
HAL Id: hal-01648976
https://hal.science/hal-01648976

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Specification of Natural Language
Accountability Policies with AccLab: The Laptop Policy

Use Case
Walid Benghabrit, Jean-Claude Royer, Anderson Santana de Oliveira

To cite this version:
Walid Benghabrit, Jean-Claude Royer, Anderson Santana de Oliveira. Towards the Specification of
Natural Language Accountability Policies with AccLab: The Laptop Policy Use Case. PRIMA 2017
The 20th International Conference on Principles and Practice of Multi-Agent Systems CARe-MAS
workshop, Oct 2017, Nice, France. �hal-01648976�

https://hal.science/hal-01648976
https://hal.archives-ouvertes.fr


Towards the Specification of Natural Language
Accountability Policies with AccLab: The

Laptop Policy Use Case

Walid Benghabrit1 and Jean-Claude Royer1 and Anderson Santana De
Oliveira2

1 IMT Atlantique, site de Nantes, 5 rue A. Kastler, F-44307 Nantes, France
{firstname.lastname}@imt-atlantique.fr

2 SAP Labs France, 805 avenue du Dr Donat Font de l’Orme, France - 06250,
Mougins, Sophia Antipolis

anderson.santana.de.oliveira@sap.com

Abstract. Accountability means to obey a contract and to ensure re-
sponsibilities in case of violations. In previous work we defined the Ab-
stract Accountability Language (AAL) and its AccLab tool support. In
order to evaluate the suitability of our language and tool we experiment
with the laptop user agreement, one of the policies of the Hope University
in Liverpool.

Keywords: AAL, AccLab, accountability, first-order temporal logic, policy,
TSPASS prover, verification

1 Introduction

Accountability allows to assign legal responsibility to an entity. It is the basis
for many contracts, obligations or regulations, either for digital services or not.
In our previous work we studied the Abstract Accountability Language for ex-
pressing accountability [BGRS15,RSDO16] with a logical focus. Our long term
objective is to provide language, method and tool support to assist in formalizing
and verifying accountability policies, that is a software engineering approach.

We demonstrate the AccLab tool support over a set of policies from the
Hope University in Liverpool governing the use of their IT systems and computer
resources. These policies are representative of terms of use and other agreements,
being really part of the University management, under control of the University
Council. Moreover, this application context is more familiar to the general public
than other domains, such as financial or health care services.

One important task is to analyze and interpret these policies which are writ-
ten in a natural, sometimes legal style. Of course, during this analysis we found
many ambiguities, omissions, inconsistencies and other problems, but our pur-
pose is to demonstrate that a part of it can be formalized and automatically
verified. This paper presents the laptop user agreement policy and discussed its
specification with our tool support.



2 Use Case Introduction

The policy of interest is a set of seven texts from [Uni17] related to IT concerns
and data protection. We will focus here on the laptop agreement. The laptop
agreement is the shortest (10 sentences), included below.

In accepting the use of a University laptop, I agree to the following conditions:

1. I understand that I am solely responsible for the laptop whilst in my posses-
sion

2. I shall only use the laptop for University related purposes.
3. I shall keep the laptop in good working order and will notify I.T. Services of

any defect or malfunction during my use.
4. I shall not install and / or download any unauthorized software and / or

applications
5. I shall not allow the laptop to be used by an unknown or unauthorized person.

I assume the responsibility for the actions of others while using the laptop.
6. I shall abide by the University Acceptable Use, Information Security and

Portable Data Device security policies as published on the I.T. Services Web-
site

7. Any work saved on the laptop will be deleted prior to the machine’s return
8. If the laptop is lost, stolen or damaged, the incident must be reported to the

University Secretary’s Office within 24 hours
9. If the lost, stolen or damaged laptop and / or accessories is determined to be

caused by negligence or intentional misuse, I shall assume the full financial
responsibility for repair costs or fair market value of the laptop.

10. I am aware that any breach of these policies may render me liable to disci-
plinary action under the University’s procedures

In the remainder of this paper we will go through the exercise of formalizing
and verifying this policy.

2.1 AAL

Our policies are written with the Abstract Accountability Language (AAL) and
we will comment the main constructions. In our approach, we consider that
an accountability clause should express three things: a usage, an audit and a
rectification. The usage expression describes access control, obligations, privacy
concerns, usage controls, and more generally an expected behavior. The audit
and rectification expressions are similar to usage expression but dedicated to
auditing, and rectifying. The audit expression defines a specific audit event and
triggers the auditing steps. It makes explicit who is auditing, what information
is audited and when this is done. The rectification expression denotes actions
that are done in case of usage violations, that is, punishment, remediation, sanc-
tion, explanation, compensation, give to account, etc. The simplest formula for
expressing accountability is: IF (NOT usage) THEN IF audit THEN rectification, meaning
that if a violation of the usage occurs and in case of an audit there will be a



rectification. However, the needs for quantifiers to represent the agent involved,
the different time for the actions and the description of the usage, audit and
rectification make the formal specification of accountability more complex. We
follow [Sch99,Mul00] which argue that punishments and sanctions are parts of
accountability.

In the course of the design of AAL we reviewed several related languages,
and our requirements are aligned with several points raised by [BMB10]. Ex-
pressiveness is ensured by negation, unrestricted set of actions, type hierarchies,
conditions and policy templates. We also advocate for a readable language with
succinct unambiguous semantics. In this context we introduce notions of per-
mission, interdiction and obligation, but we do not have the exact concepts of
deontic logic since we want to get our approach free from paradoxes and we
aim at reusing classic logic with its tool support. Point to point communications
with messages passing, used by many related work, is a good abstraction, sim-
ple and flexible. AAL allows to define types with union, intersection, inclusion
and negation to help in modeling data and roles. An action or a service call is
represented as a message sender.action[receiver](parameters). The language enables
predicates (prefixed by @) and if Type is a type, @Type denotes its associated unary
predicate. Authorizations are denoted by the PERMIT and DENY keywords prefixing
an action or an expression. The language provides Boolean operators, first-order
quantifiers and linear temporal operators. We need to define policies and to reuse
them thus we implement a notion of template (introduced by TEMPLATE) which im-
proves readability and structuration. A template enables to name a policy with
parameters (called with @template) but it also supports higher-order definitions
helpful in defining common schemas of accountability or usage.

2.2 The Laptop Policy

As we can see in the policy above, sentences are often vague but sometimes
they contain more precise information. It is the case in other policies like the
data protection, data portable or information security policies. Thus we did a
first reading of all the policies to extract some elements about the information
system. From that, we conclude that the “I” is referring to a student or a staff of
the university (named here resp) which is explicitly defined as of type EligibleUser

in the IT usage policy. In fact another kind of person (AllPerson) appears in
sentence 5 which obliged us to reconsider sentence 2 with a different meaning as
other persons may use the laptop assigned to resp.

As a first simple example the sentence 10 above states that “disciplinary
action under the University’s procedures” may take place in case of breach. This
defines the policy rectification and we represent it as a simple policy with a typed
parameter and an abstract action in Listing 1.1. LHU is a constant denoting the
University representative lawyer, it may be a fictitious or a real person.

Listing 1.1. Simple Rectification in AAL

TEMPLATE LHURectificationPolicy (resp:AllPerson)
(IF (@EligibleUser(@arg(resp))) THEN {LHU.disciplinaryAction[@arg(resp)]()}))



The @arg function denotes places for subtituting actual parameters in case of tem-
plate call. In the laptop policy there is no more information about rectification
and nothing about audit. This last can be reduced to auditor.audit[LHU](). As in
the case of rectification once we have more details, the template construction
allows to refine these definitions. A large section of the laptop policy describes
in fact information about permissions, prohibitions, obligations and some condi-
tions. Most of this usage policy will be described by a template named laptopUA,
see Listing 1.2. Only our interpretation of few sentences is given but this policy
covers sentences 1 to 9. The first line says that if a person is permitted to use a
laptop then he is an eligible user and this laptop was assigned to him. We also
assume that the eligible user should bring back his assigned laptop in the future
to the university secretary.

Listing 1.2. Laptop Policy Agreement in AAL

TEMPLATE laptopUA(resp:AllPerson)(
(FORALL laptop:Laptop FORALL p:Purpose (IF (PERMIT @arg(resp).use[laptop](p))

THEN {@EligibleUser(@arg(resp)) AND @assigned(@arg(resp), laptop)})) AND
(FORALL laptop:Laptop FORALL p:Purpose

(IF (@EligibleUser(@arg(resp)) AND @assigned(@arg(resp), laptop))
THEN {SOMETIME (@arg(resp).bringBack[LHUsecretary]())})) AND ...)

The laptop sentence 2 is simple, however, it interacts with the sentence 5
which leaves open the use of the laptop by a known and authorized person,
maybe a colleague. But in fact we do not have information about which kind
of person is permitted and for what kind of purposes. Other technical problems
occur with the sentences 5, 7 and 8: they need explanations, as we will see
later. Finally, the overall structure of the laptop accountability policy is as in
Listing 1.3. The accountability policy has two parts, the first is related to all
sentences except the 7th which is related to the second part.

Listing 1.3. Laptop Accountability Policy in AAL

TEMPLATE LaptopAccountabilityPolicy (resp:AllPerson) (
// from 1 to 10 but sentence 7
@template(ACCOUNT, @template(laptopUA, @arg(resp)),

@template(LHURectificationPolicy, @arg(resp))) AND
// from sentence 7 since it is another schema
@template(ACCUNTIL, @template(condition7, @arg(resp)),

@template(achievement7, @arg(resp)), @template(LHUWeakRectificationAndPay, @arg(resp)))}))

The ACCOUNT and ACCUNTIL templates define accountability schemas. Let us describe
the most classic which is quite similar to the one used in our previous papers,
see Listing 1.4. It is an adaptation of our simple accountability formula but in a
linear temporal context, where UE denotes the permitted usage function at every
state. The expression [AllPerson -> Boolean] is the type of functions from AllPerson

to Boolean.

Listing 1.4. Basic Accountability Template in AAL

TEMPLATE ACCOUNT(UE:[AllPerson -> Boolean], RE:[AllPerson -> Boolean])
(ALWAYS (IF (NOT(@arg(UE))) THEN {ALWAYS (IF (auditor.audit[LHU]()) THEN {@arg(RE)})}))

This template assumes that the audit is simple and at each instant (in linear
time) if the usage (@arg(UE)) is not satisfied then rectification (@arg(RE)) applies in



case of an audit. The ACCUNTIL will be discussed later. Note that for sentence 7 we
diverge from the original text and we choose a weaker rectification to illustrate
the language flexibility.

3 AccLab

Formal specifications are beneficial but they are really more effective if we have
tool support and preferably some automated verification means. Thus we de-
velop AccLab for Accountability Laboratory to experiment the specification,
verification and monitoring of accountability policies. AccLab is compound from
a set of tools which are: The component editor, the AAL editor and its verifica-
tion, and the monitoring tools. The last release of AccLab is version 2.2 which
was released on July 23, 2017 on github (https://github.com/hkff/AccLab)
under GPL3 license. The AccLab IDE is a web interface that provides a com-
ponent diagram editor and tools to work with the AAL language. The back-
end is written in Python3 and the front-end in JavaScript based on dockspawn

(http://www.dockspawn.com) which is a web based dock layout engine released
under MIT license. For verification purposes AccLab is interacting with the
TSPASS tool ([LH10]), a prover for first-order linear temporal logic (FOTL).
The implementation is still in progress we will give an overview of its main cur-
rent features. Some features like the full type constructions and the template
are not fully operational thus we mix the use of AccLab and the TSPASS prover
with some manual manipulations to process our example.

To manage more easily the AAL language a dedicated editor has been imple-
mented. This editor is directed by the syntax and highlights the language key-
words. There are syntactic checking but also semantic controls for type checking
and the consistency of the declared services. A panel in the editor arranges a
set of tools providing assistance in writing by the use of dedicated templates,
for instance generating type declarations, accountability clauses or specific pri-
vacy expressions. This panel also contains few verification tools mainly the con-
flict checking with localization and the compliance checking. AccLab translates
the AAL language into FOTL and the checking tools use the connection with
TSPASS and its satisfiability algorithm. In case of unsatisfiability we imple-
mented a mean to isolate the minimal core unsat. The tool provides macro calls
which are useful in automating some complex tasks related to the translation to
FOTL and the interaction with TSPASS.

One idea behind AccLab is to see accountability in action, and one way to
achieve that is to be able to run simulations. AccLab includes a simulation mod-
ule that allows the user to monitor agents in a system and to observe account-
ability in action. We also proposed a tool called AccMon which reuses the above
monitoring principles and provides means to monitor accountability policies in
the context of a real system.



4 Lessons Learned and Discussion

This is an ongoing work but from now on we formalize several parts. One im-
portant task was to built and partly invent the information system and to get
it consistent.

4.1 Accountability Schemas

The basic accountability scheme for a given usage is expressed simply as (UE

OR RE), or equivalently IF (NOT UE) THEN RE, where UE is the usage expression and
RE the rectification expression. Introducing the audit time leads to the variant:
IF (NOT UE) THEN (IF audit THEN RE). However, often we need quantifiers, for instance
to identify the responsible user. We also consider time and our choice was to
consider linear time as it seems sufficient in many cases. Thus we write formulas
like ALWAYS FORALL resp:Any IF (NOT UE(resp)) THEN RE(resp), or FORALL resp:Any ALWAYS IF (NOT

UE(resp)) THEN RE(resp). These are two distinct schemas, the first implies the second
but the reverse is false (it is related to the Barcan formula). We have already
seen our ACCOUNT template and we will discuss two others in the next section.

Note that the above scheme allows to define first order accountability, that is
the user is responsible and will be subject to rectification in case of a violation.
But it is possible to define second order accountability, that is the processor or
implementer is responsible to enforce IF (NOT UE) THEN RE and in case of violation it
is rectified with RE2. In this case, the schema will be (UE OR RE OR RE2), and more gen-
erally higher-order responsibility is defined as (UE OR RE OR ... OR REn). Templates
are useful here to capture relevant accountability schemas.

4.2 The Laptop User Agreement

We consider to have a full specification of the laptop agreement (see the ap-
pendix) but it evolved since our first specification. As a general comment it is
always possible to represent any kind of information but without semantics it
remains purely syntactic. Of course aligning the syntax between different poli-
cies is a non obvious requirement. In our work we elaborate a rich information
model resulting from the analysis of most of the 7 policies. We have a type hier-
archy with nearly 50 types and 50 relations, a set of 40 actions and more than
40 predicates and constants. This is a critical task because there is more or less
nothing in the texts and sometimes they have some flaws. An important part is
to add some behaviours to link together actions and predicates. The behaviour
is still poor but may be enriched later with the analysis of other policies.

The overall structure of the laptop policy has been given in Listing 1.3. But
it evolved and our current laptop accountability policy is as in Listing 1.5. We
succeed in proving the satisfiability of the clauses and taking into account some
user behaviours, with the types and actions declarations. We also prove that
violating any clause will result in a rectification of the responsible person. The
FOTL formula generation takes around 3s, the prover generates a total of around
2000 conjunctive normal forms in less than one second.



Listing 1.5. The laptop accountability policy

TEMPLATE LaptopAccountabilityPolicy (any:AllPerson) (
@template(ACCOUNT, @template(laptopUA, @arg(any)),

@template(LHURectificationPolicy, @arg(any)))
AND

@template(ATNEXT, @template(clause8, @arg(any)),
@template(LHURectificationPolicy, @arg(any)))

AND
@template(ACCOUNT, @template(clause7, @arg(any)),

@template(LHUWeadRectificationAndPay, @arg(any))))

We express several different user behaviours, for instance (see Listing 1.6)
once a user signs the policy he gets an assigned laptop and accept the policy
until he leaves.

Listing 1.6. A user behaviour

FORALL res:AllPerson FORALL laptop:Laptop
ALWAYS (IF (resp.signed[LaptopAccountabilityPolicy]())

THEN {(@assigned(resp, laptop) AND @template(LaptopAccountabilityPolicy, resp))
UNTIL (resp.leave[LHU]())})

Indeed, the interaction between the proper user behaviour and the policy is
a critical point for semantic reasons but it also brings some difficulties about
quantifiers. The above formula is not monodic (this is a constraint for decidabil-
ity of satisfiability) and we reformulate it with the laptop quantifier inside the
accountability policy rather than in the user behaviour.

With the laptop clause 7 there is a technical point to discuss. The simplest
formulation is to use an UNTIL operator, however this is more tricky to align with
our ACCOUNT accountability clause which is based on a ALWAYS pattern. One solu-
tion is to use the principles of the separated normal form, for instance from
[Fis11]. We can rewrite this expression as an ALWAYS clause without the need of
the UNTIL operator. However, the result is not intuitive and only understandable
by specialists of linear logic. We use another solution that is to define a separate
accountability clause based on a different pattern. The ACCUNTIL pattern is based
on the formula: (A UNTIL B) OR ((NOT B) UNTIL NOT (A OR B)). The second case of this
formula represents a part of the negation of the first, and then the case where
rectification should happen. This pattern is not equivalent to the (A UNTIL B) OR

NOT (A UNTIL B) scheme, but the difference is on the negative part. This difference
is an infinite trace which is not really monitorable thus it can be discarded. Nev-
ertheless, this behaviour introduces new quantifiers and the satisfiability process
does not terminate. We reconsider it and succeed with a weaker specification
(see Listing 1.7) and additional behaviour for the delete action.

Listing 1.7. Clause 7 specification

FORALL laptop:Laptop IF (@assigned(resp, laptop) AND resp.bringBack[LHUsecretary](laptop))
THEN {@deletedSavedWork(resp)}

The clause 8 introduces a notion of real time with “before 1 day”, while we
have a construction for that we choose to replace it with a NEXT construction.
In fact there are only three such references in all the 7 policies. But during the
verification step we realize that it is not sufficient because: It is acceptable that



the user reports immediately and this is not acceptable that he reports after two
states. Furthermore the ALWAYS pattern is not correct since the rectification may
occur before the violation will be effectively realized. Thus, as for clause 7, a
separate accountability pattern can be used, see Listing 1.8.

Listing 1.8. Clause 8 specification

FORALL laptop:Laptop
(IF (@EligibleUser(resp) AND @assigned(resp, laptop)

AND (@lost(laptop) OR @damaged(laptop) OR @stolen(laptop)))
THEN {(resp.report[LHUsecretary](problem)

OR (NEXT (resp.report[LHUsecretary](problem))))})

Another important point to note is related to sentence 5 which states that “I
assume the responsibility for the actions of others while using the laptop”. The
“I” is represented by resp in our usage policy and appears at the level of the
accountability policy, see Listing 1.5. From that we can verify that if another
user did a breach with the laptop assigned to resp then rectification is effectively
applied to the responsible person. These verifications where successfully done,
however, not without some technical difficulties.

4.3 Discussion

This is an ongoing work, as we need to complete our information model, to for-
malize other policies and at least to verify their consistency. The current natural
language policies have many drawbacks: lack of precision, redundancies, ambi-
guities etc, unsurprisingly. Regarding accountability there are some information
about monitoring and really few details about the remediation, compensation
and punishment parts. One important task before any formalization of the poli-
cies is to build a consistent information model with sufficient relevant details
about data and behaviour.

There are ambiguities about the status of some statements and our language’s
strength in clarifying them. For instance, in several policies (laptop, IT usage)
there are sentences related to the fact that a person will sign and accept a policy.
If we consider it as a part of the accountable usage it will say that to not sign is a
breach which is not sensible. Thus it should be part of the proper user behavior,
it is free to sign, and if he signs he will accept the responsibilities included in
the policy. As we have seen, this impacts the structure of the specification but
also brings some difficult points regarding the interaction between quantifiers
and modal operators.

The use of FOTL or linear temporal logic often simplifies the specification
and there is only few references to precise dates or dense time in the policies.
However, there are several subtleties in writing formulas with both quantifiers
and temporal operators. FOTL is quite expressive but the bottleneck is the
tool support, there is only one, TSPASS, which is now not maintained. Another
problem is that it relies on the monodic constraint which is constraining for the
specifications. Improvements are possible here but need important theoretical
and implementation efforts. Another point is the use of the standard semantics
based on infinite traces which is not suitable for real monitoring. The alternative



is a translation into pure FOL, the drawback is the explicit management of time
parameters. These additional parameters may compromise the decidability of
satisfiability but this logic has been intensively studied and a complete map
of the decidable fragments exists. An adaptation of our language and its tool
support is perfectly possible and it seems a sensible future perspective.

5 Related Work and Tools

Accountability is a complex and broad notion which has been discussed in sev-
eral domains: economy, laws and regulations, ethics, privacy, education, public
services, and much more. The term has been analyzed in [Sch99,Mul00], without
a clear agreement on its characteristics, its computer representation and process-
ing is difficult. In the area of computer science, the notion of accountability has
been the subject of several surveys [WABL+08,LZW10,ZX12,GHI+12]. At first
sight there are three flavours for accountability in computer science. In software
engineering the focus is made on design, language and static verification like
the contract compliance. On the other hand, in multi-agent systems, norms are
changing or evolving, dynamic verification is the main topic. Finally, there are
concrete applications in cloud infrastructures, map-reduce, social networks, etc
which are implementing specific solutions.

Our tool support is more related to concrete approaches targeting verification
means for some specific domains. Indeed there is no prior work considering an
agnostic approach and proposing policy specification, verification and monitoring
for accountability. But there are related work on contracts like [FPS09] which
proposes the CLAN tool. It is a small tool based on dynamic logic with deontic
features and remediation actions. The tool was experimented on a small example.
It is only propositional and focuses on dynamic compliance of traces and conflict
detection based on a automaton generation.

AIR [KBK+10] (Accountability in RDF) is a rule-based language for the
semantic Web and supports rule nesting, and explanation of inferences. AIR
rules are encoded in N3 logic and extends the RDF language with graphs as lit-
erals, explicit first-order quantifiers and built-in functions. One original aspect
of the proposal is the inclusion of natural explanations which are used by the
AIR reasoner to justify the actions. AIR supports a non-monotonic negation and
rules ordering counts. Quoting the authors: ”AIR focuses on explanation gener-
ation for Web reasoning makes it unique.” The semantics is based on defining
the translation of an AIR-program to a semantically equivalent stratified Logic
Program. It employs a RETE based forward-chaining approach to compute the
AIR-closure and allows closed-world reasoning. The language does allow neither
permissions nor features for rectifications. The accountability views of AIR is
only covering explanations and justifications needed for the audit task.

[ZWL10] provides a formal service contract for accountable SaaS services.
The authors, after analyzing some business contract languages, identify few re-
quirements, a major one for them is language decidability. They propose a formal
model, called OWL-SC, and a representation of the contracts based on ontology



and mixes two languages OWL-DL and SWLR. They also present a translation
of these contracts into the formalism of colored Petri nets. This allows to check
properties and to reason on the contracts with CPN-tools.

6 Conclusion

This experiment with a real policy, while limited in scope, shows several notice-
able points for the future of AAL and AccLab. On the side of real policies, they
should be better structured and enriched with more details about information
to audit, and rectification actions. On the more formal side there are also sev-
eral remarks. The use of linear temporal logic may simplify some expressions,
however the understanding of the interaction between first-order quantifiers and
modal operators are tricky and difficult to use for most of the end-users. The no-
tion of template seems a good means to improve the readability and reuse of the
formal policies. It also offers a way to make explicit some recurrent practices for
usage and accountability. One important weakness is the lack of current prover
for FOTL, as TSPASS is no longer maintained. We think that targeting a pure
FOL framework with interpreted theories could bring some benefits. This logical
framework is well-known and there are several efficient automatic provers and
proof assistants.

A AAL Specifications

The formal specification of the laptop uses some types and constants which are
not reported here. Furthermore, some syntactic elements are not yet completely
implemented and thus we did some manual transformations of this source text
before to do verification.

A.1 The Behaviour

// ---------------
// 13/11/2017
// Behaviours for the information model
// --------------

LOAD "usecases.ULiverpool.Constants"

TEMPLATE Behaviour (
// behaviour for action/predicate @deleteSavedWork
(ALWAYS (FORALL resp:AllPerson FORALL laptop:Laptop IF (resp.deleteSavedWork[laptop]())

THEN {ALWAYS (EXISTS lap:Laptop @deletedSavedWork(resp, lap))})) AND
(ALWAYS (FORALL resp:AllPerson FORALL laptop:Laptop IF (resp.deleteSavedWork[laptop]())

THEN {ALWAYS (EXISTS r:AllPerson @deletedSavedWork(r, laptop))}))
AND
// disclose and @hold
(ALWAYS (FORALL resp:AllPerson FORALL other:AllPerson FORALL info:Information
IF (resp.disclose[other](info)) THEN {ALWAYS (EXISTS a:AllPerson @hold(a, info))})) AND

(ALWAYS (FORALL resp:AllPerson FORALL other:AllPerson FORALL info:Information
IF (resp.disclose[other](info)) THEN {ALWAYS (EXISTS i:Information @hold(other, i))}))

// add more ...
)



A.2 Templates for general accountability scheme

//---------------------
// 13/11/2017
// Template examples useful for laptop policy
//---------------------

// An accountability scheme with simple audit
// principle based on (A UNTIL B) OR ((A AND NOT B) UNTIL NOT (A OR B))
TEMPLATE ACCUNTIL(A:, B, RE:[Actor -> Boolean])

(FORALL resp:AllPerson
((@arg(A) UNTIL @arg(B))
OR ((NOT(@arg(B))) UNTIL ((NOT(@arg(A) OR @arg(B)))

AND (ALWAYS (IF (auditor.audit[LHU]()) THEN {@arg(RE)}))))))

// Classic template for accountability
TEMPLATE ACCOUNT(UE, RE: [Actor -> Boolean])

(ALWAYS (@arg(UE) OR (ALWAYS (IF (auditor.audit[LHU]()) THEN {@arg(RE)}))))

// template at next (the UE violation will be effective at next)
TEMPLATE ATNEXT(UE, RE: [Actor -> Boolean])

(ALWAYS (@arg(UE) OR ((NOT @arg(UE))
AND (NEXT (ALWAYS (IF (auditor.audit[LHU]()) THEN {@arg(RE)}))))))

A.3 Template for Laptop User Agreement

// ---------------
// 13/11/2017
// Laptop policy at university of Liverpool
// --------------
// Version 8

LOAD "usecases.ULiverpool.Behaviour"
LOAD "usecases.ULiverpool.Templates"

// -------------------- user behaviour
TEMPLATE userBhaviour (

(ALWAYS (FORALL any:AllPerson (IF (any.sign[LaptopAccountabilityPolicy]())
THEN {@template(LaptopAccountabilityPolicy, any)})))

// could be more complex with register or induction, etc
)

// -------------------- Laptop accountability policy
TEMPLATE LaptopAccountabilityPolicy (any:AllPerson) (

@template(ACCOUNT, @template(laptopUA, @arg(any)),
@template(LHURectificationPolicy, @arg(any)))

AND
@template(ATNEXT, @template(clause8, @arg(any)),

@template(LHURectificationPolicy, @arg(any)))
AND
@template(ACCOUNT, @template(clause7, @arg(any)),

@template(LHUWeadRectificationAndPay, @arg(any)))
) // end of LaptopAccountabilityPolicy

//------------------------ Main part of the normal usage laptop policy
TEMPLATE laptopUA(resp:AllPerson)(
FORALL laptop:Laptop (
// from 7 should be bound and with a separate clause
(FORALL p:Purpose (IF (@EligibleUser(@arg(resp)) AND @assigned(@arg(resp), laptop))

THEN {SOMETIME (@arg(resp).bringBack[LHUsecretary]())}))
AND
// from 1
(FORALL p:Purpose (IF (PERMIT @arg(resp).use[laptop](p))

THEN {@EligibleUser(@arg(resp)) AND @assigned(@arg(resp), laptop)}))



AND
// from 2
(FORALL p:Purpose IF (PERMIT @arg(resp).use[laptop](p)) THEN {@EligibleUser(@arg(resp)) AND

@UniversityPurpose(p)})
AND
// from 3
(FORALL p:Purpose IF (@EligibleUser(@arg(resp)) AND @goodWorkingOrder(@arg(resp), laptop)

AND (@arg(resp).use[laptop](p)
AND (@defect(laptop) OR @malfunction(laptop)))) THEN {@arg(resp).alert[

ITservices](laptopBug)})
AND
// from 4
(FORALL soft:Software

IF (@EligibleUser(@arg(resp)) AND (NOT @authorized(@arg(resp), soft)))
THEN {(DENY @arg(resp).install[laptop](soft) AND DENY @arg(resp).download[laptop](soft

))})
AND
// from 5
(FORALL g:AllPerson FORALL p:Purpose

(IF (PERMIT g.use[laptop](p)) THEN
{@EligibleUser(resp) AND @assigned(resp, laptop) AND @known(resp, g) AND (NOT
@unauthorized(g))}))

// AND from 6
// (FORALL p:Purpose IF (PERMIT @arg(resp).use[laptop](p))

// THEN {@template(ITUsagePolicy, @arg(resp))})
// AND @template(InformationSecurityPolicy, @arg(resp))

// AND @template(PortableDataDevicePolicy, @arg(resp)))})
AND
// from 9 should be bound and with a separate clause
(IF (@EligibleUser(@arg(resp)) AND @assigned(@arg(resp), laptop) AND (@lost(laptop) OR

@damaged(laptop) OR @stolen(laptop))
AND (@negligence(@arg(resp)) OR @intentional(@arg(resp))))

THEN {SOMETIME (@arg(resp).payRepair[LHU]() OR @arg(resp).buyNew[LHU]())})
)) // end laptopUA

// Simple rectification
TEMPLATE LHURectificationPolicy (resp:AllPerson) (LHU.disciplinaryAction[@arg(resp)]())

// ---------- for clause 7
TEMPLATE clause7 (resp:AllPerson) (
FORALL laptop:Laptop (IF (@EligibleUser(@arg(resp)) AND @assigned(@arg(resp) laptop)

AND @arg(resp).bringBack[LHUsecretary](p))
THEN {@deletedSavedWork(@arg(resp) laptop)}))

// weak rectification
TEMPLATE LHUWeadRectificationAndPay (resp:AllPerson) (@arg(resp).pay[LHU]())

// --------- for clause 8
TEMPLATE clause8 (resp:AllPerson) (
FORALL laptop:Laptop

(IF (@EligibleUser(@arg(@arg(resp))) AND @assigned(@arg(@arg(resp)), laptop)
AND (@lost(laptop) OR @damaged(laptop) OR @stolen(laptop)))

THEN {(@arg(@arg(resp)).report[LHUsecretary](problem)
OR (NEXT (@arg(@arg(resp)).report[LHUsecretary](problem))))}))

References

[BGRS15] Walid Benghabrit, Hervé Grall, Jean-Claude Royer, and Mohamed Sell-
ami. Abstract accountability language: Translation, compliance and ap-
plication. In APSEC, New Delhi, India, December 2015. IEEE Computer
Society.



[BMB10] Moritz Y. Becker, Alexander Malkis, and Laurent Bussard. A practical
generic privacy language. volume 6503 of ICISS 2010, pages 125–139.
Springer, 2010.

[Fis11] Michael Fisher. An Introduction to Practical Formal Methods using Tem-
poral Logic. Wiley, 2011.

[FPS09] Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. Automatic Con-
flict Detection on Contracts, pages 200–214. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[GHI+12] Daniel Guagnin, Leon Hempel, Carla Ilten, Inga Kroener, Daniel Neyland,
and Hector Postigo, editors. Managing Privacy through Accountability.
Palgrave Macmillan, 2012.

[KBK+10] Ankesh Khandelwal, Jie Bao, Lalana Kagal, Ian Jacobi, Li Ding, and
James A. Hendler. Analyzing the AIR language: A semantic web (pro-
duction) rule language. In Pascal Hitzler and Thomas Lukasiewicz, edi-
tors, RR, volume 6333 of Lecture Notes in Computer Science, pages 58–72.
Springer, 2010.

[LH10] Michel Ludwig and Ullrich Hustadt. Implementing a fair monodic tempo-
ral logic prover. AI Commun, 23(2-3):69–96, 2010.

[LZW10] Kwei-Jay Lin, Joe Zou, and Yan Wang. Accountability computing for e-
society. In 24th Advanced Information Networking and Applications Con-
ference (AINA), pages 34–41. Ieee, 2010.

[Mul00] Richard Mulgan. ’accountability’: An ever-expanding concept? Public
Administration, 78(3):555–573, 2000.

[RSDO16] Jean-Claude Royer and Anderson Santana De Oliveira. AAL and static
conflict detection in policy. In CANS, 15th International Conference on
Cryptology and Network Security, LNCS, pages 367–382. Springer, Novem-
ber 2016.

[Sch99] Andreas Schedler. Self-Restraining State: Power and Accountability in
New Democracies, chapter Conceptualiazing Accountability, pages 13–28.
Lynne Reiner, 1999.

[Uni17] Liverpool Hope University. IT services policies, 2017.
https://www.hope.ac.uk/aboutus/itservices/policies/.

[WABL+08] Daniel J. Weitzner, Harold Abelson, Tim Berners-Lee, Joan Feigenbaum,
James Hendler, and Gerald Jay Sussman. Information accountability.
Commun. ACM, 51(6):82–87, June 2008.

[ZWL10] Joe Zou, Yan Wang, and Kwei-Jay Lin. A formal service contract model
for accountable saaS and cloud services. In International Conference on
Services Computing, pages 73–80. IEEE Computer Society, 2010.

[ZX12] Yang Xiao Zhifeng Xiao, Nandhakumar Kathiresshan. A survey of ac-
countability in computer networks and distributed systems. Security and
Communication Networks, 2012.


