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Abstract

We study the problem of the crystal formation in vacuum.

1 Introduction

By now, the rigorous theory of the Wulff shapes is well developed in statistical
mechanics. It describes the asymptotic shape of a large (random) droplet of
one phase surrounded by the sea of coexisting different phase. Such a large
droplet arises if forced into a system at the phase coexistence by the canonical
constraint (see [DKS, B, CP]), or else when it is created spontaneously during
the process of dynamical relaxation from the metastable state to the stable
one ([SS]). All the papers cited are dealing with the Ising model at zero
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magnetic field and the temperature below the critical one, i.e. when there is
the phase coexistence phenomenon.

In [R] a different question is asked: suppose a certain given amount of
matter is put into void space (for example, this matter can be described by
the Ising model at a positive magnetic field, in which regime there is no phase
coexistence). Which shape this matter will assume? Alternatively, consider
a droplet of water, floating in oil, and then low the temperature so that the
water freezes. What will be the shape of the ice crystal one sees?

In the present note we provide rigorous answers to this question for some
models, which in some cases are different from the answers anticipated in
[R]. We also formulate conjectures in situations where rigorous answers are
not available currently.

2 Lattice case

2.1 Ising crystal in the void

Consider the Ising ±1 spins σ in d dimensions under magnetic field h > 0 at
temperature β−1, given by the Hamiltonian

HI (σ) = −
∑

x,y n.n.

σxσy − h
∑

x

σx, x, y ∈ Z
d.

The idea in [R] is to consider the finite container V as a third parameter of
the model. Namely, let Z (β, h, V ) denote the partition function in V with
free boundary condition. Denote by T

d
N the d-dimensional torus of volume

Nd. The void crystal model is defined by the partition function

Ξ (β, h,N, f) =
∑

V⊂T
d

N
:

vol(V )=⌊fNd⌋

Z (β, h, V ) . (1)

Here f > 0 is the number defining the proportion of the box T
d
N filled by the

Ising matter. We take f to be small enough, so that the shape of the box T
d
N

will have no effect on the typical V -s.
The corresponding probability distribution PN (∗) on the boxes V ⊂ T

d
N

with vol (V ) =
⌊

fNd
⌋

is given by

PN (V ) =
Z (β, h, V )

Ξ (β, h,N, f)
. (2)
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This probability distribution is somewhat different from the one suggested in
[R]: we do not restrict V to be star-shaped, nor, in fact, that V is connected
or simply-connected. This generality is physically more reasonable.

The question we want to study is the typical properties of the shapes V
as the size N of our system goes to ∞. To this end we first reformulate the
question as a question about the behavior of a different model at the phase
coexistence.

The new model is again a lattice spin model η on Z
d, taking now values

+1, 0,−1, and defined by the Hamiltonian

H (η) = −
∑

x,y n.n.

ηxηy − h
∑

x

ηx − [d+ k]
∑

x

(

1− η2x
)

. (3)

In words, we put our ±1 Ising model into the ideal gas of non-interacting 0
spins, which are subject to the magnetic field of strength [d+ k] . Note that
the question of the behavior of the random boxes V of size |V | =

⌊

fNd
⌋

under the distribution (2) is equivalent to the question of the behavior of the
random boxes W (η) ≡

{

x ∈ T
d
N : ηx 6= 0

}

of the model (3) , considered

• at the temperature β−1,

• in the same magnetic field h > 0,

• under ‘canonical’ constraint
∑

x (1− η2x) = (1− f)Nd,

• for any value of the magnetic field [d+ k] , acting on the 0 spins.

Consider the translation-invariant ground state configurations of the Hamil-
tonian (3). For k < h it is the configuration η+ ≡ +1, for k < h it is the
configuration η0 ≡ 0, while for k = h the Hamiltonian (3) is degenerate and
has two ground state configurations: η = +1 and η = 0. Moreover, it is easy
to check that at k = h the Peierls stability condition holds:

Consider a finite box V ⊂ Z
d, and define the configuration ηV by

ηVx =

{

+1 if x ∈ V,
0 otherwise.

Then for some τ > 0 we have

H
(

ηV
)

−H
(

η0
)

≥ τ |∂V | ,
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where ∂V =
{

{x, y} : x, y n.n. ∈ Z
d, x ∈ V, y /∈ V

}

. (In fact,H
(

ηV
)

−H (η0) =
|∂V | , so the Peierls constant τ can be taken to be 1.)

Therefore the Pirogov-Sinai theory, see e.g. [S], applies to our model (3) .
It claims that for any d ≥ 2 there exists a value βd < ∞ such that for all
β > βd there exist the value k (β, h) of the magnetic field k at which there
are two translation-invariant Gibbs states corresponding to the Hamiltonian
(3) ; one is small perturbation of the configuration η+, while the other – of
the configuration η0. Moreover, k (β, h) → h, as β → ∞. (In fact, k (β, h)
can be easily expressed via the free energy f (β, h) of the Ising model.)

Summarizing, we see that the study ‘in the void’ – of the behavior of
the random box V under the distribution PN (V ) above, is equivalent to
the study of the random box W at the same temperature β and the field
k = k (β, h) , i.e. at coexistence (provided β is large).

In particular, for d = 2 all the machinery and all the results of [DKS] are
valid in our situation, provided β is large enough:

Theorem 1 Let h > 0, β > βd=2 and 0 < f < 1
10
. There exists the subset

VN of boxes, VN = {V ⊂ T
2
N : vol (V ) = fN2} , such that PN (VN) → 1 as

N → ∞, which has the following properties:
1. Among the connected components ∂iV of the boundary ∂V of a box

V ∈ VN there exists exactly one – say, ∂1V ≡ Γ ⊂ ∂V – which is ‘big’:
diam (∂1V ) ∼ N ; all other components are ‘small’: diam (∂iV ) ∼ lnN, i =
2, 3, ...

2. The contour Γ has asymptotic shape W, with

W = W (β, h) ⊂ R
2 (4)

being some smooth (C∞) strictly convex centrally symmetric closed curve.
More precisely, for every V ∈ VN and its big boundary component Γ = ∂1V
there exists a vector x (Γ) such that the shifted contour, Γ + x (Γ) , satisfies

distH (Γ + x (Γ) , cNW ) ≤ N3/4. (5)

Here distH is the Hausdorf distance, and the scaling factor c depends on β, h
and f only.

3. The curve W is the Wulff shape, corresponding to the Hamiltonian
(3) at the temperature β and magnetic fields h, k (β, h) . Its construction is
explained below.
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The proof of this theorem follows essentially the same lines as that in
the book [DKS]. The difference is that [DKS] treats the Ising model, while
here we have a different one. But the analysis of the proof given in [DKS]
shows that its technique applies also to any 2D model within the Pirogov-
Sinai class. The differences are only notational and technical, though they
will result in the doubling of the length of the proof.

The situation in the 3D case is similar, though some details differ: instead
of the distance distH one has to consider the L1-distance, the exponent in (5)
is not known (though lnN is expected, compare with [K]), the Wulff surface
W is not strictly convex and is only C1, etc. For details, see [B, BIV, CP].

2.2 The Wulff shape

In this section we will explain how to construct the curve W entering our the-
orem, see (4) . This curve is a solution to the Wulff variational problem,
stated below. The variational problem has as its input a certain surface

tension function, τH,β (∗) , which is defined by the Hamiltonian (3) and
the inverse temperature β, and which will be defined next.

2.2.1 Wulff problem

Wulff variational problem is formulated as follows. Let τ (n) , n ∈ Sd−1

be some continuous function on the unit sphere Sd−1 ⊂ R
d. We suppose

that τ > 0, and that τ is even. For every closed compact (hyper)surface
Md−1 ⊂ R

d we define its surface energy as

Wτ (M) =

∫

M

τ (ns) ds,

where ns is the normal vector to M at s ∈ M. The functional Wτ (M) has
the meaning of the surface energy of the M-shaped droplet. It is called the
Wulff functional. Let Wτ be the surface which minimizes Wτ (·) over all the
surfaces enclosing the unit volume. Such a minimizer does exist and is unique
up to translation. It is called the Wulff shape.

The following is the geometric construction of Wτ . Consider the set

Kτ =
{

x ∈ R
d : ∀n ∈Sd−1 (x,n) ≤ τ (n)

}

.

If we define the half-spaces

Lτ,n =
{

x ∈ R
d : (x,n) ≤ τ (n)

}

,
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then
Kτ = ∩nLτ,n; (6)

in particular, Kτ is convex. It turns out that

Wτ = λτ∂ (Kτ ) ,

where the dilatation factor λτ is defined by the normalization: vol (λτKτ ) =
1. The relation (6) is called the Wulff construction.

2.2.2 Surface tension

In this subsection we specify the surface tension function τ = τH,β (∗) , which
has to be used in the construction above.

Let θ ∈ S
1 be a unit vector in R

2. Let us define the spin configuration ηθ

on Z
2 by

ηθx =

{

+1 if 〈x, θ〉 ≥ 0,
0 otherwise,

and let us also put
η+x ≡ +1, η0x ≡ 0.

Let Bn ⊂ Z
2 be a square box centered at the origin, with a side 2n. Consider

the partition functions Z
(

β, h, k, Bn; η
θ
)

, Z (β, h, k, Bn; η
+) , and Z (β, h, k, Bn; η

0) ,
which are computed in the box Bn for the Hamiltonian (3) with boundary
conditions ηθ, η+ and η0. The surface tension τH,β is defined as

τH,β (θ) = lim
n→∞

−
1

βl (θ, n)
ln

Z
(

β, h, k, Bn; η
θ
)

√

Z (β, h, k, Bn; η+)Z (β, h, k, Bn; η0)
, (7)

where l (θ, n) is the length of the segment, obtained by intersecting the line
L (θ) = {x ∈ R

2 : 〈x, θ〉 = 0} and the box Bn.

Theorem 2 Let the field k = k (β, h) . Then the limit (7) exists, is positive
for β large enough and is smooth in θ. It also satisfies the ‘triangle inequality’
(see relation (2.2.2) in [DKS]).

As a result, the properties of the curve W, listed in the Theorem 1, follow,
see again [DKS].
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3 Continuum case

Here we consider the case of crystals in R
d. Much less is known here rigor-

ously.
We will treat point random fields, defined by the interaction U (x, y) =

U (|x− y|) , which is supposed to be superstable. For example, Lennard-
Jones potential, or the potential

U (|x− y|) =







+∞ if |x− y| ≤ 1,
|x− y| − 3 if 1 < |x− y| < 3,

0 if |x− y| ≥ 3
(8)

of [R] or just the hard-core interaction will go. The weight wβ,z (x) of a
configuration x =

{

xi ∈ R
d, i = 1, ..., n

}

is given by

wβ,z (x) = zn exp

{

−β
∑

i<j

U (xi, xj)

}

. (9)

The parameter z > 0 is called activity.
For a finite box V ⊂ R

d the partition function with free boundary condi-
tions is defined as

Z (β, z, V ) ≡ Z (β, z, V,∅) =

∞
∑

n=0

∫

V n

wβ,z (x) dx.

Since there is no natural measure on the space of all boxes V ⊂ T
d
N (these

notations refer now to the continuous case of Rd), we will proceed via some
discretization procedure, the effect of which vanishes in the thermodynamic
limit. For every N we consider the partition of the torus T

d
N into cubes of

size 1
N

– i.e. into N2d cubes, and we call a box V ⊂ T
d
N an N -box iff V is

the union of these 1
N

cubes. (An N -box need not to be connected.)
The probability distribution PN (∗) on the N -boxes V of size

⌊

fNd
⌋

that
we want to consider now is given by

PN (V ) =
Z (β, z, V )

Ξ (β, z, N, f)
,

where the partition function

Ξ (β, z, N, f) =
∑

V⊂T
d

N
:

vol(V )=⌊fNd⌋

Z (β, z, V )
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is obtained by summing over all N -boxes. So we can proceed as in the
previous section, introducing the auxiliary non-interacting y particles, filling
the complement Td

N\V and having the activity ζ = ζ (z, β) which brings them
into equilibrium with the x-field, and try to apply the Wulff construction in
this situation.

3.1 Surface tension: conjectures

The first thing to be done is the definition of the surface tension. Contrary
to the Ising model case, which has one Gibbs state once h > 0, here the
situation is different, and it is reasonable to expect that when both β and z
are large, our models have continuum of extremal Gibbs states. In the 3D
case one expects the breaking of both the rotation and translation symmetry,
while in the 2D case the translation symmetry is not broken, [Ri], and only
rotation symmetry is expected to be broken. Therefore the definition of the
surface tension should include the choice of the pure phase. For the hard
core models defined above we take for the boundary condition η↑ the centers
of the densest lattice packing Πd of balls of radius (1+ε(β,z,d))

2
in R

d, with
one ball centered at the origin. The orientation of the lattice is chosen in
such a way that the intersection of the packing Πd with the horizontal plane
R

d−1 ⊂ R
d results in the packing Πd−1. The parameter ε (β, z, d) is chosen

in such a way that the density of points in the configuration η↑ coincides
with the density of particles in a Gibbs state defined by the weight (9) . In
particular, ε (β, z, d) → 0 if β → ∞ or if z → ∞. 1

Similarly to the Section 2.2.2, for every θ ∈ S
d−1 we introduce the point

configuration η↑,θ, which coincides with η↑ in the half-space Rθ =
{

x ∈ R
d : 〈x, θ〉 ≥ 0

}

and which is empty in the remaining half-space. Then we consider the
partition functions Z

(

β, z, ζ (z, β) , Bn; η
↑,θ
)

, Z
(

β, z, ζ (z, β) , Bn; η
↑
)

, and
Z (β, z, ζ (z, β) , Bn;∅) in the cubic box Bn, and we define

τ ↑β,z (θ) = lim
n→∞

−
1

βl (θ, n)
ln

Z
(

β, z, ζ (z, β) , Bn; η
↑,θ
)

√

Z (β, z, ζ (z, β) , Bn; η↑)Z (β, z, ζ (z, β) , Bn;∅)
,

(10)
where, again, l (θ, n) is the measure of intersection of the cube Bn with the
plane 〈x, θ〉 = 0. At present, there is

1In the initial version of the present paper the parameter ε (β, z, d) was absent. The
idea to introduce it is due to T. Richthammer.
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1. no proof of existence of the limit function τ ↑β,z (θ),

2. no proof of positivity and non-trivial dependence of τ ↑β,z (θ) on θ for
large β and z.

If we assume both, then it is safe to conjecture that the analog of the the-
orem 1 holds in the present situation, with the Wulff shape W (β, h) replaced
by W ↑ (β, z) , which is the solution of the Wulff problem corresponding to
the surface tension τ ↑β,z. However, there is an important difference: in the
relation (5) , instead of the shift Γ+x (Γ) of the crystal Γ one has to consider
also the rotated crystal, ρ (Γ) ◦ [Γ + x (Γ)] , where ρ (Γ) ∈ SO (d) . This extra
rotation appears due to the choice of one of many possible low temperature
phases of our model, made in (10).

It seems that the simplest interaction for which the above conjectures 1

and 2 can be proven in all dimensions d ≥ 2 is the one given by (8) .

4 High temperature

At high temperature (and low activity) we find ourselves in the uniqueness
regime, while the surface tension vanishes. As a result, no large crystal is
formed, i.e. all droplets are small. In the example of water bubble in oil it
means that water will be dispersed into infinitesimal droplets of no specific
shape.
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