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The density functions (or probability distribution functions)

Y i ∈ {1, . . . , G }, L(X i |Y i = g ) = N (µ g , Σ g )
Two kinds of parsimony assumptions on covariance matrices independence between spectra Σ g ,k of size T × T , (T = 17), or independences between times, Σ g ,t of size K × K , (K = 4).

handle missing values for both models Implementations and tests in a R package.
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Method

Missing values formation process

Missing At Random (MAR): Probability for a value to be missing does not depends from its value conditionally to the other observations. Denote

x + ik = x O i x M + ik , Σ+ ik = 0 O i 0 OM i 0 MO i ΣM +
ik with 0 null matrix, and

ΣM + ik = Σ M ik -Σ MO ik Σ O ik -1 Σ OM ik . then Σ + k = 1 n + k n i=1 (x + ik -µ + k )(x + ik -µ + k ) + Σ+ ik ΣM + ik
is correcting the variance due to the imputation by the mean. Main assumption

Y |Z = k ∼ GP(µ k , C k ), k = 1, . . . , K (2) 
where Main assumption

Y |Z = k ∼ GP(µ k , C k ), k = 1, . . . , K (2) 
where Main assumption

Y |Z = k ∼ GP(µ k , C k ), k = 1, . . . , K (2) 
where 

  k ⇐⇒ x belongs to distribution P k § ¦ ¤ ¥ x = (x 1 , . . . , x n ) ẑ 1 , . . . , ẑn ), K clustersModel Based clustering is a probabilistic approach.
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  Figure: Formosat-2 furnished multi-spectral data (R, G, B, NIR) with a 8 meter resolution. 17 complete images of France by year

Figure

  Figure: Sentinel-2 furnish 13 spectral bandwidths with 4 bandwidths with a 10 meters resolution and 6 bandwidths with a 20 meters resolution. A complete image of France every 5 days

Figure

  Figure: Map of the number of times that every pixel sees the ground taking into account satellite revisit and cloud cover.
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Figure :

 : Figure: Tree species classication with G = 13 S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series 23 Juin 2017 25 / 30

  

  

  

  Replace E step by a simulation step (Optional) S step: generate labels z r = {z r 1 , ..., z r n } according to the categorical distribution (t r ik , 1 ≤ k ≤ K ). SEM and SemiSEM does not converge point wise. It generates a Markov chain. Replace E step by a simulation step (Optional) S step: generate labels z r = {z r 1 , ..., z r n } according to the categorical distribution (t r ik , 1 ≤ k ≤ K ). SEM and SemiSEM does not converge point wise. It generates a Markov chain.

	Drawbacks Drawbacks Drawbacks Drawbacks	
	The I step may be dicult The I step may be dicult The I step may be dicult The I step may be dicult	
	EM algorithm may converges slowly and is slowed down by the EM algorithm may converges slowly and is slowed down by the EM algorithm may converges slowly and is slowed down by the EM algorithm may converges slowly and is slowed down by the	
	imputation step imputation step imputation step imputation step	
	Biased estimators Biased estimators Biased estimators Biased estimators	
	Solution: Use Monte Carlo Solution: Use Monte Carlo Solution: Use Monte Carlo Solution: Use Monte Carlo	
	Replace I step by a simulation step Replace I step by a simulation step Replace I step by a simulation step Replace I step by a simulation step	
	ik . ik .	
	Replace E step by a simulation step (Optional) Replace E step by a simulation step (Optional)	
	S step: generate labels z r = {z r 1 , ..., z r n } according to the categorical distribution (t r ik , 1 ≤ k ≤ K ). S step: generate labels z r = {z r 1 , ..., z r n } according to the categorical distribution (t r ik , 1 ≤ k ≤ K ).
	SEM and SemiSEM does not converge point wise. It generates a Markov SEM and SemiSEM does not converge point wise. It generates a Markov	
	chain. chain.	
	23 Juin 2017 23 Juin 2017 23 Juin 2017 23 Juin 2017	12 / 30 13 / 30 13 / 30 13 / 30

S. Iovle (Lille 1)

Mixture Models with Missing data Classication of Satellite Image Time Series IS step: simulate missing values x m using x o , θ r -1 , t r -1 θ = (θ r ) r =1,...,R missing values imputed using empirical MAP value (or expectation) S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series IS step: simulate missing values x m using x o , θ r -1 , t r -1 θ = (θ r ) r =1,...,R missing values imputed using empirical MAP value (or expectation) S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series IS step: simulate missing values x m using x o , θ r -1 , t r -1 ik . θ = (θ r ) r =1,...,R missing values imputed using empirical MAP value (or expectation) S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series IS step: simulate missing values x m using x o , θ r -1 , t r -1 ik . θ = (θ r ) r =1,...,R missing values imputed using empirical MAP value (or expectation) S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series 23 Juin 2017 13 / 30

Oak Silver fir Black pine Silver fir Silver fir Silver birch Black locust Oak European ash Maritime pine Black pine Black pine Oak Silver birch Oak Douglas fir Silver fir Black pine Silver fir Silver fir Silver fir Douglas fir Oak

  

	February 8, 2017	0	0.3	0.6 1:36,112		1.2	mi
		0	0.35	0.7	1.4	km

S.

Iovle 

(Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series 23 Juin 2017 24 / 30 Tree Species Classification using Formosat-2 Satellite Image Time Series Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

  GP(µ k , C k ) is a Gaussian Process with mean µ k ∈ L 2 (I ) and with covariance operator C k : I × I → R.mean functions belongs to a J-dimensional subspace Covariance functionC k (s, t)(h k ) = θ k Q((ts)/h k ),

	Spectrum are independents.

µ k (t) = J j=1 α kj ϕ j (t

), S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series 23 Juin 2017 26 / 30

  GP(µ k , C k ) is a Gaussian Process with mean µ k ∈ L 2 (I ) and with covariance operator C k : I × I → R.mean functions belongs to a J-dimensional subspace Covariance functionC k (s, t)(h k ) = θ k Q((ts)/h k ),

	Spectrum are independents.

µ k (t) = J j=1 α kj ϕ j (t

), S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series 23 Juin 2017 26 / 30

  GP(µ k , C k ) is a Gaussian Process with mean µ k ∈ L 2 (I ) and with covariance operator C k : I × I → R.mean functions belongs to a J-dimensional subspace Covariance functionC k (s, t)(h k ) = θ k Q((ts)/h k ),

	Spectrum are independents.

µ k (t) = J j=1 α kj ϕ j (t

), S. Iovle (Lille 1) Mixture Models with Missing data Classication of Satellite Image Time Series 23 Juin 2017 26 / 30

Drawbacks

The I step may be dicult EM algorithm may converges slowly and is slowed down by the imputation step Biased estimators Solution: Use Monte Carlo Replace I step by a simulation step IS step: simulate missing values x m using x o , θ r -1 , t r -1 ik . Replace E step by a simulation step (Optional) S step: generate labels z r = {z r 1 , ..., z r n } according to the categorical distribution (t r ik , 1 ≤ k ≤ K ). SEM and SemiSEM does not converge point wise. It generates a Markov chain. θ = (θ r ) r =1,...,R missing values imputed using empirical MAP value (or expectation) Main assumption

where GP(µ k , C k ) is a Gaussian Process with mean µ k ∈ L 2 (I ) and with covariance operator C k : I × I → R. mean functions belongs to a J-dimensional subspace

Covariance function

Spectrum are independents. 

Estimation of Continuous Model

For each i, let B i ,j = ϕ j (t i ), m ki = B i α k and

then

we end up with K independent minimization problems:

Results

About 65% well classied.