons, whose transcriptome was compared with 21 astrocytes (CTX) and 27 transient
amplifying progenitor cells (TAP). Then the authors used a PCA approach to reveal
a continuum of "activation state", from astrocytes (low activation) to amplifying pro-
genitor cells (TAP). We confront our pCMF output with the standard PCA, with ZIFA
and with t-SNE results. The first visual result is that pCMF provides a better rep-
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Figure 3: Individuals representation (Û) in a subspace of dimension K = 2. Data are
generated with 3 groups of individuals, n = 100 and p = 1000, a probability of dropout
events between 0.6 and 0.8, and 70% of noisy genes. t-SNE is applied with a preliminary
dimension reduction step based on pCMF or PCA (default behavior) with K = 20.

resentation of the continuum than PCA and t-SNE, which probably reflects a better
modeling of the biological variations that exist between activation states. Interestingly
Llorens-Bobadilla et al. (2015) mention a minor overlap between qNSC and parenchy-
mal astrocytes (CTX), whereas pCMF rather reveals an important overlap between
CTX and qNSC1 cells. On the contrary, the t-SNE representation can hardly be inter-
preted as an activation continuum. The results from ZIFA are consistent with pCMF
representation, which is a confirmation that the signal of this continuous activation
state is strong in these data. Regarding the quantification of the biological variability,
the first two axis of PCA only catches 11.74% of the total variance, whereas pCMF
catches 69% of the total deviance. This illustrates the benefit of having a dimension
reduction method that is based on the proper distribution and proper reduction quality
metric.

3 Material and methods
We present the statistical model associated to our probabilistic Count Matrix Fac-
torization (pCMF) approach, based on a zero-inflated sparse Gamma-Poisson factor
model. Then, we introduce the framework to retrieve the factors U and V based on
variational inference.
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Figure 4: Analysis of the scRNA-seq data from Llorens-Bobadilla et al. (2015), n = 141 cells,
p ∼ 14000 genes. We pre-selected genes expressed (count > 1) in at least 2 cells, with a
log-variance higher than 0.5 (as in the original paper). pCMF and t-SNE are applied to raw
counts, while PCA and ZIFA are applied to log-transformed counts.

3.1 Count Matrix Factorization for zero-inflated over-dispersed
data

Details about the model (construction, identifiability) are given in appendix (Sec-
tion A.1).

Zero-Inflated Sparse Gamma-Poisson factor model. Our data consist in a ma-
trix of counts, denoted by X ∈ Nn×p, that we want to linearly decompose onto a
subspace of dimension K, into a matrix product UVT . The factor U ∈ R+,n×K rep-
resent the coordinates of the observations (cells) in the subspace of dimension K, and
V ∈ Rp×K the contributions (loadings) of variables (genes). In a standard Poisson
Non-negative Matrix Factorization (NMF, Lee & Seung, 1999), the associated model
verifies X ∼P

(
UVT

)
. Details about the underlying geometry associated to the model

(generalization of the Euclidean geometry with Bregman divergence and link with the
deviance related to the model) are given in appendix (Section A.1.2).

To account for over-dispersion in the data, we consider the Gamma-Poisson rep-
resentation (GaP, Cemgil, 2009; Zhou et al., 2012). To proceed, we consider a factor
model, in which factors U and V are modeled as independent random variables with
Gamma distributions such that Uik ∼ Γ(αk,1, αk,2) and Vjk ∼ Γ(βk,1, βk,2).

To model zero-inflation (Simchowitz, 2013), we introduce a dropout indicator vari-
able Dij ∈ {0, 1} for i = 1, . . . , n and j = 1, . . . , p. In this context, Dij = 0 if gene j
has been subject to a dropout event in cell i. Each Dij follows a Bernoulli distribution
with parameter πd

j . The dropout indicators Dij are assumed to be independent from
the factors U and V. Then, by integrating Dij out, the conditional distribution of the
counts is a zero-inflated Poisson distribution:

Xij |Ui,Vj ∼ ×(1− πd
j )× δ0 + πd

j ×P
(∑

k Uik Vjk
)
.

Finally we introduce some parsimony in our model, i.e. by assuming that only a
proportion of recorded variables carry the signal, others being noise. To do so, the prior
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on the loading variables Vjk is set to be a two-group sparsity-inducing prior (Engelhardt
& Adams, 2014):

Vjk ∼ (1− πs
j)× δ0 + πs

j × Γ(βk,1, βk,2) ,

where πs
j stands for the prior probability for gene j to contribute to any loading. This

spike-and-slab formulation (Mitchell & Beauchamp, 1988) ensures that Vjk is either
null (gene j does not contribute to factor k), or drawn from the Gamma distribution
(when gene j contributes to the factor k).

Quality of the reconstruction. In our GaP model, we can use the deviance or
equivalently the Bregman divergence (c.f. Section A.1.2 in appendix) between the data
matrix X and the reconstructed matrix ÛV̂T to quantify the quality of the model.
Regarding PCA, the percentage of explained variance is a natural and unequivocal
quantification of the quality of the representation. In our case, since the models are
not nested for increasing K, it appears non trivial to define a percentage of explained
deviance.

We denote the conditional Poisson log-likelihood in our model as log p(X |λ), where
λ is a n×p matrix of Poisson intensities. To assess the quality of our model, we propose
to define the percentage of explained deviance as:

%dev =
log p(X |λ = ÛV̂T )− log p(X |λ = X̄)

log p(X |λ = X)− log p(X |λ = X̄)

where ÛV̂T is the predicted reconstructed matrix in our model, and X̄ is the column
average of X. We use two baselines: (i) the log-likelihood of the saturated model, i.e.
log p(X |λ = X) (as in the deviance), which corresponds to the richest model and (ii)
the log-likelihood of the model where each Poisson intensities λij is estimated by the
average of the observations in the column j, i.e. log p(X |λ = X̄), which is the most
simple model that we could use. This formulation ensures that the ratio %dev lies in
[0; 1].

3.2 Factor inference.

To avoid using the heavy machinery of MCMC (Nathoo et al., 2013) to infer the
intractable posterior of the latent variables in our model, we use the framework of
variational inference (Hoffman et al., 2013). The principle is to approximate the in-
tractable posterior by a factorizable distribution, called the variational distribution,
regarding the Kullback-Leibler divergence (that quantify probability distribution prox-
imity). Variational inference can be reformulated into a maximization problem, that
admits a solution under some reasonable assumptions on the variational distributions.

To be more precise, we use a variational EM algorithm (Beal & Ghahramani, 2003)
that allows to jointly approximate the posterior distributions of the latent variables
and the hyper-parameters of the model. This approach was successfully adapted to
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the standard Gamma-Poisson factor model Dikmen & Févotte (2012), and we propose
an extension to our zero-inflated sparse model. Details about the inference framework
are given in appendix (Section A.2).

4 Conclusion
In this work, we provide a new framework for dimension reduction in unsupervised con-
text. In particular, we introduce a model-based matrix factorization method specifically
designed to analyse single-cell RNA-seq data. Our probabilistic Count Matrix Factor-
ization (pCMF) approach accounts for the specificity of these data, being zero-inflated
and over-dispersed counts. In other word, we propose a generalized PCA procedure
that is suitable for data visualization and clustering. The interest of our zero-inflated
sparse Gamma-Poisson factor model is to replace the variance-based formulation of
PCA, associated to the Euclidean geometry and the Gaussian distribution, with a
metric (based on Bregman divergence) that is adapted to scRNA-seq data character-
istics.

Analyzing single-cell expression profiles is a huge challenge to understand the cell
diversity in a tissue/an organism and more precisely characterize the associated gene
activity. We show on simulations and experimental data that our pCMF approach is
able to catch the underlying structure in zero-inflated over-dispersed count data. In
particular, we show that our method can be used for data visualization in a lower
dimensional space or for preliminary dimension reduction before a clustering step. In
both cases, pCMF performs as well or out-performs state-of-the-art approaches, espe-
cially the PCA (being the gold standard) or more specific methods such as the NMF
(count based) or ZIFA (zero-inflation specific).

In addition, our work could benefit from improvements. We are working on a model
selection strategy to automatically select the dimension K, based on the integrated
completed likelihood (Matthieu & Mohammed, 2016). This could refine the use of
pCMF as a preliminary dimension reduction step before clustering or visualization
with t-SNE.
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Appendix

A.1 Count Matrix Factorization for zero-inflated over-
dispersed data

A.1.1 The Poisson factor model

Our data consist in a matrix of counts, denoted by X ∈ Nn×p, that we want to de-
compose onto K principal components, K being fixed in a first step. We introduce
U ∈ R+,n×K the coordinates of the observations (cells) on the K principal compo-
nents, and V ∈ Rp×K the contributions (loadings) of variables (genes) on the new
axes. In a standard Poisson Matrix Factorization (see Lee & Seung, 1999), that we call
Poisson-NMF, the model is such that X ∼P

(
UVT

)
.

A.1.2 Underlying geometry

To quantify the quality of approximation of matrix X by Λ = UVT , we consider the
Bregman divergence as a metric (see Banerjee et al., 2005; Chen et al., 2008). This
divergence can be viewed as a generalization of the Euclidean metric to the exponential
family. Thus the model we propose is developed within the framework of the generalized
PCA proposed by Collins et al. (2001) and based on this Bregman divergence. In the
Poisson model, the Bregman divergence between two n×p matrices X and Λ is defined
as (Févotte & Cemgil, 2009):

D(X |Λ) =
n∑
i=1

p∑
j=1

xij log

(
xij
Λij

)
− xij + Λij.

The interest here is to choose a geometry that is induced by an appropriate probabilistic
model dedicated to count data. Indeed, the least squares criterion used in PCA for
instance, might not be appropriate for non-Gaussian data. The Bregman divergence
can also be related to the deviance of the Poisson model defined such as

Dev(X, ÛV̂T ) = −2×
(

log p(X |Λ = ÛV̂T )− log p(X |Λ = X)
)
,

with log p(X |Λ) the Poisson log-likelihood, thus Dev(X, ÛV̂T ) ∝ D(X | ÛV̂T ).

A.1.3 Modeling over-dispersion

To account for over-dispersion in the data, we consider the Poisson Gamma represen-
tation (GaP), as proposed by Cemgil (2009). To proceed, we consider a factor model,
in which factors U and V are modeled as independent random variables with Gamma
distributions such that

Uik ∼ Γ(αk,1, αk,2) ,

Vjk ∼ Γ(βk,1, βk,2) .
(A.1)
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Then some third-party latent variables are introduced to facilitate the derivation of
our inference methods. We consider latent variables Z = [Zijk] ∈ Rn×p×K , defined
such that Xij =

∑
k Zijk. This new indicator variable quantifies the contribution of

factor k to the data. Here Zijk are assumed to be conditionally independent and to
follow a conditional Poisson distribution, i.e. Zijk |Uik, Vjk ∼ P(Uik Vjk). Thus, the
conditional distribution of Xij remains P(

∑
k Uik Vjk) thanks to the additive property

of the Poisson distribution.

A.1.4 Dropout modeling using a zero-inflated (ZI) model

We introduce a dropout variable Dij ∈ {0, 1} for i = 1, . . . , n and j = 1, . . . , p. This
indicator is defined such that each Dij = 0 if gene j has been subject to a dropout
event in cell i, with Dij ∼ B(πd

j ). We consider gene-specific dropout rates, πd
j , follow-

ing recommendations of the literature (Pierson & Yau, 2015). Thus, to include zero
inflation in the probabilistic factor model, we consider that:

Xij |Ui,Vj,D ∼ ×(1−Dij)× δ0 +Dij ×P
(∑

k

Uik Vjk
)
.

The dropout indicators Dij are assumed to be independent from the factors. Then we
can check, by integrating Dij out, that the probability of observing a zero in the data
becomes:

P
(
Xij = 0 |Ui,Vj ; π

)
= (1− πd

j ) + πd
j exp

(
−
∑

kUik Vjk
)
,

which illustrates the two potential sources of zeros.

A.1.5 Probabilistic variable selection

Finally we suppose that our model is parsimonious, by considering that among all
recorded variables, only a proportion carries the signal, the others being noise. To do
so, we modify the prior of the loadings variables Vjk, to consider a sparse model with a
two-group sparsity-inducing prior. The model is then enriched by the introduction of
a new indicator variable Sjk ∼ B(πs

j), that equals 1 if gene j contributes to the loading
Vjk, and zero otherwise. πs

j stands for the prior probability for gene j to contribute to
any loading. To define the sparse GaP factor model, we modify the distribution of the
loadings latent factor Vjk, such that

Vjk|Sjk ∼ (1− Sjk)× δ0 + Sjk × Γ(βk,1, βk,2) .

This spike-and-slab formulation ensures that Vjk is either null (gene j does not con-
tribute to factor k), or drawn from the Gamma distribution (when gene j contributes
to the factor). Then the contribution of gene j to the component k is accounted for in
the conditional Poisson distribution of Xij, with

Xij |Ui,V
′
j,D,Sj ∼ (1−Dij)(1− Sjk)× δ0 + P

(
Dij

∑
k Uik [Sjk V

′
jk]
)
,

where Vjk = Sjk V
′
jk such that V ′jk ∼ Γ(βk,1, βk,2).
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A.1.6 Model Identifiability

Scaling effect. As stated in Dikmen & Févotte (2012), GaP factor models suffer
from identifiability issues, due to the scaling of the Gamma prior parameters α and
β. Indeed, considering α∗k,2 = ηk αk,2 and β∗k,2 = η−1k βk,2 for fixed values ηk, and
usins the scaling property of the Gamma distribution: if Uik ∼ Gamma(αk,1, αk,2) then
ηkU ∼ Γ(αk,1, η

−1
k αk,2). We can show that the joint log-likelihood regarding UH−1 and

VH with H = diag(ηk)k=1:K verifies:

log p(X,UH−1,VH |α1,Hα2,β1,H
−1β2)

= log p(X,U,V |α1,α2,β1,β2)

+ (n− p)
∑
k

log(ηk)
(A.2)

When n = p, there is an identifiability issue regarding the scaling of the parameters
αk,2 and βk,2, because different values lead to the same joint log-likelihood. In such
case, a solution will be to fix the scale parameters αk,2 and βk,2 to avoid the scaling
effect. When n 6= p, the only problem is a potential solution with infinite norm with
αk,2 → 0 and βk,2 → ∞ or vice-versa (c.f. Dikmen & Févotte, 2012). However, in
practice we did not encounter such sequence of diverging parameters.

When considering sparsity and/or zero-inflation in the model, Equation (A.2) still
holds regarding the parameters of the Gamma prior distributions and we have to con-
sider the same precaution.

Factor order. In practice, principal components of standard PCA show very con-
venient properties: they are orthogonal (thanks to the SVD), they can be naturally
ordered (thanks to Eckart & Young (1936) theorem), and they are associated to nested
models. Unfortunately, likelihood-based factor models do not share the same proper-
ties. Indeed, for NMF or for our GaP factor model, the likelihood that defines the
model is identifiable up to a permutation of factors (i.e. by permuting the columns
in Û and V̂ according to the same reordering). Hence, there does not exist a natural
ordering for components of probabilistic factor models. Thus we propose an ordering
defined by the cumulative Bregman divergence:

k 7→ D
(
X | Û1:k(V̂1:k)

T
)
.

In addition, we mention that the different GaP factor models are not nested when the
dimension K increases (as in the NMF), thus the factor estimates are computed for
any dimension, contrary to PCA.

A.2 Model inference using a variational EM algorithm
Our goal is to infer the posterior distributions over the factors U and V depending on
the data X. To proceed, we extend the version of the variational EM algorithm (Beal
& Ghahramani, 2003) proposed by Dikmen & Févotte (2012) in the context of the
standard Gamma-Poisson factor model, to our sparse and zero-inflated GaP model.
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A.2.1 Definition of variational distributions

In the variational framework, the posterior p(Z,U,V,S,D |X) is approximated by
the variational distribution q(Z,U,V,S,D) regarding the Kullback-Leibler divergence
(Hoffman et al., 2013), that quantifies the divergence between two probability distribu-
tions. Since the posterior is not explicit, the inference of q is based on the optimization
of the Evidence Lower Bound (ELBO), denoted by J(q) and defined as:

J(q) = Eq[log p(X,Z,U,V,S,D)]− Eq[log q(U,V,Z,S,D)] , (A.3)

that is a lower bound on the marginal log-likelihood log p(X). In addition, maximiz-
ing the ELBO J(q) is equivalent to minimizing the KL divergence between q and the
posterior distribution of the model (Hoffman et al., 2013).

To derive the optimization, q is assumed to lie in the mean-field variational family,
i.e. (i) to be factorisable with independence between latent variables and between ob-
servations and (ii) to follow the conjugacy in the exponential family, i.e. to be in the
same exponential family as the full conditional distribution on each latent variables in
the model.

Thanks to the first assumption, in our model, the variational distribution q is
defined as follows:

q(U,V,Z,S,D) =
n∏
i=1

K∏
k=1

q(Uik | aik)×
p∏
j=1

K∏
k=1

q(V ′jk |bjk)

×
n∏
i=1

p∏
j=1

q
(
(Zijk)k | (Rijk)k

)
×

p∏
j=1

K∏
k=1

q(Sjk | psjk)

×
n∏
i=1

p∏
j=1

q(Dij | pdij)

where aik, bjk, (rijk)k, psjk and pdij are the parameters of the variational distribution
regarding Uik, V ′jk, (Zijk)k, Sjk, Dij, respectively. Then we need to precise the full
conditional distributions of the model before defining the variational distributions more
precisely.

A.2.2 Full conditional distributions

In our factor model all full conditionals are tractable. Thanks to the Gamma-Poisson
conjugacy, the full conditionals of Uik and V ′jk are Gamma distributions. The proof is
based on the Bayes rule and the distribution of the latent variables Z, that are actually
necessary to derive p(Uik |— ) and p(V ′jk |— ). The full conditional of the vector Zij

is also explicit, being a Multinomial distribution (Zhou & Carin, 2012) when Dij 6= 0
and deterministic null when Dij = 0, i.e. (Zijk)k |— ∼ DijM

(
Xij, (ρijk)k

)
. Here
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the Multinomial probabilities (ρijk)k depend on (Sjk, Uik, V
′
jk)k, and quantify the prior

contribution of factor k to the observations Xij, i.e.

ρijk =
Sjk Uik V

′
jk∑

` Sj` Ui` V
′
j`

.

This point justifies why the variational distribution is based on the vector Zij instead
of taking each Zijk separately. Note that if the Sjk are null for all k or if Dij = 0 (i.e.
Xij = 0), the vector (Zijk)k is deterministic and takes null values.

We summarize the full conditionals in the sparse ZI-GaP factor model regarding
Uik, Vjk and (Zijk)k, that are defined such as:

Uik |— ∼ Γ(αk,1 +
∑

j Dij Sjk Zijk, αk,2 +
∑

j Dij Sjk Vjk) ,

Vjk |— ∼ Γ(βk,1 +
∑

iDij Sjk Zijk, βk,2 +
∑

iDij Sjk Uik) ,

(Zijk)k |— ∼ DijM
(
Xij, (ρijk)k

)
,

(A.4)

Zero Inflation. Regarding the zero-inflation indicators, Dij is a binary variable, its
distribution is either deterministic or Bernoulli. When the entry Xij is non null, Dij is
certainly equal to one. When Xij = 0, the full conditional is explicit and the Bernoulli
probability only depends on the prior over Dij and the probability that Xij is null. It
can be formulated as follows:

p(Dij = 1 |— ) =
πd
j e
−

∑
k Sjk Uik V

′
jk

(1− πd
j ) + πd

j e
−

∑
k Sjk Uik V

′
jk

.

Sparsity and variable selection. The sparsity indicator Sjk is also a binary variable
and its full conditional is also an explicit Bernoulli distribution. It depends on the prior
over Sjk and the probability that gene j contributes to the components k, quantified
by the joint distribution on (Zijk)i, thus:

p(Sjk = 1 |— ) ∝ πs
j ×

∏
i exp(−Sjk Uik V ′jk) (Sjk Uik V

′
jk)

Zijk .

A.2.3 Approximate posteriors

To approximate the (intractable) posterior distributions, variational distributions are
assumed to lie in the same exponential family as the corresponding full conditionals
and to be independent such that:

Zij
q∼M

(
(rijk)k

) Uik
q∼ Γ(aik,1, aik,2)

V ′jk
q∼ Γ(bjk,1, bjk,2)

Sjk
q∼ B(psjk)

Dij
q∼ B(pdij),

where q∼ denotes the variational distribution. The strength of our approach is the
resulting explicit approximate distribution on the loadings that induces sparsity:

Vjk|Sjk
q∼ (1− Sjk)× δ0 + Sjk × Γ(bjk,1, bjk,2),
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In the following, the derivation of variational parameters involves the moments and
log-moments of the latent variables regarding the variational distribution. Since the
distributions q is fully determined, these moments can be directly computed. For
the sake of simplicity, we will use notation Ûik = Eq[Uik] and l̂ogU ik = Eq[logUik]

(collected in the matrices Û and l̂og U respectively), with similar notations for other
hidden variables of the model (Vjk, Dij, Sjk, Zijk).

A.2.4 Derivation of variational parameters

In order to find a stationary point of the ELBO, J(q) is differentiated regarding each
variational parameter separately. The formulation of the ELBO regarding each param-
eter separately is based on the corresponding full conditional, i.e. p(Uik |— ), p(Vjk |— )
and p

(
(Zijk)k |—

)
. The partial formulation are therefore respectively:

J(q)
∣∣
aik

= Eq[log p(Uik |—)]− Eq[log q(Uik ; aik)] + cst

J(q)
∣∣
bjk

= Eq[log p(Vjk |—)]− Eq[log q(Vjk ; bjk)] + cst

J(q)
∣∣
(rijk)k

= Eq
[

log p
(
(Zijk)k |—

)]
− Eq

[
log q

(
(Zijk)k ; (rijk)k

)]
+ cst

Therefore, the ELBO is explicit regarding each variational parameter and the gradient
of the ELBO J(q) depending on the variational parameters aik, bjk and rijk respectively
can be derived to find the coordinate of the stationary point, that corresponds to a local
optimum. In practice, the optimum value for each variational parameter corresponds
to the expectation regarding q of the corresponding parameter of the full conditional
distribution (Hoffman et al., 2013). Thus the coordinates of the ELBO’s gradient
optimal point are explicit.

Variational parameters of factors. We derive the stationary point formulation
for the variational parameters regarding Uik and Vjk, being explicitly (directly derived
from the partial derivatives of J(q)):

aik =
(
αk,1 +

∑
j D̂ij Ŝjk Ẑijk , αk,2 +

∑
j D̂ij Ŝjk V̂ ′jk

)T
bjk =

(
βk,1 + Ŝjk

∑
i D̂ij Ẑijk , βk,2 + Ŝjk

∑
i D̂ij Ûik

)T
.

As for variable Zijk = UijVjk, its posterior distribution depends on parameter rijk with
the relation log(rijk) = Eq[log(ρijk)]. Hence, the variational distribution on (Zijk)k
naturally depends on the selection indicator Sjk (since our model focuses on loadings
selection). In particular, the variational parameter rijk depends on Sjk, trough a spe-
cific term Eq[log(Sjk V

′
jk)] that is computed using the variational distribution of Sjk (a

Bernoulli distribution of parameter psjk). To proceed, we introduce S̃jk, the discretized
predictor of Sjk such that

S̃jk = 1{psjk>τ},
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where τ is a threshold specified by the user (for instance 0.5). Then, the formulation
of the optimal variational parameter rijk is approximated by:

rijk =
S̃jk exp

(
l̂ogU ik + l̂og V ′jk

)
∑

` S̃j` exp
(

l̂ogU i` + l̂og V ′j`

) .
Variational dropout proportion. Regarding the zero-inflated probabilities pdij,
when Xij 6= 0, the posterior is explicit since Dij = 1 with probability one. Hence,
only the case Xij = 0 requires a variational inference. As stated previously, the full
conditional is explicit and it is possible to derive and optimize the ELBO (based on
the natural parametrization of the Bernoulli distribution in the exponential family).
Eventually, pdij is computed as:

logit(pdij) = logit(πd
j )−

∑
k Ŝjk ÛikV̂

′
jk ,

where the Bernoulli prior probability πd
j is corrected by Eq[logP(Xij = 0)] to account

for the probability of Xij being a true zero.

Variational Selection probability. Concerning the sparse indicator Sjk, the natu-
ral parametrization of the Bernoulli distribution is based on the logit of the Bernoulli
probability. Hence we can write an explicit formulation of the ELBO regarding psjk
based on the full conditional on Sjk. Following this formulation, the stationary point
psjk verifies:

logit(psjk) = logit(πs
j)−

∑
iD̂ij Ûik V̂

′
jk + D̂ij Ẑijk

(
l̂ogU ik + l̂og V ′jk

)
.

This corresponds to a correction of the Bernoulli prior probability πs
j , depending is on

the quantification of the contribution of gene j to component k in all individuals, i.e.
Eq[
∑

i log p(Zijk)].

A.2.5 Variational EM algorithm

We use the variational-EM algorithm (Beal & Ghahramani, 2003) to jointly approxi-
mate the posterior distributions and to estimate the hyper-parameters Ω = (α,β,πs,πd).
In this framework, the variational inference is used within a variational E-step, in which
the standard expectation of the joint likelihood regarding the posterior E[p(X,U,V,S,D ; Ω)|X]
is approximated by

Eq[p(X,U,V,S,D ; Ω)].

Then the variational M-step consists in maximizing Eq[p(X,U,V,S,D ; Ω)] w.r.t. the
hyper-parameters Ω. In the variational-EM algorithm, we have explicit formulations
of the stationary points regarding variational parameters (E-step) and prior hyper-
parameters (M-step) in the model, thus we use a coordinate descent iterative algorithm
(see Wright, 2015, for a review) to infer the variational distribution.
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In particular, the hyper-parameters are updated within the M-step such that:

αk,1 =ψ−1

(
logαk,2 +

1

n

∑
i

l̂ogU ij

)
, αk,2 =

αk,1∑
i Ûij/n

,

βk,1 =ψ−1

(
log βk,2 +

1

p

∑
j

l̂og V ij

)
, βk,2 =

βk,1∑
j V̂ij/p

,

πD
j =

1

n

∑
i

pD
ij, πS

j =
1

K

∑
k

pS
jk,

where ψ is the digamma function, i.e. the derivative of the log-Gamma function.
Recalling that, for a variable U ∼ Γ(α1, α2), E[U ] = α1/α2 and E[logU ] = ψ(α1) −
logα2, the update rule for the Gamma prior parameters on Uik corresponds to averaging
the moments and log-moments of the variational distribution on Uik over i (similarly
for Vjk over j). Regarding the Bernoulli prior parameters πD

j , the update rule is also
an average of the corresponding variational parameter over i (similarly for πS

j over k).

A.3 Data generation
We set the hyper-parameters (αk,1, αk,2)k and (βk,1, βk,2)k of the Gamma prior distri-
butions on Uik and Vjk to generate structure in the data, i.e. groups of individuals and
groups of variables.

Generation of U. In practice, individuals i = 1, . . . , n are partitioned into N bal-
anced groups, denoted by U1, . . . ,UN . To do so, we generate a matrix U with blocks
on the diagonal. Each block, denoted by BU,g contains n/N rows and K/N columns.
Each entry Uik in each block BU,g (g = 1, . . . , N) is drawn from a Gamma distribution
Γ(α+ εα, 1) with a shape parameter depending on α > 0 and an additive term εα > 0.
All entries Uik that are not in the diagonal blocks of U are drawn from a Gamma
distribution Γ(α, 1). Hence, each groups of individuals Ug corresponds to a block BU,g.
Thus, this generation pattern requires that K > N . In addition, the term εα > 0
quantifies how much the groups of individuals are distinct. In practice, we fix α = 4,
we use εα = 4 or 8 (for low or high separation respectively) and N = 2 or 3 groups of
individuals.

Generation of V. The question of simulating data based on a sparse representation
V of the variables in our context of matrix factorization is not straightforward. Indeed,
if we impose that some variables j do not contribute to any component k, i.e. that Vjk
is null for any k, then

∑
k Uik Vjk is always null for i = 1, . . . , n. Thus, the recorded data

entry Xij will be deterministic and null for any observation i (i.e. the jth column in X
will be null). There is no interest to generate full columns of null values in the matrix
X, since it is unnecessary to use a statistical analysis to determine that a column of
zeros will not be informative. This question is not an issue about the formulation of
the model, but rather concerns the generation of non informative columns in X that
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will correspond to null rows in the matrix V.

To overcome this issue, we use the following generative process. The variables
j = 1, . . . , p are first partitioned into two groups V0 and V∅ of respective sizes p0 and
p − p0 (with p0 ≤ p). The p0 variables in V0 will represent the pertinent variables
for the lower dimensional representation, whereas variables in V∅ will be considered
irrelevant or noise. The matrix V will be a concatenation of two matrices V0 and V∅:

Vp×K =

 V0

V∅


All Vjk in V∅ are drawn from a Gamma distribution Γ(0.7, 1), so that E[Vjk] will be
small but non null to avoid null columns in X. The ratio p0/p sets the expected degree
of sparsity in the model. In practice, we set p0/p = 1, 0.6 or 0.3 corresponding to
different proportions of noisy genes (0, 40 or 70% of noisy genes).

To simulate dependency between recorded variables, we generate groups of variables
in the set V0 of pertinent variables. We use a similar strategy as the one used to simulate
U. V0 is partitioned into P balanced groups, denoted by V1, . . . ,VP . We generate the
corresponding matrix V0 with blocks on the diagonal. Each block, denoted by BV,g
contains p0/P rows andK/P columns: Each entry Vjk in each block BV,g (g = 1, . . . , P )
is drawn from a Gamma distribution Γ(β + εβ, 1) with a shape parameter depending
on β > 0 and an additive term εβ > 0. All entries Vjk that are not in the blocks
on diagonal are drawn from a Gamma distribution Γ(β, 1). Hence, each groups of
individuals Vg corresponds to a block BV,g. Again, this generation pattern requires
that K > N . In addition, the term εβ > 0 quantifies how much the groups of genes
are distinct. In practice, we fix β = 4, we use εβ = 4 or 8 (for high or low dependency
respectively) and P = 2 groups of variables.

Generation of X. The data are simulated according to their conditional Poisson
distribution in the model i.e. P(

∑
k uik vjk). In practice, we want to consider zero-

inflation in the model, thus we consider the Dirac-Poisson mixture and simulate Xij

according to the following conditional distribution:

Xij | (Uik, Vjk)k, Dij ∼ (1−Dij)× δ0 +Dij ×P(
∑

k Uik Vjk) ,

where the dropout indicator Dij is drawn from a Bernoulli distribution B(πd
j ), the

proportion of dropout events is set by the probability πd
j . To generate data without

dropout events, we just have to set Dij = 1 for any couple (i, j), i.e. πd
j = 1 for any j.

In practice, we fixK = 50, n = 100 and p = 1000 to simulate our data. We generate
different level of zero-inflation: πd

j = 1 for any j, corresponding to “no zero-inflation”;
πd
j ∈ [0.4; 0.6] corresponding to what we call “low zero-inflation”; and πd

j ∈ [0.2; 0.4]
corresponding to what we call “high zero-inflation” in the data.
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A.4 Additional results

A.4.1 Computation time

Figure A.1 shows average computation time for the different methods (pCMF, Poisson-
NMF, SPCA, ZIFA) for a single run on a single-core standard CPU with frequency
between 2 and 2.5 GHz. All methods, including ours, have different levels of multi-
threading and can benefit from multi-core CPU computations. We restrained to a
single CPU core for each method run, because we were simultaneously running a huge
number of simulations on a CPU cluster.

Our method shows comparable computation time as state-of-the-art approaches
as Poisson-NMF (from the NMF R-package) or ZIFA (from the ZIFA Python-package).
The sparse PCA (from the PMA R-package) is the gold standard regarding running time
thanks to the efficiency of the PCA algorithm based on the Singular Value Decompo-
sition (SVD) algorithm. However, we recall that (sparse) PCA shows poor results
regarding clustering and data visualization.

Eventually, we mention that our method is available in an R-package, however our
algorithms are implemented in interfaced C++ for computational efficiency.

A.4.2 Standard GaP versus our ZI sparse GaP factor model

Figure A.2 illustrates the interest of our zero-inflated sparse Gamma-Poisson factor
model compared to the standard Gamma-Poisson factor model, especially in presence
of dropout events and noisy genes. Our method pCMF based on our ZI sparse GaP
factor model performs as well as the pCMF based on the standard GaP factor model
when there is no dropout events in the data, independently from the proportion of
noisy genes. In addition, when the level of zero-inflation is higher, we can see that
the ZI-specific model outperforms the standard ones, highlighting the interest of our
approach.
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Figure A.1: Computation time on a single CPU core for the different approaches, depending
on the number of variables p, for different levels of zero-inflation and different proportion of
noisy variables in the data. The number of components is set to K = 10. Data are generated
with n = 100 and 2 groups of individuals. Average values and deviation are estimated across
100 repetitions.
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Figure A.2: Adjusted Rand Index comparing clusters found by a κ-means algorithm (applied
to Û with κ = 2) and the original groups of individuals, depending on the number of individ-
ual groups in the data, for different levels of zero-inflation and different proportion of noisy
variables in the data. The number of components is set to K = 10. Data are generated with
n = 100, p = 1000. Average values and deviation are estimated across 100 repetitions.
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