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Spectral domain decomposition method for

physically-based rendering of Royaumont abbey

Guillaume Gbikpi-Benissan∗ Patrick Callet∗ Frédéric Magoulès∗

Abstract

In the context of a virtual reconstitution of the destroyed Royaumont abbey church,

this paper investigates computer sciences issues intrinsic to the physically-based image

rendering. First, a virtual model was designed from historical sources and archaeological

descriptions. Then some materials physical properties were measured on remains of the

church and on pieces from similar ancient churches. We specify the properties of our

lighting source which is a representation of the sun, and present the rendering algorithm

implemented in our software Virtuelium. In order to accelerate the computation of the

interactions between light-rays and objects, this ray-tracing algorithm is parallelized

by means of domain decomposition techniques. Numerical experiments show that the

computational time saved by a classic parallelization is much less signi�cant than that

gained with our approach.

Keywords: Cultural heritage; Physically-based image rendering; Domain Decomposi-
tion Method; Optical constants

1 Introduction

This study aims to propose a new computer science method for increasing the e�ciency
of physically-based image rendering, in terms of accuracy and computational time. It is
a part of the rehabilitation project led on the Royaumont abbey which church edi�ce was
destroyed in 1792. The physically-based image rendering is used to simulate a realistic
visual aspect of the interior of the church according to natural lighting and medieval glasses
properties. Ancient churches form a part of the Christian cultural heritage in Europe. It
is also of scienti�c interest to study and understand ancient techniques in art, particularly
architectural properties of such edi�ces, like structural mechanics, acoustics and optics.
Being able to elaborate and work on virtual models is a valuable asset for physically-based
simulation. Unfortunately, some of these churches have been destroyed and therefore usual
methods like points cloud acquisition [17, 2, 40] can not be used to build their associated
Computer Aided Design (CAD) models. It is the case of the Royaumont abbey which is
of interest in this study and therefore collaborative work between archaeologists, historians
and computer scientists is mandatory to build a realistic and accurate model.

In this paper our goal is to simulate high quality visual appearance within the church
while taking into account interactions between natural lighting and objects materials. Build-
ing a virtual scene in image rendering requires the description of three main actors: (i) the
objects shapes and materials to be rendered, (ii) the scene lighting, in order to make the
objects visible and/or to enhance them, (iii) the observer (usually the camera's position and
properties) from which the scene is rendered.

With a physically-based rendering engine, the scene description is built from spectral
data. Although this kind of description is more complex than the trichromatic one, tra-
ditionally used in computer graphics, such an approach brings many advantages. Indeed,
the way photochromic glasses can change their shade depending on environment factors can
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only be understood if their physical micro-structures are known. Besides, their behavior
cannot be separated from the nature of the light they �lter. Thus, the visual adaptation of
the observer to the lighting simulated environment requires colorimetric considerations. All
these reasons make physically-based rendering a suitable approach if an accurate simulation
is to be conducted. Well known rendering methods [35, 37] are based on extrinsic properties
of materials, i.e., re�ectance or transmittance properties only. The research presented in this
paper has been done using a multi-spectral physically-based ray-tracing software developed
to render the visual appearance of materials and able to do multi-scaled simulations of light
interactions.

In the following we �rst give the context in which the church edi�ce was modeled, in-
cluding some general presentation of the Royaumont abbey history. Secondly, we described
some requirements of the physically-based rendering process and particular aspects we con-
sidered for our simulation. Thirdly the rendering algorithm, mainly based on ray-tracing, is
presented after the equations describing interactions between light-rays and objects inside
the three-dimensional scene. Fourthly, our original parallelization method, based on domain
decomposition, for accelerating the rendering process is described. Finally, we illustrate
some results obtained according to some renderings of the interior of the church.

2 Virtual reconstruction of the church of Royaumont abbey

The Royaumont abbey is a royal edi�ce built from 1228 to 1235 at approximately 35 km in
the north of Paris (France). King Saint Louis1 and his mother, Blanche de Castille2, made of
this Cistercian monastery a very important one in Europe. But over the centuries and wars,
from about 140 monks at the death of Saint Louis, the abbey housed less than 30 monks at
the end of the 18th century. After multiple alterations, as reported by historians, a main
destruction occurred, after the 1789 French revolution, in 1792 when a cotton manufacturer
demolished the church and utilized its stones to put up lodgings for workers. During the 20th
century, damaged portions of the abbey were restored but very few parts of the church (some
columns, a wall and a tower) remain today. Established in 1964, the Fondation Royaumont
tries to maintain the historical, religious and architectural heritage from the remaining parts
of the abbey, which was classi�ed as a historic monument in France in 1927.

With so few physical elements, making up a virtual model of the church by computer
scientists required collaborative work with archaeologists, who deduced a more complete
aspect of the edi�ce, and with historians, who analyzed historical descriptions. One of the
most accomplished historical source is due to the work of Millin [31] in 1791. Some engravings
and complementary archaeological sources were also used in addition to the architectural
schemes of Louis Vernier. Then, many inconsistencies, but also missing information, were
analyzed and �xed. Fig. 1 illustrates the assembly of each little piece of the edi�ce we
modeled.

3 Physically-based rendering

In order to simulate a high quality of the church, a certain amount of physical data should
be provided to an appropriate rendering software, here Virtuelium. Properties of all objects
materials are important since they in�uence the internal scattering of natural light inside
the edi�ce. For instance, with the same exterior lighting, the interior of the church may
look darker or over-illuminated, depending on the light absorption factor of its walls. Espe-
cially for window glasses, we determined the complex index of refraction using spectroscopic
ellipsometry. This index is de�ned by (see [34])

ñ(λ) = n(λ) + ik(λ) = n(λ)(1 + iκ(λ)) (1)
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where i is the imaginary complex number, n(λ) denotes the optical index, κ(λ) denotes the
index of absorption and λ denotes the wavelength of light in vacuum. As it can be seen
in [4], these optical constants are required to de�ne a highly realistic optical behavior of
materials. Despite spectroscopic ellipsometry is well suited to de�ne these optical constants
for materials satisfying the Fresnel conditions (non-scattering and homogeneous) like mod-
ern glasses, it is not the case for medieval glasses because of the irregularity of the surface
and the heterogeneity of the glasses. As a consequence, spectroscopic ellipsometry should
be performed on modern glasses having visual properties of medieval glasses. As the church
of the Royaumont abbey was destroyed, only a few pieces of glass were retrieved. Since
comparisons can not be accurately done on so few medieval samples we resorted to a larger
set of medieval glass samples obtained from the Maubuisson abbey which is very close to
Royaumont abbey in terms of geographic location and construction time. With all these
medieval glass samples, including those from the Royaumont abbey, an exhaustive collection
of equivalent modern glasses from Saint Just Corporation satisfying Fresnel conditions can
be determined in order to estimate the spectral absorption property. The equivalence is
relative to a visual matching and is determined using a light booth, under controlled view
conditions (standard illuminants). On another hand, in order to simulate the internal scat-
tering behavior of the medieval glasses (due for example to the presence of micro-bubbles),
a map of spectral transmittance is generated through a set of measurements e�ected at sev-
eral points of interest on the medieval samples. This map is accessed by texture coordinates
mechanism, and is very accurate for simulating realistic visual appearance when a large
number of points are selected for the measurements. More details can be found in [5].

A second physical aspect we considered in our Virtuelium rendering software is the
properties of our scene lighting source: a representation of the sun. Even when passing over
irregular �uctuations of the sun activity, its average emission spectrum should stay subject
to evolution over time. On this point, two factors can be meaningful:

• Hours of the day: because of the Earth rotation around its axis, the sun position
in the sky varies, resulting in di�erent incident angles. With the in�uence of optical
properties of Earth atmosphere, di�erent incident angles lead to o�sets in the emission
spectrum (sunset emission spectra are more enriched in red and infrared wavelengths
and weakened in blue ones).

• Dates of the year: since the Earth revolution trajectory is an ellipse, the distance
between the planet and the sun is not constant over a year, resulting in di�erent
scattering conditions by the atmosphere, leading to spectral variations, power, and
incident angles.

However, in order to obtain accurate interpolation over the day and the year, we might need
a rich database of measurements of the solar emission spectrum. While such a work is still
in progress, we made the additional hypothesis that solar radiation can be seen from the
surface of the Earth as a plane wave (instead of spherical) because distances between the
sun and the Earth are large enough to be considered as in�nite. We then used the Rayleigh
scattering theory [3] to compute a plausible solar emission spectrum.

4 Global illumination rendering

In [15], the author stated the following equation based on the radiative transfer equation,
for modeling the interaction between light rays and objects in a three dimensional scene:

Lr( ~ωo) =

∫
Ω

Fr( ~ωi, ~ωo)Li( ~ωi)~n. ~ωidωi (2)

where each Li( ~ωi) is an incident light ray emitted by a dome Ω in the direction ~ωi. Lr( ~ωo)
is the remitted light in a direction ~ωo, and ~n denotes the unit normal vector of the object
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surface. Fr is the re�ectance behavior of the object material. Transmittance property can be
applied for window glasses by considering an entire sphere instead of a dome. By simplifying
the equation (2), for N directional light-sources s = 1, . . . , N , each one characterized by an
emission spectrum Ls and an incident direction ~ωs, we compute the remitted light as follows
(see also [9]):

Lr( ~ωo) =

N∑
s=1

Fr( ~ωs, ~ωo)Ls( ~ωs)~n. ~ωs (3)

At last, a photon mapping algorithm [13, 14] is used to perform a Global Illumination (GI)
rendering. In GI rendering, it is not only the light sources which are responsible of the
illumination of an object but also all the re�ective objects around. It is an observable
progress in terms of virtual reality, and many GI algorithms have been developed and im-
proved [43, 38, 33, 12]. Our photon mapping algorithm proceeds in two sequential steps.
First, photon maps structures are �lled with the position where light rays (photons) thrown
up from light-sources hit the objects. The algorithm requires at least one photon map for
later computing the global illumination and one for caustics. Secondly, considering the
fact that the remitted light Lr( ~ωo) can be a sum of separated integrals, we evaluate direct
and specular contributions, then we deduce caustic and indirect di�use contributions from
photon maps. Direct and specular contributions (local illumination) are computed by the
Scanline rendering algorithm [44]. It performs an inverse ray tracing [1] where pixels of the
image are evaluated line by line, from top to bottom. This way, objects are sorted by being
projected onto the image plane and considered when they contribute to the evaluation of
the color of a pixel. Also, there exist progressive photon mapping algorithms [12, 11] which
do not limit the number of rebounds light-rays can perform. For instance, their convergence
criterion can be a user setting, or based on a quality status.

5 Fast high quality rendering

A high quality rendering based on physical properties can last several hours since the ac-
curacy depends on several criteria and on the number of light-rays considered. A visual
appearance simulation of a whole church edi�ce would be practically an endless process. On
another side, virtual reality or real-time interactive rendering would only be possible with
some loss of accuracy (see e.g. [8]).

Our goal is to have a high quality rendering. In addition to the realistic CAD model and
physically-based rendering we have de�ned, more than one billion light-rays are used for
the simulation. A signi�cant acceleration can be achieved by means of parallel computing.
Generally, parallel image rendering consists to split the image grid in order to compute
several pixels color at a time without any communication between processing units. Static
load balancing distributes the whole set of pixels over the involved processors once and for
all, while dynamic load balancing assigns a new subset of pixels to a processor as soon as
it goes under a workload threshold. This dynamic aspect can be necessary when certain
parts of the image induce more calculation time than others. Parallelization could be more
e�cient if one focuses on distributing the light-rays management, as it is the most costly
part of the rendering process. Anyway, since light-rays could possibly spread everywhere
inside the building, it would be necessary to load the whole model (including physical data)
on each processor. This could be a limitation for a full utilization of multi-core architectures,
due to memory availability. Other details are further discussed in [24, 25]

Domain Decomposition Methods (DDM) [39, 41, 16, 26] allow to distribute the model
itself without duplications. Interface tuning techniques [19] may be used to improve the e�-
ciency of these methods. Continuous optimization approach �rst introduced in [32] and then
extended to other equations in [6, 7, 22, 21, 20, 18] are very e�cient. An alternative which
do not require the knowledge of the equations but only the matrices has been introduced
in [27, 36, 30, 29, 28]. The recent extension of this discrete approach to ray-tracing allows
to distribute the model itself without duplications because when a light-ray propagates out
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of the part of the model assigned to a processor, its properties can be communicated to the
adequate processor through interface conditions. We combined such DDM with a particular
dynamic load balancing scheme where computation and sub-model loading and unloading
are overlapped. A sub-model is unloaded when almost all the propagating light-rays are
handled. But prior to the unloading, another available sub-model containing more unpro-
cessed light-rays is loaded. This way, the processor switches from one sub-model to another
without stopping light-rays processing. Further details can be found in [23, 42, 24, 10].

Additionally, the processing of a sub-domain itself is accelerated through a shared mem-
ory multi-threading parallelization coupled with a work-sharing load balancing scheme.
While there is neither data replication nor local outputs gathering, a thread-safe access
mechanism is required. Considering that the multi-threaded beam-tracing generates few
contention, thus the busy-waiting time is insigni�cant, we resort to a simple �ne-grained
locking by setting a spin-lock mutex on each cell of the output array. This o�ers a good
trade-o� between simplicity and e�ciency.

6 Results and discussion

In table 1, we present some simulation times obtained with our DDM parallelization by
rendering images like the one in �g. 5. On the left of this image, we can see some objects
re�ecting on the glass window. Unlike classical rendering, we applied spectral textures based
on optical constants (complex index of refraction). It is a well known colorimetry technique
by which a unique RGB data can be deduced from a given spectrum input.

On e�ciency aspect, we can notice an important time saving when the proposed DDM
is applied. The number of threads denotes a classical parallelization of the processing of
one sub-domain (sub-model). From a sequential processing that lasted about 1 hour and 30
minutes, we fell below 3 minutes either with 64 threads on 1 sub-domain or with 32 threads
(half) on 2 sub-domains (double). While there was the limit for the classical parallelization,
including the domain decomposition approach allowed to keep reducing the execution time
down to 1 minute.

16 32 64 128

threads threads threads threads

1 domain 5.61 3.57 2.97 3.88

2 sub-domains 5.52 2.93 1.82 1.59

4 sub-domains 5.57 3.06 1.77 1.66

8 sub-domains 5.54 3.08 1.70 1.07

Table 1: Execution time (in minutes) of the physically-based rendering program upon the
number of threads and the number of sub-domains. Experiments have been run on a cluster
of PCs equipped with a Gigabyte Ethernet network.

Figure 1 illustrates the three dimensional CAD model from a camera object capturing
the interior of the virtual church.

Figure 2 shows the interior of the virtual church, rendered with the Blender software.
Beyond the visible geometrical model, simple texture images were mapped on the di�erent
objects.

Figures 3 to 5 show close views comparing respectively the CAD model, a basic texture
rendering obtained with the Blender software and a physically-based rendering obtained
with Virtuelium including the proposed parallel domain decomposition method. We can see
lighting e�ects inside the church and re�ections on a window glass. Textures are made up
according to spectral data which are mapped to RGB images by means of colorimetry. The
properties of the window glasses match clearness criteria of the Cistercian art.
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Figure 1: CAD model of the Royaumont church (global interior view)

Figure 2: Basic texture rendering of the Royaumont church (global interior view)

Figure 3: Close interior view of the Royaumont church - CAD model

7 Conclusion

Catholic religious edi�ces are of great interest in the cultural heritage of France, as this
religion mainly in�uenced the socio-political organization of the realm for many centuries.
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Figure 4: Close interior view of the Royaumont church - Basic texture rendering

Figure 5: Close interior view of the Royaumont church - Physically-based rendering

As a part of a rehabilitation project led by the Fondation Royaumont, a virtual reconstitution
of the destroyed church of Royaumont is being realized. A �rst step consisted in making
up a three dimensional computer aided design model representing the church in a very
detailed way. Historians and archaeologists actively contributed with us to the designing of
the non-existent edi�ce. Then, for achieving realistic visual aspects of the interior of the
church, taking into account natural lighting and window glasses properties, a physically-
based rendering engine was developed. Input physical data were measured on a few remains
of the edi�ce and on samples coming from other similar churches.

As a high quality rendering lasts several hours, our aim was to accelerate the rendering
process. We coupled DDM techniques with a classical parallelization of the algorithm,
while observing an adapted dynamic load balancing. According to computational time
observed with several renderings of the church interior, it appeared that the DDM approach
signi�cantly improved the e�ciency of the parallelization.
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