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Introduction

This study aims to propose a new computer science method for increasing the eciency of physically-based image rendering, in terms of accuracy and computational time. It is a part of the rehabilitation project led on the Royaumont abbey which church edice was destroyed in 1792. The physically-based image rendering is used to simulate a realistic visual aspect of the interior of the church according to natural lighting and medieval glasses properties. Ancient churches form a part of the Christian cultural heritage in Europe. It is also of scientic interest to study and understand ancient techniques in art, particularly architectural properties of such edices, like structural mechanics, acoustics and optics.

Being able to elaborate and work on virtual models is a valuable asset for physically-based simulation. Unfortunately, some of these churches have been destroyed and therefore usual methods like points cloud acquisition [START_REF] Kwon | Fitting range data to primitives for rapid local 3d modeling using sparse range point clouds[END_REF][START_REF] Berger | State of the art in surface reconstruction from point clouds[END_REF][START_REF] Tang | Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques[END_REF] can not be used to build their associated Computer Aided Design (CAD) models. It is the case of the Royaumont abbey which is of interest in this study and therefore collaborative work between archaeologists, historians and computer scientists is mandatory to build a realistic and accurate model. In this paper our goal is to simulate high quality visual appearance within the church while taking into account interactions between natural lighting and objects materials. Building a virtual scene in image rendering requires the description of three main actors: (i) the objects shapes and materials to be rendered, (ii) the scene lighting, in order to make the objects visible and/or to enhance them, (iii) the observer (usually the camera's position and properties) from which the scene is rendered.

With a physically-based rendering engine, the scene description is built from spectral data. Although this kind of description is more complex than the trichromatic one, traditionally used in computer graphics, such an approach brings many advantages. Indeed, the way photochromic glasses can change their shade depending on environment factors can only be understood if their physical micro-structures are known. Besides, their behavior cannot be separated from the nature of the light they lter. Thus, the visual adaptation of the observer to the lighting simulated environment requires colorimetric considerations. All these reasons make physically-based rendering a suitable approach if an accurate simulation is to be conducted. Well known rendering methods [START_REF] Pharr | Physically Based Rendering, Second Edition: From Theory To Implementation[END_REF][START_REF] Shirley | Basics of physically-based rendering[END_REF] are based on extrinsic properties of materials, i.e., reectance or transmittance properties only. The research presented in this paper has been done using a multi-spectral physically-based ray-tracing software developed to render the visual appearance of materials and able to do multi-scaled simulations of light interactions.

In the following we rst give the context in which the church edice was modeled, including some general presentation of the Royaumont abbey history. Secondly, we described some requirements of the physically-based rendering process and particular aspects we considered for our simulation. Thirdly the rendering algorithm, mainly based on ray-tracing, is presented after the equations describing interactions between light-rays and objects inside the three-dimensional scene. Fourthly, our original parallelization method, based on domain decomposition, for accelerating the rendering process is described. Finally, we illustrate some results obtained according to some renderings of the interior of the church.
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Virtual reconstruction of the church of Royaumont abbey

The Royaumont abbey is a royal edice built from 1228 to 1235 at approximately 35 km in the north of Paris (France). King Saint Louis1 and his mother, Blanche de Castille2 , made of this Cistercian monastery a very important one in Europe. But over the centuries and wars, from about 140 monks at the death of Saint Louis, the abbey housed less than 30 monks at the end of the 18th century. After multiple alterations, as reported by historians, a main destruction occurred, after the 1789 French revolution, in 1792 when a cotton manufacturer demolished the church and utilized its stones to put up lodgings for workers. During the 20th century, damaged portions of the abbey were restored but very few parts of the church (some columns, a wall and a tower) remain today. Established in 1964, the Fondation Royaumont tries to maintain the historical, religious and architectural heritage from the remaining parts of the abbey, which was classied as a historic monument in France in 1927.

With so few physical elements, making up a virtual model of the church by computer scientists required collaborative work with archaeologists, who deduced a more complete aspect of the edice, and with historians, who analyzed historical descriptions. One of the most accomplished historical source is due to the work of Millin [START_REF] Millin | Antiquités nationales, ou Recueil[END_REF] in 1791. Some engravings and complementary archaeological sources were also used in addition to the architectural schemes of Louis Vernier. Then, many inconsistencies, but also missing information, were analyzed and xed. Fig. 1 illustrates the assembly of each little piece of the edice we modeled.

Physically-based rendering

In order to simulate a high quality of the church, a certain amount of physical data should be provided to an appropriate rendering software, here Virtuelium. Properties of all objects materials are important since they inuence the internal scattering of natural light inside the edice. For instance, with the same exterior lighting, the interior of the church may look darker or over-illuminated, depending on the light absorption factor of its walls. Especially for window glasses, we determined the complex index of refraction using spectroscopic ellipsometry. This index is dened by (see [START_REF] Palik | Handbook of Optical Constants of Solids[END_REF])

ñ(λ) = n(λ) + ik(λ) = n(λ)(1 + iκ(λ)) (1) 
where i is the imaginary complex number, n(λ) denotes the optical index, κ(λ) denotes the index of absorption and λ denotes the wavelength of light in vacuum. As it can be seen in [START_REF] Callet | Couleur-lumière, couleur-matière: interaction lumière-matière et synthèse d'images[END_REF], these optical constants are required to dene a highly realistic optical behavior of materials. Despite spectroscopic ellipsometry is well suited to dene these optical constants for materials satisfying the Fresnel conditions (non-scattering and homogeneous) like modern glasses, it is not the case for medieval glasses because of the irregularity of the surface and the heterogeneity of the glasses. As a consequence, spectroscopic ellipsometry should be performed on modern glasses having visual properties of medieval glasses. As the church of the Royaumont abbey was destroyed, only a few pieces of glass were retrieved. Since comparisons can not be accurately done on so few medieval samples we resorted to a larger set of medieval glass samples obtained from the Maubuisson abbey which is very close to Royaumont abbey in terms of geographic location and construction time. With all these medieval glass samples, including those from the Royaumont abbey, an exhaustive collection of equivalent modern glasses from Saint Just Corporation satisfying Fresnel conditions can be determined in order to estimate the spectral absorption property. The equivalence is relative to a visual matching and is determined using a light booth, under controlled view conditions (standard illuminants). On another hand, in order to simulate the internal scattering behavior of the medieval glasses (due for example to the presence of micro-bubbles), a map of spectral transmittance is generated through a set of measurements eected at several points of interest on the medieval samples. This map is accessed by texture coordinates mechanism, and is very accurate for simulating realistic visual appearance when a large number of points are selected for the measurements. More details can be found in [START_REF] Cerise | Natural lighting and medieval glass: Scientic data acquisition, methodology and physically based rendering[END_REF].

A second physical aspect we considered in our Virtuelium rendering software is the properties of our scene lighting source: a representation of the sun. Even when passing over irregular uctuations of the sun activity, its average emission spectrum should stay subject to evolution over time. On this point, two factors can be meaningful:

• Hours of the day: because of the Earth rotation around its axis, the sun position in the sky varies, resulting in dierent incident angles. With the inuence of optical properties of Earth atmosphere, dierent incident angles lead to osets in the emission spectrum (sunset emission spectra are more enriched in red and infrared wavelengths and weakened in blue ones).

• Dates of the year: since the Earth revolution trajectory is an ellipse, the distance between the planet and the sun is not constant over a year, resulting in dierent scattering conditions by the atmosphere, leading to spectral variations, power, and incident angles.

However, in order to obtain accurate interpolation over the day and the year, we might need a rich database of measurements of the solar emission spectrum. While such a work is still in progress, we made the additional hypothesis that solar radiation can be seen from the surface of the Earth as a plane wave (instead of spherical) because distances between the sun and the Earth are large enough to be considered as innite. We then used the Rayleigh scattering theory [START_REF] Bruno | Classical theory of rayleigh and raman scattering. The Raman Eect: A Unied Treatment of the Theory of Raman Scattering by Molecules[END_REF] to compute a plausible solar emission spectrum.

Global illumination rendering

In [START_REF] Kajiya | The rendering equation[END_REF], the author stated the following equation based on the radiative transfer equation, for modeling the interaction between light rays and objects in a three dimensional scene:

L r ( ω o ) = Ω F r ( ω i , ω o )L i ( ω i ) n. ω i dω i (2) 
where each L i ( ω i ) is an incident light ray emitted by a dome Ω in the direction ω i . L r ( ω o ) is the remitted light in a direction ω o , and n denotes the unit normal vector of the object surface. F r is the reectance behavior of the object material. Transmittance property can be applied for window glasses by considering an entire sphere instead of a dome. By simplifying the equation ( 2), for N directional light-sources s = 1, . . . , N , each one characterized by an emission spectrum L s and an incident direction ω s , we compute the remitted light as follows (see also [START_REF] Gbikpi-Benissan | Spectral domain decomposition method for natural lighting and medieval glass rendering[END_REF]):

L r ( ω o ) = N s=1 F r ( ω s , ω o )L s ( ω s ) n. ω s (3) 
At last, a photon mapping algorithm [START_REF] Jensen | Global illumination using photon maps[END_REF][START_REF] Jensen | A practical guide to global illumination using ray tracing and photon mapping[END_REF] is used to perform a Global Illumination (GI) rendering. In GI rendering, it is not only the light sources which are responsible of the illumination of an object but also all the reective objects around. It is an observable progress in terms of virtual reality, and many GI algorithms have been developed and improved [START_REF] Wallace | A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods[END_REF][START_REF] Sillion | A general two-pass method integrating specular and diuse reection[END_REF][START_REF] Pajot | Combinatorial bidirectional path-tracing for ecient hybrid cpu/gpu rendering[END_REF][START_REF] Hachisuka | Progressive photon mapping[END_REF]. Our photon mapping algorithm proceeds in two sequential steps. First, photon maps structures are lled with the position where light rays (photons) thrown up from light-sources hit the objects. The algorithm requires at least one photon map for later computing the global illumination and one for caustics. Secondly, considering the fact that the remitted light L r ( ω o ) can be a sum of separated integrals, we evaluate direct and specular contributions, then we deduce caustic and indirect diuse contributions from photon maps. Direct and specular contributions (local illumination) are computed by the Scanline rendering algorithm [START_REF] Wylie | Half-tone perspective drawings by computer[END_REF]. It performs an inverse ray tracing [START_REF] Arvo | Backward ray tracing[END_REF] where pixels of the image are evaluated line by line, from top to bottom. This way, objects are sorted by being projected onto the image plane and considered when they contribute to the evaluation of the color of a pixel. Also, there exist progressive photon mapping algorithms [START_REF] Hachisuka | Progressive photon mapping[END_REF][START_REF] Hachisuka | Robust adaptive photon tracing using photon path visibility[END_REF] which do not limit the number of rebounds light-rays can perform. For instance, their convergence criterion can be a user setting, or based on a quality status.

Fast high quality rendering

A high quality rendering based on physical properties can last several hours since the accuracy depends on several criteria and on the number of light-rays considered. A visual appearance simulation of a whole church edice would be practically an endless process. On another side, virtual reality or real-time interactive rendering would only be possible with some loss of accuracy (see e.g. [START_REF] Gbikpi-Benissan | Spectral domain decomposition method for physically-based rendering of photochromic/electrochromic glass windows[END_REF]).

Our goal is to have a high quality rendering. In addition to the realistic CAD model and physically-based rendering we have dened, more than one billion light-rays are used for the simulation. A signicant acceleration can be achieved by means of parallel computing. Generally, parallel image rendering consists to split the image grid in order to compute several pixels color at a time without any communication between processing units. Static load balancing distributes the whole set of pixels over the involved processors once and for all, while dynamic load balancing assigns a new subset of pixels to a processor as soon as it goes under a workload threshold. This dynamic aspect can be necessary when certain parts of the image induce more calculation time than others. Parallelization could be more ecient if one focuses on distributing the light-rays management, as it is the most costly part of the rendering process. Anyway, since light-rays could possibly spread everywhere inside the building, it would be necessary to load the whole model (including physical data) on each processor. This could be a limitation for a full utilization of multi-core architectures, due to memory availability. Other details are further discussed in [START_REF] Magoulès | A beam-tracing domain decomposition method for sound holography in church acoustics[END_REF][START_REF] Magoulès | Ray-tracing domain decomposition methods for real-time simulation on multi-core and multi-processor systems[END_REF] Domain Decomposition Methods (DDM) [START_REF] Smith | Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Dierential Equations[END_REF][START_REF] Toselli | Domain Decomposition methods: Algorithms and Theory[END_REF][START_REF] Kruis | Domain Decomposition Methods for Distributed Computing[END_REF][START_REF] Magoulès | Lagrangian formulation of domain decomposition methods: a unied theory[END_REF] allow to distribute the model itself without duplications. Interface tuning techniques [START_REF] Maday | Absorbing interface conditions for domain decomposition methods: a general presentation[END_REF] may be used to improve the eciency of these methods. Continuous optimization approach rst introduced in [START_REF] Nataf | Optimal interface conditions for domain decomposition methods[END_REF] and then extended to other equations in [START_REF] Chevalier | Symmetrized method with optimized second-order conditions for the Helmholtz equation[END_REF][START_REF] Gander | Optimal schwarz waveform relaxation for the one dimensional wave equation[END_REF][START_REF] Maday | Optimized Schwarz methods without overlap for highly heterogeneous media[END_REF][START_REF] Maday | Optimal convergence properties of the FETI domain decomposition method[END_REF][START_REF] Maday | Improved ad hoc interface conditions for Schwarz solution procedure tuned to highly heterogeneous media[END_REF][START_REF] Maday | Non-overlapping additive Schwarz methods tuned to highly heterogeneous media[END_REF] are very ecient. An alternative which do not require the knowledge of the equations but only the matrices has been introduced in [START_REF] Magoulès | Optimal discrete transmission conditions for a non-overlapping domain decomposition method for the Helmholtz equation[END_REF][START_REF] Roux | Approximation of optimal interface boundary conditions for two-Lagrange multiplier FETI method[END_REF][START_REF] Magoulès | Algebraic Dirichlet-to-Neumann mapping for linear elasticity problems with extreme contrasts in the coecients[END_REF][START_REF] Magoulès | Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity[END_REF][START_REF] Magoulès | Algebraic way to derive absorbing boundary conditions for the Helmholtz equation[END_REF]. The recent extension of this discrete approach to ray-tracing allows to distribute the model itself without duplications because when a light-ray propagates out of the part of the model assigned to a processor, its properties can be communicated to the adequate processor through interface conditions. We combined such DDM with a particular dynamic load balancing scheme where computation and sub-model loading and unloading are overlapped. A sub-model is unloaded when almost all the propagating light-rays are handled. But prior to the unloading, another available sub-model containing more unprocessed light-rays is loaded. This way, the processor switches from one sub-model to another without stopping light-rays processing. Further details can be found in [START_REF] Magoulès | Décomposition de domaines pour le lancer de rayons[END_REF][START_REF] Venet | Parallel domain decomposition methods for ray-tracing on multi-cores and multi-processors[END_REF][START_REF] Magoulès | A beam-tracing domain decomposition method for sound holography in church acoustics[END_REF][START_REF] Gbikpi-Benissan | Beam-tracing domain decomposition method for urban acoustic pollution[END_REF].

Additionally, the processing of a sub-domain itself is accelerated through a shared memory multi-threading parallelization coupled with a work-sharing load balancing scheme. While there is neither data replication nor local outputs gathering, a thread-safe access mechanism is required. Considering that the multi-threaded beam-tracing generates few contention, thus the busy-waiting time is insignicant, we resort to a simple ne-grained locking by setting a spin-lock mutex on each cell of the output array. This oers a good trade-o between simplicity and eciency. [START_REF] Chevalier | Symmetrized method with optimized second-order conditions for the Helmholtz equation[END_REF] Results and discussion

In table 1, we present some simulation times obtained with our DDM parallelization by rendering images like the one in g. 5. On the left of this image, we can see some objects reecting on the glass window. Unlike classical rendering, we applied spectral textures based on optical constants (complex index of refraction). It is a well known colorimetry technique by which a unique RGB data can be deduced from a given spectrum input.

On eciency aspect, we can notice an important time saving when the proposed DDM is applied. The number of threads denotes a classical parallelization of the processing of one sub-domain (sub-model). From a sequential processing that lasted about 1 hour and 30 minutes, we fell below 3 minutes either with 64 threads on 1 sub-domain or with 32 threads (half) on 2 sub-domains (double). While there was the limit for the classical parallelization, including the domain decomposition approach allowed to keep reducing the execution time down to 1 minute. Figure 2 shows the interior of the virtual church, rendered with the Blender software. Beyond the visible geometrical model, simple texture images were mapped on the dierent objects.

Figures 3 to 5 show close views comparing respectively the CAD model, a basic texture rendering obtained with the Blender software and a physically-based rendering obtained with Virtuelium including the proposed parallel domain decomposition method. We can see lighting eects inside the church and reections on a window glass. Textures are made up according to spectral data which are mapped to RGB images by means of colorimetry. The properties of the window glasses match clearness criteria of the Cistercian art. As a high quality rendering lasts several hours, our aim was to accelerate the rendering process. We coupled DDM techniques with a classical parallelization of the algorithm, while observing an adapted dynamic load balancing. According to computational time observed with several renderings of the church interior, it appeared that the DDM approach signicantly improved the eciency of the parallelization.

Figure 1

 1 Figure 1 illustrates the three dimensional CAD model from a camera object capturing the interior of the virtual church.Figure2shows the interior of the virtual church, rendered with the Blender software. Beyond the visible geometrical model, simple texture images were mapped on the dierent objects.Figures3 to 5show close views comparing respectively the CAD model, a basic texture rendering obtained with the Blender software and a physically-based rendering obtained with Virtuelium including the proposed parallel domain decomposition method. We can see lighting eects inside the church and reections on a window glass. Textures are made up according to spectral data which are mapped to RGB images by means of colorimetry. The properties of the window glasses match clearness criteria of the Cistercian art.

Figure 1 :Figure 2 :

 12 Figure 1: CAD model of the Royaumont church (global interior view)

Figure 3 :

 3 Figure 3: Close interior view of the Royaumont church -CAD model

Figure 4 :Figure 5 :

 45 Figure 4: Close interior view of the Royaumont church -Basic texture rendering

Table 1 :

 1 Execution time (in minutes) of the physically-based rendering program upon the number of threads and the number of sub-domains. Experiments have been run on a cluster of PCs equipped with a Gigabyte Ethernet network.

		16	32	64	128
		threads threads threads threads
	1 domain	5.61	3.57	2.97	3.88
	2 sub-domains	5.52	2.93	1.82	1.59
	4 sub-domains	5.57	3.06	1.77	1.66
	8 sub-domains	5.54	3.08	1.70	1.07
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