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Clustering using Mixture Models What is Clustering ?

Clustering is the cluster building process

I The term Data Clustering �rst appeared in 1954 (according to

JSTOR) in an article dealing with anthropological data,

I Many, many existing methods

(https://en.wikipedia.org/wiki/Category:

Data_clustering_algorithms)
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Clustering using Mixture Models What is Clustering ?

New challenges

Need to algorithms for Big-Data and Complex Data. In particular mixed

features and missing values
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Clustering using Mixture Models Example

An example

Joint works with Christophe Biernacki (head of the Inria Modal team),

Vincent Vandewalle, Komi Nagbe,...

Contract for a large lingerie store: "Cluster-

ing cash receipts of the Customers with a

loyalty card"

I 28 variables related to products,

I 6 variables related to costumers,

I 8 variables related to stores,

I n = 2, 899, 030 receipts.

Some meaningful variables with missing val-

ues.
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Clustering using Mixture Models Example

An example (Variables)
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Clustering using Mixture Models Example

An example (Variables)
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Clustering using Mixture Models Example

An example (Results)
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Clustering using Mixture Models Example

An example (Results)
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Clustering using Mixture Models Mixture Models

Mixture Models

Main Idea

x in cluster k ⇐⇒ x belongs to distribution Pk

�� ��x = (x1, . . . , xn)

−→
clustering

�� ��ẑ = (ẑ1, . . . , ẑn), K̂ clusters

Model Based clustering is a probabilistic approach.
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Clustering using Mixture Models Mixture Models

R package MixAll and SaaS MixtComp

Two softwares available

I R package MixAll

> library(MixAll)
> data(geyser)
> ## add 10 missing values as random

> x = as.matrix(geyser); n <- nrow(x); p <- ncol(x);
> indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol =2);
> x[indexes] <- NA;
> ## estimate model

> model <-clusterDiagGaussian( data=x, nbCluster =2:3, models=c( "gaussian_pk_sjk"))
> plot(model)
> missingValues(model)

row col value
1 133 1 2.029661
2 42 2 54.569144
3 49 2 79.970973
4 209 2 54.569144
5 213 2 54.569144

I SaaS software MixtComp https://massiccc.lille.inria.fr/

S. Iovle� (Lille 1) Mixture Models with Missing data Classi�cation of Satellite Image Time Series23 Juin 2017 10 / 30

https://massiccc.lille.inria.fr/


Clustering using Mixture Models Mixture Models

Hypothesis of mixture of parametric distributions

I Cluster k is modeled by a parametric distribution

xi |z = k ∼ p(.|αk)

I Cluster k has probability πk

zi ∼M(1, π1, . . . , πK ).

Mixture model

The model parameters are θ = (π1, . . . , πK , α1, . . . , αK ) and

p(xi ) =
K∑

k=1

πkp(xi ;αk)
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Clustering using Mixture Models EM Algorithm and variations

EM Algorithm

Starting from an initial arbitrary parameter θ0, the mth iteration of the EM

algorithm consists of repeating the following I, E and M steps.

I I step: Impute by using expectation of the missing values xm using

xo , θr−1, tr−1ik .
I E step: Compute conditional probabilities zi = k |xi using current

value θr−1 of the parameter:

trik = trk(xi |θr−1) =
pr−1k h(xi |αr−1

k )∑K
l=1

pr−1l h(xi |αr−1
k )

. (1)

I M step: Update ML estimate θr using conditional probabilities trik as

mixing weights

L(θ|x1, . . . , xn, tr ) =
n∑

i=1

K∑
k=1

trik ln [pkh(xi |αk)] ,

I Iterate until convergence
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Clustering using Mixture Models EM Algorithm and variations

SEM/SemiSEM Algorithms

Drawbacks
I The I step may be di�cult
I EM algorithm may converges slowly and is slowed down by the

imputation step
I Biased estimators

Solution: Use Monte Carlo
I Replace I step by a simulation step
I IS step: simulate missing values xm using xo , θr−1, tr−1ik .
I Replace E step by a simulation step (Optional)
I S step: generate labels zr = {zr

1
, ..., zrn} according to the categorical

distribution (trik , 1 ≤ k ≤ K ).

SEM and SemiSEM does not converge point wise. It generates a Markov

chain.
I θ̄ = (θr )r=1,...,R

I missing values imputed using empirical MAP value (or expectation)
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Clustering using Mixture Models EM Algorithm and variations

SEM/SemiSEM Algorithms

Drawbacks
I The I step may be di�cult
I EM algorithm may converges slowly and is slowed down by the

imputation step
I Biased estimators

Solution: Use Monte Carlo
I Replace I step by a simulation step
I IS step: simulate missing values xm using xo , θr−1, tr−1ik .
I Replace E step by a simulation step (Optional)
I S step: generate labels zr = {zr

1
, ..., zrn} according to the categorical

distribution (trik , 1 ≤ k ≤ K ).

SEM and SemiSEM does not converge point wise. It generates a Markov

chain.
I θ̄ = (θr )r=1,...,R

I missing values imputed using empirical MAP value (or expectation)

S. Iovle� (Lille 1) Mixture Models with Missing data Classi�cation of Satellite Image Time Series23 Juin 2017 13 / 30



Clustering using Mixture Models Mixture Model and Mixed Data

Mixed Data

Mixed data are handled using conditional independence of the variables.

1. Observation space of the form X = X1 × X2 × . . .× XL

2. xi arises from a mixture probability distribution with density

f (xi = (x1i , x2i , . . . xLi )|θ) =
K∑

k=1

πk

L∏
l=1

hl(xli |αlk).

3. The density functions (or probability distribution functions) hl(.|αlk)
can be any implemented model.

MixAll implements Gaussian, Poisson, Categorical, Gamma distributions.

MixtComp implements Gaussian, Poisson, Categorical and speci�c

distributions for rank and ordinal data.
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Classi�cation of Satellite Image Time Series
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Classi�cation of Satellite Image Time Series

I Dé� Mastodons: Appel à Projet 2016 "Qualité des données"

I Creation of the CloHe (CLustering Of Heterogeneous Data with

applications to satellite data records) project

I Members: Mathieu Fauvel (INRA), Stéphane Girard (Inria Grenoble),

Vincent vandewalle (Lille2), Crisitan Preda (Université Lille 1)

https://modal.lille.inria.fr/CloHe/
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Classi�cation of Satellite Image Time Series Cube of Data

�� ��Formosat-2 is no more operational

Figure: Formosat-2 furnished
multi-spectral data (R, G, B, NIR) with
a 8 meter resolution. 17 complete
images of France by year

�� ��Sentinel-2A start service in 2016.

Figure: Sentinel-2 furnish 13 spectral
bandwidths with 4 bandwidths with a
10 meters resolution and 6 bandwidths
with a 20 meters resolution. A
complete image of France every 5 days
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Classi�cation of Satellite Image Time Series Cube of Data

Data Cube

Figure: Sentinel-2 furnish approximately
20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard
de pixels.

Data Cube

X = (Xikt), i ∈ I , k ∈ {r,v,b,ir},
Y = (Yi ), i ∈ J ⊂ I .

with

I i = (x , y) geographic position,

I k spectral band,

I t dates,

I missing values (clouds, ported

shadows) at some dates and

some positions,

I noisy data (undetected

shadows, cloud veil, etc...).

I mixel (mixture of pixel)
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Classi�cation of Satellite Image Time Series Cube of Data

Data Cube

Figure: Sentinel-2 furnish approximately
20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard
de pixels.

Data Cube

X = (Xikt), i ∈ I , k ∈ {r,v,b,ir},
Y = (Yi ), i ∈ J ⊂ I .

with

I i = (x , y) geographic position,

I k spectral band,

I t dates,

I missing values (clouds, ported

shadows) at some dates and

some positions,

I noisy data (undetected

shadows, cloud veil, etc...).

I mixel (mixture of pixel)

presenceS. Iovle� (Lille 1) Mixture Models with Missing data Classi�cation of Satellite Image Time Series23 Juin 2017 18 / 30



Classi�cation of Satellite Image Time Series Cube of Data

Data Cube

Figure: Sentinel-2 furnish approximately
20TB of images/year, and cover the
entire France in 5 days with 1.6 milliard
de pixels.

Data Cube

X = (Xikt), i ∈ I , k ∈ {r,v,b,ir},
Y = (Yi ), i ∈ J ⊂ I .

with

I i = (x , y) geographic position,

I k spectral band,

I t dates,

I missing values (clouds, ported

shadows) at some dates and

some positions,

I noisy data (undetected

shadows, cloud veil, etc...).

I mixel (mixture of pixel)

presenceS. Iovle� (Lille 1) Mixture Models with Missing data Classi�cation of Satellite Image Time Series23 Juin 2017 18 / 30



Classi�cation of Satellite Image Time Series Missing Data/Noisy Data/Sampling

Missing data

Figure: Very cloudy Figure: A few number of clouds

Figure: "sheeps" Figure: Some clouds with a veil
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Classi�cation of Satellite Image Time Series Missing Data/Noisy Data/Sampling

Noisy Data

Figure: clouds and their shadows
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Classi�cation of Satellite Image Time Series Missing Data/Noisy Data/Sampling

Non-Uniform sampling

Figure: Path-row grid for
Landsat acquisitions.
Every path (North-South
track) is acquired on the
same date every 16 days.

Figure: Map of the
number of times that
every pixel sees the
ground taking into
account satellite revisit
and cloud cover.

Figure: Histogram of the
number of times that
every pixel sees the
ground taking into
account satellite revisit
and cloud cover.

Open Access: http://www.mdpi.com/2072-4292/9/1/95/htm
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Classi�cation of Satellite Image Time Series (Long term) Objective

Objective

The aim is to be able to cluster the whole France using Sentinel-2 data.

Figure: Classi�cation of France
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Classi�cation of Satellite Image Time Series Modeling

Gaussian modeling

I Yi ∈ {1, . . . ,G},
I L(Xi |Yi = g) = N (µg ,Σg )
I Two kinds of parsimony assumptions on covariance matrices

I independence between spectra Σg ,k of size T × T , (T = 17),
I or independences between times, Σg ,t of size K × K , (K = 4).

I handle missing values for both models

I Implementations and tests in a R package.
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Classi�cation of Satellite Image Time Series Modeling

Method

Missing values formation process

Missing At Random (MAR): Probability for a value to be missing does not

depends from its value conditionally to the other observations.

Denote x+ik =

(
x
O

i

x
M

+

ik

)
, Σ̃+

ik =

(
0Oi 0OM

i

0MO

i Σ̃M
+

ik

)
with 0 null matrix, and

Σ̃M
+

ik = ΣM

ik −ΣMO

ik

(
ΣO

ik

)−1
ΣOM

ik . then

Σ+
k =

1

n+k

n∑
i=1

[
(x+ik − µ+

k )(x+ik − µ+
k )′ + Σ̃+

ik

]

Σ̃M
+

ik

is correcting the variance due to the imputation by the mean.
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Classi�cation of Satellite Image Time Series Modeling

Gaussian modeling

Oak Silver fir

Black pine

Silver fir

Silver fir

Silver birch

Black locust
Oak

European ash
Maritime pine

Black pine
Black pine Oak

Silver birch

Oak

Douglas fir
Silver fir

Black pine
Silver fir
Silver fir
Silver fir

Douglas fir
Oak

Tree Species Classification using Formosat-2 Satellite Image Time Series

 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS,
USDA, USGS, AeroGRID, IGN, and the GIS User Community

February 8, 2017

 
 

0 0.6 1.20.3 mi

0 0.7 1.40.35 km

1:36,112

Figure: Tree species classi�cation with G = 13
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Classi�cation of Satellite Image Time Series Missing Values ?

Continuous Model

Main assumption

Y |Z = k ∼ GP(µk ,Ck), k = 1, . . . ,K (2)

where GP(µk ,Ck) is a Gaussian Process with mean µk ∈ L2(I ) and with

covariance operator Ck : I × I → R.
I mean functions belongs to a J−dimensional subspace

µk(t) =
J∑

j=1

αkjϕj(t),

I Covariance function

Ck(s, t)(hk) = θkQ((t − s)/hk),

I Spectrum are independents.
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Classi�cation of Satellite Image Time Series Missing Values ?

Estimation of Continuous Model

For each i , let B i
`,j = ϕj(t

i
`), mki = B iαk and

Σi
j ,j ′(hk) = θkQ((t ij − t ij ′)/hk) =: θkS

i
j ,j ′(hk),

then

yi |Zi = k ∼ NTi
(mki , θkS

i (hk)), k = 1, . . . ,K , i = 1, . . . , n

we end up with K independent minimization problems:

(α̂k , ĥk) = arg max
αk ,hk ,θk

∑
Zi=k

log detS i (hk) + Ti log θk

+
1

θk
(yi − B iαk)>S i (hk)

−1
(yi − B iαk)
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Classi�cation of Satellite Image Time Series Missing Values ?

Results

About 65% well classi�ed.

Figure: G = 13 spectrum
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Classi�cation of Satellite Image Time Series Missing Values ?

Mean values

Figure: �rst, 4th, 7th and 11th classes
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Classi�cation of Satellite Image Time Series Missing Values ?

Links

I https://cran.r-project.org/web/packages/MixAll/

I https://massiccc.lille.inria.fr/

I https://modal.lille.inria.fr/CloHe/

I http://www.mdpi.com/2072-4292/9/1/95/htm
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