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In this paper, we consider the Cesàro-mean operator Γ acting on some Banach spaces of measurable functions on (0, 1), as well as its discrete version on some sequences spaces. We compute the essential norm of this operator on L p ([0, 1]), for p ∈ (1, +∞] and show that its value is the same as its norm, namely p/(p -1). The result also holds in the discrete case. On Cesàro spaces, the essential norm of Γ turns out to be equal to 1. Lastly, we introduce the Müntz-Cesàro spaces and study some of their geometrical properties. In this framework, we also compute the essential norm of the Cesàro and multiplication operators restricted to those Müntz-Cesàro spaces.

Introduction

Throughout this paper, we denote by C = C([0, 1]) the space of continuous functions on [0, 1] equipped with the supremum norm and by C 0 the subspace of C (resp. c) of functions vanishing at zero (resp. the space of convergent sequences). For p ∈ [1, +∞) and (Ω, µ) a measure space, we denote as usual by L p (µ) = L p (Ω, µ) the Banach space of measurable functions f on Ω such that

f p = ( Ω |f | p dµ) 1/p < ∞.
In particular when µ is the Lebesgue measure on 1 [0, 1] (resp. ν the counting measure on N), we just use L p (resp. p ). For p = ∞, we denote by L ∞ (resp. ∞ ) the space of essentially bounded measurable functions on [0, 1] (resp. the space of bounded sequences) endowed with its usual norm.

In this paper, we are interested in the Cesàro operator defined on the Lebesgue and Cesàro spaces. Let p ∈ [1, ∞]. The Cesàro function space Ces p is the set of Lebesgue measurable complex functions f on [0, 1] such that

f C(p) := 1 0 1 x x 0 |f (t)|dt p dx 1/p < ∞ for 1 ≤ p < ∞ and f C(∞) := sup x∈]0,1] 1 x x 0 |f (t)|dt < ∞ for p = ∞.
Similarly, the Cesàro sequence space ces p is defined as the set of all complex sequences u = (u k ) k≥1 such that

u c(p) := ∞ n=1 1 n n k=1 |u k | p 1/p < ∞ when 1 ≤ p < ∞ and u c(∞) := sup n≥1 1 n n k=1 |u k | < ∞ when p = ∞.
Note that Ces 1 is an L 1 (w)-space with the weight w(t) = log( 1 t ), and that ces 1 = {0} (see [START_REF] Astashkin | Structure of Cesàro function spaces[END_REF]Theorem 1]). The Cesàro operator is the map Γ : L 1 loc ([0, 1)) → C((0, 1)) defined for any function f by Γ(f )(x) = 1 x

x 0 f (t)dt where x ∈ (0, 1).

It is clear that Γ maps Ces p to L p and the corresponding operator will be denoted by Γ C(p) . By the Hardy inequality, Γ maps L p to itself if p > 1, and the corresponding operator is denoted by Γ p . Note that Γ does not preserve the space L 1 . Similarly, we define the Cesàro sequence operator γ on C N by

γ((u k ) k ) = 1 n n k=1 u k n .
By restriction to p (resp. ces p ), γ defines an operator γ p : p -→ p (resp. γ c(p) : ces p -→ p ).

The Cesàro operators and Cesàro spaces were already studied on many aspects, and lately the topic has received a particular interest, see for instance [ABR], [CR], [AHLM] and the survey [AM]. A recent result from [CR] shows that these operators are never compact when acting on the Cesàro spaces, and in our paper, we study this default of compactness. Concretely, we compute their essential norms, weak essential norms, as well as their n th -approximation numbers. Recall that the essential norm T e (resp. the weak essential norm T e,w ) of an operator T is the distance from T to the set of compact (resp. weakly compact) operators. The n th -approximation number a n (T ) of T is the distance from T to the set of all bounded linear operators of rank at most n -1.

In the same context, we consider the restriction of the Cesàro operators to the Müntz spaces (see [M], [GuLu]). It turns out that the geometry of such spaces plays a fundamental role to get the compactness in some cases. Recall that for a Banach space E, the Müntz space M E Λ is the closure in E of the linear space spanned by the monomials x λn , where Λ = (λ n ) n∈N is an increasing sequence of positive numbers satisfying the Müntz condition n≥1 1/λ n < ∞.

This paper is divided into four parts. In Section 2, we show that the classical Müntz theorem holds for Cesàro spaces. Namely, the space M Cesp Λ is a strict subspace of Ces p if and only if the Müntz condition holds (see Theorem 2.3). Moreover, we state a theorem à la Clarkson-Erdös for those Müntz-Cesàro spaces (see Proposition 2.7), as well as a bounded Bernstein-type inequality (see Proposition 2.8). In Section 3, we state some general criteria for a lower estimate of the essential norm of a bounded operator T : X → Y acting between Banach spaces X and Y . We then specify our result when Y is an L p (µ) space or a C(K) space. We use these tools in the sequel. In Section 4, we first compute the essential norm of the continuous Cesàro operator (resp. discrete) acting on the Lebesgue space L p (resp. p ) for p ∈ [1, +∞]. We find that it is equal to p = p/(p -1) for p ∈]1, +∞[ (see Theorems 4.1 and 4.2) while it is 1 when p = ∞ (Theorems 4.3 and 4.4). We also deduce the approximation numbers of these operators. In the second part of Section 4, we study the Cesàro operators defined on the Cesàro spaces Ces p and ces p and show in Theorem 4.7 that their essential norms are all equal to 1. We also consider the restriction of those operators to the Müntz-Cesàro spaces M Cesp Λ for p ∈ [1, +∞] and prove in Theorem 4.8 that the essential norm is 1 for p ∈ [1, +∞) and to 1 2 for p = ∞. The last section is devoted to the study of the compactness of the multiplication operator on the Cesàro function spaces, T ψ : Ces p → Ces p defined by T ψ (f ) = f ψ, for p ∈ [1, ∞] and ψ ∈ L ∞ . We prove that T ψ e = ψ ∞ and, when one restricts to the Müntz-Cesàro subspaces, T ψ,Λ : M Cesp Λ → Ces p satisfies T ψ,Λ e = |ψ(1)| if ψ is continuous at 1 (see Theorems 5.2 and 5.4).

Müntz theorem in Cesàro spaces

In this section, we show that the Müntz theorem holds in Cesàro spaces Ces p by using the Müntz theorems in C and in L 1 (see [M], [BE]). Hence, we can define the Müntz-Cesàro spaces and study some of their properties. We start with the following lemma which shows that the Cesàro function spaces are embedded into L 1 ([0, a]), for a ∈ (0, 1). We will use this lemma to prove the density of the continuous functions in the Cesàro function spaces.

Lemma 2.1. Let p ∈ [1, +∞], and 0 < a < b ≤ 1. Then, the Cesàro function spaces satisfy the following bounded inclusions

C ⊂ Ces p ⊂ L 1 ([0, a]).
More precisely, for all f ∈ Ces p , we have

a 0 |f (t)|dt ≤ b (b -a) 1/p b 0 Γ(|f |)(x) p dx 1/p ≤ b (b -a) 1/p f C(p) . (1) Moreover, if p = 1, we have f L 1 ([0,a]) ≤ 1 ln b a b 0 Γ(|f |)(x)dx ≤ 1 ln b a f C(1) .
(2)

We point out that when a is close to 1 (more precisely when a is larger than some a p depending on p only), the sharpest version of the previous inequalities is obtained for b = 1.

Proof. For a continuous function f on [0, 1], we obviously have

f C(p) ≤ f ∞ .
For the right side inclusion, we let p ∈ [1, +∞) and f ∈ Ces p to estimate the norm:

f p C(p) ≥ b 0 1 x x 0 |f (t)|dx p dx ≥ 1 b p b a x 0 |f (t)|dt p dx ≥ (b -a) b p f p L 1 ([0,a]) .
In the case p = +∞, we obtain easily

f L 1 ([0,a]) ≤ a f C(∞)
and this holds also for a = 1. For p = 1 and f ∈ Ces 1 , we use Fubini's theorem to obtain

f C(1) ≥ b 0 1 x x 0 |f (t)|dt dx = b 0 |f (t)|dt b t dx x = b 0 ln b t |f (t)|dt ≥ ln b a f L 1 ([0,a]) .
The following proposition gives an interesting property of the Cesàro spaces. We will need this property to state the Müntz theorem in these spaces.

Proposition 2.2. For p ∈ [1, +∞), the space of continuous functions, as well as C 0 , is dense in Ces p . The statement is false for p = +∞ since the space Ces ∞ is not separable.

Proof. For p = 1, the first assertions are clear as Ces 1 is a weighted L 1 -space. Now, we focus on the case where p ∈ (1, ∞). For this, we fix ε > 0 and a function f ∈ Ces p . As Γ(|f |) ∈ L p , then there exists a number δ ∈ (0, 1 3 ) satisfying

2δ 0 (Γ(|f |)(x)) p dx ≤ ε p and 1 1-δ (Γ(|f |)(x)) p dx ≤ ε p .
By applying inequality (1) in Lemma 2.1 with a = δ et b = 2δ, we obtain

f L 1 ([0,δ]) ≤ 2δ δ 1/p 2δ 0 Γ(|f |)(x) p dx 1/p ≤ 2δ 1-1 p ε .
Since the space of continuous functions on [δ, 1 -δ] and vanishing at points δ and 1 -δ is dense in L 1 ([δ, 1 -δ]), there exists a continuous function ϕ on [0, 1] such that

(i) ϕ(t) = 0 for any t ∈ [0, δ] ∪ [1 -δ, 1]; (ii) f -ϕ L 1 ([δ,1-δ]) < δ 1-1 p ε. Then we get f -ϕ L 1 ([0,1-δ]) ≤ 3δ 1-1 p ε =: ε . This gives for any x ∈ (0, 1 -δ] the following Γ(|f -ϕ|)(x) = 1 x x 0 |f -ϕ|(t)dt ≤ ε x = 3δ 1-1 p ε x • Hence, we compute f -ϕ p C(p) = δ 0 (Γ(|f |)(x)) p dx + 1-δ δ (Γ(|f -ϕ|)(x)) p dx+ 1 1-δ (Γ(|f -ϕ|)(x)) p dx ≤ ε p + ε p 1-δ δ dx x p + 1 1-δ 1 x p 1-δ 0 |f -ϕ|(t)dt + x 1-δ |f (t)|dt p dx ≤ ε p + ε p (p -1)δ p-1 + 1 1-δ 1 x p ε + x 0 |f (t)|dt p dx ≤ ε p + 3 p p -1 ε p + 2 p ε p 1 1-δ dx x p + 1 1-δ Γ(|f |)(x) p dx ≤ ε p + 3 p p -1 ε p + 2 p 9δε 2 p + ε p ≤ 1 + 3 p p -1 + 3 p + 2 p ε p .
Therefore, we deduce that the space C 0 is dense in Ces p as ϕ vanishes at the point 0. We point out that in the case p = 1, the same proof works by using inequality (2) with a = δ et b = √ δ. Finally, to check the non-separability of Ces ∞ , we just mention a short argument to justify it: for the sequence of disjoint intervals (I n ) n given by

I n = 1 (n+1)! , 1 n! , the operator Φ : ∞ → Ces ∞ defined by Φ (a n ) n≥2 = n a n 1 I In
embedds isomorphically ∞ into a subspace of Ces ∞ . Indeed, we first observe that for every a = (a n ) n≥2 we have

Φ(a) C(∞) ≤ Φ(a) ∞ ≤ a ∞ .
On the other hand, for any a = (a n ) n≥2 , we have

Φ(a) C(∞) ≥ sup n≥2 Γ(|Φ(a)|)( 1 n! )
and for any n ≥ 2,

Γ(|Φ(a)|) 1 n! = n! 1 n! 0 k≥n a k 1 I I k (t) dt ≥ |a n | n n + 1 -n! k≥n+1 |a k ||I k | ≥ |a n | n n + 1 - a ∞ n + 1 • We obtain that Φ(a) C(∞) ≥ a ∞ 2
and this finishes the proof.

Using the preceding proposition and the Müntz theorems in C and in L p , we state a Müntz theorem for the Cesàro function spaces as follows:

Theorem 2.3. Let Λ = (λ k ) ∞ k=0 be an increasing sequence of nonnegative real numbers, 1 ≤ p < +∞ (resp. p = +∞). Then the following are equivalent:

(i) The space M (Λ) = span{x λ k : k ∈ N} is dense in Ces p (resp. the space span{1, x λ0 , x λ1 , • • • } is dense in the closure of C in Ces ∞ ).
(ii) The sequence Λ satisfies

k≥1 1 λ k = +∞•
Moreover, if Λ satisfies the Müntz condition ∞ k=0 1/λ k < +∞, the sequence (x λn ) n is a minimal sequence in Ces p for any p ∈ [1, +∞]. In particular, for any µ ∈ R + such that µ ∈ Λ, we have dist(x µ , M (Λ)) > 0.

Proof. Assume that Λ satisfies k≥0 1/λ k = +∞ and fix a continuous function f on [0, 1]. We first treat the case where p = +∞. By the Müntz theorem on C, there exists a sequence of polynomials

f n ∈ span{1, x λ0 , x λ1 , • • • } such that f n -f ∞ → 0 when n → +∞.
Using the boundedness of the inclusion C ⊂ Ces p , we get that f n -f C(p) → 0 when n → +∞. Hence, the space span{1, x λ0 , x λ1 , • • • } is dense in the closure of the continuous functions in Ces p . Now for the case where p ∈ [1, +∞), we take q = p when p > 1 and any q > 1 when p = 1. By the Müntz theorem in L q , we know that there exists a sequence (f n ) n ∈ M (Λ) such that f n -f q → 0 when n → +∞. Hence, we compute

f n -f C(p) = Γ(|f n -f |) p ≤ Γ(|f n -f |) q ≤ q f n -f q → 0.
In the last inequality, we use the well-known Hardy inequality. Finally, by Proposition 2.2, we deduce the density.

For the "only if" part, we consider a sequence Λ satisfying 1/λ n < +∞ and we fix µ ∈ R + \ Λ. For any a ∈ (0, 1) and for any Müntz polynomial f ∈ M (Λ), we write

x µ -f C(p) ≥ (1 -a) 1 p x µ -f L 1 ([0,a]) = a(1 -a) 1 p 1 0 |(au) µ -f (au)|du ≥ (1 -a) 1 p a µ+1 inf g∈M (Λ)
x µ -g 1 .

According to the Müntz theorem in L 1 , we have that inf g∈M (Λ)

x µ -g 1 > 0.

Hence M (Λ) is not dense in Ces p .

Remark 2.4. Even if Λ satisfies the condition n≥1 1/λ n = +∞, we need to assume that 0 ∈ Λ in order to approximate the constant functions by Müntz polynomials in Ces

∞ because 1 -f C(∞) ≥ |Γ(|1 -f |)(0)| = 1 if f ∈ C 0 .
But this problem does not happen in the spaces Ces p when p ∈ [1, +∞). In other words, thanks to Proposition 2.2, the space M (Λ) is dense in Ces p even when λ 0 > 0. Now, we can define the Müntz-Cesàro spaces as follows:

Definition 2.5. Let Λ = (λ n ) n≥0 ⊂ R + be an increasing sequence satisfying the Müntz condition n≥1 1 λ n < +∞. For p ∈ [1, +∞) (resp. p = +∞), the classical Müntz space M p Λ (resp. M ∞ Λ
) is defined as the closure of the space of Müntz polynomials M (Λ) in L p (resp. C). In the same way, for p ∈ [1, +∞], we define the Müntz-Cesàro space M Cesp Λ as the closure of M (Λ) in Ces p . By Theorem 2.3, it is a strict subspace of Ces p . Concretely, in the sequel, we shall always assume that the inequality, called gap-condition, inf n≥0 λ n+1 -λ n > 0 is fulfilled in order to work with spaces of analytic functions (see Proposition 2.7 below).

Remark 2.6. The norms . C(∞) and . 1 are equivalent on M (Λ). Indeed, on one hand we have

f C(∞) ≥ Γ(|f |)(1) = f 1 , for any function f ∈ Ces ∞ .
On the other hand, by a bounded Bernstein-type inequality on

M 1 Λ (see [BE, E.3 p. 178]) there exists a constant C 1/2 ∈ R + such that for any f ∈ M (Λ) we have f C(∞) ≤ sup x∈[0,1/2] 1 x x 0 |f (t)|dt + sup x∈(1/2,1] 1 x x 0 |f (t)|dt ≤ sup t∈[0,1/2] |f (t)| + 2 1 0 |f (t)|dt ≤ C 1/2 + 2 f 1 . Hence we get that M Ces∞ Λ = M 1
Λ , and the spaces have equivalent norms.

The next proposition is a version of the Clarkson-Erdös theorem (see [CE], [S]) for Müntz-Cesàro spaces. It is indeed a consequence of the Clarkson-Erdös theorem in L p and in C.

Proposition 2.7. Let p ∈ [1, +∞) (resp. p = +∞) and let Λ = (λ k ) ∞ k=0 be an increasing sequence of non-negative real numbers. Assume that Λ satisfies the Müntz and the gap conditions. For a function f ∈ Ces p (resp. f ∈ C Ces∞ ), the following are equivalent:

(i) f ∈ M Cesp Λ
.

(ii) There exist f ∈ Ces p , with f = f a.e. on [0, 1] and a sequence a n of complex numbers, such that

∀x ∈ [0, 1), f (x) = ∞ n=0 a n x λn .
Proof. The case of M Ces∞ Λ is actually free by the Clarkson-Erdös theorem in M 1 Λ . Nevertheless we see below that the proof for Now, we define the function f by f (x) = n b n (λ n + 1)x λn . Clearly, this series converges uniformly on compacts subsets of [0, 1) because it has the same radius of convergence as Γ(f ). Moreover, we have that Γ( f )(x) = Γ(f )(x) for any x ∈ (0, 1) which gives that f = f almost everywhere.

M Cesp Λ also holds for M Ces∞ Λ . For the part (i) ⇒ (ii), we consider a sequence of Müntz polynomials (f n ) n ∈ M (Λ) which tends to f in C(p) when n → +∞. By the Hardy inequality, we have Γ(f n ) -Γ(f ) p ≤ Γ(|f n -f |) p = f n -f C(p) . Since Γ(f ) is the limit in L p (resp. in C)
To prove that (ii) ⇒ (i), we follow the same lines as in [START_REF] Gurariy | Geometry of Müntz spaces and related questions[END_REF]Cor. 6.2.4]. For this, we let f ∈ Ces p (resp. f ∈ C

Ces∞ ) to be a function that satisfies

f (x) = ∞ n=0 a n x λn for x ∈ [0, 1).
As the series converges for any x ∈ [0, 1), we have lim sup |a n | 1 λn ≤ 1. Given a function h on [0, 1) and ρ ∈ (0, 1), we will denote by h ρ the function defined by h ρ (t) = h(ρt). For the sequence of partial sums (f m ) ∈ M (Λ) given by f m (t) = m n=0 a n t λn , we define the corresponding functions (f m ) ρ and compute

f ρ -(f m ) ρ C(p) ≤ +∞ n=m+1 |a n |ρ λn λ n + 1 -→ m→+∞ 0. Therefore, f ρ ∈ M Cesp Λ
for any ρ ∈ (0, 1). Now, we claim that lim ρ→1 f -

f ρ C(p) = 0 which would give that f ∈ M Cesp Λ
and finishes the proof of the proposition. To check this, we let ε > 0 and consider a continuous function g satisfying f -g C(p) < ε, when p is finite, and by assumption when p = +∞. The existence of such a function is assured by Proposition 2.2. Now, for any ρ ∈ (0, 1) and h ∈ Ces p , the estimate

h ρ C(p) ≤ 1 ρ 1 p h C(p) gives f -f ρ C(p) ≤ f ρ -g ρ C(p) + g -g ρ C(p) + f -g C(p) ≤ 1 ρ 1 p + 1 f -g C(p) + g -g ρ ∞ .
The uniform continuity of g on [0, 1] implies lim ρ→1 g-g ρ ∞ = 0 and we obtain as

claimed that f -f ρ C(p) ≤ 3ε for ρ close enough to 1. Hence f ∈ M Cesp Λ
.

The following estimate is a bounded Bernstein-type inequality. To establish such an estimate, we will use the analogue of the well known inequality in the classical Müntz spaces.

Proposition 2.8. Let p ∈ [1, +∞] and Λ = (λ n ) n be a sequence of non-negative numbers satisfying the Müntz and gap conditions. Then, for every ε ∈ (0, 1), there exists a constant c(ε, Λ) depending only on ε and Λ such that

f [0,1-ε] ≤ c(ε, Λ) f Cesp for every Müntz polynomial f ∈ span x λ0 , x λ1 , ... . Proof. Let ε ∈ (0, 1) and fix two real numbers a, η ∈ (0, 1) such that a(1 - η) > 1 -ε.
For any Müntz polynomial f ∈ M (Λ), we know from the bounded Bernstein inequality in M 1 Λ (see [BE,E.3 p. 178]) that there exists a constant C η ∈ R + that does not depend on f and a satisfying

(f a ) [0,1-η] ≤ C η f a 1 ,
where f a is the function defined as in the proof of Proposition 2.7. Now, we compute

f Cesp ≥ (1 -a) 1 p f L 1 ([0,a]) = a(1 -a) 1 p f a 1 ≥ a(1 -a) 1 p C η (f a ) [0,1-η] .
By the choice of a and η above, we obtain the result with c(ε, Λ) = Cη a(1-a)

1 p

•

We finish this section with this last useful result. The proof follows the same lines as in [START_REF] Al Alam | Essential norms of weighted composition operators on L 1 -Müntz spaces[END_REF]Cor. 2.5].

Corollary 2.9. Let Λ = (λ n ) ∞ n=0 be an increasing sequence of non-negative real numbers satisfying the Müntz and gap conditions. For any bounded sequence

(f n ) ∞ n=1 ∈ M Cesp Λ
, there exist f ∈ Ces p and a subsequence (f n k ) ∞ k=1 converging to f uniformly on every compact subset of [0, 1).

Proof. Assume that (f n ) n≥1 is a bounded sequence in M Cesp Λ
and fix ε > 0. If λ 0 > 0 then M (Λ) ⊂ C 0 and from Proposition 2.8 and the mean value theorem, the sequence (f n ) n is bounded and equicontinuous on the compact interval [0, 1 -ε]. If λ 0 = 0, then by the Müntz theorem in Ces p (Theorem 2.3), there exists δ > 0 such that inf g∈M (Λ\{λ0})

t λ0 -g C(p) ≥ δ, since Λ \ {λ 0 } also satisfies the Müntz condition. Now, we can write f n = f n (0)t λ0 + g n with g n ∈ M (Λ \ {λ 0 }). With the previous estimate, we get |f n (0)| ≤ 1 δ f n C(p)
. We obtain that (f n ) n is bounded and equicontinuous on [0, 1 -ε]. Using the Arzela-Ascoli theorem, we know that there exists an extraction (n k ) k such that (f n k ) converges uniformly on [0, 1 -ε]. By induction, we can construct a sequence of infinite sets (S j ) j≥1 of integers with

N ⊃ S 1 ⊃ S 2 ⊃ • • • such that (f n ) n∈Sj converges uniformly on [0, 1 -1 j ].
Applying a diagonal method, we obtain an infinite set S such that (f n ) n converges uniformly on every compact subset of [0, 1) to a measurable function f when n → +∞ and n ∈ S. Finally, Fatou's lemma (twice if p < +∞) allows to obtain that f C(p) ≤ sup n f n C(p) which finishes the proof.

General Lemmas for the essential norm

In this section, we will give some general criteria to compute the essential norm.

We first recall a result from [AHLM].

Definition 3.1. We say that a sequence xm m∈N is a block-subsequence of x n n if there is a sequence of non empty finite subsets of integers I m m∈N with max I m < min I m+1 , and c i ∈ [0, 1] such that for all m ∈ N, j∈Im c j = 1 and xm = j∈Im c j x j .

Lemma 3.2. [AHLM, Lemma 3.1] Let X, Y be two Banach spaces, and T : X → Y be a bounded operator. Let x n n∈N be a normalized sequence in X and α > 0.

(i) Assume that for any subsequence x ϕ(n) n∈N and any g ∈ Y , we have lim sup

n→+∞ T x ϕ(n) -g ≥ α. Then ||T || e ≥ α.
(ii) Assume that for any block-subsequence xn n∈N and any g ∈ Y , we have lim sup

n→+∞ T xn -g ≥ α. Then ||T || e,w ≥ α.
Definition 3.3. Let (X, d) be a metric space and α ∈ R + . We say that a sequence (

x n ) n ∈ X is α-separated if d(x n , x m ) ≥ α for all n = m.
The following lemma is a consequence of Lemma 3.2. It will be used to find a lower estimate for the essential norm for some operators.

Lemma 3.4. Let X, Y be two Banach spaces, T : X -→ Y a linear operator and α ∈ R + .

(i) If the range of the unit ball T (B X ) contains an α-separated sequence, then

T e ≥ α 2 • (ii) If the range of the unit ball T (B X ) contains a sequence (y n ) n such that any block-subsequence ( y m ) m is α-separated, then T e,w ≥ α 2 •
Proof. We prove only (ii) since (i) is similar (and actually easier). Let (

y n ) n ∈ T (B X ) such that any block-subsequence ( y m ) m of (y n ) n is α-separated in Y . Fix g ∈ Y, as n = m ∈ N, we have α ≤ y n -y m ≤ y n -g + y m -g .
Therefore, there is at most one integer n ∈ N such that y n -g < α 2 , which

yields lim sup n→∞ ||T (x n ) -g|| ≥ α 2 •
The result follows by Lemma 3.2 (ii).

The following example shows that the lower estimate in Lemma 3.4 can be sharp.

Example 3.5. The sequential Volterra operator v : 1 -→ c is defined by

v(x) = n k=0 x k n for any x = (x k ) k ∈ 1 . We have v e = 1 2 • Proof.
We consider (e n ) n the canonical basis of 1 and for n ∈ N we denote by

f n := v(e n ). For a given n ∈ N, we have f n = (f n,k ) k ∈ v(B 1 ), where f n,k = 0 if k < n and f n,k = 1 if k ≥ n. Since (f n ) n is 1-separated in c, Lemma 3.4
gives the lower bound. For the upper bound, we consider the rank-one operator K : 1 → c, defined by K = 1 2 1I ⊗ Tr, where 1 I is the constant sequence equal to 1 and Tr ∈ ( 1 ) * is the trace functional. For any x ∈ 1 , we have

(v -K)(x) c = sup n n k=0 x k - +∞ k=0 x k 2 = 1 2 sup n n k=0 x k - +∞ k=n+1 x k ≤ x 1 2 • Since K is compact, we get that v e ≤ v-K ≤ 1 2 .
This finishes the proof. Definition 3.6. Let X be a Banach space. We say that P : X → R + is a subnorm on X if P satisfies (i) ∀x, y ∈ X, P (x + y) ≤ P (x) + P (y) (triangle inequality) ;

(ii) ∀x ∈ X, P (x) ≤ ||x||.

Lemma 3.7. Let α ∈ R + . Let X, Y be two Banach spaces, and T : X -→ Y a linear operator. Let (P k ) k∈N be a family of subnorms on Y . Assume that:

(i) For any g ∈ Y, inf k∈N P k (g) = 0. (ii) There exists a sequence (h n ) n ∈ B X such that ∀k ∈ N, lim inf n→+∞ P k (T (h n )) ≥ α.
Then ||T || e ≥ α.

Proof. Let S : X -→ Y be a compact operator, and ε > 0. There exists an extraction (n j ) j in N such that S(h nj ) → g ∈ Y. As inf k∈N P k (g) = 0, we set k 0 ∈ N such that P k0 (g) ≤ ε. Now, we set j 0 ∈ N in a way that we have simultaneously S(h nj ) -g ≤ ε and P k0 (T (h nj )) ≥ α -ε for any j ≥ j 0 . For j = j 0 , we have

T -S ≥ T (h nj ) -S(h nj ) ≥ T (h nj ) -g -S(h nj ) -g ≥ P k0 (T (h nj ) -g) -S(h nj ) -g ≥ P k0 (T (h nj )) -P k0 (g) -ε ≥ α -3ε.
As this holds for every ε > 0 and every compact operator S, we thus get that T e ≥ α.

In the following, we present a variant of the preceding lemma (it is actually a direct consequence).

Lemma 3.8. Let α ∈ R + . Let X, Y be two Banach spaces, and T : X -→ Y be a linear operator. Let (P k ) k∈N be a family of subnorms on Y . Assume that:

(i) For any g ∈ Y, lim k→+∞ P k (g) = 0.

(ii) There exists a sequence

(h n ) n ∈ B X such that ∀k ∈ N, lim sup n→+∞ P k (T (h n )) ≥ α.
Then ||T || e ≥ α.

Proof. By hypothesis, for every k ≥ 1, there exists an extraction θ k : N → N such that for any n ∈ N such that n ≥ k,

P k T h θ k (n) ≥ α - 1 k •
By induction, we can also assume that (θ k (k)) k is increasing. Now consider the subnorms P k = sup m≥k P m and the sequence h n = h θn(n) in the unit ball of X. On the one hand, we have that inf P k (g) = lim sup P k (g) = 0 for any g. On the other hand, we write for any k

lim inf n→+∞ P k (T (h n )) ≥ lim inf n→+∞ P n (T (h n )) ≥ α.
Finally, Lemma 3.7 gives the conclusion.

The following corollary will be particularly efficient when Y is an L p space.

Corollary 3.9. Let (Ω, µ) be a measure space, X be a Banach space and T : X -→ L p (Ω, µ) be a linear operator. Assume that there exist a decreasing sequence of measurable subsets (A k ) k of Ω, a sequence (h n ) n in B X , and a number α > 0 such that:

(i) The sequence of Borel sets

(A k ) satisfies µ k A k = 0.
(ii) For any k ∈ N, we have lim sup

n→+∞ A k |T (h n )| p dµ 1 p ≥ α.
Then ||T || e ≥ α.

Proof. According to the monotone convergence theorem, the sequence of subnorms

P k : L p (Ω, µ) -→ R + defined by P k (f ) := ||f || L p (A k ,µ)
, converges pointwise to 0 on L p (µ). Then Lemma 3.8 gives the result.

Definition 3.10. Let (E, d), (E , d ) be two metric spaces, and f : E -→ E be a function. For α ∈ R + and a ∈ E, we say that f has a jump at the point a with height at least α if

∀r > 0, δ(f (B(a, r))) ≥ α,
where δ(A) denotes the diameter of A ⊂ E .

The following result can be found in [AHLM]. Here we show that it is a particular case of Lemma 3.7.

Corollary 3.11. Let X be a Banach space, K be a metric compact space, and T : X -→ C(K) be an operator. Assume that there exist a sequence (h n ) n in B X , an element a ∈ K and a function g : K → C such that:

(i) (T (h n )) n converges pointwise to g.

(ii) g has a jump at the point a with height at least 2α.

Then ||T || e ≥ α.

Proof. We apply Lemma 3.7 for the sequence of subnorms (P k ) k on C(K) defined by

P k (f ) := 1 2 δ f B(a, 1 k ) .
One can easily check that the assumptions of Lemma 3.8 are satisfied.

Corollary 3.12. Let T : E -→ c be a linear operator, and α ∈ R + . Assume that there is a sequence

(f n ) n = ((f n,j ) j∈N ) n in T (B E ), such that for all k ∈ N, lim sup n→∞ δ ({f n,j , j ≥ k}) ≥ 2α. Then ||T || e ≥ α.
Proof. We apply Lemma 3.8 for the sequence of subnorms (P k ) k on c defined by

P k ((x n ) n ) := 1 2 δ ({x i : i ≥ k}) .
We can also use Corollary 3.11, by seeing c as a C(K)-space where K = N ∪ {∞}.

The following lemma is a natural generalization of [START_REF] Chalendar | Embedding theorems for Müntz spaces[END_REF]Lemma 3.4] for all p ∈ [1, +∞), and the proof can be easily adapted. However, we can also see this result as a consequence of Lemma 3.7.

Lemma 3.13. Let (Ω, µ) be a measure space, X be a Banach space and T : X → L p (µ) be a bounded operator. For a decreasing sequence of measurable subsets

A n ⊂ Ω satisfying µ( n A n ) = 0, the sequence (R n ) n of projection operators is defined by R n : L p (µ) -→ L p (A n , µ) f -→ f 1 I An .
If for any n ∈ N, the operator T -R n T is compact, then the essential norm of T is given by

T e = lim n→+∞ R n T .
Proof. Since for any x ∈ X, ( R n T (x) ) n is a decreasing sequence, we get that ( R n T ) n converges to a number α ∈ R + when n → +∞. By the compactness of (T -R n T ), we clearly have T e ≤ R n T for any n and hence T e ≤ α.

For the lower bound estimate, we fix a sequence h n ∈ B X which satisfies

R n T (h n ) p ≥ R n T - 1 n • For k ≤ n, we have R k T (h n ) p = T (h n ) L p (A k ,µ) ≥ R n T (h n ) p .
Hence we apply Corollary 3.9 to the sequences (A k ) k and (h n ) n to get T e ≥ α.

The following proposition shows that for some classes of operators, the essential norm depends only on the range of the unit ball.

Proposition 3.14. Let X, Y be two Banach spaces such that Y has a Schauder basis (e n ) n . We consider the natural projections π

N : Y → span {e k ; 0 ≤ k ≤ N} defined by π N ( ∞ k=0 x k e k ) = N k=0
x k e k , and R N = I -π N . Assume that R N ≤ 1, for any N ∈ N. Then, for two bounded operators T, T : X → Y with T (B X ) = T (B X ), we have

T e = T e = lim N →+∞ R N T .
Proof. Although the proof follows the spirit of the one of Lemma 3.13, we give some details for the convenience of the reader.

Since ( R n T ) n is a decreasing sequence, ( R n T ) n converges to a number α ∈ R + . On one hand, since π N T has finite rank, it is compact for each N and we clearly have

T e ≤ T -π N T = R N T for all N . Hence T e ≤ lim inf N →+∞ R N T .
To get the lower bound estimate, we shall apply Lemma 3.8 with the subnorm P k (g) = R k (g) , where g ∈ X. We clearly have lim P k (g) = 0 for every g ∈ X. By definition, for every n ≥ 1, there exists h n in the unit ball of X such that R n (T (h n )) ≥ R n T -1/n. It suffices now to notice that, for every fixed k and every n ≥ k, we have

P k (T (h n )) ≥ R n (T (h n )) since R n R k = R n and R n has norm 1. We get lim sup n→∞ P k (T (h n )) ≥ lim sup n→∞ R n (T (h n )) ≥ α.
With Lemma 3.8, we obtain that T e = lim

N →+∞ R N T . Lastly, if T (B X ) = T (B X ) then R N T = R N T for every N . We con- clude that T e = T e .
The following result is an analogue estimate of the previous results that gives a lower bound of the distance between an operator T with values in L 1 (µ) to the space of weakly compact operators.

Proposition 3.15. Let (Ω, µ) be a measure space, X be a Banach space and T : X -→ L 1 (Ω, µ) be a linear operator. Assume that there exist a number α > 0, a sequence (h n ) n in the unit ball of X and a sequence of measurable sets

(A n ) n in Ω with: (i) µ(A k ) → 0 when k → +∞. (ii) For any k ∈ N, lim sup n→+∞ A k |T (h n )|dµ ≥ α.
Then, we have T e,w ≥ α.

Proof. By a standard diagonal argument, we may assume, without loss of generality, that for any k ∈ N, lim inf

n→+∞ A k |T (h n )|dµ ≥ α. Let S : X → L 1 (Ω, µ)
be a weakly compact operator. Since the set H = {S(h n ), n ∈ N} is bounded and relatively weakly compact, then it is uniformly integrable [START_REF] Wojtaszczyk | Banach spaces for analysts[END_REF]p.137]. That means that for any ε > 0, there exists δ ε > 0 such that

µ(B) ≤ δ ε ⇒ B |S(h n )|dµ ≤ ε, ∀n ∈ N.
But, for any ε > 0 there exists k such that µ(A k ) < δ ε . Therefore we compute

T -S ≥ (T -S)(h n ) L 1 (µ) ≥ A k |T h n -Sh n |dµ ≥ A k |T h n |dµ - A k |Sh n |dµ ≥ α -ε.
Finally, we deduce T e,w ≥ α which is the desired result.

Essential norm of some Cesàro operators

In this section, we will compute the essential norm the Cesàro operator (discrete and continuous) defined between different Banach spaces.

Cesàro operators on Lebesgue spaces

In the following, we shall compute the essential norm of the continuous Cesàro operator Γ p : L p → L p and of the discrete Cesàro operator γ p : p → p for p ∈ (1, +∞]. We shall distinguish the case p finite and p = +∞. Of course, the key information in the two following theorems concerns the essential norm. The value of the operator norm of the continuous and discrete Cesàro operators is a well known fact.

Theorem 4.1. Let p ∈ (1, +∞) and Γ p : L p → L p be the continuous Cesàro operator. Then, Γ p e = Γ p = p , where p = p p-1 . In particular, we have a n (Γ p ) = p for any n ∈ N.

Proof. Using the Hardy inequality (see [START_REF] Hardy | Inequalities[END_REF]Th.327 p.240]), we have the upper bound Γ p e ≤ Γ p ≤ p .

To prove the lower bound, we apply Corollary 3.9 to any sequence of subsets A k = [0, δ k ] (where δ k is a decreasing sequence converging to 0) and to the sequence (h n ) n defined by h n (x) = (pε n )

1 p x -1 p +εn ∈ B L p
where ε n → 0 as n → ∞. By a straightforward computation, we have for any integer k ∈ N,

Γ p (h n ) p L p (A k ) = δ k 0 1 x x 0 (pε n ) 1 p t -1 p +εn dt p dx = (δ k ) pεn ( 1 p + ε n ) p .
Therefore for any fixed k, we get lim

n→∞ Γ p (h n ) L p (A k ) = p .
This finishes the proof.

Theorem 4.2. Let p ∈ (1, +∞), and γ p : p → p be the discrete Cesàro operator. Then we have γ p e = γ p = p , where p = p p-1 • In particular, we have a n (γ p ) = p for any n ∈ N.

Proof. Using the Hardy inequality (see [START_REF] Hardy | Inequalities[END_REF]Th. 326 p 239]), we have the upper estimate γ p e ≤ γ p ≤ p .

Now we prove the lower estimate. For ε > 0 and N ∈ N, we consider the sequence a (N ) = (a

(N ) n ) n ∈ p with a (N ) n = (pε) 1 p N ε n 1 p +ε 1 I [N,+∞) (n), n ∈ N.
The norm of a (N ) is estimated as:

a (N ) p p = pεN pε ∞ n=N 1 n 1+pε ∼ N →+∞ pεN pε ∞ N 1 x 1+pε dx = 1.
By a simple computation, we have

γ p (a (N ) ) n =      0 if n < N (pεN pε ) 1 p n + 1 n k=N 1 k 1 p +ε if n ≥ N.
Using the inequality between the Riemann series and the integral, we get b k=a

1 k β ≥ b+1 a 1 x β dx = (b + 1) 1-β -a 1-β 1 -β , (3) 
for any integer numbers a, b and any real β = 1. We estimate the norm of γ p (a (N ) ) for ε ∈ (0, 1/p ) as

γ p (a (N ) ) p p = +∞ n=N pεN pε (n + 1) p n k=N 1 k 1 p +ε p ≥ +∞ n=N pεN pε (n + 1) p (n + 1) 1 p -ε -N 1 p -ε 1 p -ε p = +∞ n=N pεN pε (n + 1) 1+pε (p ) p (1 -p ε) p 1 - N n + 1 1 p -ε p ≥ +∞ n=N pεN pε (n + 1) 1+pε (p ) p (1 -p ε) p 1 -p N n + 1 1 p -ε = (p ) p (1 -p ε) p +∞ n=N pεN pε (n + 1) 1+pε - +∞ n=N p 2 εN pε+ 1 p -ε (n + 1) 1+pε+ 1 p -ε .
Comparing again with an integral (like in (3)), the last estimate reduces to

γ p (a (N ) ) p p ≥ p p (1 -p ε) p N N + 1 pε - p 2 ε pε + 1 p -ε N N + 1 pε+ 1 p -ε .
Letting N → ∞ and as ε → 0, we get lim

N →∞
γ p (a (N ) ) p ≥ p . Now we apply Corollary 3.9 to the sets A k = N ∩ [k, +∞) and to the sequence (h N ) = (a (N ) ). Indeed, we clearly have that A k = ∅. Moreover, for a fixed k ∈ N, we have

γ p (a (N ) ) p (A k ) = γ p (a (N ) ) p
when N ≥ k because the support of γ p (a (N ) ) is included in N∩[N, +∞). Hence, the essential norm of γ p is equal to p .

Theorem 4.3. Let Γ ∞ : L ∞ -→ L ∞ be the Cesàro function operator, we then have Γ ∞ e,w = Γ ∞ e = Γ ∞ = 1.
In particular, we get that a n (Γ ∞ ) = 1 for any n ∈ N.

Proof. First it is clear that Γ ∞ e,w ≤ Γ ∞ e ≤ Γ ∞ = 1. To prove the lower bound, we will fix ε ∈ (0, 1) and will define a sequence of functions (h n ) n in the unit ball of L ∞ , such that any block-subsequence of Γ ∞ (h n ) will be (2 -2ε)separated in L ∞ . Therefore Lemma 3.4 (ii) will yield Γ ∞ e,w ≥ 1 -ε, which will give the result. For this, we consider the sequence (h n ) n ∈ B L ∞ by the following

h n (x) = -1 if x ≤ ε n 1 if x > ε n .
The sequence

H n := Γ ∞ (h n ) satisfies H n = -1 on [0, ε n ] and H n (x) = x -2ε n x if x > ε n .
Let ( H m ) m be a block-subsequence of (H n ) n defined by H m = j∈Im c j H j (see Definition 3.1). For two integers k, l with l > k, we have

H l (ε k ) = 1 -2 ε l ε k ≥ 1 -2ε.
For any two integers numbers m, n with m < n, we set k = max I m and compute

H n -H m ∞ ≥ | H n (ε k ) -H m (ε k )| = l∈In c l H l (ε k ) - j∈Im c j H j (ε k ) ≥ (1 -2ε) l∈In c l - j∈Im c j (-1) = 2 -2ε.
Thus, we get that Γ ∞ e,w ≥ 1 and this finishes the proof.

Theorem 4.4. Let γ ∞ : ∞ -→ ∞ be the Cesàro sequence operator. We have

γ ∞ e,w = γ ∞ e = γ ∞ = 1.
In particular we have a n (γ ∞ ) = 1 for any n ∈ N.

Proof. The upper estimate is clear, as γ ∞ e,w ≤ γ ∞ e ≤ γ ∞ = 1. For the lower bound, we follow the same idea as in the proof of Theorem 4.3. We fix ε ∈ (0, 1) and we let r be a natural number with r ≥ 1/ε > 1. For n ∈ N, we consider the sequence a

(n) ∈ ∞ defined by a (n) = (a (n) k ) k∈N * , where a (n) k = -1 if k ≤ r n , and a (n) k = 1 if k > r n . We denote by A (n) := γ ∞ (a (n) ) with A (n) = (A (n) i ) i∈N * . Then, we get A (n) i = -1 if i ≤ r n i-2r n i if i > r n .
Now, we consider a block-subsequence of A (n) , say ( A (m) ) m , as in Definition 3.1 by j) .

A (m) = j∈Im c j A (
By the choice of (a n ) n , we have for two integers j, k with j < k, that

A (j) r k = 1 -2 r j r k ≥ 1 -2ε.
Let m, n be two integers with m < n, and let k = min I n . We compute

A (m) -A (n) ∞ ≥ | A (m) r k -A (n) r k | = j∈Im c j A (j) r k - l∈In c l A (l) r k ≥ (1 -2ε) j∈Im c j - l∈In c l (-1) = 2 -2ε.
Finally, by applying Lemma 3.4 (ii) we deduce γ ∞ e,w ≥ 1.

The operators Γ p are not compact, but the situation is different when we restrict them to a Müntz space M p Λ . This is due to the geometric nature of these spaces. We first state the following lemma.

Lemma 4.5. Let p, q ∈ [1, +∞] satisfy p > q. Then the natural inclusion i p,q : M p Λ → M q Λ is a compact operator. Proof. The boundedness is clear. To check compactness, we consider a sequence (f n ) n in the unit ball of M p Λ . From [AL, Cor. 2.5], there exist a function g ∈ M p

Λ and an extraction (n k ) k such that f n k converges to g uniformly on every compact subset of [0, 1). For any δ ∈ (0, 1), we compute

f n k -g q q = 1-δ 0 |f n k (t) -g(t)| q dt + 1 1-δ |f n k (t) -g(t)| q dt ≤ f n k -g p,[0,1-δ] + f n k -g q p p δ 1-q p .
In the second term, we use the Hölder inequality. Clearly, the first term tends to 0 by the uniform convergence, and the second one is less than 2 q p δ 1-q p . As 1 -q p > 0, we get that f n k converges to g in M q Λ , and thus i p,q is compact.

Next, we obtain the following property for the restrictions of the Cesàro operator.

Proposition 4.6.

Let p ∈ [1, +∞], M p Λ be a Müntz space and Γ Λ p : M p Λ → M p Λ , f → Γ(f ) be the restriction of the Cesàro operator. Then Γ Λ p is compact.
Proof. According to [START_REF] Al Alam | Essential norms of Volterra and Cesàro operators on Müntz spaces[END_REF]Prop. 4.2], the operator Γ Λ :

M 1 Λ → M ∞ Λ , f → Γ(f ) is bounded (but not compact).
Then we obtain the factorization

M p Λ Γ Λ p / / i p,1 M p Λ M 1 Λ Γ Λ / / M ∞ Λ . i ∞,p O O
Therefore, Lemma 4.5 yields to the compactness of Γ Λ p .

Cesàro operators on Cesàro spaces

In this section, we study the Cesàro operators defined on Cesàro spaces to the corresponding Lebesgue spaces. We shall also consider the restriction of those operators to Müntz subspaces (see Definition 2.5). We note that for p ∈ [1, +∞] (resp. for p ∈ (1, +∞]) the Cesàro operators Γ C(p) (resp. γ c(p) ) are naturally well defined and bounded, with norm 1. Moreover, they map isometrically the set of positive functions (resp. sequences) to themselves. It is shown in [CR] that these operators are not compact and we shall show below that they are even far from being compact: their distance to compact operators is maximal.

Theorem 4.7. For any p ∈ (1, +∞), we have

(i) Γ C(p) e = Γ C(p) = 1. (ii) γ c(p) e = γ c(p) = 1. (iii) Γ C(1) e,w = Γ C(1) e = Γ C(1) = 1. (iv) Γ C(∞) e,w = Γ C(∞) e = Γ C(∞) = 1. (v) γ c(∞) e,w = γ c(∞) e = γ c(∞) = 1.
In particular, the approximation numbers of all these operators, are equal to 1.

Proof. Since Γ C(p) e ≤ Γ C(p) ≤ 1, all we need to check is that the essential norm is larger than 1. Let p ∈ (1, +∞), then we have Γ p = Γ C(p) To prove the lower estimate for Γ C(1) e,w , we apply Proposition 3.15 for the sets A n = [1 -1/n, 1] and for the sequence of normalized functions (h n ) ∈ Ces 1 defined by h n (x) = (λ n +1) 2 x λn . The Lebesgue measure of the sets A n decreases to 0 when n → +∞, and for any fixed k ∈ N we have

Γ C(1) (h n ) L 1 (A k ) = 1 1-1 k 1 x x 0 (λ n + 1) 2 t λn dt dx = 1 -1 - 1 k λn+1 .
It then tends to 1 when n → +∞, which gives Γ C(1) e,w ≥ 1 as desired. To prove (iv), we have as usual Γ C(∞) e,w ≤ Γ C(∞) e ≤ Γ C(∞) ≤ 1, and as in the proof of (i), Theorem 4.3 gives

Γ C(∞) e,w J ∞ ≥ Γ C(∞) • J ∞ e,w = Γ ∞ e,w = 1.
In the same way, we treat the sequential case (v) with Theorem 4.4. Now we consider the restrictions of Cesàro-type operators to Müntz-Cesàro spaces (see definition 2.5). Let Λ = (λ n ) n≥0 be an increasing sequence satisfying the Müntz and gap-conditions. For p ∈ [1, +∞], we define the following operator → L p , f → Γ(f ). We factorize χ p through M p Λ as follows

Γ Λ C(p) : M Cesp Λ -→ M p Λ f -→ Γ(f ).
χ p = j p • Γ Λ C(p) ,
where j p : M p Λ → L p is the inclusion of M p Λ in L p . Hence, we obtain

χ p e ≤ Γ Λ C(p) e . j p ≤ Γ Λ C(p) e ,
and we just need to check that χ p e ≥ 1. The operator χ p is valued in an L p space and therefore we can apply Corollary 3.9 with Ω = [0, 1],

A k = [1-1/k, 1],
α = 1 and with the sequence of functions h n : t → (λ n + 1)(pλ n + 1) 1 p t λn . We have for any fixed k ∈ N,

χ p (h n ) p L p (A k ) = 1 1-1 k (pλ n + 1) 1 x x 0 (λ n + 1)t λn dt p dx = 1 -1 - 1 k pλn+1 .
We obtain Γ Λ C(p) e ≥ χ p e ≥ 1 and the proof of (i) is complete. Now we treat the case "p = +∞". For the upper estimate of the essential norm, we factorize Γ Λ C(∞) through M 1 Λ as follows

M Ces∞ Λ Γ Λ C(∞) / / J Λ # # M ∞ Λ M 1 Λ Γ Λ = = where J Λ : M Ces∞ Λ → M 1 Λ is the restriction of the inclusion of Ces ∞ in L 1 (see Remark 2.6) and Γ Λ : M 1 Λ → M ∞
Λ is the Cesàro operator between Müntz spaces. By [START_REF] Al Alam | Essential norms of Volterra and Cesàro operators on Müntz spaces[END_REF]Thm. 4.3], we have that Γ Λ e = 1/2, and thus we obtain

Γ Λ C(∞) e ≤ J Λ . Γ Λ e ≤ 1 2 •
To get the lower estimate, we consider a subsequence (γ n ) n ⊂ Λ satisfying γn+1 γn → +∞ and denote (f n ) n ∈ M Ces∞ Λ the sequence of normalized functions defined by f n (x) = (γ n + 1)x γn . For m > n, we have

Γ(f n ) -Γ(f m ) ∞ = x γn -x γm ∞ = γ n γ m γn/(γm-γn) - γ n γ m γm/(γm-γn) = γ n γ m γn/(γm-γn) 1 - γ n γ m ≥ γ n γ n+1 γn/(γn+1-γn) 1 - γ n γ n+1 .
As this term tends to 1 when n → +∞, we get (ii) from Lemma 3.4.

The previous result implies that the operators Γ Λ C(p) are never compact. Now we focus on the particular case where Λ is lacunary to obtain more specific results. Recall that a sequence (λ n ) n is called lacunary if it satisfies inf n≥0 λn+1 λn > 1. Theorem 4.9. Let p ∈ [1, +∞). If Λ = (λ n ) n is a lacunary sequence, then the operator

Γ Λ C(p) : M Cesp Λ → M p Λ is an isomorphism. Actually, there exist two constant C 1 , C 2 ∈ R * + such that for any b = (b n ) n ∈ c 0 we have C 1 n |b n | p λ 1+p n 1 p ≤ n b n t λn C(p) ≤ C 2 n |b n | p λ 1+p n 1 p .
Proof. Using the Gurariy-Macaev theorem in L p (see [START_REF] Gurariy | Geometry of Müntz spaces and related questions[END_REF]Th. 9.3.3]), there exist two positive numbers d 1 and d 2 such that

d 1 ∞ n=0 |a n | p λ n 1 p ≤ g p ≤ d 2 ∞ n=0 |a n | p λ n 1 p ,
for any function g ∈ M (Λ) with the form g(t) = n a n t λn . Therefore, for any function f ∈ M (Λ) defined by f (t) = n b n t λn , we get from the one hand Moreover, in this case we have T ψ = ψ ∞ .

Γ(f ) p p ≤ f p C(p) ≤ 1 0 1 x x 0 n |b n |t λn dt p dx = n |b n | λ n + 1 x λn p p ≤ d p
Formally, this result was proved when p is finite. Nevertheless, the proof can be easily adapted for p = +∞. We can use our previous ideas to compute the essential norm of the multiplication operators.

Theorem 5.2. Let ψ ∈ L ∞ ([0, 1]), p ∈ [1, +∞] and the multiplication operator

T ψ : Ces p ([0, 1]) → Ces p ([0, 1]); f → f ψ. Then we have T ψ e = ψ ∞ .
Proof. As usual, we have T ψ e ≤ T ψ = ψ ∞ by Proposition 5.1, and hence we just need to check that T ψ e ≥ ψ ∞ . For ε > 0, we define the set

A ε = {t ∈ [0, 1], |ψ(t)| ≥ ψ ∞ -ε}.
Let µ be the Lebesgue measure. As µ(A ε ) > 0, then at least one of the two sets [0, 1 2 ] ∩ A ε or [ 1 2 , 1] ∩ A ε has a strictly positive measure. Assume that it is the first one, and put

β = inf{x ∈ 0, 1/2 , µ( x, 1/2 ∩ A ε ) = 0}.
The number β satisfies β ∈ (0, 1). In the other case, we define

β = sup{x ∈ [1/2, 1], µ([1/2, x] ∩ A ε ) = 0},
and β is also in (0, 1). Now we consider an increasing sequence (a n ) which tends to β when n → +∞, and define the sets J n = [a n , a n+1 ) ∩ A ε for any integer n ∈ N. From the definition of β, there exist infinitely many sets J n with a positive Lebesgue measure. Up to an extraction, we can assume that they all satisfy µ(J n ) > 0. We then set the normalized functions

f n = 1 I Jn 1 I Jn C(p) ∈ Ces p .
Assume first that p is finite. For n < m, we have

T ψ (f n ) -T ψ (f m ) p C(p) = 1 an 1 x x 0 |ψ(t)|. 1 I Jn (t) 1 I Jn - 1 I Jm (t) 1 I Jm dt p dx ≥ ( ψ ∞ -ε) p 1 β 1 x x 0 1 I Jn (t) 1 I Jn + 1 I Jm (t) 1 I Jm dt p dx = ( ψ ∞ -ε) p µ(J n ) 1 I Jm + µ(J m ) 1 I Jm p 1 β dx x p •
On the other hand, we have

1I Jn p C(p) = β an 1 x µ([0, x] ∩ J n ) p dx + µ(J n ) p 1 β dx x p ,
and since a n → β < 1, we easily obtain

lim n→+∞ µ(J n ) 1 I Jn C(p) = 1 β dx x p -1 p .
Hence there exists n 0 ∈ N such that for any m > n ≥ n 0 we have

T ψ (f n ) -T ψ (f m ) C(p) ≥ (2 -ε) ψ ∞ -ε .
This holds for any ε > 0 and Lemma 3.4 gives T ψ e ≥ ψ ∞ . This concludes the proof when p is finite. Assume now that p = +∞ and fix again two integers n, m with n < m,

T ψ (f n ) -T ψ (f m ) C(∞) = sup x∈(0,1] 1 x x 0 |ψ(t)|. 1 I Jn (t) 1 I Jn - 1 I Jm (t) 1 I Jm dt ≥ ψ ∞ -ε sup x∈(0,1) 1 x x 0 1 I Jn (t) 1 I Jn + 1 I Jm (t) 1 I Jm dt.
For any k ∈ N, the set J k satisfies inf(J k ) ≥ a k , and this gives

1I J k C(∞) ≤ 1 a k µ(J k ).
Thus, we get

T ψ (f n ) -T ψ (f m ) C(∞) ≥ ( ψ ∞ -ε) 1 a m+1 am+1 0 1 I Jn (t) 1 I Jn + 1 I Jm (t) 1 I Jm dt = ( ψ ∞ -ε) 1 a m+1 µ(J n ) 1 I Jn + µ(J m ) 1 I Jm ≥ ( ψ ∞ -ε) a m + a n a m+1 •
As m, n → +∞ with n < m, we have a n , a m , a m+1 → β > 0. Hence, there exists n 0 ∈ N such that the sequence (T (f n )) n≥n0 is (2 -ε)( ψ ∞ -ε)-separated, and we deduce the lower estimate by applying Lemma 3. 

1 x x 0 |f n k (t) -f (t)|.|ψ(t)|dt ≤ ψ ∞ f n k -f [0,1-δ] + ψ [1-δ,1] sup x∈[1-δ,1] 1 x x 0 |f n k (t) -f (t)|dt ≤ ψ ∞ f n k -f [0,1-δ] + ε f n k -f C(∞)
Since (f n k ) converges uniformly to f on the compact set [0, 1 -δ] and both f n k and f have norm less than 1, we obtain as |ψ(t)| ≤ ε when t ≥ 1 -δ. On the other hand, for any x ≤ 1 -δ, we have

1 x x 0 f n k (t) -f (t) .|ψ(t)|dt ≤ ψ ∞ f n k -f [0,1-δ] .
Using the estimate (A + B) p ≤ 2 p (A p + B p ) for A, B ≥ 0, we find

T ψ (f n k ) -T ψ (f ) p C(p) ≤ ψ p ∞ f n k -f p [0,1-δ] 1 + 2 p δ (1 -δ) p + 2 p ε p 1 1-δ 1 x x 1-δ |f n k -f |dt p dx ≤ C ψ ∞ . f n k -f [0,1-δ] + 2 p+1 ε p .
Since f n k -f [0,1-δ] → 0 when k → +∞, we deduce that T ψ (f n k ) → T ψ (f ) in Ces p when k → +∞ and hence T ψ,Λ is compact on M C(p) Λ .

Note that the assumption on ψ in Theorem 5.3 is satisfied if ψ is continuous at the point 1 and satisfies ψ(1) = 0. is normalized, and each function ϕ k is concentrated on the interval J k in the following sense: if a < b ≤ α k , we have when n, m → +∞ with n < m, and we deduce the lower estimate for T ψ,Λ e .

  of a sequence of Müntz polynomials, we have that Γ(f ) ∈ M p Λ . By the Clarkson-Erdös theorem in L p (resp. in C) (see for instance [BE, E.1 p. 311]), we know that there exists a sequence (b n ) ∈ C which satisfies lim sup |b n | 1 λn ≤ 1, and that ∀x ∈ [0, 1), Γ(f )(x) = n b n x λn .

  First, we prove (i). The operator Γ Λ C(p) is clearly well defined and bounded. We have Γ Λ C(p) e ≤ Γ Λ C(p) ≤ Γ C(p) ≤ 1. Let us denote χ p : M Cesp Λ

,

  since n |b n |t λn ∈ M (Λ). On the other hand, as Γ(f ) ∈ M (Λfind the claimed estimates. In particular, the operator Γ Λ C(p) is oneto-one, with a closed range. Since ΓΛ C(p) (M (Λ)) = M (Λ),it has a dense range in M p Λ and therefore Γ Λ C(p) is an isomorphism. Remark 4.10. Note that the Gurariy-Macaev theorem in L 1 and Remark 2.6 imply that M Ces∞ Λ is isomorphic to 1 (in the case where Λ is lacunary)constants depend only on Λ. Moreover, even in the lacunary case, Γ cannot be an isomorphism between M Ces∞ Λ and M ∞ Λ since the spaces are not isomorphic. A natural question that arises in this context: Is Γ an isomorphism between M Cesp Λ and M p Λ for any Müntz sequence Λ and any p ∈ [1, +∞)?5 Multiplication operators on Cesàro function spacesIn this section, we study the compactness and compute the essential norm of the multiplication operator T ψ : f → f ψ on the Cesàro function spaces, for a measurable bounded function ψ on [0, 1]. We also consider its restriction to the Müntz-Cesàro space. The starting point in this part is the following result: Proposition 5.1. [AMR, Theorem 2.1] Let p ∈ [1, +∞] and assume that ψ is a measurable function on [0, 1]. Then the following are equivalent: (i) The multiplication operator T ψ : Ces p → Ces p , f → f ψ is well defined.(ii) The operator T ψ is bounded.(iii) The function ψ is essentially bounded on [0, 1].

→

  4. Now we are interested in the restriction of the multiplication operators to the Müntz subspaces of Ces p . Lemma 5.3. Let p ∈ [1, +∞], Λ = (λ n ) n be a sequence satisfying the Müntz and gap conditions, ψ ∈ L ∞ be a function such that lim a→1 ψ1 I [a,1] ∞ = 0. Then the restriction of the multiplication operator to the Müntz-Cesàro space T ψ,Λ : M Cesp Λ Ces p defined by T ψ (f ) = f ψ is compact. Proof. Let (f n ) n be a sequence in the unit ball of M Cesp Λand ε > 0. Since ψ is continuous and ψ(1) = 0, there exists δ ∈ (0, 1 2 ) such that |ψ(t)| ≤ ε for almost every t ∈ [1 -δ, 1]. By Corollary 2.9, there exist a function f in the unit ball of Ces p and a subsequence (f n k ) k that converges uniformly to f on [0, 1 -δ]. Assume first that p = +∞, then we haveT ψ (f n k ) -T ψ (f ) C(∞)

  lim k→∞ T ψ (f n k ) -T ψ (f ) C(∞) ≤ 2ε, and so T ψ,Λ is a compact operator on M C(∞) Λ . Assume now that p is finite, we have T ψ (f n k ) -T ψ (f )

  t)dt = b γ k +1 -a γ k +1 (pγ k + 1) k → +∞. On the other hand, if β k ≤ c < d, we write

  t)dt = d γ k +1 -c γ k +1 (pγ k + 1) 1 p ≤ 1 -β γ k +1 k (pγ k + 1) 1 p ≤ (pγ k + 1) 1 p (γ k + 1) 2 → 0, when k → +∞.Here, we use the estimate 1 -exp(-u) ≤ u when u ∈ (0, 1). We also haveϕ k (α k ) = (pγ k + 1) k → +∞.We define ε k to be the maximum between these four quantities. Clearly (ε k ) k tends to 0 when k → +∞. Therefore, for any k ∈ N, k → +∞. Now we fix n 0 such that α n0 ≥ 1 -δ. Then for any m > n ≥ n 0 we haveT ψ (ϕ n ) -T ψ (ϕ m )

  • J p , where J p : L p → Ces p is the formal inclusion of L p in Ces p . It is easy to see that this factorization implies Γ p e ≤ Γ C(p) e J p . Using the Hardy inequality ([HLP, Th. 327]) and Theorem 4.1, we obtain the estimate p ≤ p Γ C(p) e , and thus we get (i). Following the same steps, we can treat the sequential case by applying Theorem 4.2 and we obtain (ii). For the point (iii), we clearly have Γ C(1) e,w ≤ Γ C(1) e ≤ Γ C(1) ≤ 1.
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Proof. For any n ∈ N, we let ψ n = ψ(t)f n (t) where

is a continuous function with f n (1) = 0. Since ψ n (1) = 0, we know from Lemma 5.3 that T ψn,Λ is compact for any n. Hence,

as ψ is continuous at 1. To get the lower estimate, we will apply Lemma 3.4. For this, we let ε > 0. Since ψ is continuous at 1, there exists δ ∈ (0, 1) such that for [START_REF] Alam | A Müntz space having no complement in L 1[END_REF]Lemma 3.1] for the polynomials p(x) = q(x) = x, there exists n 0 ∈ N such that

for any m > n ≥ n 0 . One can also check this estimate by a straightforward computation of ϕ n -ϕ m 1 , using the assumption γn+1 γn → +∞ when n → +∞. We get

for any ε > 0, and therefore we deduce T ψ,Λ = |ψ(1)| in this case. Assume now that p is finite. We will follow the method of the proof of [START_REF] Gaillard | Asymptotic isometry for lacunary Müntz spaces in extreme cases[END_REF]. Let γ = (γ n ) n∈N be a subsequence of Λ which satisfies ∀n ∈ N, γ n+1 + 1 ≥ γ n + 1 6 .

We set a sequence of disjoints intervals J k = (α k , β k ) with

The numbers α k , β k satisfy for any k ∈ N, α k ≤ β k ≤ α k+1 ≤ β k+1 ≤ • • • . For k ∈ N, we define ϕ k (t) = (γ n + 1)(pγ n + 1) 1/p t γ k . The sequence (ϕ k ) k ∈ M C(p) Λ