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We consider the ferromagnetic Ising model on the Cayley tree and we investi-

gate the decomposition of the free state into extremal states below the spin glass

temperature. We show that this decomposition has uncountably many components.

The tail observable showing that the free state is not extremal is related to the

Edwards-Anderson parameter, measuring the variance of the (random) magnetiza-

tion obtained from drawing boundary conditions from the free state.

I. INTRODUCTION

It is well known that the Ising model on a regular Cayley tree undergoes a second order

phase transition at the critical temperature Tcr, below which the Gibbs states µ+ and µ−,

corresponding to + and − boundary conditions, are different extremal states. Unlike the

usual Zd-lattice case, on the tree the behavior of the free state µ∅, corresponding to empty

boundary conditions, is very rich. On Zd we have µ∅ = 1
2
(µ+ + µ−), while on the tree

that is trivially true only in the uniqueness regime. Moreover, the free state is extremal for

temperatures T below the critical temperature Tcr, until a certain spin-glass temperature

TSG, below which it stops to be extremal. The question of finding the temperature range of

the ergodicity of the state µ∅ was open for twenty years, and was solved by Bleher, Ruiz and

Zagrebnov in their 1995 paper [2]. Soon after, a simpler argument was provided by Ioffe,

[11]. For a closely related communication theory problem, see the ”Broadcasting on trees”

paper by Evans, Kenyon, Peres and Schulman [7].

In the present paper we study the free state at temperatures below TSG.

A principal static feature of the spin glass phase is the presence of infinitely many pure

states; see the discussion in [14] and the references therein. By a gauge transformation the

spin glass on the tree and the ferromagnet are equivalent, except that random boundary
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conditions for the ferromagnet correspond to fixed boundary conditions for the spin-glass,

as was for example discussed in [3]. We show that the same phenomenon also happens in the

ferromagnetic Ising model on the tree, i.e., without randomness in the interaction. Namely,

the free state of the Ising model below the spin-glass temperature has a decomposition into

extremal states which involves uncountably many extremal states. That is why we call this

state ‘glassy’. Our result answers an older question of Arnout van Enter, [15].

The next section contains the more detailed question with some notations and definitions.

Our main decomposition result is given in Section 3. The remaining sections contain further

details and proofs.

II. NOTATIONS AND DEFINITIONS

Let Tk = (V,E) be the Cayley tree with branching ratio k ≥ 2. We consider the nearest

neighbor Ising model, where spins σx = ±1 have a Gibbs distribution at temperature T =

1/β with boundary condition η in a finite volume Λ given by

µ(σ) = Z−1 exp

β∑
〈x,y〉

Jxyσxσy + β
∑
〈x,y〉

Jxyσxηy

 (1)

Both sums run over nearest neighbors pairs, the first being over the pairs x ∈ Λ, y ∈ Λ,

and the second one runs over sites x ∈ Λ, y /∈ Λ. The infinite-volume Gibbs distributions

are obtained as the convex hull of the set of all possible limit point when Λ grows to

cover all the vertices of the tree. The set of Gibbs distributions for a fixed temperature

and interaction is convex, and its extreme points are called pure states: they cannot be

decomposed into other states.

In the ferromagnetic case we put Jxy = 1, while in the spin-glass model the interaction

is random: Jxy = ±1 with probability 1/2 independently for any pair 〈x, y〉. We can also

consider the random interaction

Jxy =

 −1 with probability p

+1 with probability 1− p
(2)

which interpolates between the ferromagnetic model p = 0 and the spin-glass model p = 1/2.
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It is well known that in the ferromagnetic case the phase transition happens at the criti-

cal temperature Tcr = 1/ arctanh(1/k). For T > Tcr there is a unique infinite-volume Gibbs

distribution and below that critical temperature the spontaneous magnetization m∗(T ) be-

comes nonzero, while plus and minus boundary conditions give rise to different states:

〈σ0〉T± = ±m∗(T ), m∗(T ) > 0 iff T < Tcr.

We use the convention that the boundary condition by which the infinite-volume Gibbs state

is obtained is indicated by a subscript to the expectation 〈·〉, and superscripts will be used

to indicate further parameters like temperature or the choice of model in (2).

There is yet another special temperature, TSG = 1/ arctanh
(

1/
√
k
)

, called the spin-glass

temperature. It will often appear in what follows below, and it has various interpretations.

For the ferromagnetic model it is known that the free state, the infinite-volume Gibbs

distribution obtained by putting η ≡ 0 in (1), is extreme for T > TSG while it is not

for T < TSG; see [2],[11],[7],[13]. Hence the question that motivates the present paper: what

is the decomposition of the free state 〈·〉T∅ (at these lower temperatures) into extremal ones?

Part of the question is also to understand why that extremality of the free state exactly

stops at the spin-glass temperature, which in its origin characterizes a transition to glassy

behavior in the spin-glass model. For example consider the spin-glass state obtained via

plus-boundary conditions and look at the (random) local magnetization at the origin:

〈σ0〉T,SG+ = m(T, {Jxy})

It depends on the independent random variables Jxy, which take values ±1 with equal

probability. The spin-glass temperature TSG is that temperature below which m(T, {Jxy})

is a fluctuating quantity with a non-trivial distribution. For example, the second moment,

the Edwards–Anderson parameter, is positive only there:

qEA(T ) = E[m2(T, {Jxy})] > 0 iff T < TSG,

where the expectation E[·] is taken over the randomness {Jxy}.

III. DECOMPOSITION OF THE FREE STATE

In this section we present the decomposition of the free state into pure states and we

explain that a continuum of them enters into it, at least at low temperatures. Presumably,

it is the case for all temperatures in the spin-glass region.
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A. The construction of the decomposition

For any Gibbs state µ corresponding to temperature T we have that

µ (·) =

∫
µ(dσ) [〈·〉Tσ ]

where σ is a spin configuration drawn from µ and used as boundary condition at infin-

ity. The Gibbs distributions 〈·〉Tσ are µ-almost surely extreme. Hence, we have here a

decomposition of µ into extreme Gibbs distributions, but obviously the states 〈·〉Tσ might

well be the same for different σ-s. Nevertheless this decomposition is nontrivial when µ

is not extremal. It remains then to see how many and which different extremal states we get.

For the Ising model free state µT∅ we will use the Edwards-Sokal representation, [10]:

µT∅ (·) = Eq(T )
(
µES (·|n)

)
(3)

(In contrast to the more standard notation we prefer here to call q(T ) = 1 − tanh 1/T the

probability of removed (or closed) bonds.) On the tree, the random cluster measure is gen-

erated by independent bond percolation and n is the resulting random bond configuration

over which we take the expectation Eq. The open bonds generate a partition of the tree

into maximal connected components. The measure µES (dσ|n) is supported by the spin

configurations σ which are constant on each connected component as specified by n; these

constants take values ±1, independently with probability 1/2.

We can rewrite (3) on the tree by ordering the components using the following definitions.

Let D be a subset of bonds of the tree Tk, and consider the two Ising spin configurations

σD,± on Tk defined as:

σD,+0 = +1, σ
D,−
0 = −1 (4)

and

σD,±x = −σD,±y for (x, y) ∈ D

σD,±x = +σD,±y for (x, y) /∈ D

That is, we fix the value of the spin at the root (say 0) to be +1 or −1, and the nearest

neighbor spins alternate iff the corresponding bond belongs to the set D.
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By 〈·〉TσD,ω we denote the Gibbs state of the ferromagnetic Ising model at inverse temper-

ature T with the boundary condition σD,ω where ω = ±1 corresponds to the way the spin

at the origin is chosen.

Let p ∈ (0, 1). Take the set D to be random: every bond decides to be in D with

probability p independently of the other bonds. Denote by Ep the expectation with respect

to that process.

Proposition III.1. The following decomposition of the free state for the ferromagnetic Ising

model on the tree holds for all temperatures T :

〈·〉T∅ =
1

2
Ep(T )

[
〈·〉TσD,+ + 〈·〉TσD,−

]
, (5)

where

p(T ) =
1

2
[1− tanh 1/T ].

Proof. We apply the Edwards-Sokal representation (3) of the Ising model. Start by noting

that

〈·〉T∅ = Eq(T )
(
µES (·|n)

)
= Eq(T )

∫
〈·〉Tσ µ

ES(dσ|n),

Consider now for a given bond collection n the atomic measure µ± (dσ|n) =

1
2

(δσn+ + δσn−), which to n assigns two configurations defined by the relations (4), each

with probability 1
2
. In other words, fixing the spin of the origin and fixing n determines

all the other spin values, where in particular neighboring connected components of open

bonds alternate their spin. However the resulting spin configuration would have the same

distribution as in the Edwards-Sokal representation with twice as large probability of closed

bonds: with p(T ) = q(T )/2,

Eq(T )[µES (dσ|n)] = Ep(T )[µ± (dσ|n)],

Bringing all that together we conclude that on the tree (3) reduces to the formula (5).

Note also that the states 〈·〉TσD,+ , 〈·〉TσD,− can be obtained as thermodynamic limits of the

finite-volume Gibbs states with the boundary conditions σD,+, σD,−. These limits exist for

〈·〉T∅-almost all boundary conditions σD,+, σD,−.

To see that this decomposition (5) is non-trivial for T < TSG it suffices to show that when

T < TSG, 〈·〉TσD,+ 6= 〈·〉TσD,− for Ep(T )-typical sets D. That follows from the relations

Ep(T )[〈·〉TσD,+ ] > 0 > Ep(T )[〈·〉TσD,− ], (6)
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which are a special case of the Theorem 1.1 of [7].

Of course, the states 〈·〉TσD,+ may coincide for different sets D – this is the case at high

temperature. In the next subsection we will show that at low temperatures there is a

continuum of different states 〈·〉TσD,+ as we vary over the sets D, see also [8]. There we have

shown that if the set D consists of bonds sufficiently separated from one another, then the

configuration σD,+ is a stable ground state. Of course, for our random configuration D this

is not the case; for example we will see in D pairs of bonds sharing a vertex, which will

happen with positive density. However, quite often we will see just isolated bonds, well

separated, once p(T ) is small enough, see the next subsection for more details.

Remark. At all temperatures T the free-state two-point function 〈σ0σx〉T∅ → 0 goes to

zero when x goes to infinity, yet for T < TSG the free state is not extreme. In particular,

the magnetization in increasingly large volumes has a variance that does not go to zero with

the size of the volume. The interesting tail-observable which shows that the free state is not

extreme is related to the Edwards-Anderson parameter. Here is the simplest version: take

the magnetization at the origin,

M(τ) = 〈σ0〉Tτ

in the infinite-volume Gibbs distribution with boundary condition τ ; that τ is drawn from

the free state at temperature T . For T < TSG the random variable M(τ) has a non-trivial

distribution.

B. At low temperatures T the states 〈·〉T
σD,+ are mutually singular.

Theorem III.2. Pick two independent configurations σD1,+, σD2,+ from the distribution

〈·〉T∅. Then the two limiting states 〈·〉T
σD1,+

, 〈·〉T
σD2,+

exist and are mutually singular a.s. with

respect to 〈·〉T∅ × 〈·〉T∅, provided the temperature T is low enough.

Proof. We denote by D a random configuration of bonds in Tk, each bond picked

independently with probability p, with the parameter p being fixed and small enough. We

will study the Gibbs states 〈·〉TσD,+ at low temperatures, with the goal of showing their a.s.

mutual singularity.

Let b = (x, y) ∈ Tk be a bond, and BN (b) ⊂ Tk be a ball of radius N centered at

b. Consider the ground state (=zero temperature Gibbs) measure 〈·〉T=0,BN (b)

σD,+ in the box
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BN (b) with boundary condition σD,+. We call the bond b frustrated in the state 〈·〉T=0,BN (b)

σD,+ ,

if the event σxσy = −1 happens with probability one in the state 〈·〉T=0,BN (b)

σD,+ , for all N large

enough. We call the bond b to be r-strongly-frustrated (or just r-frustrated) in the state

〈·〉T=0,BN (b)

σD,+ , if the event σxσy = −1 happens with probability one in the state 〈·〉T=0,BN (b)

σD,+ ,

as well as the events σx′σy′ = 1 for all bonds b′ = (x′, y′) within distance r from the bond b,

again for all N large enough.

For example, the above will hold if b ∈ D, while D is a deterministic configuration

composed from isolated bonds which are sufficiently far away from each other, see [8], [9].

What we want to show now is that if D is random, and b ∈ D, then it is very likely that b

is r-frustrated, provided p is small enough (depending on r). Once we show that, our claim

about mutual singularity will be proven, since for two independent configurations D′, D′′ we

will be able to find arbitrarily large disjoint sets of r-frustrated bonds.

So let D be random, and b ∈ D. Our first observation is that the probability of D having

other bonds at distance 2r from b is quite small, provided p is small enough. That would be

the end of the story if the configuration σD,+ would be a ground state configuration. Indeed,

in that case the state 〈·〉T,BN (b)

σD,+ would be a small perturbation of the configuration σD,+ once

T is low, uniformly in N.

However, the configuration σD,+ is not a ground state configuration a.s., so the state

〈·〉T=0,B2r(b)

σD,+ might have other frustrated bonds in B2r (b) ; moreover, it even can happen that

b itself is not frustrated in this state. We will show now that all this is highly unlikely, once

p is small enough.

So suppose the set of frustrated bonds of the state 〈·〉T=0,B2r(b)

σD,+ is not the singleton {b} .

That can happen iff there is a contour γ, [γ ∪ Int (γ)]∩B2r (b) 6= ∅, crossing certain number

` ≥ k + 1 of bonds of Tk, such that |γ ∩D| ≥ `
2
. Consider the set Tγ of the bonds of Tk

which are inside γ, and the set Lγ of bonds of Tk the contour γ is intersecting. Together

they form a finite tree Sγ, which has the same branching number k as our infinite tree Tk.

The set Lγ is the set of all leaves of the tree Sγ. Let nγ be the number of nodes of Sγ inside

γ, and L̄γ ⊂ Lγ be the intersection Lγ ∩D. So we have |Tγ| = nγ − 1, |Lγ| = `,
∣∣L̄γ∣∣ ≥ `

2
,

and |Lγ| = 1 + nγ (k − 1) .

Evidently, the probability of seeing such a tree

Pr
(
Sγ, Lγ, L̄γ

)
≤ p`/2,
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so

Pr (Sγ, Lγ) ≤ 2`p`/2.

The number of trees S with n inner nodes does not exceed k2n. Thus the probability that a

given bond b1 is a leaf of such a tree with ` leaves is bounded from above by

2`k2`/(k−1)p`/2,

which is exponentially small in ` for p small enough. So we can apply the standard Peierls

argument to shows that the probability of the event

{there is a contour γ, such that γ ∩B2r (b) 6= ∅ or B2r (b) ⊂ Int (γ)}

goes to zero as p→ 0, which ends the proof.

To conclude, we point out for clarity that the “Gibbs ground” states limT→0〈·〉TσD,+ con-

structed from the p-random bond configurations D, are typically nontrivial measures, i.e.

they have infinite supports, a.s. This is in contrast with the ground states constructed in

[8], where the corresponding Gibbs ground states are supported by a single ground state

configuration. However, as is explained above, a vast majority of the frustrated bonds un-

der typical ground state 〈·〉T=0
σD,+ are isolated bonds, once p is small. This fact is the source

for the decomposition (5) to have a continuum of extremal components.

IV. DOUBLE–TEMPERATURE ISING MODEL

We already mentioned in the introduction that the phase diagram of the ferromagnetic

Ising model is essentially determined by the critical temperature Tcr = 1/ arctanh(1/k),

and the spin-glass temperature TSG = 1/ arctanh
(

1/
√
k
)

. A clarification of the situation

can however be obtained by enlarging the objects in (5) into a two-temperature setting.

We consider two-temperature states, with T2 the bulk temperature and T1 the boundary

temperature,

ν(T1, T2) := 〈·〉T2
σD(T1),+

which is the infinite-volume Gibbs distribution at temperature T2 with the boundary

condition taken to be the spin configuration (4) where D is drawn from Ep(T1), the Bernoulli

bond percolation process with parameter 1 − p(T1). Of course, one may wonder whether

the thermodynamic limits 〈·〉T2
σD(T1),+

exist. We are not going to prove it; what is said below
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holds for any limit point of that family. Note that (5) contains these states ν(T, T ) with

T1 = T2 = T – and that is why it is useful to speak about the temperature T1, but of course

the relevant parameter is the density p(T1). The following is therefore presented in the

(p, T )-plane, which is also the setting of [4].

Consider the curve

TSG(p) = max{ 1

arctanh[ 1
k(1−2p) ]

, 0}.

Note that TSG(p) > 0 when k(1− 2p) > 1.

0 1/4 1/2
p0

1

2
SG(p)T

Tcr

FIG. 1: The curve TSG(p).

Proposition IV.1. For any positive temperature T > 0 and parameter 0 ≤ p ≤ 1/2,

1. When T ≥ TSG(p), the expected local magnetization of the random Gibbs states 〈·〉TσD,ω

vanishes,

Ep(〈σx〉TσD,±) = 0

2. When T < TSG(p),

Ep(〈σx〉TσD,+) = −Ep(〈σx〉TσD,−) > 0

Let us now look at the second moment, Ep([〈σx〉TσD,+ ]2) = Ep([〈σx〉TσD,− ]2), which is called

the Edwards-Anderson (EA) parameter.
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Proposition IV.2. For the random Gibbs state 〈·〉TσD,+

1. If T ≥ TSG and T ≥ TSG(p), then

Ep([〈σx〉TσD,+ ]2) = 0

2. Otherwise, for any other temperature T > 0:

Ep([〈σx〉TσD,+ ]2) > 0

Moreover,

Varp(〈σx〉TσD,+) > 0,

which means that the EA random variable 〈σx〉TσD,+ is non-degenerate.

0
0

1

T

Tcr

2

T  =TcrT  =T

1/21/4

T  = ∞111

TSG

(I) (III)

(II)

T 
=T2

1

p(T )1(1-1/√2)/2

SG

FIG. 2: Phase diagram. Phases I, II, III correspond to the behavior in Proposition IV.1,

IV.2. See also [5, 6] for a more qualitative discussion.

From Fig. 2 it is clear that the model shows an interesting and non-trivial behavior even

on the line

T1 =∞.
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That case is treated in [1].

To understand the nature of the spin-glass temperature, we remark that the composition

TSG(p(T )), which we abbreviate as

TSG(T ) := TSG(p(T )) =
1

arctanh
(

1
k tanh(1/T )

)
is an involution: TSG(TSG(T )) = T . In particular,

TSG(0) = Tcr, TSG(Tcr) = 0, TSG(TSG) = TSG.

Let us prove the last two Propositions in the vicinity of the point T1 = T2 = 0. After the

analysis of the section III.B and using its technique, it is almost immediate.

Let us fix x to be the root 0 of our tree. Informally speaking, the magnetization at the

root 0 in the state 〈∗〉T2σD,+ is defined by the few bonds of the (rare) bond configuration D,

which are in some proximity to 0. Moreover, this magnetization will take different values

when these few bonds happen to be different. Since that happens with positive probability,

our claim follows.

To be more formal, let BR be the ball of radius R centered at 0. Let b be a bond in BR.

Define the set Db as the family of all realisations D which has b as the only bond in BR.

Clearly, the probability Pr (Db) is positive for every value of the parameter p (T1) . Now, let

b′, b′′ be two such bonds, with dist (b′,0) > dist (b′′,0) , and let D′ ∈ Db′ , D′′ ∈ Db′′ be two

typical configurations. Then, using the technique of the section III.B and a little of cluster

expansions, one sees that there exists a constant c = c (b′, b′′) , such that

〈σ0〉T2σD′,+ > c > 〈σ0〉T2σD′′,+ ,

provided both T1 and T2 are small enough. That proves the positivity of the variance of the

EA random variable 〈σ0〉TσD,+ (with randomness coming from D).

The proofs in general case involve the recursion relations, and can be obtained from the

results of the papers [5], [6]. These results are summarized graphically by the following

pictures.
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FIG. 3: The first moment.
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FIG. 4: The second moment.
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