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Abstract 

The existing stock of institutional buildings constructed before current thermal regulations is known to be high 

energy-consuming. In several cases, they contribute to a large share in local authorities’ expenses, especially 

for those dedicated to education and research. These high consumption levels are due in general to low thermal 

regulations requirements and to the diversity of occupants, occupancy profiles and used equipment. We hereby 

report on a comparative study of the energy consumption of three campus buildings covering more than 

50,000 m² useful ground area and located in Paris region. Used data were collected during more than three 

years between 2014 and 2017 and at different time steps, from yearly down to a 10-minute time step. Statistical 

analysis tools are used, to identify the main energy drivers and their relative weight in the overall energy 

consumption for instance. The impact of different thermal regulations is clearly assessed through a post 

occupancy study. Together with equipment, occupancy is shown to be the main electric energy consumption 

driver. The introduced tools lay the ground for a non-intrusive method for large tertiary buildings power demand 

curves decomposition and reconstruction.  

Keywords: higher educational building, heat and electric consumption, positive energy building, statistical 

analysis, load curve  

Nomenclature 

AHU: Air Handling Unit 

B1, B2, B3: respectively building 1, 2 and 3 

BEM: Building Energy Model 

HDD: Heating Degree Day 

HDH: Heating Degree Hour 

IAQ: Indoor Air Quality 

IEQ: Indoor Environment Quality 

LC: load curve 

kWhpe/MWhpe: kWh/MWh of primary energy 

OAT: Outdoor Air Temperature 

RMSE: Root Mean Square Error 

TR: Thermal Regulation 

1. Introduction 

Since the international climate summit COP21 successfully held in Paris in 2015, extensive commitments have 

been made regarding energy efficiency and carbon emissions. At the European level, the Energy Efficiency 



Directive (EED) and the European Performance of Buildings Directive (EPBD) have revised in November 2016 

their energy efficiency target in 2030 to 30% of reduction compared to 2007 reference instead of 27% [1]. The 

main way to reach this goal, according to these directives, is to improve energy efficiency in the building sector, 

which accounts for 40% of final energy consumption in EU countries. According to the directive, 75% of total 

EU buildings are to be renovated and the annual renovation rate is 0.4-1.2% under current pace. It should 

be accelerated by ongoing reforms which promote the cost-effective renovation of existing buildings. In addition, 

in order to support the development of new data-based energy services such as real-time monitoring and 

assessment of buildings energy efficiency, demand response and dynamic pricing, the European legislation 

decrees the generalization of energy consumption smart metering, for both electricity and natural gas. For 

electricity, an 80% coverage rate is targeted by 2020[2].     

At the French level, the evolution of the buildings energy efficiency regulations and market, is completely 

consistent with the European trend. Indeed, sustained efforts have been made in the building sector in France 

during the past decade. In January 2012, a government decree was issued making energy audit compulsory for 

collective residential dwellings with more than 50 apartments[3]. In November 2014, the same obligations were 

extended to commercial or industrial buildings for companies over 250 employees. The energy audit is now 

compulsory every four-years period[4]. In 2015, the Law on Energy Transition for Green Growth[5] has been 

adopted. This law targets a 50% decrease in national energy consumption by 2050 and consequent retro-fitting 

actions to the building sector: starting from public buildings energy consumption to commercial buildings, then 

collective and individual dwellings. Moreover, the implementation of smart energy meters such as Linky[6,7] for 

electricity and Gazpar[8,9] for gas is currently being held, with a target of 100% coverage by 2021 and 2022, 

respectively. These energy meters provide real-time dynamic consumption data with a sub-hourly time step 

which offer large opportunities for optimization.  

In spite of all positive policies mentioned above, efficient actions are still hardly implemented for all buildings. 

Several reasons may explain these difficulties: i) the complexity and diversity of buildings together with their 

uses and related impacts on the energy consumption, ii) different possible levels of energy audits to fulfil legal 

requirements, and iii) financial support for deep retrofitting with long-term return. Firstly, the occupancy and 

uses have a significant influence on the total energy consumption[10,11] in a building. This behavioural impact 

is usually not accounted for in a simple walk-around audit protocol, thus, not covered by the recommendations. 

Then, among the three levels of energy audit defined by ASHRAE standard (ANSI/ASHRAE/IESNA 100-2006)[12], 

walk-through visit, short-term measurement/survey and long-term monitoring/analyses, the collected 

information accuracy can be very different. Concerned building managers often feel confused facing this 

complexity and they end up choosing the simplest audit protocol. Finally, as the audit recommendations not only 

include non-retrofitting but also retrofitting measures[13], the long-term payback time makes decision-making 

hard and long. For instance, for a high-tech company with a 10% annual return on investment and a very short-



term development plan (5 to 10 years), a deep renovation that requires 25-years payback time is hard to be 

made into reality. 

In the present work, we report on a comparative analysis of the energy consumption of three higher education 

buildings located on the same campus in Paris region, France. The three buildings have similar uses, mainly 

education and research, but were built at three different periods, with a 10-year shift starting from 1987. 

Consequently, they were built under three different national energy regulations. The present study targets the 

assessment of the effect of these regulations on the buildings energy efficiency through a global analysis of 

yearly and monthly energy consumptions and the use of statistical tools to characterize the dynamics of the 

power demand. 

The present paper is organized as follows: first, the main methods and results of a recent study we conducted 

on a building of the same campus are briefly reminded (Section 2). Second, the methods used as well as details 

concerning the three studied buildings are described (Section 3). Then, the obtained results are presented and 

discussed (Section 4). A particular attention is paid to the discussion of the implemented methods and their 

limits. Paths for further developments are also suggested.

2. Context and motivation 

We recently conducted a detailed energy audit and a comprehensive comfort assessment on a university building 

located in Paris region, France. The campaign lasted for six months and the case study results have been reported 

in [14]. In this section, we remind the main results and limitations of this previous study which strongly motivate 

the present work.  

The audit protocol that was used is different from conventional audit approaches, in that both building energy 

diagnostic and occupancy comfort survey were conducted in detail. On one hand, long-term measurements have 

been performed on the energy distribution system, gas boilers and ventilation system. A detailed Building Energy 

Model (BEM) based on TRNSYS was also developed. We used heating degree-day (HDD) method to evaluate 

the heat consumption and TRNSYS simulations to estimate potential energy savings of different retro-fitting 

measures. On the other hand, quantitative measurements and subjective questionnaires were used to evaluate 

the IAQ (indoor air quality) comfort level in terms of ambient and radiative temperature, humidity, and CO2 level. 

Moreover, the ventilation effectiveness test by gas tracer and air tightness test by blower door were implemented. 

Several results were obtained revealing the energy consuming character of the building and savings potential of 

retrofitting measures. Regarding energy consumption, the studied building, with its 30,580 m² useful ground 

surface built in 1987, consumed 480 kWh/(m²∙yr) of primary energy from May 2014 to April 2015. This value is 

roughly twice that of primary schools reported by the city of Paris[15]. It is probably related to special activities 

in research and lab training in higher education buildings. Indeed, electricity consumption share of the studied 

building was 132 kWh/(m²∙yr) during the considered period. Regarding comfort evaluation, both on-site 

measurements and collected questionnaires revealed thermal and air quality discomfort. In classrooms, 



overheating frequently appears which is shown by thermal comfort indices PMV (Predicted Mean Vote). In staff 

offices, the overheating is less frequent. One of the reasons is the occupants’ behaviours, with frequent windows 

opening for instance (65% responses according to the survey during heating season in January). Thus, potential 

energy savings could be achieved through better air handling units (AHU) control and lower heating supply. 

Finally, in terms of ventilation and air quality, a peak CO2 concentration of 2400 ppm (above the outdoor 

concentration which is around 400 ppm) was recorded in classrooms suggesting insufficient air flow in these 

areas with respect to the high occupancy during weekdays. 

A main conclusion of the detailed building energy efficiency and comfort study is the understanding of the 

complexity of such a process. First, the audit protocol requires not only a large number of skills in 

instrumentation, comfort survey, BEM but also significant manpower and equipment. Such a detailed audit 

campaign can be hardly generalised and applied to all buildings. Secondly, the complexity of a building energy 

system, coupled to a large diversity of activities and occupancy profiles, makes standard audit retrofitting 

recommendations less credible. Even with the help of BEM, large uncertainties remain, regarding phenomena 

such as the coupling of envelope air tightness and window opening for instance. The former is a pure physical 

phenomenon and the latter is highly related to human behaviours. Finally, the audit of an occupied building 

should not interfere with its normal operation. A trade-off should be made in this sense between the accuracy 

of data collection and the intrusive character of the study.  

In spite of the difficulties of such auditing processes, educational buildings i.e. school buildings and university 

campuses are particularly concerned by the issues of energy efficiency and IEQ. They require a particular 

attention because of their specific character compared to other buildings. In fact, educational buildings have 

specific occupants, activities and occupancy patterns. They can take the lead as energy efficiency demonstrators, 

not only for their energy consumption weight, but also for their educational role. In France, and in the city of 

Paris in particular, schools account for 38 % of the municipal facilities energy consumption[15]. Consequently, a 

large program for better energy efficiency in these facilities has been launched in 2008 targeting a decrease of 

their consumption by 30 %. The program includes more than 600 school buildings built between 1880 and 

2012[15]. Similar assessments have been made in other countries and educational buildings have been driving 

increasing attention in recent years[16–19]. More generally, extensive reviews on energy efficiency assessment 

in non-residential buildings in general, and educational buildings in particular, can be found in [20,21]. 

For this reason, we target the generalization of the previously conducted study[14] on other campus buildings 

of different generations, hence ruled by different thermal regulations (TR), to assess the dependency of the 

obtained conclusions on the buildings construction years and usages. Due to the complexity of the previous 

study protocol and the encountered difficulties, we attempt a new and less intrusive approach combining 

historical data and statistical processing techniques which do not require any additional instrumentation. The 

success of this approach may path the way to the generalization of the methods used to implement fast and 

non-intrusive audits at a larger scale.   



3. Methods 

In the present study, we consider 3 buildings located on the same university campus. We previously conducted 

an extensive instrumentation of one of the three buildings to accurately characterize the IEQ, the building electric 

and heat consumption and the built thermal properties[14]. The collected data were used to calibrate a BEM 

that then helped to estimate the energy savings to be expected from different retrofitting actions. An extensive 

comfort assessment campaign was also held. This previous study highlighted the difficulty and the high cost of 

accurate data collection, in terms of equipment, time and man power. 

Consequently, a different strategy is adopted in the present work: we avoid any ad hoc instrumentation.  To do 

this, we mainly rely on data extraction from existing easily-accessible material and sources, to provide an efficient 

and low-cost energy efficiency characterization method. Used data include weather conditions, occupancy 

profiles, annual and monthly total energy consumption through bills, and detailed energy consumption at 10-

minute time-step provided by built in smart meters. The development of methods to analyse the latter is of 

paramount importance in the context of large dissemination of smart energy meters described above. For this 

purpose, different tools are implemented[22–24]. Analysis criteria are suggested and used for the different case 

studies comparison.  

3.1.  Case study and methods 

While in our recent work[14] we focused on a 30,580 m² building, the present one covers a total useful surface 

of more than 50,000 m². The different buildings of the case study as well as the used methods are presented in 

the following paragraphs. First, the main differences between the previously used methods[14] and the currently 

implemented one are summarized in Table 1. Then, the considered campus buildings are presented. Finally, the 

implemented method to carry on the present work is described in detail. 

 Previous study  Current study  

Context 
One university building 

(B1) 

 Three university buildings nearby on the same 

campus (B1/B2/B3) 

Method 

Detailed audit approach with on-site intervention 

 Bills analyses, meteorological data 

 Instrumentation (heating & ventilation) 

 Comfort (measurement & questionnaires) 

 TRNSYS BEM (Building Energy Modelling) 

Data analyses approach (without intervention) 

 Aggregated electric power demand (10-

minute time-step) 
 Climate data 

 Hourly occupancy data collection & 

analysis 

 Statistical analysis 



Results 

Retrofitting recommendations 

 Heating substation regulation  

 Individual ventilation control by zones 

(classroom vs. office) 

 Individual heating control  

Behavioral and building system identification  

 Energy saving potential in non-occupied 

periods  

 Building energy behavior analysis 

 Electricity demand by occupants and by 

degree-day 
 Demand diversity factor of the three 

buildings system 

Table 1 : Comparison between earlier audit campaign[14] and current study. 

3.2. Buildings properties 

The three buildings selected for the study are located on a French campus in Paris area. They will be respectively 

referred to as B1, B2 and B3 in the following. The numbering is assigned according to a decreasing useful surface 

area. Different technical information regarding the studied buildings such as the year of construction, 

architectural parameters, energy systems as well as the occupancy are given in Table 2. The choice of the studied 

sample among all the campus buildings is mainly motivated by their construction year difference with regard to 

the consecutive French thermal regulations (TR) of 1988, 2000 and 2005. More specifically, B1 was constructed 

in 1987, before the TR 1988, B2 between TR 1988 and TR 2000 while B3 was delivered under TR 2005. 

This main difference enables the identification of the effect of the consecutive TRs on the energy consumption 

of tertiary buildings in general, and higher education buildings in particular.   

Characteristics Building 1 Building 2 Building 3 

Teaching and research activity 
Science and 

Technology, R&D 
Art and Humanities 

Science and 

Technology, R&D 

Built 

Year of construction 1987 1999 2013 

Thermal regulation RT 1982 RT 1988 RT 2005 

Net floor area (m²) 30,580 10,343 5,178 

Outer surface (m²) 35,728 9,989 7,546 

Floors Ground Floor + 4 Ground Floor + 5 Ground Floor + 5 

Heated volume (m3) 144,173 51,274 26,195 

Energy 

system 

Electricity  
900 kW subscribed 

from grid 

250 kW subscribed 

from grid 

PV panels + grid 

subscription 

Heating 
Gas furnace 

(2x1,100 kW) 

Gas furnace 

(2x540kW) 

Geothermal Heat 

Pump system 

Cooling / refreshment 
Refrigeration units 

(lecture hall only) 

Refrigeration units + 

geothermal energy 

system 

Ventilation Central ventilation with heat recovery  



Occupancy 

Maximum number of 

occupants 

simultaneously 

1,268 625 Variable, up to 300  

Table 2 : characteristics of the three studied buildings. 

It is worth mentioning that, in addition to its large surface area and its early construction year, B1 exhibits a 

main difference with B2 and B3. It provides additional specific equipment which can significantly affect the overall 

energy consumption. Such equipment mainly includes a gym of significant surface area with large mechanical 

air renewal rate, a canteen, several computer labs and server rooms with cooling needs, and a 600m² R&D 

cleanroom facility with very large air renewal rate and humidity control needs. The additional induced energy 

consumption should be taken into account in the analysis.   

3.3. Energy load and consumption 

Annual and monthly energy consumption data, for both electricity and gas (for B1 and B2, gas is used for 

heating. For B3, only electricity is used), were retrieved from the energy bills for three consecutive years from 

2014 to 2016. For B3, which is a positive energy building that produces an equivalent amount of its annual 

energy consumption, its photovoltaic solar electricity production is also provided. Such data are used to calculate 

usual preliminary ratios such as the consumption per surface area unit or the consumption per heating degree 

days (HDD). It enables a global characterization of the buildings and the identification of the largest opportunities 

of energy savings. 

More detailed electricity consumption with a time-step of 10 minutes were collected for B1 and B2 during 6 

months, from January to June 2017 (additional data are available for B1 starting from December 2014). Those 

data are used to perform various statistical analyses and enable the identification of common electricity 

consumption profiles as well as their dependency to the occupancy profiles. They can also enable deeper 

understanding of the electric energy demand through a load disaggregation for example[25–27]. In our case, 

those data contain averaged electric energy load over a 10-minute time-step. They are directly and freely 

provided by the French national grid operator to clients with a subscribed power larger than 36 kVA. Some third 

part companies also offer remote energy consumption data retrieval and analysis tools. The analysis of such 

data for large tertiary buildings is challenging due to the large time-step and high aggregation rate. Nevertheless, 

it offers several opportunities since the data acquisition is straightforward and nonintrusive. Since no additional 

instrumentation is required, the data collection is nearly zero-cost. More opportunities will arise in the near future 

with the large roll-out and dissemination of smart electricity meters with similar time steps[2] in France.              

3.4. Occupancy 

As it has been extensively shown, occupancy is a critical information related to both energy consumption and 

IEQ (indoor environment quality)[28,29]. Consequently, it is necessary to collect occupancy data for the three 

studied buildings, to conduct appropriately analyse and compare energy consumptions.  



Several methods have been reported to measure and model occupancy profiles in institutional buildings[30]. In 

this study, occupancy information, similarly to the other used data, is retrieved from existing data sources without 

resorting to additional instrumentation. Therefore, for B1 and B2 which were selected for a detailed analysis of 

energy consumption dynamics, courses planning and intended attendance of occupants are used. The schedule 

of courses is prepared for the whole year or semester by the institutions staff. For each time slot, each group of 

students, with a pre-defined number of persons, is assigned to a classroom. The total number of students is 

obtained by summing up the number of students of the different groups appearing in the schedule for each time 

slot. In addition to the students’ population, faculties together with researchers and school staff are taken into 

account. Faculty and staff are assumed to be present during working hours. Their number is predefined.  

Also, as used data are not real-time measured occupancy, an absence rate between 0 and 1 is manually applied 

for each course based on if they have mandatory attendance or not. Thus, examinations and classroom courses 

including lectures, tutorial classes and projects have an absence rate of 0 (meaning 100% attendance) since all 

students are expected to be present. However, lectures conducted in auditoriums, with higher theoretical but 

non-compulsory attendance, are given an absence rate of 0.2, based on an observation of the attendance rates 

of the different lectures. Sick-leaves and other absence cases related to personal matters are not accounted for 

due to the unavailability of such information for privacy reasons. 

The occupancy profile is obtained by summing up the total number of occupants at a specific time slot of the 

day. The time-step of occupancy data is of 30 minutes for B1 and 60 minutes for B2. When courses are not 

planned and outside working hours – inter alia for nights and Sundays – the school is considered empty 

(occupancy is set to 0). Holidays are processed depending on the building and the time of the year: a distinction 

is made between spring/fall breaks, and winter/summer breaks since the whole building is closed for the latter. 

3.5. Data analysis 

The acquired data series, mainly of electricity consumption, occupancy and weather conditions, were processed 

to extract different indicators and key features of the studied buildings’ energy consumption profiles. Data 

processing is mainly performed using the statistical computing software R [31]. In our case, data analysis is 

quite challenging due to the large sampling time-step (10 minutes) and large aggregation level (numerous 

identical and different appliances: more than 1,000 personal computers, dozens of AHU and pumps, lighting 

equipment for more than 350 offices and teaching rooms, company canteen equipment, etc.). Indeed, commonly 

used methods are generally applied to either higher data sampling rates which enables appliance signature 

identification[32] or smaller samples and buildings. For the latter, there are fewer combinatorial possibilities, 

which simplifies the problem complexity [25,33]. Consequently, cross correlations between different variables, 

as well as univariate and multivariate regression analysis, are first performed to identify the main energy 

consumption drivers of the different buildings[34]. Then, we use autocorrelations with different time lags to 

identify typical daily and weekly electric consumption profiles. Finally, seasonal-trend decompositions using Loess 

(STL) are applied to perform preliminary decompositions of the overall consumption profiles[23]. An STL 



decomposition provides three components which are sub-time series: a trend component that reflects the long-

term progression of the series, a seasonal component reflecting identical seasonal variations over the time series 

with a fixed period, and an irregular component, or “noise”, covering random irregular events[24]. We assume 

a simple additive model of the form: 

𝐿𝐶(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑅(𝑡) 

where LC, T, S and R figure the total load curve (LC), the trend, the seasonal component and the residuals, 

respectively. Such tool can be considered as a starting point to load decomposition and disaggregation, even 

though it does not provide accurate information on the specific appliances that contribute to the LC at each time 

step.  

4. Results and discussion 

4.1. Global overview of energy consumption 

Following European standards EN 16247-1:2012 [35], EN 16247-2:2012 [36] and EN 15603:2008 [37], we 

collected historical energy consumptions for the three buildings. Based on the French national Primary Energy 

Factor(PEF), electricity consumptions are multiplied by 2.58 to obtain equivalent primary energy need.  

4.1.1. Annual primary energy consumption 

At annual scale, primary energy consumptions of the three buildings exhibit large differences due to their 

different sizes and occupancy profiles, as shown in Figure 1-a. The building B1, with a 30,580 m2 useful surface 

and a maximal number of 1,268 occupants, has an overall energy consumption of 14.0 to 16.8 MWhpe between 

2014 and 2016. These values are around six times larger than those of B2 (2.5 to 3.2 MWhpe during the same 

period), followed by a much lower consumption for the positive energy building B3 (in average, only 0.3 MWhpe 

per year). It is worth noting that in terms of useful surface, B1 holds three times larger space than B2 (30,580 

m2 against 10,343 m2) and six times more than B3 (5,178 m2). Accounting for the doubled occupancy of B1 

compared with B2, we can approximately consider that the unit primary energy consumption per m2 and per 

occupant is equivalent between the two larger buildings. 

Both B1 and B2’s heating needs are provided by natural gas furnaces. In average, the annual heating demand 

in B1 is 3.6-4.7 MWh during three heating seasons 2014-2016, with a peak consumption for the heating season 

of 2015. Compared with B1, B2 used 0.9 to 1.5 MWh per year but its largest consumption value occurred in 

2016. Since the two buildings heating systems are operated under the same weather conditions, the discrepancy 

can be explained by system management strategies changes. Collected information from energy systems 

managers revealed a change in B1 energy management policy between 2015 and 2016. More precisely, the 

energy facility management service is contracted in 2015 by a performance engagement, i.e., progressive heating 

savings are guaranteed for 3 years. Since the new contract started in 2015, considered as the reference year, 



the energy system management becomes savings-oriented starting from 2016. On the other hand, B2 energy 

management remains unchanged, with the same dependency to weather conditions.   

Finally, by dividing the energy consumption data by the buildings’ useful surfaces, we obtain unitary 

consumptions which are shown in Figure 1-b. B1 is still the largest overall primary energy consumer. Its annual 

consumption is around 457-517 kWhpe/(m2·yr), 117-154 kWhpe/(m2·yr) for heating and 322-363 kWhpe/(m2·yr) 

for specific and non-specific electricity uses. Moreover, the electricity consumption has less yearly fluctuations 

than that of gas demand which is more sensitive to yearly HDD variations. From gas demand trends for B1 and 

B2 from 2014 to 2016, we observe the continued increase for B2 and a reduced demand for B1 in 2016. Energy 

management is thus the cause of a reduced gas bill in the case of B1. Finally, compared with B1 and B2, B3 has 

very low energy consumption: its overall energy demand is 55-64 kWhpe/(m2·yr). This value is very close to the 

50 kWhpe/(m2·yr) required by most recent TR in France, i.e., the TR 2012[38]. It should be noted that TR cover 

specific consumptions only (heating, DHW Domestic Hot Water, Ventilation, Refrigeration and Lighting) while the 

presented data of B3 cover its overall consumption, of both occupants and the building energy system.  

  

(a) (b) 
Figure 1 : Primary energy consumption (electricity and gas) of the three buildings in 2016, gross (a) and per surface area unit (b). For 
B3, heat is provided by a ground heat pump. Electricity consumption includes both heat and non-specific electricity consumption. 

4.1.2. Monthly 

Down to a monthly time step, the primary energy consumed in heating and electricity of B1 and B2 are shown 

in Figure 2. Regarding B3, equipped with PV panels which electricity production is entirely injected into the grid, 

its monthly solar electricity production is also plotted (Figure 2-c, green colour). Moreover, B3 is heated by a 

ground source heat pump system. Consequently, winter heating supply is accounted for in the electric demand.  

For B1 and B2, a correlation between electricity and gas demand during heating seasons is observed. For 

example, in January and December, both buildings have yearly electricity and gas consumption peaks. This can 

be explained by two factors: i) non-specific electricity consumption (related to energy systems such as air 

handling units, fans, pumps, etc.) and ii) possible usage of additional individual electric heaters. The latter is 

often observed in office rooms during peak cold days. As shown in a previous indoor air quality study[14], 

according to in situ measurements and to occupants answers to questionnaires, the particular usage of the 



higher education building, i.e. a mixed usage of classrooms and office rooms, makes old building systems non-

adapted to provide individual comfort: classrooms are overheated due to high occupants’ heat contribution, and 

office rooms are under-heated for staff members. The lack of individual control possibilities on heating equipment 

in old buildings is a major cause of discomfort or non-efficient energy consumption.   

  

(a) (b) 

 

 

(c) 
Figure 2 : Monthly primary energy balance of the three buildings in 2016 – B1 (a), B2 (b), B3 (c). 

Comparing B1 and B2 for summer periods, it appears that the two institutions have different closing periods. For 

B1, July and August are two very low occupancy months and the electricity consumption is thus the lowest in 

the year. While in the case of B2, June and July are two lowest consumption months. This might provide an 

opportunity for an interconnected grid scheme between the two buildings, instead of two individual electricity 

contracts. Interconnected grid with only one electricity contract may help to lower the electricity bills by diversity 

factor optimization. This opportunity can be assessed through shorter time-step (10 minutes) electricity demand 

curves analysis presented in the following sections.  

Finally, the green building B3 holds the most balanced monthly electricity demand between 18 and 27 MWhpe 

all the year round. This is partially due to a better insulation of the building’s envelope which results in low 

heating needs.  Moreover, heating is supplied by a reversible heat pump which ensures the IEQ while keeping a 

low electricity consumption. The relative weight in total energy consumption of occupancy-related usages is thus 

more important for B3. Regarding its PV production, it can be noticed that most monthly consumption is larger 

than the production for July when PV production is at its highest value. Switching from grid injection to self-

consumption can be considered. 



4.2. Buildings occupancy 

For both B1 and B2, occupancy was extracted from courses schedule provided with half-hour time steps. For B1, 

the schedule reports the students group, course and classroom number for each slot and for each working day. 

The resulting occupancy varies from one day to another. On the contrary, a weekly schedule is provided for B2 

for the whole semester. The resulting occupancy profile remains constant from one week to another. 

Consequently, the occupancy profile of B1 exhibits larger amplitude variations all the year round, up to 1,268 

occupants, compared to that of B2, with a maximum of 625 occupant and low variation around this maximum. 

In both schedules, several time slots are dedicated to self-managed projects with no binding attendance. Such 

slots induce an uncertainty on the calculated occupancy. It is also the case for staff occupancy calculation: staff 

members are assumed present during working days. Finally, a main difference is observed between B1 and B2 

during school breaks: B1 is open with reduced occupancy, mainly researchers and staff, while B2 is completely 

closed with zero occupancy. 

4.3. Energy consumption dynamics 

In this section, the energy consumption dynamics is described and compared for the two largest buildings: B1 

and B2. The main goal is to compare the sensitivity of the consumption to different energy drivers for two similar 

buildings of two consecutive generations (B1 was built before 1988 French thermal regulation while B2 was built 

under this regulation). In addition, these two buildings have the largest energy consumptions among the 

considered sample of three buildings. Hence, they offer the largest opportunities for energy efficiency 

improvements. 

In the following sections, we mainly focus on electric energy consumption. Data have been collected for 6 months 

with a 10-minute time-step. We show in Figure 3 the LC of the two buildings during one week of January 2017 

as well as their occupancy profiles and OAT. Occupancy data were determined according to the previously 

described method and weather data obtained from the nearest airport weather station, Le Bourget [39]. 

 



Figure 3 : Electric load, occupation and OAT for B1 (up) and B2 (down), for a typical week from Jan. 16th to Jan. 22nd, 2017. 

We observe clear dependencies between the electric power load and the occupancy on one hand, and the power 

load and the OAT on the other hand. The former is expected to be larger since the heat consumption is more 

OAT-sensitive and both buildings are heated with gas furnaces. Such expectation is also suggested by the profiles 

during the weekend where the LC is flatter, as well as the occupancy, in spite of large variation of OAT. The LC 

of B2 is not completely flat during this specific weekend. This may be due to residual occupancy by students and 

a special event. These correlations are confirmed and quantified by the statistical analysis presented in the 

following paragraphs.     

4.3.1. Statistical analysis and energy drivers’ identification 

Correlation coefficients are calculated for both B1 and B2, between hourly power demand and both occupancy 

and OAT. The linear correlation coefficient, ranging from -1 to 1, estimates the strength of the linear relationship 

between two sets of variables. Weak and strong linear relationships are characterized by absolute values of the 

correlation coefficients smaller than 0.3 and larger than 0.7, respectively. 

Linear univariate models 

We plot in Figure 4 the distribution of the hourly electric power demand versus the number of occupants and 

the OAT during four months, between January 1st and April 27th, 2017. The plotted dataset can be divided into 

four different sub-sets with respect to possible combinations of the considered parameters (occupancy and OAT): 

heated & occupied, not heated and occupied, heated and not occupied, not heated and not occupied. 

As expected, the electric power demand-occupancy correlation (0.76 and 0.79 for B1 and B2, respectively) is 

larger than power demand-OAT one (0.22 and 0.17 for B1 and B2, respectively). Surprisingly, no significant 

difference in demand-occupancy correlation nor in demand-OAT one is observed between B1 and B2, in spite of 

their 10-year difference.  

 

 
 

(a) (b) 



 

 
 

(c) (d) 
Figure 4 : power demand vs. occupancy (left) and OAT (right) for B1 (top) and B2 (down). The red lines delimit dispersion bands with 
a width of ±1 × 𝑅𝑀𝑆𝐸.  

We also highlight in Figure 4 the dispersion of the measured data by the continuous red lines plotted at ±𝑅𝑀𝑆𝐸 

around the linear regression curve. The RMSE of B1 is 102 kWh and 153 kWh for demand-occupation and 

demand-temperature data, respectively. For B2, the RMSE values are 22 kWh and 35 kWh, respectively. The 

framed bands contain 70% and 62% of the measured data for B1, and 69% and 64% for B2. These values go 

up to 90 % for demand-occupancy and demand-temperature for both B1 and B2 for a ±1.5 × 𝑅𝑀𝑆𝐸 wide 

dispersion band. It is worth noting that contrarily to monthly[40] or even daily consumption-HDD correlation[14], 

hourly correlation is more dispersed with respect to the linear relation between energy consumption and HDH 

(Heating Degrees Hours). This is particularly due to the fact that the hourly occupation related consumption 

dominates the weather related one. In addition, occupancy independent appliances consumption can be 

significant, especially in large buildings with diverse research activities. This dispersion, and the resulting power 

consumption, can be hardly reduced without a power management system that controls equipment turn-off 

behaviour according to a predefined schedule[41].  

Linear multi-variate models 

We simultaneously consider in Figure 5 the two explanatory variables, occupation and OAT. OAT is here taken 

into account through HDH, defined as the difference between indoor reference air temperature, 18°C in this 

case, and OAT. We obtain a model of the form: 

𝐿𝐶 = 𝑎 × 𝑂𝑐𝑐 + 𝑏 × 𝐻𝐷𝐻 + 𝑐 

where 𝑎 and 𝑏, are weight factors of one occupant (𝑂𝑐𝑐) and one HDH, while 𝑐 is the LC baseline. 



   

(a) (b) 
Figure 5 : Multi-variate regression of the electric energy consumption for B1 and B2 between 01/01/2017 to 04/27/2017. 

For both buildings, occupant weight factor 𝑎 is lower than weather weight factor  𝑏. This does not reflect the 

actual weight of occupancy compared to OAT in the electric consumption since 𝑂𝑐𝑐 and 𝐻𝐷𝐷 do not have neither 

the same unit, neither the same variation magnitude. Indeed, for B1 for example, the occupancy ranges between 

0 and 1,268 while HDH ranges between -7°C and 20°C approximatively. Consequently, for maximal occupancy 

and HDH, occupancy and OAT contributions to electric demand are respectively 475 kWh and 25 kWh, i.e. 49 % 

and 3 %. The baseline consumption accounts for the remaining 48 %. Similar trends can be observed for B2 

with 54 % and 10 % for occupancy and HDH, respectively, while the baseline consumption accounts for more 

than one third of the maximal power demand. However, the weight of an occupant of B1 is more than twice that 

of B2. This can be explained by the additional equipment of B1 (canteen, gym, server rooms and specific research 

equipment). On the other hand, the heating needs per HDH for B1 are 50% larger than for B2. This is expected 

because of the 10-year construction time difference. In addition, the constant term of the multi-linear regressions 

is very close to what can be extracted manually from the hourly consumption profiles. Indeed, a calculation of 

the average consumption during night hours leads to a baseline consumption of 410 kWh and 54 kWh for B1 

and B2, respectively. The values provided by the multi-variate regression are 451 kWh and 54 kWh for B1 and 

B2, respectively. Finally, it is worth noting that the relationships obtained in Figure 5 are not perfectly linear. This 

is probably due to a lack of explanatory variables. Other variables such as the scheduling of heavy equipment 

like air handling units, cooling units, and canteen equipment should be considered in future studies. The 

operating status of small but numerous appliances such as computers can also be considered. Such information 

can be easily obtained through a monitoring of the computers network activity. This information is relevant for 

educational buildings heavily equipped with office automation systems. For instance, B1 is equipped with more 

than 1500 desktop computers. In addition to other explanatory variables, autoregressive models, as suggested 

by the large autocorrelation values for short lags shown in Figure 6 and the following paragraph, can improve 

the load curves description.  



4.3.2. Autocorrelations and daily/weekly profile identification 

The goal of the present section is to identify the existence of typical daily load curve profiles for both buildings 

and extract their main features. For this aim, we calculate the auto-correlation functions for hourly consumption 

data series for B1 and B2 with a time lag ranging from 1 hour to 8 days. The results are shown in Figure 6. 

  

(a) (b) 
Figure 6 : daily electric energy consumption autocorrelations with a time lag ranging from one hour to 192 hours (8 days) for B1 (a) 
and B2 (b). Used data were measured from 01/09/2017 to 02/05/2017. 

We observe large auto-correlation values for short lags. For 1 hour, it is almost equal to 1, which is quite 

expectable. We also observe a decreasing but still large auto-correlation coefficient for a one-day lag. This is 

explained by the similarity between weekdays’ profiles and suggests the existence of a typical week day profile. 

The auto-correlation then decreases for larger lags before increasing again for a seven-day lag which suggests 

strong similarities of the LC profiles for the same weekday of consecutive weeks. In the following paragraphs, 

the main features of these profiles are described.     

4.3.3. Load curves decomposition 

This section reports an attempt of the LC decomposition into three components: a trend (T), a seasonal (S) 

effect and a residual (R), as presented in section 3.5. Figure 7 shows a results sample of an STL decomposition 

of the daily electric energy consumption of B1 and B2, with a 10-minute time-step, on March 9th, 2017. The 

curves from top to down are the plots of LC, T, S and R, respectively. 



  

(a) (b) 
Figure 7 : Times series decomposition analysis of the electric energy consumption for B1 (a) & B2 (b), with a 10-minute time-step, 
the day of March 9th, 2017. 

For both buildings, the trend captures main variations of the electric power demand. However, seasonal 

components do not seem to have a trivial physical meaning: on the raw load curve, no such regular events are 

observed. The corresponding power range accounts for 2.0% and 1.7% of the daily minimum power demand 

for B1 and B2, respectively. Therefore, the seasonal component can be considered as negligible. On the other 

hand, for B1, the remainder component provides interesting information. For instance, positive power peaks 

ranging from 25 kW to 106 kW with a similar shape and power increase than the ones on the raw time series 

can be identified. These are known from the previous study on B1[14] to correspond to the triggering of cooling 

units. Their daily electricity consumption is assessed to 459 kWh, then 3.4% of the total daily electricity 

consumption. Finally, for B2 the remainder does not reveal any equipment triggering or specific energy behaviour 

of the building (1 % of the daily electricity consumption). 

Using this LC decomposition, we can extract different trend curves for different periods of the year to observe 

the related change of electric power demand. For B1, a typical week is selected for each month of the year 2015. 

The resulting trend curves are averaged to get a single daily averaged trend curve for each selected week, then 

one curve per month (Figure 8-a). Normalized profiles are also obtained by subtracting the LC baseline to the 

total LC, and dividing by the daily power demand variation magnitude. 

We observe on Figure 8 similar trend profiles for the different months, but varying in terms of electric power 

range depending on the season. There are two exceptions: in August, when the building is unoccupied – but the 

AHU units’ consumption still accounts for around 1.5 MWh per day, then 45 MWh monthly – and February where 

heating needs are maximal, affecting the energy equipment management (15 °C daily HDD in average for the 

considered week). Thus, the main differences between dimensionless profiles of other months can be related to 

energy equipment management. For instance, AHU triggering happens earlier in summer months, at 4:00 am 

instead of 6:00 am in winter. 



  

(a) (b) 
Figure 8 : daily averaged trend curve for B1 (a) resulting from time series decomposition over one typical business week of each month 
in 2015 and the corresponding normalized electricity demand (b). 

The same method is then applied to both B1 and B2 for January-June 2017 for comparison. We observe the 

change of the LC trend in different months, because of both weather and occupation variations, for both B1 and 

B2 (Figure 9-a & c). Dimensionless profiles on Figure 9-b and Figure 9-d show that energy equipment 

management is also changing depending on the time of the year for B1. Contrarily, B2’s normalized trends are 

almost month-independent, suggesting no season-driven energy equipment operation. Also, the occupancy 

profiles shift between the two buildings, previously observed on Figure 4, is confirmed: the electricity demand 

for B2 is temporally shifted by two hours compared to that of B1. 

  

(a) (b) 

  

(c) (d) 
Figure 9 : daily averaged trend curve for B1 (a) and B2 (c) and the corresponding normalized electricity demand (B1: b, B2: d). 



4.4. Discussion and recommendations for future works 

The present work tackles the question of energy consumption of campus buildings, through a comparative study 

of three campus buildings of different generations. The study is mainly based on the analysis of available data, 

without intrusive ad hoc instrumentation, such as electric load curves collected through communicating smart 

meters. The use of such data avoids expensive instrumentation and enables the development of methods to 

take the full benefit of data that will be, in a near future, widely provided by smart meters currently being rolled 

out. 

A global analysis of the three buildings annual and monthly consumptions is helpful to highlight the impact of 

the building construction year and the underlying thermal regulations on the building energy performances. 

The collected electric load curves time series are then analysed through a wide range of statistical tools such as 

univariate and multi-variate linear models, auto-correlations and STL decomposition for energy drivers, and 

typical load profiles identification. The understanding of the load curves dynamics would path the way to 

innovative energy services such as demand response and capacity management. The methods used, although 

being particularly useful in the comparison of different buildings, are still to be improved. One drawback is that 

they do not enable an accurate modelling of the dynamic load curves, with a 10-minute’ time-step. This is mainly 

due to two reasons: the lack of monitored explanatory variables and the large aggregation level of the data 

used. Indeed, only occupation and outdoor air temperature have been used as explanatory variables. Additional 

information about the equipment scheduling and actual operating profiles can be considered. Large 

autocorrelation coefficients with short time lags also suggest auto-regressive models to be possibly relevant. The 

large aggregation level is also highly challenging. Indeed, the used data exhibit a double aggregation: a spatial 

aggregation because of the big buildings size and their large appliances number, and a temporal aggregation 

because of the 10-minute time step. This time step is due to the use of data collected by electric utility smart 

meters. Indeed, we are targeting generic methods applicable to similar data provided for a large number of 

buildings already equipped with such smart meters without any additional instrumentation. Some load 

disaggregation methods recently proved to be efficient for simple cases such as individual houses. Their 

successful application to more complex cases like large non-residential buildings, and educational buildings in 

particular, is not trivial without a finer monitoring of the different loads and/or a better load profiles knowledge 

database. To make these methods suitable for more complex cases, intermediate aggregation cases can be 

addressed first. For this purpose, small samples of the buildings considered in the present work are currently 

being finely instrumented to obtain load curves for less complex ensembles with smaller numbers of appliances 

and occupants. In addition, all appliances of the considered sub-samples are being individually monitored in 

order to have unitary load curves. Such terminal measurements would allow us to validate the load 

disaggregation results from a bottom-up point of view. They would also enable the identification of the 

aggregation thresholds beyond which the used disaggregation methods are not applicable anymore.   



5. Conclusions 

The present study reports on a comparative analysis of the energy consumptions of three campus buildings 

located in Paris area for three years and at different time scales, from a yearly down to a 10-minute time-step. 

The main findings of the current work include:  

i. A post-occupancy proof of the impact of construction year and subsequent thermal regulations on the 

energy efficiency of university buildings; 

ii. An insight on the potential of non-intrusive data analysis and statistical data processing in the analysis 

of energy drivers, such as temperature and occupancy, of large buildings; 

iii. Electric energy consumption and production analysis has revealed imbalances in individual buildings 

profiles. A district-level energy management should be beneficial; 

iv. Finally, the limits of non-intrusive methods for large building energy behaviour analysis. 

Indeed, the method hereby presented faces strong limitations:  it is still unsatisfactory if a predictive modelling 

is targeted since it provides energy consumption values with errors larger than 10 %. Improving this method 

requires the use of additional information on appliances, such as the machines operating schedules, and a more 

accurate occupancy counting, and the sub-metering of particular parts of the building. the latter is currently 

being done. Moreover, the STL method is shown to be straightforward with informative outputs. Nevertheless, 

some of its components can be hardly related to physically meaningful consumption shares without additional 

knowledge of the buildings’ features. In spite of these limitations, the introduced methods pave the way towards 

simple energy analysis tools for large buildings. Such tools would enable the development of reduced low-

knowledge models for load curves decomposition and construction. These methods are useful to take the full 

benefit from the ongoing large-scale roll-out of smart-meters and decentralized energy generation solutions. 
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