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Abstract

We study symmetric queuing networks with moving servers and
FIFO service discipline. The mean-field limit dynamics demonstrates
unexpected behavior which we attribute to the metastability phe-
nomenon. Large enough finite symmetric networks on regular graphs
are proved to be transient for arbitrarily small inflow rates. How-
ever, the limiting non-linear Markov process possesses at least two
stationary solutions. The proof of transience is based on martingale
techniques.
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1 Introduction

In this paper we consider networks with moving servers. The setting is the
following: the network is living on a finite or countable graph G = (V,E),
at every node v ∈ V of which one server s is located at any time. For every
server, there are two incoming flows of customers: the exogenous customers,
who come from the outside, and the transit customers, who come from some
other servers. Every customer c coming into the network (through some
initial server s (c)) is assigned a destination D (c) ∈ V according to some
randomized rule. If a customer c is served by a server located at v ∈ V, then it
jumps to a server at the node v′ ∈ V, such that dist(v′, D (c)) =dist(v,D (c))−
1, thereby coming closer to its destination. If there are several such v′, one
is chosen uniformly. There the customer c waits in the FIFO queue until his
service starts. If a customer c completes his service by the server located at
v, and it so happens that dist(v,D (c)) is 1 or 0, the customer is declared to
have reached its destination and leaves the network.

The important feature of our model is that the servers of our network
are themselves moving over the graph G. Namely, we suppose that any two
servers s, s′ located at adjacent nodes of G exchange their positions as the
clock associated to the edge rings. The time intervals between the rings of
each alarm clock are i.i.d. exponential with rate β. When this happens,
each of the two servers brings all the customer waiting in its buffer or being
served, to the new location. In particular, it can happen that after such a
swap, the distance between the location of the customer c and its destination
D (c) increases (at most by one). We assume that the service times of all
customers at all servers are i.i.d. exponential with rate 1.

The motivation for this model comes from opportunistic multihop rout-
ing in mobile wireless networks. Within this context, the servers represent
mobile wireless devices. Each device moves randomly on the graph G which
represents the phase space of device locations. The random swaps represent
the random mobile motions on this phase space. Each node v ∈ G of the
phase space generates an exogenous traffic (packetized information) with rate
λv corresponding to the exogenous customers alluded to above. Each such
packet has some destination, which is some node of G. In opportunistic rout-
ing (see Volume 2 of [BB]), each wireless device adopts the following simple
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routing policy: any given packet scheduled for wireless transmission is sent
to the neighboring node which is the closest to the packet destination. The
neighbor condition represents in a simplified way the wireless constraints. It
implies a multihop route in general. This routing policy is the most natural
one to use in view of the lack of knowledge of future random swaps. For
details on this motivation, the reader may refer to the literature on mobile
ad hoc networks and that on delay-tolerant networks. To the best of our
knowledge, the present paper is the first mathematical attempt to analyze
queuing within this mobile wireless framework.

In this paper we study the following types of graphs:

1. Finite graphs G: we consider the cyclic graph CK = Z
1/KZ

1 and
the toric graph TKL = Z

2/KZ
1 ⊕ LZ1, as well as general connected

g-regular graphs (i.e. graphs where every vertex has g adjacent edges).

2. Mean-field graphs GN : for a graph G = (V,E) we denote by GN a graph
with the node set V × {1, 2, ..., N} ; two nodes (v′, n′) and (v′′, n′′) are
connected by an edge iff (v′, v′′) ∈ E.

3. Infinite graphs (like Z
1 and Z

2).

4. Limit graphs G∞ = limN→∞GN . The resulting limiting networks can
be analyzed using the theory of Non-Linear Markov Processes (NLMP).

The first two classes of graphs represent the type of wireless networks
alluded to above. The interest in mean-field versions of the last two types
is both of mathematical and practical nature. The mathematical interest
of the mean-field version of a network is well documented. There are also
practical motivations for analyzing such networks: their properties are crucial
for understanding the long-time behavior of finite size networks.

The results we obtain depend on the graph and look somewhat surprising.
First of all, we find that for finite regular graphs, the network is transient
once the diameter of the graph is large enough. For example, consider the
network on the graph CK with Poisson inflows with rate λ > 0 at all nodes,
exponential service times with rate 1, FIFO discipline and node swap rate
β > 0. Then for all K ≥ K (λ, β), the queues at all servers tend to infinity
as time grows. In words this means that the network is unstable for any
λ, however small it is – once the network is large enough. The same holds,
probably, for the network on Z

1, but we do not prove it here.
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The same picture takes place for graphs GN with N finite. However, the
limiting picture, for N = ∞, is different: the corresponding NLM processes
on CK and Z

1 have stationary distributions, provided 0 < λ ≤ λcr (K, β) ,
with 0 < λcr (K, β) < ∞ for all K ≤ ∞. Moreover, for all λ < λcr there are
at least two different stationary distributions, see Sect. 3 for more details.

On the other hand, the general convergence result of [BRS] claims the
convergence of the networks on GN to the one on G∞ as N → ∞, which seem
to contradict to the statements above. The explanation of this ‘contradiction’
is that the convergence in [BRS] holds only on finite time intervals [0, T ] .
That is, for any T there exists a value N = N (T ), such that the network
on GN is close to the limiting network on G∞ for all t ∈ [0, T ] , provided
N ≥ N (T ) . Putting it differently, the GN network behaves like the limiting
G∞ network – and might even look as a stationary process – for quite a long
time, depending on N, but eventually it departs from such a regime and
gets into the divergent one. Clearly, the picture we have is an instance of
metastable behavior. We believe that more can be said about the metastable
phase of our networks, including the formation of critical regions of servers
with oversized queues, in the spirit of statistical mechanics, see e.g. [SS], but
we will not elaborate here on that topic.

2 Finite networks

This section starts with a detailed description of the methodology for proving
the instability of finite networks. This is done on the special case of cyclic
networks. We then discuss the extension to the mean-field versions of cyclic
networks and to toric networks. The general results, which bear on connected
d-regular graphs, are considered last.

2.1 The cyclic network

We start with the cyclic graph CK = Z
1/KZ

1. We use the notation CK =
(VK , E), where VK = {1, . . . , K} and E = {(1, 2), . . . , (K − 1, K), (K, 1)}.
For future simplicity we take K to be odd.

We study a continuous-time Markov process on a countable state Q, re-
lated to the graph CK . Namely,

Q = {qv : v ∈ VK} = (V ∗
K)VK ,
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where V ∗
K is the set of all finite words in the alphabet VK , including the

empty word ∅.
The queue qv ∈ V ∗

K at a server located at v ∈ VK consists of a finite
(≥ 0) number of customers which are ordered by their arrival times (FIFO
service discipline) and are marked by their destinations which are vertices
of the graph CK . Since the destination of the customer is its only relevant
feature, in our notations we sometime will identify the customers with their
destinations.

2.1.1 Dynamics

Let us introduce the continuous-time Markov process M = M (t) with the
state space Q. Let hv be the length of the queue qv at node v. We have
qv =

{

qv1 , . . . , q
v
hv

}

if hv > 0 and qv = ∅ if hv = 0.
The following events may happen in the process M.
An arrival event at node v changes the queue at this node. If the newly

arrived customer has node w for its destination, then the queue changes from
qv to qv⊕w, that is, to

{

qv1 , . . . , q
v
hv
, w
}

if hv > 0 or from ∅ to {w} if hv = 0.
In this paper we consider the situation where each exterior customer

acquires its destination at the moment of first arrival to the system, in a
translation-invariant manner: the probability to get destination w while ar-
riving to the network at node v depends only on w − v mod K. The case
w = v is not excluded. We thus have the rates λv,w, v, w ∈ CK , where λv,w,
depends only on w−v mod K, and the jump from qv to qv⊕w, corresponding
to the arrival to v of the exterior customer with final destination w happens
with the rate λv,w. We introduce the rate λv of exterior customers to queue
v as

λv =
∑

w

λv,w. (1)

According to our definitions, λv = λ does not depend on v.
Each node is equipped with an independent Poisson clock with parameter

1 (the service rate). As it rings, the service of customer qv1 is completed,
provided hv > 0; nothing happens if hv = 0. In the former case the queue at
node v changes from qv to

qv− =
{

qv2 , . . . , q
v
hv

}

(we also define ∅− = ∅) and immediately one of the two things happen:
either the customer qv1 leaves the network, or it jumps to one of the two
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neighboring queues, qv±1. The customer qv1 leaves the network only if its
current position, v, is at distance ≤ 1 from its destination, i.e. iff qv1 = v− 1,
v, or v + 1. This is just one of many possible choices we make for simplicity.
Otherwise it jumps to the neighboring vertices w = v±1, which is the closest
to its destination, i.e. to the one which satisfy: dist(w, qv1) = dist(v, qv1) − 1
(there is a unique such w ∈ VK since we assume K to be odd. The case of
even K requires small changes).

The last type of events is the swap of two neighboring servers. Namely,
there is an independent Poisson clock at each edge uv ∈ E of CK , with rate
β > 0. As it rings, the queues at the vertices u and v swap their positions,
that is,

qv(t+) = qu(t), qu(t+) = qv(t).

2.1.2 Submartingales

Here we introduce some martingale technique that will be used for the proof
of transience of M for K large enough. To begin with, we label the K servers
by the index k = 1, ..., K; this labelling will not change during the evolution.
Together with the original continuous-time Markov process M(t) we will
consider the embedded discrete time process M(n), which is the value of
M(t) immediately after the n-th event. The state of the process M consists
of the states of all K servers and all their locations.

The general theorem below will be applied to the quantities Xk
n, which

are, roughly speaking, the lengths of the queues at the servers k, k = 1, ..., K,
of the process M(Λn). The integer parameter Λ = Λ(K, λ, β) will be chosen
large enough, so that, in particular, after time Λ, the locations of the servers
are well mixed on the graph CK , and the joint distribution of their location
on VK is close to uniform on the set of permutations on VK . Below, we aim
to prove that the conditional expectations of all the differences Xk

n+1 − Xk
n

are positive. We start with the following theorem.

Theorem 1 Let F = Fn, n = 0, 1, . . . , be a filtration and let Xk
n, k =

1, . . . , K, be a finite family of non-negative integer-valued submartingales
adapted to F , such that for all k = 1, . . . , K, and all n = 0, 1, . . . , the
following assumptions hold:

(1) For some ρ > 0 the inequality

EFn
(Xk

n+1 −Xk
n) ≥ ρ (2)

6



holds whenever Xk
n > 0.

(2) The increments are bounded by a constant R:

|Xk
n+1 −Xk

n| ≤ R a.s. (3)

Then there exists an initial state (X1
0 , . . . , X

K
0 ) such that, with positive

probability, Xk
n → +∞ as n → +∞ for all k = 1, . . . , K.

In order to prove the theorem we begin with an auxiliary lemma.

Lemma 2 Let Yk = {Y k
n : n = 0, 1, . . . , k = 1, . . . , K, be a finite family of

submartingales adapted to the same filtration F and such that Y k
n ∈ [0, 1] for

all k, n. Suppose also that for any ε > 0 there exists a δ > 0 such that, for
all k and n,

EFn
(Y k

n+1 − Y k
n ) > δ on 0 < Y k

n < 1 − ε.

Suppose that the initial vector Y0 ∈ A = [0, 1]K is deterministic and satisfies
the condition

K
∑

k=1

Y k
0 > K − 1. (4)

Then, with positive probability, Y k
n → 1 as n → ∞, for all k = 1, . . . , K.

Proof. Since each submartingale Y k
n is bounded, there is a limit limn→∞ Y k

n =
Y k almost surely for all k, see the Martingale Convergence Theorem in [D].
Let us first show that the limit vector Y = (Y k) has its support on the union
of the ‘maximal’ vertex (1, . . . , 1) of the cube A and the ‘lower boundary’
B of A: B = {a : mink=1,...,K ak = 0}. Indeed, if Y had parts of its support
on the complement C of this union in A, then there would exist a k and
0 < α < β < 1 such that, P (Y k ∈ (α, β)) > 0. This would imply that for
some ρ > 0,

E

[

(Y k
n+1 − Y k

n )I{Y k
n ∈(α,β)}

]

= E

[

EFn

[

(Y k
n+1 − Y k

n )I{Y k
n ∈(α,β)}

]]

≥ E

[

EFn

[

ρI{Y k
n ∈(α,β)}

]]

= ρP(Y k
n ∈ (α, β)) →n→∞ a > 0.
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But this contradicts the fact that

lim
n→∞

E

[

(Y k
n+1 − Y k

n )I{Y k
n ∈(α,β)}

]

= 0,

which follows from the convergence a.s. of Y k
n and the dominated convergence

theorem.
To conclude the proof of the lemma, note that for any random vector

V = (V k) with support in B,

K
∑

k=1

V k ≤ K − 1. (5)

But, by the submartingale property, for all n = 1, . . .,

E

K
∑

k=1

Y k
n ≥

K
∑

k=1

Y k
0 > K − 1. (6)

Inequalities (4)-(6) rule out the option that Y has its support in B.
Now, in order to derive Theorem 1 from Lemma 2, we make the following

change of variables for submartingales Xk
n . For a positive parameter α < 1

we define an ‘irregular lattice’ hi ∈ R+, by

h0 = 0, hi+1 = hi + αi, i = 0, 1, . . . .

We get limi→∞ hi = H = (1 − α)−1 < ∞. Now, for each k = 1, . . . , K, we
define the process Y k

n on the same filtration F by the relation

Y k
n (ω) = hXk

n(ω)
.

For k = 1, . . . , K, the process Y k
n takes its values on the ‘lattice’ {hi}. It

is easy to see that under the assumptions that |Xk
n+1 − Xk

n| ≤ R and that
EFn

(Xk
n+1 −Xk

n) ≥ ρ, for each k, Y k
n is still a submartingale, provided 1 − α

is small enough. Then the hypothesis of Lemma 2 holds (up to a constant
factor H) and Theorem 1 is proved.

2.1.3 Transience

Let us return to the process M (t). Suppose that the parameters λ > 0 and
β > 0 are fixed. We remind the reader that our service rate is set to 1.
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Theorem 3 For each λ > 0 and β > 0, there exists K∗ ∈ Z+ such that for
any K ≥ K∗ the process M is transient.

The proof consists of the following steps: first of all, we construct a
discrete time Markov chain D on the state space Q. To define this chain, we
start with the embedded Markov chain M(n), defined earlier, and then pass
to the chain M(Λn), with the integer Λ to be specified later. To get the chain
D = {Dn}, we modify the chain M(Λn) as follows: if for some n some of the
K queues are less than or equal to Λ, we make all queues to be of length
exactly Λ, and then freeze the process at this point forever. Otherwise we
do no changes. We start the process D at some configuration Q0 with all
queues longer than Λ. We then prove the following statement: if Λ is large
enough, the process D at any given server k is a submartingale satisfying
the conditions of Theorem 1, with respect to the filtration defined by the
discrete-time Markov chain M(n) (the individual queue length processes are
clearly adapted to this filtration). This will then complete the proof thanks
to Theorem 1.

These steps are embodied in a series of lemmas.
Consider the following function π(t) of the process M defined in Subsec-

tion 2.1.1. At each t ≥ 0, let π(t) be the current permutation of indices of
the K servers with respect to the K nodes and let v(i, t) denote the current
position of server i.

Lemma 4 As t → ∞,

1. (1) the distribution of π(t) converges to the uniform distribution on the
set SK of all permutations;

2. (2) the distribution of v(i, t) converges to the uniform distribution on
{1, . . . , K} as t → ∞.

Proof. Note that {π(t)} is a continuous time Markov process on its own.
To best represent this Markov process, let us introduce a graph structure on
the permutation group SK . Consider all the transpositions τ ∈ SK corre-
sponding to the exchanges of pairs of neighboring servers. We connect two
permutations π′, π′′ by an edge iff π′ = π′′τ for some τ.

The resulting graph on SK is connected – because GK is connected and
each of its nodes has the same degree. The process of migration of servers is
a uniform random walk on this graph, that is, a reversible process. Hence,
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as t → ∞, the distribution of permutations converges to the uniform one, for
all initial states. The assertions of the lemma follow.

Lemma 5 For all initial states Q0, the probability that a customer with
position H > 0 in some queue leaves the network after being served at this
queue tends to 3/K as H → ∞, uniformly in Q0.

Proof. As the waiting time of the customer tends to infinity with H → ∞,
the distribution of its server on VK tends to the uniform one on CK (see
Lemma 4). In order for the customer c to exit the network, the last server
visited by c has to be located at this moment at one of the three nodes:
D(c) + 1, D(c) or D(c) − 1.

Hence, for all customers in the initial queues whose positions are at least
H , the mean chance of exit approaches 3/K as H → ∞ and the rate of this
approach does not depend on the particularities of the initial state Q0, but
only on H .

The next remark is that if a customer with initial position H , with H
large, is served and then jumps to a different server, then the index j of that
server is distributed almost uniformly over the remaining K−1 indices. This
fact follows from Lemma 5. Again, the rate of convergence is independent of
Q0 because the servers swap their positions independently of anything else.
So we have established:

Lemma 6 The probability that a customer with position H on server i jumps
to server j at the completion of its service in this server tends to 1/ (K − 1)
as H → ∞, uniformly in i 6= j and in the initial states Q0 ∈ Q.

We need a third combinatorial lemma. We start with some definitions
before formulating and proving this lemme. Let {u, v} be an ordered pair
of elements of VK . We define the map T from the set of all such pairs to
VK ∪ {∗} , by

T {u, v} =







w
for w defined by |u− w| = 1, |v − w| = |u− v| − 1,

provided |u− v| > 1,
∗ otherwise.

For K odd, the map T is well-defined. In case T {u, v} = w, we say that a
customer transits through w on his way from u to v.
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Let D : VK → VK be an arbitrary map. We want to compute the quantity

pK =
1

K!

∑

π∈SK ,i∈VK

I{T{π(i),D(i)}=π(j)}, (7)

where SK is the symmetric group, while j is an element of VK . That is, pK
is the continuous time transit rate through server j in stationary regime –
when the locations of servers are uniformly distributed on SK – provided all
servers have infinite queues. Of course, this rate does not depend on j.

Lemma 7

pK =
K − 3

K
.

Proof. Without loss of generality we can take j = 1. Instead of performing
the summation in (7) over whole group SK , we partition SK into (K − 2)!
subsets Aπ, and perform the summation over each Aπ separately. If the result
will not depent on π, we are done. Here π ∈ SK , and, needless to say, for
π, π′ different we have either Aπ = Aπ′ or Aπ ∩Aπ′ = ∅.

Let us describe the elements of the partition {Aπ} . So let π is given, and
the string i1, i2, i3, ..., il, il+1, ..., iK is the result of applying the permutation π
to the string 1, 2, ..., K. Then we include into Aπ the permutation π, and also
K− 1 other permutations, which correspond to the cyclic permutations, e.g.
we add to Aπ the strings iK , i1, i2, i3, ..., il, il+1, ..., iK−1, iK , i1, i2, i3, ..., il, il+1, ...,
and so on. We call these transformations ‘cyclic moves’. Now with each of
K permutations already listed we include into Aπ also K − 2 other permu-
tations, where the element i1 does not move, and the rest of the elements
is permuted cyclically, i.e., for example from iK−1, iK , i1, i2, i3, ..., il, il+1, ...,
we get iK , i2, i1, i3, ..., il, il+1, ..., iK−1, i2, i3, i1, ..., il, il+1, ..., iK−1, iK , and so
on. We call these transformations ‘restricted cyclic moves’. The main prop-
erty of thus defined classes of configurations is the following: Let a 6= b ∈
{1, 2, ..., K} be two arbitrary indices, and l ∈ {2, ..., K} be an arbitrary index,
different from 1. Then in every class Aπ there exists exactly one permutation
π′, for which i1 = a and il = b.

Given π, take the customer l 6= 1 (= j) , and its destination, D (l) . If we
already know the position i1 of customer 1 on the circle CK , then in the class
Aπ there are exactly K− 1 elements, each of them corresponds to a different
position of the server l on CK . If it so happens that i1 = D (l) , then for
no position of the server l the transit from l through i1 happens. The same
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also holds if i1 =
(

D (l) + K−1
2

)

modK or i1 =
(

D (l) + K+1
2

)

modK. For all
other K − 3 values of i1 the transit from l through i1 happens precisely for
one position of l (among K − 1 possibilities). Totally, within Aπ we have
(K − 1) (K − 3) transit events. Since |Aπ| = K (K − 1) , the lemma follows.

Proof of Theorem 3. We recall that Mk
n denotes the queue length of

server k at the n-th transition of the chain M(t) and that {Fn} denotes the
natural filtration of the chain {M(n)}.

We now define the submartingales {Xk
n} and show that they satisfy all

the properties of Theorem 1.
Let Λ be a positive integer and for all k, let

Xk
n = Mk

nΛ − Λ, n = 0, 1, . . .

as long as the R.H.S. is positive, and 0 from the first n such that it is less
than or equal to 0 (see above). Clearly, Xk

n ≥ 0. We now show that if K
and Λ are both suitably large, then, for all k, {Xk

n} is a submartingale w.r.t.
the filtration Gn = FΛn, and in addition, Properties (1) and (2) of Theorem
1 hold.

On Xk
n = 0, the submartingale property EGn

Xk
n+1 ≥ Xk

n is satisfied as
Xk

n = 0 implies Xk
n+1 = 0.

Relation (3) is evidently satisfied with R = Λ. Let us now check (2).
Let us start the process M at a configuration where all the queue lengths
are of the form Xk

0 + Λ with Xk
0 > 0, k = 1, ..., K. We want to show

that EF0(Mk
Λ − Mk

0 ) ≥ ρ, for some ρ > 0, which will prove (2) and the
submartingale property on Xk

n > 0. Let H = H (K) be the time after
which the distribution of the K servers is almost uniform on CK , see Lemma
5. Before this moment, we do not know much about our network; we can
nevertheless bound the lengths of the queues Mk

H from below by Mk
H ≥

Mk
0 − H. After time H , the probability that a customer leaving a server

leaves the network is almost 1/K, and the probabilities that it jumps to the
left or the right are both close to K−1

2K
. More precisely, by Lemma 7, if Λ is

large enough, after time H , the rate of arrival to every server is approximately
λ + (K − 3)/K, which is higher than the exit rate, 1, provided K is large
enough (namely, K > K∗ = 3/λ). Hence the expected queue lengths in the
process M grow linearly in time, at least after time H , which implies the
existence of Λ > 0 such that EF0

(

Mk
Λ

)

≥ Mk
0 + ρ. So, Theorem 1 applies.

This completes the proof of Theorem 3. �
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2.2 Mean-field version of the cyclic network

In this subsection, we analyze the mean field graph CN
K defined in the intro-

duction, where at each vertex v ∈ CK we now have N servers. The dynamics
of the system is a modification of the case N = 1 with the following charac-
teristics: the

• exogenous customers arrive to each node (v, n) v = 1, ..., K, n = 1, ..., N
with the rate λ;

• the destination of an exogenous customer is a node w in CK (and not
a node in CN

K );

• if a customer c completes its service at a node (v, n), then it leaves the
network in case its destination D(c) is v or v ± 1; otherwise it transits
to the node (ṽ, k), where ṽ is the node which is the closest to D(c)
among v + 1 and v − 1, while k is chosen uniformly from the N values
1, ..., N ;

• the two servers at locations (v, n) and (v + 1, k) swap with rate β

N
.

The results in this case, as well as the proofs, are similar to those of
Subsection 2.1, except for the analogue of Lemma 7. Below we define the
corresponding ensemble and we formulate the analogous statement.

Two nodes (v, k) and (v′, k′) of CN
K are connected by an edge iff v and

v′ are connected by an edge in G. Let {(u, k) , (v, l)} be an ordered pair of
nodes of CN

K . We define the random map T from the set of all such pairs
into the union VK ×N ∪ {∗} , by

T {(u, k) , (v, l)} =















(w,m) with probability 1
N

if |u− v| > 1,
w satisfies |u− w| = 1,
|v − w| = |u− v| − 1,

∗ otherwise.

For K odd, the map T is well-defined. In case T {(u, k) , (v, l)} = (w,m) we
say that we have a transit of a customer through (w,m) .

We define a subgroup S̃K ⊂ SKN of permutations of the nodes of the
graph G × N as the one generated by the transpositions (u, k) ↔ (v, l) ,
where u ↔ v is a transposition from SK , and k, l are arbitrary.

13



Let D : VK × N → VK be an arbitrary map. The analogue of pK in (7)
is the quantity

pK,N =
1
∣

∣

∣
S̃K

∣

∣

∣

∑

π∈S̃K ,(u,k)∈VK×N

∑

(u,k)

P (T {π (u, k) , D (u, k)} = π (w,m)) .

By arguments similar to those of the last subsection, it is easy to show that
pK,N = K−3

K
. Hence, the following theorem holds:

Theorem 8 For all λ > 0, β > 0 and N ≥ 1, and for all K > K∗ = 3/λ,
the Markov process MK,N is transient.

2.3 The toric network

In this subsection, the graph is TKL = (VKL, E), the discrete torus of size
K × L. We assume K,L to be odd.

The dynamics of the network is a straightforward generalization of that
of the CK case. Again, the results and the proofs are similar, after we prove
the analog of Lemma 7.

We can fix the labelling (1, 1) , (1, 2) , ..., (K,L) on TKL; without loss of
generality we can take j = (1, 1) . But it is notationally more convenient
to introduce other coordinates on TKL. Namely, we treat TKL as a product,
TKL =

{

−K−1
2

, ..., K−1
2

}

×
{

−L−1
2
, ..., L−1

2

}

, and, for our tagged element j,
we now take j = (0, 0).

For every ordered pair {u, v} , u, v ∈ VKL such that |u− v| > 1, we define
the set on next hop nodes from u to v as

W (u, v) = {w ∈ VKL : |u− w| = 1, |v − w| = |u− v| − 1} .
Clearly, |W (u, v)| is either 1 or 2. We define the random map T from the set
of all ordered pairs {u, v} , u, v ∈ VKL into the VKL ∪ {∗} by

T {u, v} =







w with probability 1
|W (u,v)|

if |u− v| > 1,
w ∈ W (u, v) ,

∗ otherwise.

In case T {u, v} = w we say that we have a transit of a customer through w.
Let D : VKL → VKL be an arbitrary map. Let

pKL =
1

|SKL|
∑

π∈SKL,u∈VKL

P (T {π (u) , D (u)} = π (w)) .

14



The proof of the following lemma is forwarded to the appendix. This lemma
is also a corollary of Lemma 11 below.

Lemma 9 For K,L ≥ 3

pKL =
KL− 5

KL
.

Hence, the following analogue of Theorem 3 holds.

Theorem 10 For each λ > 0, β > 0 and for each K and L such that
KL > K∗ = 5/λ, the process MK,L is transient.

2.4 Regular graphs

Let us recall that a graph G = (V,E) is called g-regular if every vertex has
g edges adjacent to it. In this section we show that the instability result
established above actually holds for all connected and g-regular graphs G.
Clearly, the graphs CK and TKL are simple instances of such graphs.

Let us define pG analogously to the definition of pKL in Lemma 9:

pG =
1

K!

∑

π∈SK ,i∈V

P {T {π (i) , D (i)} = π (j)} , (8)

where K = |V | .
If G is connected and g-regular, then the symmetric nearest neighbor

random walk on it has the uniform measure as its unique stationary state.
Hence, lemmas 4, 5 and 6 hold for G. So the only step needed is the following
generalization of Lemma 7:

Lemma 11

pG =
|V | − (g + 1)

|V | . (9)

Proof. Let us label by i = 1, 2, ..., |V | the nodes and the servers of our
network. Suppose that server i is initially located at node i and at node
πt (i) at time t, where πt ∈ S|V | is a random permutation. Let i, j be two
indices. We want to compute the stationary transit rate from server i to j,
assuming server i has an infinite backlog of customers. For the transit event
to happen, it is necessary that the two nodes πt (i) and πt (j) be neighbors.
The fraction of time it is the case is equal to g

|V |−1
(in the stationary regime).
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If it does happen, then there are two options. The first is that customer c,
served at πt (i) , leaves the network. This happens with probability (g+1)

|V |
.

The complementary event has probability |V |−(g+1)
|V | . In this case, customer c

jumps to one of the g neighboring nodes of πt (i) . Since server πt (j) can be
at any of these g nodes with probability 1

g
, independently of the destination

of c, the probability that c will land on πt (j) is 1
g
. Since there are |V | − 1

servers different from server j, we have:

pG = (|V | − 1)
g

|V | − 1

|V | − (g + 1)

|V |
1

g
=

|V | − (g + 1)

|V | .

Hence, the following theorem holds:

Theorem 12 For each λ > 0, β > 0, and for each K > K∗ = (g + 1)/λ,
the Markov process MG is transient.

2.5 General graphs

Analogously, the following result holds for a connected graph G that is not
regular. Denote by g the maximum degree of vertices v ∈ V and let K = |V |.

Theorem 13 For each β > 0, the process MG as well as each mean-field
processes MGN , N = 1, 2, . . . , is transient whenever K > K∗ = (g + 1)/λ.

The only difference in the proof is that the equality (9) is replaced by the
estimate

pG ≥ |V | − (g + 1)

|V | .

We omit the proof.

3 Mean-field infinite networks

This section is focused on the mean-field version of certain infinite networks.
We first consider the networks (Z1)

N
as N → ∞. This leads to a NLMP

on Z
1, which we study using the methodology introduced in [BRS] for a

more general setting. This approach is then generalized to Cayley graphs of
discrete groups.
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3.1 Non-linear Markov processes on Z
1

In this section we consider the limit of the network (Z1)
N

as N → ∞, and
more precisely the stationary distributions of this limiting network. We focus
on translation-invariant distributions, where invariance is w.r.t. translations
on Z.

In this case, the NLMP is a dynamical system acting on measures µ on the
state of a queue. The state of a queue qv can be identified with the sequence
of (signed) distances between the position of server v and the destinations
D (ci) of its customers. So the state becomes a finite integer-valued sequence
N ≡ {n1, ..., nl;ni ∈ Z

1}, where l ≥ 0 is the length of the queue qv.
The rate of arrivals of transit customers, leading, say, from the state

[n1, ..., nl−1] to the state [n1, ..., , nl−1, nl], is then a function of the integer nl

only, that we will denote by νnl
. With the above notation, we thus have

νk ≡ νk (µ) =







∑

N µ (k + 1,N ) if k > 0,
∑

N µ (k − 1,N ) if k < 0,
0 if k = 0.

(10)

In what follows we look only for states µ which have symmetric rates νk,
namely such that

νk = ν−k, (11)

for all k ∈ Z. We also assume (for the sake of simplicity) that the destination
of a customer arriving at a node is this very same node.

The following result leverages the methodology developed in [BRS]. It
provides a functional equation for fixed points of the NLMP. Each such fixed
point is a stationary regime of the NLMP.

Since the evolution of the NLMP is described by an infinite-dimensional
dynamical system in a space of probability measures (see Appendix), there
might exist non-trivial invariant sets of this evolution in the space of prob-
ability measures (not just fixed points) Hence, other non-trivial stationary
measures might exist. The existence of non-trivial attractors for the NLMP
is discussed in [RSV]. In the present paper, we restrict ourselves to fixed
points. The notation is that of the finite network case.

Theorem 14 Under the foregoing assumptions, each fixed point µ of the
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NLMP satisfy the functional equation:

µ (n1, ..., nl−1) [νnl
(µ) + λδ (nl, 0)] − µ (n1, ..., nl)

(

∑

k 6=0

νk(µ) + λ

)

+
∑

k

µ (k, n1, ..., nl) − µ (n1, ..., nl) Il 6=0 (12)

+ β [µ (n1 + 1, ..., nl + 1) + µ (n1 − 1, ..., nl − 1) − 2µ (n1, ..., nl)] = 0 .

The proof is forwarded to the Appendix. This equation has a simple
interpretation. The term

µ (n1, ..., nl−1) [νnl
(µ) + λδ (nl, 0)]

is the arrival rate of the NLMP leading to state [n1, ..., nl]. The term

µ (n1, ..., nl)

(

∑

k 6=0

νk(µ) + λ + 2β

)

is the total rate out of [n1, ..., nl]. The term

∑

k

µ (k, n1, ..., nl) − µ (n1, ..., nl) Il 6=0

is the departure rate leading to state [n1, ..., nl]. The term

+β [µ (n1 + 1, ..., nl + 1) + µ (n1 − 1, ..., nl − 1)]

is the swap rate leading to state [n1, ..., nl].
As we will see later, Equations (10)− (12) can have several solutions, one

solution or no solution, depending on the value of the parameter λ. If µ is a
solution of Equations (10) − (12) for some λ, then we denote by

ν (µ) =
∑

k 6=0

νk (µ) (13)

the rate, in state µ, of the transit customers to every node and by η (µ) the
rate, in state µ, of the total flow to every node:

η (µ) = ν (µ) + λ. (14)
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Theorem 15 For every positive η < 1 there exists a unique value λ (η) of
the exogenous flow rate λ and a unique measure µη on the set of queue states
satisfying Equations (10) − (12) with λ = λ (η), and such that η (µη) = η.

Proof. In the mean-field limit, the total inflow rate to each node v ∈ Z

is a Poisson process with the rate η for all v. It is splitted according to the
possible destinations, v+h, h ∈ Z of the arriving customers. The customers
arriving to v with destination v+h also form a Poisson process with rate νh,
so that we have

η =
∑

h∈Z

νh,

with ν0 = λ. All these arrival Poisson processes are independent.
Consider the random variable ξη, which is the total time the customer

spends in any given server in the stationary regime. It has exponential dis-
tribution, which depends only on η =

∑

k 6=0 νk + λ, which does not depend
on the customer type. It is defined uniquely by its expectation, which is
E (ξη) = (1 − η)−1 .

Consider now some tagged customer. Suppose it has type k when arriving
to the tagged server. When it leaves the server, its type is changed to k+ τη,
where τη is an integer valued random variable. This change happens due to
the fact the server can move during the service time of the tagged customer,
i.e. to β-terms in (12) . By symmetry, E (τη) = 0. The distribution of τη is the
following. Consider a random walker W (t), living on Z

1, which starts at 0
(i.e. W (0) = 0) and which makes ±1 jumps with rates β. Then τη = W (ξη) .

The above observations lead to the following characterization of the rates
νk obtained from the stationary distribution of the following ergodic Markov
process on Z

1. Define the probability transition matrix P1 = {πst} by πst =
Pr (τη = s− t) . Of course, this Markov chain on Z

1 is not positive recurrent
since its mean drift is zero. Let P2 be a second Markov chain, with transition
probabilities

ρst =















1 for t = s− 1, s ≥ 2,
1 for t = 0, s = 1, 0,−1,
1 for t = s + 1, s ≤ −2,
0 in other cases.

The map P2 is non-random map of Z1 into itself. Consider the composition
Markov chain, with transition matrix Q = P1P2. This chain, which will be
referred to as the single particle process below, is positive recurrent (it has
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a drift towards the origin), and it hence has a unique stationary distribution
q = {qk, k ∈ Z

1}. We take

νk = ηqk, k 6= 0; λ = ηq0. (15)

Consider now the evolution of one single server queue with infinitely many
types k ∈ Z of customers, arriving to the queue according to Poisson point
processes with rates νk, k 6= 0, and with rate λ for k = 0, as defined by
Equation (12).

Assume in addition that all customer types in the queue are incremented
of one unit according to a global exponential clock with rate β, and decre-
mented of one unit according to another independent global exponential
clock, also with rate β. This queuing process is an irreducible Markov process,
and since η < 1, it is ergodic, so that it has a unique stationary distribution.
Denote by µ (n1, ..., nl) the stationary probability of state n1, ..., nl for this
queue. By definition, these probabilities satisfy (12).

In addition, it follows from the fact that {qk} is the steady state of the
Markov chain Q that the rate νk (with k > 0, say) coincides with the proba-
bility to find the queue in the state with the first customer having the type
k + 1. But this is exactly relation (10).

Note that the rates νk are defined in a unique way, once η is given,
see above. As a result, the same uniqueness holds for the probabilities
µ (n1, ..., nl). This proves the existence and the uniqueness statements of
the theorem.

We now state some properties of the function λ (η) as the parameter η
varies in (0, 1) .

Proposition 16 There is a λ+ > 0 such that, for any positive λ < λ+,
there are at least two different values η = η−(λ) and η = η+(λ) satisfying the
relation λ (η) = λ and such that η−(λ) → 0 and η+(λ) → 1 as λ → 0.

Proof. Clearly, λ (η) → 0 as η → 0. We want to argue that λ (η) → 0 also
when η → 1. Indeed, in this regime every customer spends more and more
time waiting in the queue, so for every k the probability Pr (ξη ≤ k) → 0 as
η → 1. Therefore the distribution of the random variable τη becomes more

and more spread out: for every k, P
(

|τ |η ≤ k
)

→ 0 as η → 1. Therefore the

same property holds for the stationary distribution q, and the claim follows
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from (15) and Proposition 16. In particular, this implies that the equation
(in η):

λ (η) = a > 0

has at least two solutions for small a: η− close to 0 and η+ close to 1. This
follows from the continuity of λ (η).

3.1.1 Computational illustration

Consider the evolution of the distance between the tagged customer and its
destination node in the above mean-field model. This is a continuous time
Markov chain on the non-negative integers with the following transition rates:
for n > 1,

q(n, n + 1) = β, q(n, n− 1) = β + γ,

with γ = 1−η. This is because the tagged customer spends on a given server
an exponential time with parameter γ. Similarly,

q(1, 2) = β, q(1, 0) = β, q(1, ∗) = γ

and

q(0, 1) = 2β, q(0, ∗) = γ,

where ∗ is absorbing. Let T (n) be the mean time to absorption for a customer
at distance n from its destination. The function T (·) satisfies the equations:

T (n) =
1

2β + γ
+

β

2β + γ
T (n + 1) +

β + γ

2β + γ
T (n− 1), n > 1,

T (1) =
1

2β + γ
+

β

2β + γ
T (2) +

β

2β + γ
T (0),

T (0) =
1

2β + γ
+

2β

2β + γ
T (1).

There is exactly one solution of these equations which behaves asymptotically
linearly as n → ∞; all the other solutions behave exponentially. This linear
function is

T (n) =
1

γ

(

n +
β

γ

2β + γ

3β + γ

)

,
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for all n ≥ 1. This in turn determines that

T (0) =
1

γ
+

β2

γ2

2

3β + γ
.

Using the assumption that the destination of the tagged customer is the node
where it arrives, we get that the mean number of servers visited by the tagged
customer till absorption is

E[N ] = γT (0) = 1 +
2β2

γ(3β + γ)
. (16)

The total rate in a queue hence satisfies the equation

η = 1 − γ = λ

(

1 +
β2

γ

2

3β + γ

)

.

When β is large, this boils down to the equation for ν = η − λ

ν =
2λβ

3γ
=

2λβ

3(1 − λ− ν)
,

or equivalently to the equation

3ν2 − 3ν(1 − λ) + 2λβ = 0.

The discriminant is is positive if λ < 4
3
β − 4 and in this case, there are two

roots

ν+ =
1 − λ +

√

(1 − λ)2 − 8
3
λβ

2

ν− =
1 − λ−

√

(1 − λ)2 − 8
3
λβ

2
.

It is easy to see that under these conditions,

0 < ν− < ν+ < 1 − λ,

so that these are the two solutions given by the theory.
This computational framework allows one to check the robustness of the

proposed framework to the specific assumptions made for mathematical sim-
plicity. One can for instance change the destination of a customer to be at
distance d from the arrival node (rather than 0 here), or change the absorp-
tion rule to be only when a service completes at the destination (rather than
the destination or one of the two neighbors here) and check by computations
of the same type that one still finds quite similar phenomena.
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3.2 Non-linear Markov processes on Cayley graphs

This subsection extends the previous results in two ways. First, Z1 is replaced
by the Cayley graph of a countable group. Second, we relax the assumption
that the destination of an exogenous customer arriving at some node is this
same node.

3.2.1 Cayley networks

In this section we rewrite the equations which were studied in the last sub-
section for the case of Z

1 and we prove a theorem about the structure of
the stationary measures δµ of the NLMP associated with fixed points. Such
measures µ will be called equilibria.

The underlying graph G is assumed to be the Cayley graph of a countable
group (also denoted by G) with a finite generating set

F =
{

g1, ..., gk, g
−1
1 , ..., g−1

k

}

.

Typical examples are Z
d or T

d. The main theorem will focus on the case of
an infinite group.

We suppose that the destination assignment rule, the jump direction,
the jump rates etc. are all G-invariant. The destination assignment rule is
described by Λ = {λh, h ∈ G}, where λh denotes the rates of external inflows
to node e of customers with address h. At all other nodes the external flows
have the same structure. Let λ =

∑

h∈G λh. Denote by XG the associated
NLMP on G.

Consider a customer which finished its service at node v, and assume it
has the neutral node e ∈ G as its destination. Then it goes to the neighboring
node b (v) which is closest to e in graph distance on the Cayley graph. If
there are several such nodes, say b1 (v) , · · · , bR (v), R = R (v), then it chooses
one of them with probability 1

R(v)
. We only look for equilibria µ which are

G-invariant. This means that, under µ, the rate ν of the Poisson flow of
transit customers is the same at every node v and that the part of this
flow consisting of customers with destination vh has rate νh, which does not
depend on v. This also means that, in state µ, the probability to have a
queue of l customers with destinations vh1, ..., vhl at node v depends only
on the string (h1, ..., hl) of elements of G. We denote this probability by
µ (h1, ..., hl).
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Denote
ηh = νh + λh and η =

∑

h∈G

ηh (17)

The functional equations for the stationary measure now take the form

0 = −µ(h1, . . . , hl) [(1 − δl=0) + η] + µ(h1, . . . , hl−1)ηhl

+
∑

h∈G

µ(h, h1, . . . , hl) +
∑

g∈F

β(µ(h1g, . . . , hlg)−µ(h1, . . . , hl)), l = 0, 1, 2, ... .

(18)
Our assumptions on the service discipline imply that the rates νh are deter-
mined by the measure µ through the following generalization of (10):

νh =

s
∑

i=1

1

R (vi)

∑

N

µ (vi,N ) , (19)

where the inner summation is over all finite strings of nodes of G. As in
Section 3.1, our goal is to find the rates νh, h ∈ G, satisfying (18) and (19).

3.2.2 Single particle process

As in the special case of Z1 above, it will be useful to follow the evolution
of a single customer of the process XG. In this subsection we describe the
associated continuous time Markov random walk.

Since the inflow rates at each node v ∈ V in the process XG are Poisson,
in equilibrium all queue lengths are distributed geometrically and customers
have an exponentially distributed sojourn time T . If the total arrival rate
is η < 1 and the service rate is 1, then T is exponentially distributed with
mean H with H = H (η) = 1/(1 − η).

We now describe the continuous-time Markov process Bη of a an exoge-
neous particle that arrives to e ∈ G, say, while the probability distribution
dh of its destination node h is given by

dh =
λh

λ
. (20)

The particle makes jumps of two kinds: random jumps due to the jumps
of the server harboring it (collectively with all customers sitting there) with
rate β, and directed individual jumps to a neighboring server that is closer to

24



the destination of the particle. The directed jumps happen at random times
(service event times) with inter-service intervals distributed exponentially
with mean H . If the particle is at distance 0 or 1 from its destination and
its service event happens, the particle dies (reaches the absorbing state).

Summarizing, we have the following:

Claim 17 For all jump rates β, probability distributions {dh} and total rate
η, the address of the tagged customer is a continuous time Markov random
walk Bη on G.

For some infinite graphs G (say, for regular trees of degree 3 or more)
the process Bη might be transient for all η ∈ [0, 1), but this does not happen
for β small enough, and we only consider the latter case below. Then the
expected number of directed jumps of the particle until absorption is finite
for η small enough. Let us denote this expected number by N(H(η)). The
function N (·) is a continuous increasing function, N : R+ → R+ ∪∞, such

that N(0) = E{dh} (max{dist (e, h) , 1}) and limη→1N(H(η)) = |V |
|F |

.
Some properties of the process XG can be retrieved from those of the

process Bη. In particular, one can find the value of the rate λ of the external
inflows to each node v from the relation

λ = λ (η) =
η

N(H(η))
. (21)

Indeed, η, which is the load factor per station, is equal to the product of
the mean number of arrivals per unit time λ and the mean number of nodes
visited by a typical customer.

The function λ (η) thus defined is continuous on [0, 1] and takes values
λ (0) = 0 and λ (1) = |F |/|V |. For infinite graphs G, we have λ (1) = 0.
Note that in some cases λ (η) ≡ 0. This happens, for instance, if G is a tree
of degree g ≥ 3 and β is large enough.

3.2.3 Equilibria

Here is the generalization of Theorem 15, where G, the exogenous customers
rates λh, h ∈ G, and the swap rate β are the basic data.

Theorem 18 For every 0 < η < 1, consider the processes Bη defined by the
jump rate parameter β, the probability distribution

{

dh = λh

λ

}

, and the rate
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η. Assume that the lifetime of the random walk Bη has finite mean value. For
all 0 < η < 1, there exist a unique λ and a unique solution µη(·) of (18)-(19)
such that the associated transit rates {νh, h ∈ G} satisfy the condition

∑

h∈G

νh + λh = η.

Proof. The proof follows closely that of Theorem 15. The random walker
W (t) now lives on G. It starts at e and it makes jumps from each node v to
one of the neighboring nodes

{

vg1, ..., vgk, vg
−1
1 , ..., vg−1

k

}

with rates β. The
matrix of transition probabilities P1 is now defined via that random walk.
Again the corresponding Markov chain on G is not positive recurrent. Let
P2 be the Markov chain with transition probabilities

ρst =

{ 1
R(s)

for t = bj (s)

0 in other cases.

Then we consider the composition Markov chain with transition matrix Q =
P1P2. The rest of the constructions proceeds in the same way.

3.3 Extension to non-exponential service times

Let us describe a simple extension of the results of this section to the case
where the customer service times are i.i.d. with unit mean and bounded
second moment, again at the nodes of Cayley graph. Let us denote by ξ the
random service time of a single customer and by Fξ its distribution function.

The description of the corresponding NLMP, which will be denoted by
XG,ξ, requires of course the extra variables – namely, the amounts of service
already received by the customers becomes relevant, see [BRS].

For all G-invariant stationary measures of XG,ξ, each server receives a
total inflow which is a homogeneous Poisson point process of rate η, and
we can again decompose η as η =

∑

h∈G ηh, as described in the previous
subsection, with ηh being the total arrival rate of customers with destination
h at server e. Each customer stays at each node for a stationary sojourn time
which is that of a M/GI/1 queue with parameters η and ξ. Additionally, all
customers in this queue change their locations simultaneously with rate β as
their server swaps its position with the adjacent server.

Consider the stochastic process B
η,ξ of the random walk of a single par-

ticle over the Cayley graph of G till its exit. This process is analogous to the
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process Bη in Section 3.2.2. The only difference between these two processes
is that the exponentially distributed random variable T (stationary sojourn
time of the system M/M/1) is replaced by Tη,ξ, the stationary sojourn time
in the queue M/GI/1 with i.i.d. service time with distribution Fξ given by
the Pollaczek-Khinchine formula.

As in Section 3.2.2, let us require that the triple (η, ξ, β) ensures finiteness
of the mean lifetime of a customer, denoted by E(η, ξ, β). For fixed ξ and
β, denote by η̄ the right endpoint of the maximal interval of values η where
the function E(η, ξ, β) is finite. Clearly, η̄ depends continuously on β and,
within the interval [0, η̄), the function E(η, ξ, β) is continuous in η and β.

Theorem 19 Consider the NLMP XG,ξ. Assume that E(η, ξ, β) is finite.
Let us fix a probability distribution dh = λh/λ, h ∈ G, where λ =

∑

h λh.
Then there is a unique value of λ such that the process XG,ξ has a unique
G-invariant stationary distribution.

Proof. Let us fix an arbitrary triple (u, v, w) of points of G. For the single
particle process B

η,ξ, let us denote by k(u, v, w) the mean number of direct
jumps to node v (only the jumps of the particle are counted, not the jumps
of servers) of the particle that is located at node u and has the address w.
One can easily see that η can be decomposed as follows:

η =
∑

u,w

λv−1wk(u, v, w). (22)

Thanks to G-invariance, η does not depend on v. The right-hand side of this
equation is finite as shown when rewriting k(u, v, w) as k (e, vu−1, wu−1),
thanks to G-invariance. So the right-hand side is finite as for Bη,ξ (the single
particle random walk) the mean life time of the particle is finite.

Accordingly, for the G-invariant stationary distribution XG,ξ of the NLMP,
the rate of the homogeneous Poisson inflow to node e of particles with address
h can be written as

ηh = λhk(e, e, h) +
∑

u 6=e

λu−1hk(u, e, h). (23)

Also,

νh =
∑

u 6=e

λu−1hk(u, e, h).
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Since for a given distribution {dh}the sum

λhk(e, e, h) +
∑

u 6=e

λu−1hk(u, e, h)

is a linear function of λ, for a given η, Equation (23) has a unique solution
{λh, νh, h ∈ G}.

Hence we have a stationary process of arrival to node e (or any other node)
of independent Poisson flows of different types k. The total rate of this inflow
is η < 1 and the total queue at a given server is stationary. The customers in
this queue change their types to k′ after an exponentially distributed time,
in the same manner as in the case of exponentially distributed variable ξ.

The process which describes the queue is ergodic since it has renewal
times when the queue becomes empty. The product of stationary measures
on the queues over all the nodes is the required G-invariant measure for the
NLMP XG,ξ.

Theorem 20 If λ > 0 is small enough, the NLMP on a translation invariant
infinite graph has at least two translation invariant equilibria.

Proof. It follows from the continuity of the function E(η, ξ, β) in η and
β and from the relations (23), (22), that λ is a continuous function of η.
Moreover, λ → 0 as η → 0. Analogously, λ → 0 as η → η̄.

4 Comparing Z
d
K and Z

d

In the simplest case d = 1 we have the following property.

Theorem 21 The circle Z1
K is faster than the line Z1 in terms of absorption

times.

Proof. First, we consider Z
1
+ instead of Z

1. Then the circle Z
1
K can be

associated with an interval [0, K/2] within Z1
+. The two processes are the

same on this interval apart from the endpoint K/2.
One may say that the process on Z

1
+ is coupled with a special process on

[0, K/2] as follows. As two processes are at K/2 and the “line” process goes
further to K/2 + 1, the “circle” process waits at K/2 till the “line” process
returns to K/2. Hence, the absorption time may only increase.
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In the general case d ≥ 1 we can only say that in some sense the equilibria
on Z

d
K are close to the equilibrium on Z

d for K large enough. Namely, the
following assertion holds.

Theorem 22 For each η ∈ [0, 1],

lim
K→∞

λK(η) = λ (η) .

We omit the technical proof.

5 Conclusions

Let us conclude with a few observations on the physical meaning of our
models and their connections to earlier models of the networking literature.

5.1 Relationship between the models

Let us first discuss the relationships between the replica 1 model, the replica
N model and the replica ∞ model.

The replica-1 model and the replica-N model describe two different phys-
ical systems as illustrated by the following wireless communication network
setting: The replica-N model features a system with N frequency bands and
where each device has N radios, one per frequency band, that it can use
simultaneously, for both transmission and reception. It then implements a
set of N virtual FIFO queues of packets, one per band. At any time, a device
transmits the packet head of the queue to the appropriate neighboring device
(the one closest to packet destination) on that band. Upon reception, the
packet is loaded in one of the N queues of the receiver chosen at random. In
this sense, the replica-N model is implementable, and the 1-replica method
is just the special case with one frequency band.

Let us now explain in what sense the replica-∞ model (which is compu-
tational but non implementable) tells us something on the replica-N model
(which is implementable but not computational), in spite of the fact that the
latter is always unstable whereas the former admits stationary regimes: the
replica-N network has a metastable state, which lives for longer and longer
times as N grows, and which is well described by the minimal solution of the
replica-∞ model.
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5.2 Relationship with the Gupta and Kumar models

Our setting is close to that of Gupta and Kumar [GK]. The latter also
involves a network with N nodes using hop by hop relaying through nearest
neighbors with traffic from every node to a node chosen at random among
all others. The initial model has no node mobility. The main finding of
[GK] is that the arrival rate that can be sustained on any such node is order
1/
√
N when nodes are located in the Euclidean plane. Indeed, since nearest

neighbors are at distance 1/
√
N , if packet destination is at distance order 1,

then every packet has to travel order
√
N hops, so that every node has to

relay a total flow of order λ
√
N (as seen by analyzing the load brought per

queue). Hence the capacity (maximum value of λ for which the system is
stable) is order 1/

√
N .

The case with mobility was then considered by [GT] and [EMPS]. The
main finding is that the above scaling of the capacity is in fact improved by
node mobility. At first glance, our result suggests that mobility does worse
than absence of mobility (for instance, in the setting of the present paper,
where packet destination at distance order 1 for graph distance, the static
network has a stability region order 1, whereas the mobile one has a stability
region that tends to 0 when N tends to infinity).

Let us explain why there is no contradiction in fact: our model can be
extended to the setting where the initial distance to destination is order

√
N

for graph distance (rather than 0 or order 1), which will then be comparable in
terms of load to that of the Gupta and Kumar setting in the Euclidean plane.
In the absence of mobility, our model has a stability region of order 1/

√
N ,

as in Gupta and Kumar, whereas in the presence of mobility, as shown by our
analysis, a customer brings a load to order N queues, which is much worse
than in the case without mobility. The reason lies in the use of the FIFO
discipline as a constraint. If the scheduling in queues were more adaptive
than FIFO, we could do exactly as [GT], namely keep the packets in their
arrival station and wait for this station to be close to a packet destination to
schedule the latter. Then the load per queue is order 1. Of course, delay is
terrible (return to 0 of a random walk) as in [GT]. In conclusion, there is no
contradiction with this literature.

These connections lead to the following observations:

1. Our model offers a new microscopic view of this class of problems which
complements both the Gupta and Kumar [GK] and the Grossglauser
and Tse scaling [GT] laws. This microscopic view, describes what hap-
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pens in a typical queue, and opens a new quantitative line of thoughts
(through mean fields) for this class of problems.

2. Our model does not sacrifice delays (like Grossglauser and Tse) and
finds one possible compromise between delay and rate in line with the
ideas discussed by [EMPS]. A study of adaptive scheduling (e.g. prior-
ity to customers close to destination) might lead to innovative solutions
to this class of questions.

6 Appendix

6.1 Proof of Lemma 9

Again we partition the group SKL into cosets. Each coset Aπ has now
K (K − 1)L (L− 1) elements. With every permutation π of the KL points
of the discrete torus TKL we first include in Aπ all its ‘2D cyclic moves’, i.e.
permutation π followed by an arbitrary shift of TKL; there are KL of them.
Also, with each permutation π̃ from Aπ we include in Aπ all (K − 1) (L− 1)
permutations which are obtained from π̃ by performing a pair of ‘independent
restricted cyclic moves’: one of them cyclically permutes all the sites of the
meridian of the point π (0, 0) , and another cyclically permutes all the sites
belonging to the parallel of the point π (0, 0) . There are (K − 1) (L− 1) such
independent restricted cyclic moves. All other (K − 1) (L− 1) points of the
torus TKL, as well as the point π (0, 0) , stay fixed during these independent
restricted cyclic moves. The idea behind this definition is to ensure the fol-
lowing property: suppose we know for the permutation π that a point π (k′, l′)
belongs to the parallel of the point π (0, 0) , while the point π (k′′, l′′) belongs
to the meridian of π (0, 0) . Then for any three different points a, b′, b′′ ∈ TKL,
such that b′ belongs to the parallel of a, and b′′ belongs to the meridian
of a, there exists exactly one permutation π̄ ∈ Aπ, such that π̄ (0, 0) = a,
π̄ (k′, l′) = b′ and π̄ (k′′, l′′) = b′′.

Now we fix one class Aπ, and compute the number of transits to node
π̄ (0, 0) for all π̄ ∈ Aπ. Without loss of generality and in order to simplify
the notations we consider only the case when π is the identity e ∈ SKL. We
denote the permutations from Ae by the letter κ.

Clearly, the transits from node κ (k, l) to κ (0, 0) can happen only if either
k or l are 0. So let us fix some integer k ∈

{

−K−1
2

, ..., K−1
2

}

, k 6= 0, and let
us count the number of possible transits from κ (k, 0) to κ (0, 0) while κ

31



runs over Ae. Without loss of generality we can assume that the destination
D (k, 0) = (0, 0) .

As we said already, as κ runs over Ae, the node κ (0, 0) can be anywhere
on the torus TKL. The node κ (k, 0) can be then anywhere on the parallel
of κ (0, 0) . If κ (0, 0) = (0, 0) (= D (k, 0)) , then no transit to κ (0, 0) can
happen, independently of the location of κ (k, 0) . The same is true when
κ (0, 0) = (x, y) with x = ±K−1

2
, −L−1

2
≤ y ≤ L−1

2
.

For every of the (K − 3) locations (x, 0) ∈ TKL of the node κ (0, 0) –
namely, for x = −K−1

2
+ 1, ...,−1,+1,+2, ...K−1

2
− 1 we have one transit per

location (or, more precisely, L− 1 transits per location, due to the restricted
cyclic moves along the meridian).

For every of the location (0, y) of the node κ (0, 0) – namely, for y =
−L−1

2
, ...,−1,+1,+2, ..., L−1

2
we have 2 × 1

2
= 1 transits per location (or,

again more precisely, L − 1 transits per location), since there can be two
transit events, each with probability 1

2
.

For any other remaining location of the node κ (0, 0) – and there are
(K − 3) (L− 1) of them, we get 1

2
of transit per location (more precisely,

L−1
2

transits per location).
Summarizing, we have totally

[

(K − 3) + (L− 1) + 1
2

(K − 3) (L− 1)
]

(L− 1)
transits from the node κ (k, 0) to the node κ (0, 0), as κ runs over Ae. And
there are (K − 1) such nodes.

All in all, we have

[

(K − 3) + (L− 1) +
1

2
(K − 3) (L− 1)

]

(K − 1) (L− 1)

+

[

(L− 3) + (K − 1) +
1

2
(L− 3) (K − 1)

]

(L− 1) (K − 1)

transits, so the probability in question is given by

(K − 3) + (L− 1) + 1
2

(K − 3) (L− 1) + (L− 3) + (K − 1) + 1
2

(L− 3) (K − 1)

KL

=
3 (K − 3) + 3 (L− 3) + (K − 3) (L− 3) + 4

KL

=
3K + 3L + (K − 3) (L− 3) − 14

KL

=
KL− 5

KL
.
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6.2 Proof of Theorem 14

Using the results (and notation) of [BRS], we get that the NLMP is the
evolution of the measure ⊗µv on the states (queues qv) of the servers at the
nodes v ∈ Z

1, given by the equations

d

dt
µv (qv, t) = A + B + C + D + E (24)

with

A = − d

dri∗(qv) (qv)
µv (qv, t) (25)

the derivative along the direction r (qv) (in our case, since we assume expo-
nential service times with rate 1, we have d

dri∗(qv)(qv)
µv (qv, t) = µv (qv, t)),

B = δ (0, τ (e (qv)))µv (qv ⊖ e (qv) , t) [σtr (qv ⊖ e (qv) , qv) + σe (qv ⊖ e (qv) , qv)]
(26)

where qv is created from qv ⊖ e (qv) by the arrival of e (qv) from v′, and
δ (0, τ (e (qv))) takes into account the fact that if the last customer e (qv)
has already received some amount of service, then he cannot arrive from the
outside;

C = −µv (qv, t)
∑

q′v

[σtr (qv, q
′
v) + σe (qv, q

′
v)] , (27)

which corresponds to changes in queue qv due to customers arriving from
other servers and from the outside (in the notations of (1) , σe (qv, q

v ⊕ w) =
λv,w);

D =

∫

q′v:q
′

v⊖C(q′v)=qv

dµv (q′v, t) σf (q′v, q
′
v ⊖ C (q′v))−µv (qv, t) σf (qv, qv ⊖ C (qv)) ,

(28)
where the first term describes the situation where the queue qv arises after a
customer was served in a queue q′v (longer by one customer), and q′v⊖C (q′v) =
qv, while the second term describes the completion of service of a customer
in qv;

E =
∑

v′n.n.v

βvv′ [µv′ (qv, t) − µv (qv, t)] , (29)

where the β-s are the rates of exchange of the servers.
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For the convenience of the reader we repeat the equation (24 − 29) once
more:

d

dt
µv (qv, t) = − d

dri∗(qv) (qv)
µv (qv, t)

+ δ (0, τ (e (qv)))µv (qv ⊖ e (qv)) [σtr (qv ⊖ e (qv) , qv) + σe (qv ⊖ e (qv) , qv)]

− µv (qv, t)
∑

q′v

[σtr (qv, q
′
v) + σe (qv, q

′
v)] +

∫

q′v:q
′

v⊖C(q′v)=qv

dµv (q′v) σf (q′v, q
′
v ⊖ C (q′v))

(30)

− µv (qv)σf (qv, qv ⊖ C (qv)) +
∑

v′n.n.v

βvv′ [µv′ (qv) − µv (qv)] .

Compared to the setting of [BRS], we have the following simplifications:

1. The graph G is the lattice Z
1;

2. All customers have the same class;

3. The service time distribution η is exponential, with the mean value 1;

4. The service discipline is FIFO;

5. The exogenous customer c arriving to node v has for destination the
same node v; inflow rates at all nodes are equal to λ;

6. The two servers at v, v′, which are neighbors in Z
1 exchange their po-

sitions with the same rate β ≡ βvv′ ;

The equation for the fixed point then becomes:

0 = µv (qv ⊖ e (qv)) [σtr (qv ⊖ e (qv) , qv) + σe (qv ⊖ e (qv) , qv)]

− µv (qv)
∑

q′v

[σtr (qv, q
′
v) + λ] +

∑

q′v:q
′

v⊖C(q′v)=qv

µv (q′v)

− µv (qv) Iqv 6=∅ +
∑

v′=v±1

β [µv′ (qv) − µv (qv)] .

The proof is concluded when using the fact that queue qv can in this setting
be identified with the sequence of destinations D (ci) of its customers.
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