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Classification of Satellite Image Time Series



What is Clustering ?

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics.
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What is Clustering ?

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics.

» The term Data Clustering first appeared in 1954 (according to
JSTOR) in an article dealing with anthropological data,
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What is Clustering ?

Cluster analysis

From Wikipedia, the free encyclopedia

For the supervised learning approach, see Statistical classification.

Cluster analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). It is a main task of exploratory data
mining, and a common technique for statistical data analysis, used in many fields, including
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics,
data compression, and computer graphics.

» The term Data Clustering first appeared in 1954 (according to
JSTOR) in an article dealing with anthropological data,

» Many, many existing methods
(https://en.wikipedia.org/wiki/Category:
Data_clustering_algorithms)
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What is Clustering ?

Need to algorithms for Big-Data and Complex Data. In particular mixed
features and missing values
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And so on...
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: " Cluster-
ing cash receipts of the Customers with a
loyalty card"

» 28 variables related to products,
» 6 variables related to costumers,

» 38 variables related to stores,
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: " Cluster-
ing cash receipts of the Customers with a
loyalty card"

v

28 variables related to products,

v

6 variables related to costumers,

v

8 variables related to stores,
n = 2,899,030 receipts.

v
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Example

Joint works with Christophe Biernacki (head of the Inria Modal team),
Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: " Cluster-
ing cash receipts of the Customers with a
loyalty card"

v

28 variables related to products,

v

6 variables related to costumers,

v

8 variables related to stores,
n = 2,899,030 receipts.

Some meaningful variables with missing val-
ues.

v
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Example

Variables liées aux clients
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Clustering using Mixture Models  Example

An example (Variables)

Variables liees aux Produits

" var Type |Nbre I i % ManqudDiscreti:
Tjmois_ticket factor 12o1|02|o3|o4|05|ua|07|oa|o9|10|11|12 0 0
2jjours_ticket factor dillundilmardi|mercredi|samedi|vendredi 0 0

[TYPE_LIGNE factor 0 0
5[MONTANT_REMISE factor | 0 OUl
6[S! factor 2[NONJOUI 0 0

factor 2|REMISE COMM|SANS REMISE COMM 0 oul
factor 2INON|OUI 0 0
factor 2INON|oUI 0 0
factor 2INON[OUI 0 0
factor 2INON[OUI 0 0
factor 2INON|oUI 0 0
factor 2NON|OUI  |"REGLEMENT_KK","REGLEMENT_CB","REGLEMENT_ES","REGLEMENT_CIl0 0
factor 2 NON|OUI 0 0
factor 1 NON o 0
factor 2NON|oUI 0 0
factor 2INON|oUI 0 0
factor 2INON|oUI 0 0
factor 2INON|oUI 0
factor 2NON|oUI 0
factor 5 AC [5] ALNEA LINGERIE JOUR|LIN|D 0
22|COLLECTION factor 2| ‘(} 0
23/COLORIS_BASE factor 13 ne|Magron|NoirfOrange| ose|Rouge|Vert|Vigl{0 0
24/COORDONNE factor 4 9.02 0
25|STYLE_PORTER factor 4 EDUCTION[SEXY 19.74 0
26(ASPECT_COLORIS factor 3 ‘BICOLOREHMPRIMElUNI 2.35 0
27|CARACT_MATIERE factor 5 ‘AUTRES|DENTELLE|MICROFIBRElSATINFULLE BRODE 0 0
4[PRIX_UNITAIRE numeric| 4811 oo 0
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Mixture Models

Main ldea
x in cluster k <= x belongs to distribution Py
(x = (x1,... ,x,,)) [2 =(21,...,2,), K cIustersJ
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Model Based clustering is a probabilistic approach.
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Mixture Models

Two softwares available

» R package MixAll

library (MixAll)

data(geyser)

## add 10 missing wvalues as random

x = as.matrix(geyser); n <- nrow(x); p <- ncol(x);

indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2);
x[indexes] <- NA;

## estimate model

model<-clusterDiagGaussian( data=x, nbCluster=2:3, models=c( "gaussian_pk_sjk"))
plot (model)

missingValues (model)

row col value

133 1 2.029661

42 54.569144

49 79.970973

209 54.569144

213 54.569144

VVVVVVVVVYVY

oW N

2
2
2
2

» SaaS software MixtComp https://massiccc.lille.inria.fr/
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Mixture Models

» Cluster k is modeled by a parametric distribution

xilz =k ~ p(.|ok)

» Cluster k has probability mx

Zj NM(177T1,...,7TK).

Mixture model

The model parameters are 0 = (m1,..., 7k, 04,...,ak) and
K
p(xi) = > mep(xi; )
k=1
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EM Algorithm and variations

Starting from an initial arbitrary parameter 6°, the mth iteration of the EM
algorithm consists of repeating the following I, E and M steps.
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EM Algorithm and variations

Starting from an initial arbitrary parameter 6°, the mth iteration of the EM
algorithm consists of repeating the following I, E and M steps.

» | step: Impute by using expectation of the missing values x™ using
o pr—1 4r—1
X%, 07t
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EM Algorithm and variations

Starting from an initial arbitrary parameter 6°, the mth iteration of the EM
algorithm consists of repeating the following I, E and M steps.
» | step: Impute by using expectation of the missing values x™ using
x°, 01, ti’k_l.
» E step: Compute conditional probabilities z; = k|x; using current
value 071 of the parameter:

P Th(xileg ™)

th = t,C(x,-|9’_1) = =% —.
> =1 Py 1h(x,-\a; 1)
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EM Algorithm and variations

Starting from an initial arbitrary parameter 6°, the mth iteration of the EM
algorithm consists of repeating the following I, E and M steps.
» | step: Impute by using expectation of the missing values x™ using
x°, 01, t,.rk_l.
» E step: Compute conditional probabilities z; = k|x; using current
value 071 of the parameter:

py hixilog )
o —.
> =1 Py 1h(x,-\a; 1)

» M step: Update ML estimate " using conditional probabilities t/, as
mixing weights

the = ti(xi]0"™") =

(1)

n K
L(mxla -y Xp, tr) = Z Z tﬁ( In [pkh(X,"ak)] )

i=1 k=1
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EM Algorithm and variations

Starting from an initial arbitrary parameter 6°, the mth iteration of the EM
algorithm consists of repeating the following I, E and M steps.
» | step: Impute by using expectation of the missing values x™ using
x°, 01, t,.rk_l.
» E step: Compute conditional probabilities z; = k|x; using current
value 071 of the parameter:

py hixilog )
o —.
> =1 Py 1h(x,-\a; 1)

» M step: Update ML estimate " using conditional probabilities t/, as
mixing weights

the = ti(xi]0"™") =

(1)

n K
L(mxla -y Xp, tr) = Z Z tﬁ( In [pkh(X,"ak)] )

i=1 k=1
» lterate until convergence
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Drawbacks
» The | step may be difficult



EM Algorithm and variations

Drawbacks
» The | step may be difficult
» EM algorithm may converges slowly and is slowed down by the
imputation step
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EM Algorithm and variations

Drawbacks
» The | step may be difficult

» EM algorithm may converges slowly and is slowed down by the
imputation step

» Biased estimators
Solution: Use Monte Carlo

S lovieff (Lilel)  Mixture Models with Missing data Classif TS



EM Algorithm and variations

Drawbacks
» The | step may be difficult

» EM algorithm may converges slowly and is slowed down by the
imputation step

» Biased estimators
Solution: Use Monte Carlo
» Replace | step by a simulation step
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EM Algorithm and variations

Drawbacks
» The | step may be difficult

» EM algorithm may converges slowly and is slowed down by the
imputation step

» Biased estimators
Solution: Use Monte Carlo
» Replace | step by a simulation step
» IS step: simulate missing values x™ using x°, fr-1, tﬁ:l.
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EM Algorithm and variations

Drawbacks
» The | step may be difficult

» EM algorithm may converges slowly and is slowed down by the
imputation step

» Biased estimators
Solution: Use Monte Carlo
» Replace | step by a simulation step
» IS step: simulate missing values x™ using x°, fr-1, tﬁ:l.
» Replace E step by a simulation step (Optional)
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EM Algorithm and variations

Drawbacks
» The | step may be difficult
» EM algorithm may converges slowly and is slowed down by the
imputation step
» Biased estimators
Solution: Use Monte Carlo

v

Replace | step by a simulation step

IS step: simulate missing values x™ using x°, fr-1, t&:l.

Replace E step by a simulation step (Optional)

S step: generate labels z" = {z], ..., z},} according to the categorical
distribution (t/,1 < k < K).

v vy
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EM Algorithm and variations

Drawbacks
» The | step may be difficult
» EM algorithm may converges slowly and is slowed down by the
imputation step
» Biased estimators
Solution: Use Monte Carlo
Replace | step by a simulation step
IS step: simulate missing values x™ using x°, "1, t&:l.
Replace E step by a simulation step (Optional)
S step: generate labels z" = {z], ..., z},} according to the categorical
distribution (t/,1 < k < K).
SEM and SemiSEM does not converge point wise. It generates a Markov
chain.

v

v vy
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EM Algorithm and variations

Drawbacks

» The | step may be difficult

» EM algorithm may converges slowly and is slowed down by the

imputation step

» Biased estimators
Solution: Use Monte Carlo
Replace | step by a simulation step
IS step: simulate missing values x™ using x°, "1, t&:l.
Replace E step by a simulation step (Optional)
S step: generate labels z" = {z], ..., z},} according to the categorical
distribution (t/,1 < k < K).
SEM and SemiSEM does not converge point wise. It generates a Markov
chain.

> 0_ = (er)rzl,,..,R

v

v vy
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EM Algorithm and variations

Drawbacks
» The | step may be difficult
» EM algorithm may converges slowly and is slowed down by the
imputation step
» Biased estimators
Solution: Use Monte Carlo
Replace | step by a simulation step
IS step: simulate missing values x™ using x°, "1, t&:l.
Replace E step by a simulation step (Optional)
S step: generate labels z" = {z], ..., z},} according to the categorical
distribution (t/,1 < k < K).
SEM and SemiSEM does not converge point wise. It generates a Markov
chain.
> 0_ = (er)rzl,...,R
» missing values imputed using empirical MAP value (or expectation)

_Mixture Models with Missing data Classif 23 Juin 2017 13 / 30
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Mixture Model and Mixed Data

Mixed data are handled using conditional independence of the variables.
1. Observation space of the form X = Xy x Xo x ... x X,
2. x; arises from a mixture probability distribution with density

L

/
i | | B (il o).
k=1 =1

M =

f(xi = (X17,X2i, . .. x1)]|0) =

3. The density functions (or probability distribution functions) h'(.|c)
can be any implemented model.
MixAll implements Gaussian, Poisson, Categorical, Gamma distributions.
MixtComp implements Gaussian, Poisson, Categorical and specific
distributions for rank and ordinal data.
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Clustering using Mixture Models

Classification of Satellite Image Time Series
Cube of Data
Missing Data/Noisy Data/Sampling
(Long term) Objective
Modeling
Missing Values ?



Classification of Satellite Image Time Series

» Deéfi Mastodons: Appel a Projet 2016 "Qualité des données"

» Creation of the CloHe (CLustering Of Heterogeneous Data with
applications to satellite data records) project

» Members: Mathieu Fauvel (INRA), Stéphane Girard (Inria Grenoble),
Vincent vandewalle (Lille2), Crisitan Preda (Université Lille 1)

https://modal.lille.inria.fr/CloHe/
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Classification of Satellite Image Time Series  Cube of Data

[Formosat_z IS N0 more Operational] [Sentine|—2A start service in 2016j

Figure: Sentinel-2 furnish 13 spectral

Figure: Formosat-2 furnished _ bandwidths with 4 bandwidths with a
multi-spectral data (R, G, B, NIR) with 10 meters resolution and 6 bandwidths
a 8 meter resolution. 17 complete with a 20 meters resolution. A

images of France by year complete image of France every 5 days
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Cube of Data

Figure: Sentinel-2 furnish approximately
20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard

de pixels.

18 / 30
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Cube of Data

Data Cube

X =Xike), i€l, ke{rvb,ir},
Y =(Y), iedJcCl

with
» i = (x,y) geographic position,
» k spectral band,

» t dates,

Figure: Sentinel-2 furnish approximately
20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard

de pixels.
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Cube of Data

Data Cube

X =Xike), i€l, ke{rvb,ir},
Y =(Y), iedJcCl

with
» i = (x,y) geographic position,
» k spectral band,

» t dates,

» missing values (clouds, ported
shadows) at some dates and

Figure: Sentinel-2 furnish approximately -
some positions,

20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard

de pixels.
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Cube of Data

Data Cube

X =Xike), i€l, ke{rvb,ir},
Y =(Y), iedJcCl

with
» i = (x,y) geographic position,
» k spectral band,

» t dates,

» missing values (clouds, ported
shadows) at some dates and

Figure: Sentinel-2 furnish approximately -
some positions,

20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard » noisy data (undetected

de pixels. shadows, cloud veil, etc...).
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Cube of Data

Data Cube

X =Xike), i€l, ke{rvb,ir},
Y =(Y), iedJcCl

with
» i = (x,y) geographic position,
» k spectral band,

» t dates,

» missing values (clouds, ported
shadows) at some dates and

Figure: Sentinel-2 furnish approximately -
some positions,

20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard » noisy data (undetected

de pixels. shadows, cloud veil, etc...).

» mixel (mixture of pixel)
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Missing Data/Noisy Data/Sampling

Classification of Satellite Image Time Series

Figure: A few number of clouds

Figure: Very cloudy

19 / 30

23 Juin 2017

Figure: Some clouds with a veil

Mixture Models with Missing data Classif

"sheeps"

Figure:
S. lovleff (Lille 1)



Classification of Satellite Image Time Series  Missing Data/Noisy Data/Sampling

Noisy Data

Figure: clouds and their shadows

S. lovleff (Lille 1) Mixture Models with Missing data Classif 23 Juin 2017 20 / 30



Missing Data/Noisy Data/Sampling

Figure: Path-row grid for
Landsat acquisitions.

Every path (North-South
track) is acquired on the

same date every 16 days.

4 le1 Histogram

W pixel views

12345678 91011121314151617181920212223242526272829

L[ =

Figure: Histogram of the
number of times that
every pixel sees the
ground taking into
account satellite revisit
and cloud cover.

Figure: Map of the
number of times that
every pixel sees the
ground taking into
account satellite revisit
and cloud cover.

Open Access: http://www.mdpi.com/2072-4292/9/1/95/htm

_Mixture Models with Missing data Classif
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(Long term) Objective

The aim is to be able to cluster the whole France using Sentinel-2 data.

NoData

B Annual summer crops (ASC)
Annual winter crops (AWC)

I road-leaved forest (BLF)

-
=

Coniferous forest (COF)

atural grasslands (NGL)

Woody moorlands (WOM)
Continuous urban fabric (CUF)
B Discontinvous urban fabric (DUF)
£ Industrial or commercial units (1CU)
© Road surfaces (RSF)

I Bare rock (BR0)

eaches, dunes and sand plains (8D5)
I Water bodies (WAT)

5 Glaciers and perpetual snow (GPS)

1 Vineyards (VIN)
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> Yie{l,...,G),
> L(Xi|Yi =g) = N(1g, Zg)



Modeling

» YVie{l,...,G},
> L(Xi|Yi = g) =N (g X¢)
» Two kinds of parsimony assumptions on covariance matrices
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Modeling

» YVie{l,...,G},
> L(Xi|Y;=g) =N(pg, T¢)
» Two kinds of parsimony assumptions on covariance matrices

» independence between spectra ¥,  of size T x T, (T = 17),
» or independences between times, ¥, ; of size K x K, (K = 4).
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Modeling

v

Yie{1,...,G},
LXi|Y;=g) =N(pg, Zg)
Two kinds of parsimony assumptions on covariance matrices

» independence between spectra ¥,  of size T x T, (T = 17),
» or independences between times, ¥, ; of size K x K, (K = 4).

v

v

v

handle missing values for both models

v

Implementations and tests in a R package.
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Modeling

Missing values formation process

Missing At Random (MAR): Probability for a value to be missing does not
depends from its value conditionally to the other observations.

x0 . 0% oM _ .

Denote xi',t = ( x'\l"+ ) Ei = ( OI_\;IO 2~]’M+ ) with 0 null matrix, and
ik . i ik

SMT M MO [0\~ 1 5 OM

B =30 -0 (25) =M. then

n

Sro= >0 o - e - ) + 5

o
2ik
is correcting the variance due to the imputation by the mean.
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Classification of Satellite Image Time Series  Modeling

Tree Species Classification using Formosat-2 Satellite Image Time Series

= %

February 8, 2017

Figure: Tree species classification with G = 13
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Missing Values ?

Main assumption
Y|Z =k~ GP(uk, Ck), k=1,...,.K (2)

where GP(puk, Cx) is a Gaussian Process with mean px € Lp(/) and with
covariance operator Ci : | x | — R,
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Missing Values ?

Main assumption
Y|Z =k~ GP(uk, Ck), k=1,...,.K (2)

where GP(puk, Cx) is a Gaussian Process with mean px € Lp(/) and with
covariance operator Ci : | x | — R,

» mean functions belongs to a J—dimensional subspace

J
pk(t) = Zakjs@j(t),
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Missing Values ?

Main assumption
Y|Z =k~ GP(uk, Ck), k=1,...,.K (2)

where GP(puk, Cx) is a Gaussian Process with mean px € Lp(/) and with
covariance operator Ci : | x | — R,

» mean functions belongs to a J—dimensional subspace

J
pk(t) = Zakjs@j(t),

» Covariance function

Ci(s, t)(hk) = 0k Q((t — 5)/ ),
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Missing Values ?

Main assumption
Y|Z =k~ GP(uk, Ck), k=1,...,.K (2)

where GP(puk, Cx) is a Gaussian Process with mean px € Lp(/) and with
covariance operator Ci : | x | — R,

» mean functions belongs to a J—dimensional subspace

J
pk(t) = Zakjs@j(t),

» Covariance function

Ci(s, t)(hk) = 0k Q((t — 5)/ ),

» Spectrum are independents.
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Missing Values ?

For each i/, let Bé’j = goj-(té), my; = B’y and

z_;d/(hk) = ekQ((tj - t:;/)/hk) = eijJ/(hk),
then
y,-|Z,- =k ~/\/’Ti(mki,9k5i(hk)), k= 1,...,K, i = 1,...,n

we end up with K independent minimization problems:

(6, hye) = arg max Z log det S(hy) + T log Ok

ak> k7

1

9 ( B’ak)TS (hk) ( B’Ozk)
k

_|_
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Missing Values ?

About 65% well classified.

Mean Values, spectrum 1 Mean Values, spectrum 2
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Figure: G = 13 spectrum
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Figure: first, 4th, 7th and 11th classes




Missing Values ?

https://cran.r-project.org/web/packages/MixAll/
https://massiccc.lille.inria.fr/
https://modal.lille.inria.fr/CloHe/
http://www.mdpi.com/2072-4292/9/1/95/htm
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