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A B S T R A C T

The Ck (Correlated-k) approach is among the most used method for the approximate modelling of the radiative
properties of gases both in uniform and non-uniform media. One of its main defects is that the treatment of non-
uniform gas paths is founded on the assumption of correlation - in fact co-monotonicity - of gas absorption
coefficients in distinct states which is not rigorously verified for actual spectra. This correlation assumption fails
as soon as large temperature gradients are encountered along the radiative path lengths. In order to circumvent
this problem, a method based on functional data analysis (FDA) - referred to as the MSCk model in this work -
was proposed in Refs. [1,2]. The principle of the method is to group together wavenumbers with respect to the
spectral scaling functions - defined as the ratio between spectral absorption coefficients in distinct states - so that
the correlation/co-monotonicity assumption can be considered as exact over the corresponding intervals of
wavenumbers. Very few details were provided up to now about the application of FDA within the frame of the
MSCk model. Indeed, most of our previous works were dedicated to the derivation of the methods itself.
Accordingly, in the present paper, we mostly focus our attention on the mathematical definition of clusters of
scaling function, quantities which are used to build spectral intervals over which gas spectra in distinct states are
assumed to be scaled. The comparison of different clustering methods together with the criterion to select an
appropriate number of clusters are described and discussed and the application of this approach for several test
cases, including 3D geometries, are presented.

1. Introduction

Radiative heat transfer in gaseous media plays a key role in a wide
range of industrial applications: high temperature combustion cham-
bers [3], gas turbine combustors [4], long-range IR sensing [5], fire
safety [6], etc.

In all these applications, evaluating the radiative heat transfer in-
side the gaseous medium requires modelling its radiative properties
over any possible gas path. Among the models available in the litera-
ture, the Ck approach is one of the most popular. Its extension in the
narrow band (NBCk), full spectrum (FSCk) and the statistical narrow
band version (SNBCk) has been discussed by Chu [7] and Consalvi [8].
Chu [7] found that the SNBCk is sufficiently accurate to generate
benchmark results for multi-dimensional radiation problems. Consalvi
[8] compared several usual radiation models and concluded that NBCk
model provides accurate results in the case of axisymmetric pool fires.

However, the main theoretical defect of the Ck model for applica-
tions in non-uniform media is that band intervals are treated as a whole,
without any verification of the correlation assumption. This leads to the
breakdown of the assumption of rank correlation of gas spectra in
distinct states when large temperature gradients exist in the medium
studied [9]. In order to circumvent this problem, we introduced a
method based on functional data analysis (FDA) [10] and called the
MSCk model [1,2]. The main ideas behind the MSCk approach are not
new, as they share similar concepts as used in mapping methods such as
described in West and Crisp [11] or in the multiscale method of Zhang
[12]. The objective of this method is in fact to group together wave-
numbers according to the spectral scaling functions [1] defined as the
ratio between spectra in different thermophysical states. Over these
intervals, the correlation assumption can be considered as exact. It has
already been shown that the MSCk model with 25 clusters, defined over
a narrow band (25 cm−1), is more accurate than the medium resolution
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(1 cm−1) Ck model when compared with LBL benchmark calculations
at nearly the same computational cost [2]. Meanwhile, the MSCk model
has almost the same accuracy as the CKFG (Correlated-k Fictitious Gas)
[13] technique in infrared signature cases, but at lower computational
costs [14]. Another advantage of the MSCk model, compared to CKFG,
is that MSCk can be applied in the case of reflecting walls, which is not
compatible with the CKFG model which requires a formulation in terms
of transmissivities [2].

The concept of clusters is one of the most important in the building
of MSCkmodel coefficients. In this paper, we mostly focus our attention
on the basic mathematical definition of clusters of scaling functions and
on the comparison of different clustering methods. The definition of
clusters of scaling functions is given in Section 2. Comparisons between
different clustering methods are discussed in detail in Section 3 and the
arbitrary choice of the number of clusters is addressed in Section 4.
Application of the proposed model for current radiative heat transfer
calculations is provided in Section 5.

2. Clustering scaling functions

2.1. Correlation assumption

In the Ck model, the assumption of co-monotonicity - viz. the pre-
servation of the ranks between spectra in distinct states, originally re-
ferred to as rank correlation in Ref. [15] in which this idea was first
introduced - is used to extend the k-distribution method from uniform
to non-uniform gas paths. The aim of this subsection is to discuss the
physical reasons that explain why the correlation assumption is likely to
fail in media with high temperature gradients.

The correlation/co-monotonicity assumption can be formulated as
follows: for any wavenumber η inside a narrowband ∆η, the absorption
coefficient κ ϕ( )η at thermophysical condition ϕ can be represented as a
function H (strictly monotonic, and more precisely increasing) of
κ ϕ( )η ref , as:=κ ϕ H κ ϕ( ) [ ( )]η η ref (1)

where κ ϕ( )η ref is the absorption coefficient at the same wavenumber in
some prescribed reference thermophysical condition ϕref . As H is
strictly increasing by assumption, κ ϕ( )η and κ ϕ( )η ref share the same
monotonicity: this means that for any couple of wavenumbers η1 and η2,
if we have >κ ϕ κ ϕ( ) ( )η ref η ref

1 2 in the reference state, then we can draw
the conclusion that >κ ϕ κ ϕ( ) ( )η η1 2 in state ϕ at the same spectral lo-
cation.

This assumption is accurate as soon as temperature gradients are
small along non-uniform paths. This explains why the Ck method has
encountered a great success to treat situations which involve small
temperature gradients, such as encountered in atmospheric applications
[16] [17] or radiative heat transfer in combustion chambers. However,
for non-uniform media with large temperature gradients (such as en-
countered in remote sensing problems), the correlation assumption
between gas absorption coefficients at different temperatures poorly
represents the true behavior of gas spectra in distinct thermophysical
states. This is mainly due to the appearance of so-called “hot lines” [13]
that breaks the one-to-one correspondence between gas spectra as-
sumed in Eq. (1).

A solution to this problem consists in building groups of wave-
number in such a way that the scaling function, defined as the ratio
between the absorption coefficients in state ϕ and in the reference
thermophysical condition ϕref , is uniform inside each of these groups.
Built this way, gas spectra are scaled (linearly correlated, on can find
more details in Page 321 of Ref. [7]) over the groups, which means that
the assumption of co-monotonicity becomes, if not rigorous in practice,
at least more relevant over the groups than over the whole band. This is
the principle of many methods to improve gas radiation models in non-
uniform media such as the multi-scale model by Modest and Zhang or

the multi-spectral technique described in the present paper. Both of
these methods are however funded on the same concept of mapping
introduced in 1992 by West and Crisp within the frame of radiative heat
transfer in non-uniform atmospheres [11].

Fig. 1 (inspired from Fig. 4 of Ref. [2]) depicts the results obtained
by application of the clustering method to a narrow band
[1487.5 cm−1, 1512.5 cm−1] of H2O. Each of the curves corresponds to
the variations of absorption coefficients as a function of the gas tem-
perature. As shown in this figure, different clusters are associated with
distinct behaviors of the absorption coefficient with respect to the gas
temperature. At the same time, curves associated with wavenumbers
inside the same clusters show very similar trends.

Building the spectral groups associated with similar scaling func-
tions can be done using clustering techniques. But as the quantities to
assemble are functions, specific techniques are required. They are
usually referred to as Functional Data Analysis (FDA). These methods
involve two distinct steps: 1/the first one is to propose a functional form
to describe the data, 2/the second one is to apply standard clustering
methods using grouping criteria defined in terms of integrals. These two
aspects of the technique are described in the following sections.

2.2. Physical model of spectral scaling functions and similarity coefficient

The main difficulty for the application of FDA methods is to provide
accurate approximations for the functions to group into clusters. The
results provided in this subsection for the construction of scaling
functions were described in Ref. [1]. Here, we only remind the final
formulation for the completeness of the present work.

The scaling function is defined as the ratio between spectra in dif-
ferent thermophysical states:=u ϕ κ ϕ κ ϕ( ) ( )/ ( )η η η ref (2.a)

In a series of discrete spectral data ⋯ ′κ T κ T( ), , ( )η η n1 , with< < ⋯ < ′T T Tn1 2 , the scaling function u T( )η (we restricted to the de-
pendency with respect to temperature only) at ′T T T, , ..., n1 2 can be ob-
tained directly from Eq. (2.a) with ′n pairs of κ T T( ( ), )η i i .

For any temperature T such that < < +T T Ti i 1, we have the fol-
lowing approximation (this formulation is restricted to the dependency
with respect to temperature):∫= ⎡
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Fig. 1. Example of clusters for the [1487.5 cm−1, 1512.5 cm−1] spectral interval: 10%
H2O + 90% N2.



By combining this approximation Eq. (2.b) with Eq. (2.a), the
mathematical formulation of scaling functions only involves ′n pairs of
κ T T( ( ), )η i i already observed (one can refer to [1] for more details about
the derivation), and which correspond to our set of LBL data [8].

The goal of FDA is to construct uniform classes (in our case spectral
intervals) from sets of functional data (related to a compilation of LBL
spectra and the use of Eq. (2.b) to interpolate between them with re-
spect to temperature). Therefore, the choice of mathematical criteria to
evaluate the strength of the relationships between distinct spectral
scaling functions is essential to build groups of wavenumbers.

A survey on clustering techniques [19] has shown that two quan-
titative measures are usually recommended: similarities (or dissim-
ilarities) and distances. As our aim is to identify wavenumbers asso-
ciated with similar scaling function, a formulation in terms of a
similarity coefficient is retained here. This coefficient is defined in Ref.
[19] as: ∫∫ ∫=

=
′ ′

′
′

′ ′
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Quantities ′CC u u( , )η η in Eq. (3) can be approximated by the fol-
lowing formula, which arises directly from the model of scaling func-
tions set by Eq. (2.b):
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≈ ∑ −
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The higher the coefficient ′S u u( , )η η , the stronger the similarity
between scaling functions at wavenumbers η and ′η are. Notice that the
coefficients given by Eq. (4) are defined in terms of integrals. This is a
typical formulation in functional data analysis. (Derivations for Eq.
(2.b) and Eq. (4) are demonstrated in Appendix C).

2.3. Methods for the clustering of scaling functions

Once spectra at different temperatures have been converted to the
corresponding scaling functions, cluster analysis methods [19] can be
applied to build groups of wavenumbers. These clusters correspond to
spectral intervals over which similar scaling functions can be used to
represent the dependency of absorption coefficients with respect to
temperature. Among all the existing clustering techniques (one can cite
the well-known k -means approach [42] which is a typical partitioning
method or the model-based clustering methods [19], etc.), the hier-
archical clustering methods are undoubtedly the most widely used.
They are also recommended in Ref. [10] to treat functional data. We
will restrict our talk to this class of techniques in the following.

Hierarchical clustering techniques are based on an iterative process.
They can be subdivided into two classes: 1/agglomerative methods,
which proceed by a series of successive merging of single elements from
the initial dataset into groups, as shown schematically in Fig. 2 if the
process goes from Step 0 to 6; 2/divisive methods, which separate the
initial set of data successively into smaller groups (the process then goes
from Step 6 to 0). Agglomerative hierarchical methods are detailed in
the next section.

2.4. Agglomerative hierarchical linkage clustering methods

As depicted in Fig. 2, agglomerative hierarchical linkage clustering
processes start by placing each element of the input dataset into its own
cluster (Step 0). Then, the two elements with the highest similarity,
given by Eq. (3), are merged into a single cluster (in the case shown in

Fig. 2, the two most similar elements at the first step are C6 and C7;
they are merged into C67). Doing so, the total number of clusters is
reduced by one (all the clusters with one element viz. C1-5 which
correspond to the initial set and one with two elements C67). The
process is then iterated until a prescribed stopping criterion (the total
number of clusters for instance) is met. In fact, the procedure illustrated
in Fig. 2 do not need to be done up to Step 6, for which only one cluster
remains, but can be stopped at any time providing for instance 3
clusters at Step 3. During the whole clustering process, one of the most
important steps is the determination of the most similar clusters. This is
not a problem at the first iteration, since Eq. (3) can be used directly.
However, at later stages, defining similarities between clusters can
become tricky when large groups have to be compared (for merging
C67 and C45 into C4567 for instance). Dedicated techniques, known as
“linkage” methods, were developed to handle this problem. They are
based on the concept of between-cluster similarity (called from now on
the linkage function) to select the closest groups of elements at any
stage of the clustering process.

The whole grouping procedure illustrated in Fig. 2 can be re-
presented by functions called “linkage-based clustering functions”.
With these functions, one can formulate unambiguously the whole
clustering procedures. The formulations detailed below are inspired
from Ref. [21], in which they were formulated in terms of distances.
They were adapted to the similarity measures involved in this work.
Clusters and linkage functions are defined as:

Definition 1. (clusters and clustering) Let = ⋯U u u u u{ , , , , }n1 2 3 be a
dataset of n elements. We define ′ = ⋯P C C C{ , , , }m1 2 to be a partition of
the setU into m subsets. The union of all these subsets isU . Each subset
is called a cluster. m is the number of clusters. The partition ′P is called a
clustering.

Definition 2. (linkage function) The linkage function is a function l that
evaluates the similarity coefficient S, given by Eq. (3) for single
elements, for two clusters C1 and C2. It outputs the value of similarity
between these two clusters. It is mathematically defined as:→l C C S( , )1 2 (5)

where S represents a similarity coefficient between the two clusters.
Three linkage functions exist in the literature:

1. Single linkage:= ∈ ∈l C C Max S u u( , ) ( , )SL u C u C a b1 2 ,a b1 2 (6)

where S u u( , )a b is the similarity coefficient between two single

Fig. 2. Schematic representation of the agglomerative hierarchical clustering.



elements from each cluster, ua and ub.

2. Average linkage:

= ∑ ⋅∈ ∈l C C
S u u

C C
( , )

( , )
AL

u C u C a b
1 2

,

1 2

a b1 2

(7)

In Eq. (7), C is used to represent the number of elements in the set
C .

3. Complete linkage:= ∈ ∈l C C Min S u u( , ) ( , )CL u C u C a b1 2 ,a b1 2 (8)

The various functions defined by Eqs. (6)–(8) can be interpreted as
follows. The single linkage function lSL associates to the clusters the
value of the highest similarity between two single elements found in
each cluster. The average linkage uses the average value of similarities
between elements from both clusters to define their similarity. The
complete linkage uses the smallest value of similarity between two
single elements, one from each cluster.

Definition 3. (linkage-based clustering function) The linkage-based
clustering function described here was derived from Ref. [19]. We have
changed some of its notations for the sake of clarity and also made the
adaptation of this function to the similarity measure. For each possible
value of the variable m (defined as an integer between 1 and U ), the
linkage-based clustering function P U S m( , , ) corresponds to a set of
clusters (a partition of the data set U ). The number of clusters for this
set is equal to m. Some details about this function are provided here:

1. If =P U S m U( , , ), each element of the input data set is inside its
own cluster.

As shown in step 0 in Fig. 2, the initial set can be presented by this
formulation as each element of the input data set is inside its own
cluster (U is the set of data investigated, S is the similarity function,
mindicates the number of clusters). This initial situation corresponds to
the case where cluster number is equal to 7 in Fig. 2.

2. For ≤ <m U1 , P U S m( , , ) is constructed by merging two clusters
in +P U S m( , , 1) which maximizes or minimizes the value of the
linkage function l chosen. This can be illustrated by passing from
P U S( , , 6) to P U S( , , 5) in the example of Fig. 2. We choose two
clusters in P U S( , , 6) that have the maximum value of l according to
Eqs. (6)–(8). These two clusters are then merged together to form a
new cluster and we obtain a new set of clusters called P U S( , , 5).

The procedure described above can be formulated mathematically
as: = ∈ + ≠ ≠ ∪ ∪P U S m C C P U S m C C C C C C( , , ) { ( , , 1), , } { }i i i i1 2 1 2

(9)

such that ∪ = ⊆ +C C l C C S{ } arg ( , , )max C C1 2 ,{ , } P(U,S,m 1) 1 21 2 where the argu-
ment of the maximum (abbreviated argmax) refers to the inputs which
create those maximum outputs. Therefore, ∪C C{ }1 2 corresponds to the
two clusters whose linkage function l attains its maximum value no
matter which linkage function of Eqs. (6)–(8) is adopted. These two
clusters are then merged into one cluster. With other clusters that have
not been modified, a new set of clusters is obtained through Eq. (9).
Taking the case in Fig. 2 for example, we have:=P U S C C C C C C CStep 0 : ( , , 7) { , , , , , , }1 2 3 4 5 6 7=P U S C C C C C CStep 1 : ( , , 6) { , , , , , }1 2 3 4 5 67=P U S C C C C CStep 2 : ( , , 5) { , , , , }1 23 4 5 67=P U S C C C CStep 3 : ( , , 4) { , , , }1 23 45 67

=P U S C C CStep 4 : ( , , 3) { , , }123 45 67

=P U S C CStep 5 : ( , , 2) { , }123 4567

=P U S CStep 6 : ( , , 1) { }1234567

It should be noticed that another important hierarchical clustering
method is the so-called Ward's method [20]. It starts also with each
object as its own cluster, as that in linkage methods. The fusion of two
clusters is based on the size of an error sum-of-squares criterion. The
objective of this method is to minimize the total within-cluster error
function in every stage of the whole clustering process. Similar for-
mulation as shown in Eqs. (5)–(9) can be derived for the construction of
the mathematical clustering function in applying the Ward's method
(One can find the detailed derivation in Appendix A).

3. Comparisons between hierarchical clustering methods

When applied to functional data, the choice of the linkage function
plays a key role in the whole clustering procedure. Indeed, this function
drives the clustering process by providing methods to decide which
couple of clusters should be merged into a new cluster at any stage of
the grouping process. Several studies regarding the performance of
distinct linkage functions, such as those defined by Eqs. (6)–(8), can be
found in Ref. [19] [22] [23]. All these works are based on discrete and
not functional data. Nevertheless, several observations can be made:

1. The single linkage approach performs poorly when compared to
other hierarchical clustering methods [19] [23].

2. In general, Ward's method works better than other hierarchical
methods when the sizes of different clusters are equal or at least
similar. For cases where cluster sizes are not equal, the average
linkage method performs the best [19] [22].

3. Generally speaking, the higher the final number of clusters we
generate, the better the classification is [19].

In the case of functional data, results from Ref. [18] provide the
following conclusions:

1. Ward's method always performs the best except when the data set
contains one or two very large groups and several other very small
groups; in such cases, the average linkage method performs the best.

2. The complete linkage and single linkage methods cannot be re-
commended for the clustering of functional data.

In this work, the comparisons between different clustering methods
are implemented with two criteria proposed in Ref. [24]. The first one is
called Homogeneity. It quantifies the uniformity inside a given cluster
and is defined as:

∑ ∑= = ′= ′H
N

S u u i1 ( , ( ))
i

N

i

N i

i
1 1

( )c

(10-a)

∑= ′= ′u i
N i

u( ) 1
( ) i

N i

i
1

( )

(10-b)

where Nc is the number of clusters that exist in the whole set and N i( ) is
the number of elements inside the ith clusters. ′S u u i( , ( ))i represents
the similarity coefficient between the scaling functions of the ′i th ele-
ment in the ith cluster and the average scaling function of this cluster
(represented in Eq. (10-b)). From this criterion, we can tell if each
element of the data set is tightly correlated to the core of its cluster or
not. The higher the homogeneity, the better the correlation is inside the
clusters.

The second criterion is called Separation. It is an indicator of the
dissimilarity between different clusters. It is given as:



= ∑ ∑ −∑ ∑= =
= =Sep

S u i u j N i N j

N i N j

{1 [ ( ), ( )]} ( ) ( )

( ) ( )
i
N

j
N

i
N

j
N

1 1

1 1

c c

c c
(11)

where Nc is the number of clusters that exist in the whole set; N i( ) and
N j( ) are the number of elements inside the ith and jth clusters re-
spectively. u i( ) and u j( ) are respectively the average scaling functions
for the ith and jth clusters. S u i u j[ ( ), ( )] is the similarity coefficient
between these two mean scaling functions. Hence, the separation in-
dicates how much two clusters differ from each other. The higher the
separation, the larger the difference between the clusters is.

These two criteria can be used to evaluate the relative efficiency of
different clustering techniques. The average linkage, single linkage,
complete linkage and Ward's method have been compared in the case of
a gaseous mixture composed of 10% H2O and 90% N2 in the spectral
interval [1000 cm−1, 2500 cm−1]. Mixtures of CO2 and N2 were also
considered. The homogeneity index, separation index and the size of
clusters have been investigated and plotted in Figs. 3–5.

1. In all these cases, the single linkage performs the worst according to
the criterion set by Eq. (10), i.e. homogeneity, depicted in Fig. 3.
This can be explained by the sizes of the clusters obtained by ap-
plication of the single linkage method. Indeed, we can observe in

Fig. 5 that the single linkage always produces one very big cluster,
which contains almost 98% of the elements in the dataset. For other
clusters, only few isolated elements are present. Hence, the single
linkage tends to put all the elements into one big cluster. This will
then decrease the homogeneity inside the biggest cluster. And the
diversity among the elements inside the biggest cluster has not been
sufficiently taken into account.

2. The other three clustering methods share nearly the same perfor-
mance from the point of view of homogeneity (see Fig. 3). Only a
relative advantage of 0.1% can be found for the Ward's method over
the average linkage and complete linkage methods.

3. From the point of view of separation, the single linkage method
provides the highest value of separation. The single linkage method
takes the biggest similarity between any two elements, one from
each cluster, as the similarity between two clusters. Hence, many
peripheral points will be included in the main cluster. This will
make the cluster less compact compared to clusters generated by the
complete linkage and average linkage. However, one advantage of
this method is that the peripheral points that are really far away
from the core will be identified and isolated. This is the reason why
other clusters (except the biggest one) contain only a few points.
And this can also explain why the separation of the single method is
the highest among all these clustering methods.

4. The separation of the other three clustering methods shares the
same performance. Very slightly advantage can be found for the
average linkage method over the Ward's and complete linkage
methods.

5. The size of clusters for different clustering results has been plotted in
Fig. 5 (in total 2500 elements, for each discrete wavenumber of the
narrow band). Usually, the single linkage method generates one
very big cluster and several small clusters; Ward's method leads to
clusters of nearly the same size; the average linkage and complete
linkage methods are between these two extremes. The average
linkage method gives one relatively big cluster (about 1500 ele-
ments), several medium size clusters (about 300 elements) and
several small clusters (about 30 elements). Ward's method is ap-
propriate for cases where the clusters have nearly the equivalent
size. The single linkage method is adapted to situations where the
whole data set contains only one very big cluster and several iso-
lated points. The average linkage method is suitable for cases where
one relatively big cluster coexists with several medium and small
clusters. The distribution of clusters sizes in the average linkage
method is closer to a normal distribution.

The above discussions are based on the investigations in view of
some mathematical criteria. The analysis is consistent with the

Fig. 3. Evaluation of different clustering methods according to the homogeneity for the
mixture 10%H2O+90%N2 at the interval [1000 cm−1, 2500 cm−1].

Fig. 4. Evaluation of different clustering methods according to the separation for the 10%
H2O +90%N2 at the interval [1000 cm−1, 2500 cm−1].

Fig. 5. The size of the clusters for the calculation in Fig. 2.



conclusions drawn by other researchers [18] and discussed previously.
A more direct and significant evaluation of these clustering methods
consists in assessing their performances for radiative heat transfer
computations against reference Line-By-Line (LBL) calculations.

The configuration proposed to compare the clustering techniques
consists of a non-uniform two-cell gaseous path with a uniform com-
position (10%H2O+90%N2) discretized in two columns at distinct
temperatures (one cold column at 300 K and a hot one at 1000 K).
Results are depicted in Fig. 6. We can observe that the single linkage
method performs the worst, with relative errors up to 50% compared to
the LBL reference calculation. This technique provides results as in-
accurate as the Ck model (not depicted here). Indeed, the single linkage
method produces a single big cluster which is almost the same as the
whole dataset. All the other clustering methods provide similar and
quite accurate results. The maximum relative errors are 3% for both
Ward's and average linkage methods. In Ward's method, all clusters
(spectral groups) have the same size which indicates an over-classifi-
cation of the dataset. The average linkage method was chosen as the
clustering method for further investigations.

4. Estimation of the number of clusters

Choosing a priori the number of clusters is a fundamental issue
frequently discussed in cluster analysis. It has a critical effect on the
clustering results. In practice, we can rarely build clusters whose ele-
ments are exactly the same in all aspects. In most situations, the ele-
ments in the same cluster share some major characteristics, but a little
difference in some less important features can also be found among
them. If the number of clusters is chosen too big, the singularity of each
cluster will be too outstanding such that it conceals some important
characteristics shared by different clusters. One extreme example can
be found in Fig. 2 when the cluster number is chosen to be 6. In this
case, each element is its own cluster and the clustering technique has no
effect on the classification. If the number of clusters is chosen too small,
the number of elements contained in the clusters will be very big. In this
case, we will find the division of the whole data set to be insufficient
and the elements in each cluster may be over mixed. Therefore, we need
to choose an appropriate number of clusters, neither too big, nor too
small. Unfortunately, due to the high complexity of real data sets, there
is no convincingly acceptable solution to this problem. In practice, the
number of clusters is usually specified by the investigator a priori. In
this Section, we will make a brief discussion about the estimation of
cluster number from several different points of view.

Firstly, from the view of clustering technique itself, a better

classification can be achieved if we increase the number of clusters. An
extreme case is to put each element of the data set inside its own
cluster. In this case, the absolute uniformity is maintained inside each
cluster. However, a better classification can be achieved by increasing
the number of clusters but this will not guarantee better simulation
results when this number exceeds a certain limit. Fig. 7 and Fig. 8 show
the relative error of MSCk model compared to the line by line bench-
mark calculation for the same case as in Fig. 6. The number of clusters
investigated is 9, 25, 50 in Fig. 7 and 50, 100, 300 in Fig. 8. From Fig. 7,
we can observe that the performance of the average linkage clustering
method increases with the number of clusters. However, in Fig. 8, an
evident loss of accuracy is observed if we increase further the number of
clusters from 50 to 100 and from 100 to 300. This can be explained by
the fact that high number of clusters are associated with large numbers
of small clusters (defined in this work as clusters whose size is smaller
than 15): the proportion of clusters whose size is less than 15 increases
significantly as we augment the number of clusters (shown in Fig. 9). In
this case, most of the error of the model is due to the fact that we try to
represent these small clusters using k-distributions, which is question-
able for very small spectral intervals.

Secondly, from a mathematical view, several statistical criteria have
been proposed to determine the best number of cluster. These criteria
are usually based on the concepts of within-cluster and between-

Fig. 6. Relative errors between the results of different clustering methods and that of the
line by line calculation.

Fig. 7. The same calculation as in Fig. 6 by using the average linkage method of 9
clusters, 25 clusters and 50 clusters.

Fig. 8. The same calculation as in Fig. 6 by using the average linkage method of 50
clusters, 100 clusters and 300 clusters.



clusters variance [25]. They try to identify the best number of clusters
which permits that “the elements are most similar inside a given group”
and “the most different with elements in other groups”. This looks like
to be a powerful tool to make a serious decision. An investigation of
such criteria has been made. In the literature, we can find about 30
different criteria for the determination of the number of clusters.
Among all these criteria, the CH [26] and Duda [27] indexes are the
two best according to the study of Milligan and Copper [28]. More
information about these two criteria can be found in Appendix B. After
an investigation (shown in Fig. 10) of these two criteria, we found that
each criterion proposes different values and there is no superiority of
one criterion over another. In addition, the appropriate number of
clusters proposed is not a fixed value for all intervals. It changes from
one interval to another. This will increase the complexity of the whole
clustering programming. Furthermore, the number proposed is gen-
erally smaller than 9. After investigations of the clustering effect in the
radiation calculation performed in Fig. 7, we find that the calculation
accuracy has an increasing tendency as we augment the number of
clusters from 9 to 25. Hence, we cannot decide the number of clusters
only according to these statistical criteria.

Thirdly, from the view of accuracy, letting the investigator decide
the appropriate number of clusters brings some freedom to adjust the
accuracy of the simulation compared to the LBL results. Nevertheless, a

specific attention should be taken about the existence of extremely
small groups. When the number of clusters is increased, the possibilities
for the appearance of these extremely small groups are greatly in-
creased. One solution to this problem is using the line by line method in
these extremely small groups. All these operations will undoubtedly
make the programming more complicated. In general, the investigator
needs to find a good compromise between the advantages and limita-
tions mentioned above in order to find the appropriate number of
clusters. As shown in Figs. 7 and 8, the model accuracy increases with
increasing number of clusters, from 9 to 25. The relative error keeps a
nearly constant value (around 3%) between 25 and 100. For numbers
higher than 100, more errors emerge. Therefore, setting the number of
clusters at 25 at atmospheric pressure is an appropriate choice. At
higher pressures, this number can be decreased as the spectral dynamics
of absorption coefficient is strongly reduced compared to low pressures.
For high pressure calculations, two clusters were chosen. Results for
these models will be provided later in this paper.

5. Application

The principle of the multispectral framework (MSCk) is extensively
detailed in Refs. [1,2] where several validations against 0D and 1D case
studies at atmospheric pressure can be found (here we provide a vali-
dation of this model in the oxy-fuel combustion case in Appendix. C). In
the present work, the multispectral technique is applied to 1D and 3D
configurations at high pressure (3 atm), encountered in particular for
aeronautic applications. In contrast to previous work (where up to 25
clusters were considered for each narrowband), only two clusters are
generated here, following the scheme of hierarchical average linkage
introduced previously. The results obtained with this approach are
compared to standard correlated k-distributions and to reference line-
by-line models. The efficiency, the accuracy and the adaptability to
complex configurations of this model are discussed at the end of the
section.

5.1. Model parameters

The three considered models result from a unique precomputation
of line-by-line spectra at 0.01 cm−1 resolution. These spectra were
generated using the CDSD-4000 [29] and HITEMP-2010 [30] spectro-
scopic databases, respectively to account for CO2 and H2O species. The
resulting spectra dataset, produced for P = 3atm, covers the tempera-
ture range from 300 K to 5000 K (with 100 K steps) and the mole-
fractions range from 0.01 to 1 (with steps varying between 0.09 and
0.2). The spectroscopic assumptions used for this LBL production are
those used in Ref. [31] with the exception of sub-lorentzian corrections
that have been neglected.

In addition to their role of reference, the LBL spectra were employed
to produce Ck and MSCk models. The Ck model used in the present
work was built for 25 cm−1 narrowbands using 7 values of absorption
coefficients which comply with Gauss-Legendre quadrature. The MSCk
database was also computed considering 25 cm−1 narrowbands. For
each band, each thermophysical set and each species, two clusters of
wavenumbers were built according to the hierarchical average linkage
approach. In each group, 7 values of absorption coefficient were con-
sidered as for standard Ck approach. A weight w was also assigned to
each cluster. Starting from LBL spectra, it is defined as the ratio of the
number of wavenumbers linked to the considered cluster over the total
number of wavenumbers of its narrowband.

5.2. One-dimensional configurations

The first four test cases involve H2O/N2 mixtures in one-dimen-
sional geometries composed of gaseous media surrounded by two walls.
These configurations are respectively taken from Ref. [32] for case C1
and from Ref. [33] for cases C2 to C4.

Fig. 9. Proportion of the clusters whose size is lower than 15 for the average linkage
clustering method of different number of clusters (9, 25, 50, 100, 300).

Fig. 10. Recommended number of clusters from the CH index and Duda index for H2O.



Case C1, is composed of an isothermal mixture of 50% H2O at
T = 1500 K. Both walls are assumed isothermal: ==T 1200w x, 0 K and==T 600w x, 1 K, gray and partially reflecting – of emissivity =ε 0.6. For
cases C2 and C3 the mole-fraction of H2O is set at 10% and the tem-
perature profile is assumed as a parabolic function given by:

= − ⎛⎝ − ⎞⎠ +T x T T x
L

T( ) 4( ) 0.5w c c
2

(12)

where L is the distance between the walls surrounding the medium; Tw
and Tc are respectively the temperature of both walls and the tem-
perature at the center of the medium at =x L/2. The walls are assumed
as gray, with an emissivity =ε 0.5. Temperatures are defined as
Tw = 2500 K and Tc = 500 K for case C2 and are interchanged for case
C3 (Tc = 2500 K and Tw = 500 K). The last case: C4 - known to be very
sensitive to the accuracy of the spectral model - is composed of a 10%
H2O gaseous mixture. Its temperature is equal to the walls temperature
Tw = 500 K in the whole medium, except in a central region of 10 cm
width, where a triangular profile is assumed, reaching a maximum
value Tc = 2500 K at =x L/2.

For each case, the wall radiative fluxes and the divergence of flux
were computed in several points of the geometry. These simulations
were performed using the semi-analytical resolution of the RTE de-
scribed in Ref. [34].

Figs. 11–13 depict, for cases C1 to C3, the divergence of radiative
flux obtained with LBL, Ck and MSCk2 models along the x-axis. Fig. 14,
represents the wall fluxes as a function of the distance L for case C4. The
relative differences between approximated models and LBL solutions
are also given for each figure.

For all four test cases, the multispectral framework leads to more
accurate results than standard Ck models. Only two clusters are suffi-
cient to divide the error of Ck, by an average factor about 2. In terms of
computation time, the semi-analytical nature of the approach used here
to solve the RTE drives to simulation times nearly proportional to the
number of considered groups (here MSCk2 is twice more expensive than
Ck for a doubled accuracy).

5.3. Three-dimensional configuration

The same comparative study was conducted for a three-dimensional
enclosure. This configuration, taken from case tests proposed in Ref.
[35] [36], has a cylindrical geometry of length =L m1.2 and of radius=R m0.3 . A gaseous mixture composed of CO2, H2O and N2 at a pres-
sure of =P atm3 is considered inside this chamber. Boundaries are
assumed as black surfaces ( =ε 1). Their temperature are set as

=T K800w except for the surface located at =x m1.2 where =T K300w .
The fields of temperature and mole fractions are axisymmetric and are
given by the following set of analytical functions:
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with = +r y z2 2 . These properties fields are depicted in Fig. 15.
The RTE resolution was performed using Monte Carlo methods,

chosen here for their high ability to treat complex geometries. Three
spectral models were considered: Line-by-line, Ck and MSCk2. In order
to prevent the use of mesh - which can be very expensive to manage in
terms of computation time - a null-collision strategy has been adopted
for the three considered models. Such an approach, largely described in
Ref. [37] [38], requires the definition of an arbitrary extinction coef-
ficient greater than the real one for all wavenumbers (or bands) and
thermophysical sets of properties (temperature, pressure and mole
fractions). For efficiency purposes, a maximum value of absorption
coefficient was here identified for each narrowband of 25 cm−1 width,
via a lookup of the line-by-line database described previously.

Null-collision Monte-Carlo algorithms are fully adapted to the use of
correlated k-distributions. Its extension to MSCk only requires a minor
modification of the algorithmic structure. With Ck, the spectral in-
tegration is done by sampling a narrowband and a value g of the cu-
mulative k-distribution at the beginning of each independent Monte
Carlo realization (see Ref. [38] for more details). With MSCk, a third
step is required to perform this integration: the sampling of a group
according to the weights w precomputed during the database produc-
tion. These small changes were applied in the EDStaR development
environment [39] (dedicated to the stochastic simulation of radiative
transfer in real geometries using computer graphics libraries) from
which computations were performed.

Results are displayed in Figs. 16 and 17 where the divergences of
radiative flux are represented for different locations inside the en-
closure: along the axis of symmetry x (with r = 0) in Fig. 16 and along a
radial direction at x=L/2 in Fig. 17. The relative differences between
approximate models (Ck and MSCk2) and reference LBL computation
are also depicted with their interval of confidence (proper to Monte-
Carlo methods, given here for 108 independent realizations).

As for 1D configurations, the results obtained with MSCk2 are
nearly twice more accurate than with Ck. However, in the present case,

Fig. 11. Divergence of the radiative flux computed along the x-axis in
the configuration C1 (isothermal gaseous H2O/N2 mixture surrounded
by reflecting walls). Top: Line-by-Line computation; bottom: relative
difference between model (Ck and MSCk2) and LBL calculations.



the spectral integration was stochastically performed and similar
computation times were observed for both models (for equal standard
deviations). Indeed the clustering technique does not add supplemen-
tary variance to the estimate of fluxes by comparison to Ck approaches
and the same number of independent Monte Carlo realizations are re-
quired to reach equivalent standard deviations.

5.4. Discussion

At high pressure, the correlation assumption is generally less pre-
judicial than at lower pressures (one can compare Fig. 14 to Fig. 7 of
reference [8]). However, even in such cases, Ck models can show im-
portant discrepancies by comparison to LBL results (almost 20% for the
case C4). In the five test cases addressed in this work, the proposed 2
clusters – MSCk2 model, defined according to the hierarchical average
linkage, increases the accuracy of results by a factor about 2.

This qualitative refinement weakly affects computation time. As
shown here, this increase is essentially dependent on the RTE method of
resolution. In the worst cases: when a deterministic spectral integration
is performed, the increase of computation time is proportional to the
number of groups. Such a linear relationship between accuracy and
time consumption is rather rare when refining spectral models: highly

Fig. 12. Divergence of the radiative flux computed along the x-axis in
the configuration C2 (gaseous H2O/N2 mixture with a parabolic
temperature profile, Tc < Tw). Top: Line-by-Line computation;
bottom: relative difference between model (Ck and MSCk2) and LBL
calculations.

Fig. 13. Divergence of the radiative flux computed along the x-axis in
the configuration C3 (gaseous H2O/N2 mixture with a parabolic
temperature profile, Tc > Tw). Top: Line-by-Line computation;
bottom: relative difference between mode (Ck and MSCk2) and LBL
calculations.

Fig. 14. Wall net flux versus distance between cold walls for the configuration C4 (gas-
eous H2O/N2 mixture with a 10 cm width triangular profile of temperature located in cold
medium). Top: Line-by-Line computation; bottom: relative difference between model (Ck
and MSCk2) and LBL calculations.



non-linear evolutions are more frequently observed.
Moreover, when the spectral integration is performed in a stochastic

way, as in case C5, the effects on the computation become negligible
since no additionally variability is induced by the clustering technique
itself. Furthermore, as for Ck, one can take advantage of the simple
structure of MSCk (by comparison to LBL) to easily propose variance
reduction techniques [40] [41] that would substantially accelerate the
computation process.

Finally, this model was shown to be perfectly adapted to 3D Monte
Carlo solvers and requires only few algorithmic changes if correlated k-
distributions are already handled. This can open the door to fast and
accurate simulation tools for complex configurations, including for in-
stance scattering medium or complex geometries.

6. Conclusion

This paper has been dedicated for the presentation about the prin-
ciple issues of applying Functional Data Analysis (FDA) in the MSCk
model. In the MSCk model developed in previous work, the FDA
method is applied in order to classify wavenumbers whose absorption
coefficients have similar behaviors as function of the thermophysical
conditions. As a result of this classification, the correlation assumption
inside each of these groups (clusters) can be better satisfied. The steps
for the application of FDA method have been detailed.

Firstly, spectral data are used for the construction of scaling func-
tions. A mathematical formulation of the scaling function is applied in
this work.

Secondly, the agglomerative hierarchical average linkage method is
chosen as the clustering method. Several investigations from the aspect
of statistical criteria and a practical radiation calculation have been

performed to make this choice. Among all the clustering methods stu-
died (average linkage, single linkage, complete linkage and Ward's
method), the single linkage performs the worst because this method
usually generates a very big cluster and several extremely small clusters
which contain only several isolated elements. This kind of clustering
makes the whole classification insufficient. The diversity inside the data
set studied has not been sufficiently excavated. The other three clus-
tering methods perform all very well, with only slightly difference be-
tween them. The main difference among them exists in the size of
clusters. The Ward's method tends to generate clusters of nearly
equivalent size. Contrary, the average linkage method generates a re-
latively big cluster, several medium clusters and some relatively small
clusters. As we assume that the correlation assumption corresponds to
the cluster-size distribution of the average linkage method, this method
is hence chosen for the further calculations.

The average linkage algorithm starts by putting every single ele-
ment of the input data set as its own cluster. Then, it gradually merges
the “closest” clusters until the stopping criterion is met. Usually, this
process is stopped when an assigned number of clusters is attained. The
choice of the number of clusters has an important impact on the clus-
tering results. In general, investigators need to find a good balance
between all the advantages and limitations mentioned in Section 4 in
order to find an appropriate value for the cluster number. At the end of
the process, the elements in the clusters correspond to spectral intervals
that are associated to similar scaling functions. Over these intervals, gas
spectra are mostly scaled. Nevertheless, as the so-called scaled- k model
[7] has been relatively poorly studied in the literature, we have chosen
to treat gas spectra as correlated over the intervals. The resulting multi-
spectral correlated-k distribution model was applied to several test-
cases from the definition of two clusters. This approach shown to be

Fig. 15. Fields of temperature, H2O, and CO2 mole-fractions for the axisymmetric configuration of test case C5. Fields are described as functions of transversal (x) and radial (r) positions.

Fig. 16. Divergence of the radiative flux computed along the x-axis
in the configuration C5 (gaseous H2O/CO2/N2 mixture) along the
axis of symmetry x. Top: Line-by-Line computation; bottom: relative
difference between model (Ck and MSCk2) and LBL calculations.



more reliable than standard Ck models with comparable computation
times and fully compliant with complex 3D geometries and Monte Carlo
algorithms.
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Appendix A. Formulation of the clustering function for Ward's method

The Ward's method [20] is based on the idea of minimizing the increase in the total within-cluster error sum of squares, E, formulated as:∑= =E E
k
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With ⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ = ∑ ⎛⎝ ⎞⎠=u ϕ n u ϕ(1/ )k q k l
n

kl q1
k defines the mean of the kth cluster for the thermophysical condition ϕq, ⎜ ⎟⎛⎝ ⎞⎠u ϕkl q is the value of the qth variable

(q =1, …, pq) for the lth object (l = 1, …, nk) in the kth cluster (k = 1, …,K). We further define E C C( , )1 2 as the total within-cluster error sum of
squares of the new set of clusters for which cluster C1 and cluster C2 are merged into one cluster.

With the above definition of the Ward's method, the formulation of the clustering function of the Ward's method can be derived in a similar way
as the linkage method as following:

1. If =P U S m U( , , ), each element of the input data set is inside its own cluster.
2. For ≤ <m U1 , P U S m( , , ) is constructed by merging two clusters in +P U S m( , , 1) which minimizes the total within-cluster error sum of

squares in Eq. (A.1). The procedure can be formulated mathematically as:= ∈ + ≠ ≠ ∪ ∪P U S m C C P U S m C C C C C C( , , ) { ( , , 1), , } { }i i i i1 2 1 2 (A.3)

such that ∪ = ⊆ +C C E C C{ } arg ( , )C C1 2 min,{ , } P(U,S,m 1) 1 21 2 where the argument of the minimum (abbreviated argmin ) refers to the inputs which create those
minimum outputs. Therefore, ∪C C{ }1 2 corresponds to the two clusters which can minimize the total within-cluster error sum of squares. These two
clusters are then merged into one cluster.

With other clusters that have not been modified, a new set of clusters is obtained.

Appendix B. Definition of the CH and Duda indexes

The Calinski-Harabasz index [26] is defined as:

= × −−CH SSB
SSW

N k
k 1 (B.1)

where SSW is the overall within-cluster variance, SSB is the overall between-cluster variance, k is the number of clusters, and N is the number of all
the individual elements.Where

Fig. 17. Divergence of the radiative flux computed along the x-
axis in the configuration C5 (gaseous H2O/CO2/N2 mixture)
along the axis of symmetry x. Top: Line-by-Line computation;
bottom: relative difference between model (Ck and MSCk2) and
LBL calculations.
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With ⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ = ∑ ⎛⎝ ⎞⎠=u ϕ n u ϕ(1/ )k q k l
n
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k defines the mean of the kth cluster for the thermophysical condition ϕq, ⎜ ⎟⎛⎝ ⎞⎠u ϕkl q is the value of the qth variable

(q = 1, …, pq) for the lth object (l = 1, …, nk) in the kth cluster (k = 1, …,K).
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With ⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ = ∑ ⎛⎝ ⎞⎠=u ϕ n u ϕ(1/ )k q k l
n

kl q1
k defines the mean of the kth cluster for the thermophysical condition ϕq, ⎜ ⎟ ⎜ ⎟⎛⎝ ⎞⎠ = ∑ ⎛⎝ ⎞⎠=u ϕ N u ϕ(1/ )q l

N
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the mean of the whole N elements studied for the thermophysical condition ϕq.
Well-defined clusters have a large between-cluster variance (SSB) and a small within-cluster variance (SSW). The larger the CH index, the better

the cluster partition. To determine the optimal number of clusters, maximize the CH index with respect to k. The optimal number of clusters is the
solution with the highest Calinski-Harabasz index value.

The Duda–Hart index [27] is defined as:

=E E
E

(2)
(1) (B.4)

where E(1) is the sum of squared errors within the group that is to be divided. E(2) is the sum of squared errors in the two resulting subgroups. The
formulation of the sum of squared errors within the group can be found in Eq. (A.2). Large values of the Duda–Hart index indicate distinct cluster
structure. Small values indicate less clearly defined cluster structure. The Duda–Hart index requires hierarchical clustering information. It needs to
know at each level of the hierarchy which group is to be split and how. The Duda–Hart index is also local because the only information used comes
from the group's being split. The information in the rest of the groups does not enter the computation.

Appendix C. Validation of the MSCk model in an oxy-fuel combustion case

The basic configuration of the case discussed here are taken from the article of CHU [43]. It involves a 1D parallel plate geometry of black and
cold walls. The length of the plate is set at 0.035 m. A mixture gas of CO2 and H2O at atmospheric pressure is present in this case. The corresponding
temperature distribution and molar fractions of these two gases are drawn in Figure D.1 and Figure D.2.

Fig. D.1. Distribution of temperature.



Fig. D.2. Distribution of molar fraction for H2O and CO2.

Fig. D.3. The radiative heat source calculated by the LBL method.

Fig. D.4. Relative errors of different models in comparison with the LBL benchmark results.

This configuration is usually used for the simulation of oxy-fuel flame with dry flue gas recirculation. The spectra used in this case are from
reference [14]. The discrete ordinate method (DOM) along with the T7 angular discretization is applied for all the calculations, more details about
this method can be found in Ref. [44]. We use in this case 65 non uniform grids in order to better capture the non-uniformity of temperature
distribution in this case. The models studied in this case are respectively: the Line-by-Line model (LBL), Ck1 model (narrow band interval equals to
1 cm−1), Ck model (narrow band interval equals to 25 cm−1), and the MSCk model (25 clusters generated in the 25 cm−1 narrow band). The
radiative heat source calculated by the LBL method is shown in Figure D.3. The relative errors of the Ck, Ck1 and MSCk models when compared to
the LBL benchmark results are demonstrated in Figure D.4. From Figure D.4, we can find that the MSCk model is more accurate than the Ck and Ck1
model, with the maximum relative error 1% for the MSCk model, 4% for the Ck1 model and 6% for the Ck model. Notice that, the MSCk model and



Ck1 model share nearly the same computational cost. In addition to the validations already made in Refs. [1] and [2], the results of this case add
another evidence to the conclusion that the MSCk is more accurate than the Ck model.
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