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We consider the ferromagnetic Ising model on the Cayley tree and we investi-

gate the decomposition of the free state into extremal states below the spin glass

temperature. We show that this decomposition has uncountably many components.

The tail observable showing that the free state is not extremal is related to the

Edwards-Anderson parameter, measuring the variance of the (random) magnetiza-

tion obtained from drawing boundary conditions from the free state.

I. INTRODUCTION

A principal static feature of the spin glass phase is the presence of infinitely many pure

states; see the discussion in [9] and the references therein. In the present paper we identify

the same phenomenon in the ferromagnetic Ising model on the tree, i.e., without randomness

in the interaction. We show that a very natural state – the free state of the Ising model

– which is not a pure state below the spin-glass temperature, has a decomposition into

extremal states which involves uncountably many extremal states. That is why we call this

state ‘glassy’. Our result answers an older question of Arnout Van Enter.

The next section contains the more detailed question with some notations and definitions.

Our main decomposition result is given in Section 3. The remaining sections contain further

details and proofs.

II. NOTATIONS AND DEFINITIONS

Let Tk = (V,E) be the Cayley tree with branching ratio k ≥ 2. We consider the nearest

neighbor Ising model, where spins σx = ±1 have a Gibbs distribution at temperature T =
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1/β with boundary condition η in a finite volume Λ given by

µ(σ) = Z−1 exp

β∑
〈x,y〉

Jxyσxσy + β
∑
〈x,y〉

Jxyσxηy

 (1)

Both sums runs over nearest neighbors pairs, the first being over the pairs x ∈ Λ, y ∈ Λ,

and the second one runs over sites x ∈ Λ, y /∈ Λ. The infinite volume Gibbs distributions

are obtained as limit points when Λ grows to cover all the vertices of the tree. The set

of Gibbs distributions for a fixed temperature and interaction is convex, and its extreme

points are called pure states: they cannot be decomposed into other states.

In the ferromagnetic case we put Jxy = 1, and in the spin-glass model the interaction

is random Jxy = ±1 with probability 1/2 independently for any pair 〈x, y〉. We can also

consider the random interaction

Jxy =

 −1 with probability p

+1 with probability 1− p
(2)

which interpolates between the ferromagnetic model p = 0 and the spin-glass model p = 1/2.

It is known that in the ferromagnetic case the phase transition happens at the critical

temperature Tcr = 1/ arctanh(1/k) . For T > Tcr there is a unique infinite volume Gibbs

distribution and below that critical temperature the spontaneous magnetization m∗(T ) be-

comes nonzero, while plus and minus boundary conditions give rise to different states:

〈σ0〉T± = ±m∗(T ), m∗(T ) > 0 iff T < Tcr.

We use the convention that the boundary condition by which the infinite volume Gibbs state

is obtained is indicated by a subscript to the expectation 〈·〉, and superscripts will be used

to indicate further parameters like temperature or the choice of model in (2).

There is yet another special temperature, TSG = 1/ arctanh
(

1/
√
k
)

, called the spin-glass

temperature. It will often appear in what follows below, and it has various interpretations.

For the ferromagnetic model it is known that the free state, the infinite volume Gibbs

distribution obtained by putting η ≡ 0 in (1) is extreme for T > TSG while it is not for

T < TSG; see [1],[3]. Hence the question that motivates the present paper: what is the

decomposition of the free state 〈·〉T∅ (at these lower temperatures) into extremal ones?
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Part of the question is also to understand why that extremality of the free state exactly

stops at the spin-glass temperature, which in its origin characterizes a transition to glassy

behavior in the spin-glass model. For example consider the spin-glass state obtained via

plus-boundary conditions and look at the (random) magnetization:

〈σ0〉T,SG+ = m(T, {Jxy})

It depends on the independent random variables Jxy, which take values ±1 with equal

probability. The spin-glass temperature TSG is that temperature below which m(T, {Jxy})

is a fluctuating quantity with a non-trivial distribution. For example, the second moment,

the Edwards–Anderson parameter

qEA(T ) = E[m2(T, {Jxy})] > 0 iff T < TSG,

where the expectation E[·] is taken over the randomness {Jxy}.

III. DECOMPOSITION OF THE FREE STATE

In this section we present the decomposition of the free state into pure states and we

explain that a continuum of them enters into it, at least at low temperatures. Presumably,

it is the case for all temperatures in the spin-glass region.

For any Gibbs state µ corresponding to temperature T we have that

µ (·) =

∫
µ(dσ) [〈·〉Tσ ]

where σ is a spin configuration drawn from µ and used as boundary condition at infin-

ity. The Gibbs distributions 〈·〉Tσ are µ-almost surely extreme. Hence, we have here a

decomposition of µ into extreme Gibbs distributions, but obviously the states 〈·〉Tσ might

well be the same for different σ-s. Nevertheless this decomposition is nontrivial when µ

is not extremal. It remains then to see how many and which different extremal states we get.

For the Ising model free state µT∅ we will use the Edwards-Sokal representation, [7]:

µT∅ (·) = Eq(T )
(
µES (·|n)

)
(3)

(In contrast to the more standard notation we prefer here to call q(T ) = 1 − tanh 1/T the

probability of removed (or closed) bonds.) On the tree, the random cluster measure is gen-

erated by independent bond percolation and n is the resulting random bond configuration
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over which we take the expectation Eq. The open bonds generate a partition of the tree

into maximal connected components. The measure µES (dσ|n) is supported by the spin

configurations σ which are constant on each connected component as specified by n; these

constants take values ±1, independently with probability 1/2.

We can rewrite (3) on the tree by ordering the components using the following definitions.

Let D be a subset of bonds of the tree Tk, and consider the two Ising spin configurations

σD,± on Tk defined as:

σD,+0 = +1, σ
D,−
0 = −1 (4)

and

σD,±x = −σD,±y for (x, y) ∈ D

σD,±x = +σD,±y for (x, y) /∈ D

That is, we fix the value of the spin at the root (say 0) to be +1 or −1, and the nearest

neighbors sites alternate iff they belong to the set D.

By 〈·〉TσD,ω we denote the Gibbs state of the ferromagnetic Ising model at inverse temper-

ature T with the boundary condition σD,ω where ω = ±1 corresponds to the way the spin

at the origin is chosen.

Let p ∈ (0, 1). Take the set D to be random: every bond decides to be in D with

probability p independently of the other bonds. Denote by Ep the expectation with respect

to that process.

Proposition III.1. The following decomposition of the free state for the ferromagnetic Ising

model on the tree holds for all temperatures T :

〈·〉T∅ =
1

2
Ep(T )

[
〈·〉TσD,+ + 〈·〉TσD,−

]
, (5)

where

p(T ) =
1

2
[1− tanh 1/T ].

Proof. We apply the Edwards-Sokal representation (3) of the Ising model. Start by noting

that

〈·〉T∅ = Eq(T )
(
µES (·|n)

)
= Eq(T )

∫
〈·〉Tσ µ

ES(dσ|n),
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and evidently,

Eq(T )[µES (dσ|n)] = Ep(T )[µ± (dσ|n)],

where p(T ) = q(T )/2, and where µ± (dσ|n) = 1
2

(δσn+ + δσn−) is atomic, i.e., it assigns to

any bond collection n two configurations defined by the relations (4), each with probability

1
2
. Bringing all that together we conclude that on the tree (3) reduces to the formula (5).

To see that this decomposition (5) is non-trivial for T < TSG it suffices to show that when

T < TSG, 〈·〉TσD,+ 6= 〈·〉TσD,− for Ep(T )-typical sets D. That follows from the fact that

Ep(T )[〈·〉TσD,+ ] > 0 > Ep(T )[〈·〉TσD,− ] (6)

The inequality (6) is proven in Section VI by recursion techniques.

Of course, the states 〈·〉TσD,+ may coincide for different sets D – this is the case at high

temperature. However we do know that at low temperatures there is a continuum of

different states 〈·〉TσD,+ as we vary over the sets D; see [6]. Indeed, at low temperatures

the sets D are composed of rare bonds and thus define stable ground states and mutually

singular low-temperature states (with probability one).

Remark: At all temperatures T the free state two-point function 〈σ0σx〉T∅ → 0 goes to

zero when x goes to infinity. Yet, for T < TSG the free state is not extreme. In particular,

the magnetization in increasingly large volumes has a variance that does not go to zero with

the size of the volume. The interesting tail observable which shows that the free state is not

extreme is related to the Edwards-Anderson parameter. Here is the simplest version: take

the magnetization

M(τ) = 〈σ0〉Tτ

in the infinite volume Gibbs distribution with boundary condition τ ; that τ is drawn from

the free state at temperature T . For T < TSG the random variable M(τ) has a non-trivial

distribution.
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IV. DOUBLE TEMPERATURE ISING MODEL

To understand what happens it is useful to enlarge the objects in (5) into a two-

temperature setting. We consider the two-temperature states

ν(T1, T2) := 〈·〉T2
σD(T1),+

which is the infinite volume Gibbs distribution at temperature T2 with the boundary

condition taken to be the spin configuration (4) where D is drawn from Ep(T1), the Bernoulli

bond percolation process with parameter 1 − p(T1). Note that (5) contains these states

ν(T, T ) with T1 = T2 = T , and that is why it is useful to speak about the temperature

T1 but of course the relevant parameter is the density p(T1). The following is therefore

presented in the (p, T )-plane. A similar discussion can be found in [5].

Consider the curve

TSG(p) = max{ 1

arctanh[ 1
k(1−2p) ]

, 0}.

Note that TSG(p) > 0 when k(1− 2p) > 1.

0 1/4 1/2
p0

1

2
SG(p)T

Tcr

FIG. 1: The curve TSG(p).

Proposition IV.1. For any positive temperature T > 0 and parameter 0 ≤ p ≤ 1/2,
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1. When T ≥ TSG(p), the expected local magnetization of the random Gibbs states 〈·〉TσD,ω

vanish,

Ep(〈σx〉TσD,±) = 0

2. When T < TSG(p),

Ep(〈σx〉TσD,+) = −Ep(〈σx〉TσD,−) > 0

Let us now look to the second moment, Ep([〈σx〉TσD,± ]2), which is called the Edwards-

Anderson parameter.

Proposition IV.2. For the random Gibbs state 〈·〉TσD,±

1. If T ≥ TSG and T ≥ TSG(p), then

Ep([〈σx〉TσD,± ]2) = 0

2. Otherwise for any temperature T > 0:

Ep([〈σx〉TσD,± ]2) > 0

0
0

1

T

Tcr

2

T  =TcrT  =T

1/21/4

T  = ∞111

TSG

(I) (III)

(II)

T 
=T2

1

p(T )1(1-1/√2)/2

SG

FIG. 2: Phase diagram.
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From Fig. 2 it is clear that the model shows an interesting and non-trivial behavior, even

on the line

T1 =∞.

It was treated in the paper [2] of Pavel Bleher.

To understand the nature of the spin-glass temperature, we remark that the composition

TSG(p(T )), which we abbreviate as

TSG(T ) := TSG(p(T )) =
1

arctanh
(

1
k tanh(1/T )

)
is an involution: TSG(TSG(T )) = T . In particular,

TSG(0) = Tcr, TSG(Tcr) = 0, TSG(TSG) = TSG.

V. BETWEEN FERROMAGNETIC AND RANDOM BOND ISING MODELS

Let us recall the equivalence between the Ising model with random boundary conditions

and the spin-glass Ising model; see e.g. [4].

For a fixed vertex x0 ∈ V , the root, consider the sphere Wn and the ball of radius n

Wn = {x ∈ V : d(x, x0) = n} (7)

Vn = {x ∈ V : d(x, x0) ≤ n}

Remember the definition of the two Ising spin configurations σD,± around (4). Denote

the corresponding ferromagnetic Gibbs states at temperature T in the volume Vn and with

the boundary condition σD,± by

µn,T
σD,ω (8)

with ω = ±1.

Consider next the spin-glass Ising model with the following fixed couplings

Jxy =

 −1 if (x, y) ∈ D

+1 if (x, y) /∈ D
(9)

and denote by

µJ,T,nω (10)
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the corresponding Gibbs state at temperature T in the volume Vn with the boundary con-

ditions ±1 (that is either the + boundary condition or the − boundary conditions). Note

however that the states µn,T
σD,+ and µJ,T,n+ are the same states up to a gauge transformation.

The same is true for the states µn,T
σD,− and µJ,T,n− .

Indeed, observe that in both cases with D,+ or D,−,

σDx = (−1)frD(0→x)σD0

where the quantity frD(0→ x) is the number of frustrated bonds of the configuration D in

the path starting from the root 0 and ending to the vertex x. The Gibbs state µn,T
σD is given

by

µn,T
σD (η) = (1/Zn) exp

 ∑
〈x,y〉⊂Vn

βηxηy +
∑
x∈Wn

∑
y∈S(x)

ηxσ
D
y

 (11)

But since

σDy =
∏

〈z,t〉:0→x

Jztσ
D
0

the left-hand side of (11) will read

(1/Zn)
∏

〈x,y〉⊂Vn

eβJxyηxηy
∏
x∈Wn

∏
y∈S(x)

eβηxJxyσ
D
0 (12)

which we recognize as the Gibbs states of the spin-glass model with fixed couplings (9) with

+ or − boundary condition (depending to the way we choose the spin σD0 of the root).

Conversely, let us start with the spin glass model defined by the Gibbs distribution (10).

Then consider the gauge transformation

σx → σ′x = σxsx

Jxy → J ′xy = Jxysxsy

and choose

sx = σDx

Observe that ∑
〈x,y〉

J ′xyσ
′
xσ
′
y =

∑
〈x,y〉

Jxyσxσy

As can be seen from (12), this gauge transformation maps the Gibbs distribution µJ,n,Tω into

the Gibbs distribution µn,T
σD,ω .
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Next, let the set of bonds D be random. That is for p ∈ (0, 1), let D(p) be the random

configuration where bonds are marked independently. Denote by np this process. The ferro-

magnetic Gibbs state (8) then becomes a ferromagnetic Ising model with random boundary

conditions

µn,T
σD(p),±

As follows from the above, that state is equivalent to the state of the spin-glass model with

fixed boundary condition ω = ±1 and random couplings Jxy given by (2), or equivalently by

Jxy =

 −1 if (x, y) ∈ D(p)

+1 if (x, y) /∈ D(p)

We denote this state by

µn,T,J(p)ω (13)

Obviously, for the expectations with respect to the process np we have

Ep(µn,TσD(p),±) = Ep(µn,T,J(p)ω )

Therefore various problems of the ferromagnetic Ising model with random boundary

conditions can be translated in terms of the spin-glass model provided one proceeds as

follows. Consider a very large box of size n and compute quantities such as the local

magnetization for the sites far away from the boundary, i.e. inside a box of size r. Then,

take first the limit when n → ∞ and after that take the limit r → ∞. However contrary

to what was done in [4] where computations are formulated in terms of random boundary

conditions to get results for the spin-glass model, here we prefer to adopt the opposite

direction. The reason for doing so is that the latter formulation allows to immediately catch

that the recursive equations of the Proposition V.1 below reduces, in case e.g. of the single–

site magnetization, to a one-dimensional recursion. Obviously both formulations lead to the

same conclusions.

Observe then, that in term of the boundary fields

hx = β
∑
y∈S(x)

Jxyω (14)
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the Gibbs distributions µ
n,T,J(p)
ω in (13) read

µn,T,J(p)ω (σn) = Z−1n exp

β ∑
〈x,y〉⊂Vn

Jxyσxσy +
∑
x∈Wn

hxσx

 (15)

for the spin configurations σn ∈ {+1,−1}Vn of the ball Vn.

Introduce next, for real valued boundary fields hx, x ∈ V , the Gibbs distributions

µn(σn) = Z−1n exp

β ∑
〈x,y〉⊂Vn

Jxyσxσy +
∑
x∈Wn

hxσx


Those probability distributions are said compatible if when summing over the spins σx =

{+1,−1} of the sphere Wn we have∑
σx=±1,x∈Wn

µn(σn) = µn−1(σn−1)

Proposition V.1. (P. Bleher [1]). The probability distributions µn are compatible if and

only if for any x the following recursive equations hold

hx =
∑
y∈S(x)

f(hy), (16)

where

f(h) = arctanh[θ tanh(h)]

and

θ = tanh(1/T )

VI. RECURSION METHOD

A. The magnetization

The recursive equations (16) for the boundary fields defined by (14) read also in case

ω = +1:

〈σx〉 = tanh

 ∑
y∈S(x)

arctanh(θJxy〈σy〉)


= tanh

 ∑
y∈S(x)

Jxy arctanh(θ〈σy〉)

 (17)
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where we used the notation

〈σx〉 = tanhhx (18)

Notice that 〈σy〉 and 〈σz〉 are the magnetization at sites y and z would have if they were

disconnected from the site x (the same with x when this site is disconnected from his parent).

Notice also that the equality (17) holds true in case ω = −1.

Next, consider the spheres defined in (7), Wm, m = 0, 1, . . . , n+1, entering in the recursion

(17).

The following lemma states that the expectations with respect to the random variables

Jxy of those half–tree magnetization depends only on the level m. It provides, by denoting

by Em these expectations, a one–dimensional set of recursive equations for these quantities.

Lemma VI.1. Assume that the temperature T > 0. Then, for the probability distributions

µ
n,T,J(p)
ω , the expectations Ep(〈σx〉) are the same for all the vertices x belonging to the sphere

Wm. Those expectations Em satisfy, in case of degree k = 2 and for m = 1, ..., n, the

recursive equations

Em = F (Em+1) (19)

with

F (E) =
k(1− 2p)θE

1 + θ2E2
(20)

and En+1 = +1. For the probability distributions µ
n,T,J(p)
− the same results holds true with

En+1 = −1.

Proof. In case of degree k = 2, the formula (17) gives:

〈σx〉 =
θJxy〈σy〉+ θJxz〈σz〉
1 + θ2Jxy〈σy〉Jxz〈σz〉

(21)

where y and z are the successors of the site x. Observe that at the beginning level of

recursion m = n + 1 the quantities 〈σx〉 are merely the boundary conditions. Take the

boundary condition ω = +1 in which case 〈σx〉 = +1 for all x ∈ Wn+1.

Then, in the first step of recursion, that is for the boundary sites x ∈ Wn, the formula

(21) reads:

〈σx〉 =
θJxy + θJxz
1 + θ2JxyJxz

(22)
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Next, let us perform the expectation E(〈σx〉) of this quantity over the random variables

Jxy and Jxz. Remembering that those random variables are independent, take value 1 with

probability 1 − p and take value −1 with probability p, we get that these expectations at

the level n are given by

En = P(Jxy = 1)P(Jxz = 1)
2θ

1 + θ2
− P(Jxy = −1)P(Jxz = −1)

2θ

1 + θ2

+ P(Jxy = 1)P(Jxz = −1)
θ − θ
1− θ2

− P(Jxy = −1)P(Jxz = 1)
θ − θ
1− θ2

= (1− p)2 2θ

1 + θ2
− p2 2θ

1 + θ2

=
2θ(1− 2p)

1 + θ2

Note that we used here that θ2 < 1, which excludes the zero temperature case; that can be

treated separately however, as is done in [2].

Furthermore, it is obvious that E(〈σx〉) are the same for all the sites x belonging to the

sphere Wn. Notice also that all moments E(〈σx〉p) at that level n are the same.

Let us next consider the second step of the recursion. In this step for a site x ∈ Wn−1

we know that the expectation of the magnetization of its successors are given by the above

formula. Therefore for the sites x ∈ Wn−1 the recursion (21) reads:

〈σx〉 =
(Jxy + Jxz) θEn
1 + JxyJxzθ2E2

n

(23)

By taking in the above equation the expectation over the random variables Jxy and Jxz and

using again that Jxy and Jxz are independent, we get

En−1 = P(Jxy = 1)P(Jxz = 1)
2θEn

1 + θ2E2
n

− P(Jxy = −1)P(Jxz = −1)
2θEn

1 + θ2E2
n

+ P(Jxy = 1)P(Jxz = −1)
(θEn − θEn)

1− θ2E2
n

− P(Jxy = −1)P(Jxz = 1)
(θEn − θEn)

1− θ2E2
n

= (1− p)2 2θEn
1 + θ2E2

n

− p2 2θEn
1 + θ2E2

n

=
2θ(1− 2p)En

1 + θ2E2
n

For the next steps of recursion we proceed analogously to obtain the recursion formula

(19).
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Let us then turn to the

Proof of Proposition IV.1

The function F in Lemma VI.1 giving the recursion of expectations of our process has

the following properties. It is an odd and increasing function, concave for positive E, and

convex for negative E. In addition, it has the slope

kθ(1− 2p) (24)

at the origin, and takes finite values at E = ±1.

When kθ(1−2p) < 1, E = 0 is the unique solution of the equation E = F (E). Under this

condition, the recursion leads to that solution so that the half–tree magnetization vanishes.

Whenever kθ(1 − 2p) > 1, the equation E = F (E) has two stable fixed points and the

unstable solution 0. Under this condition, the recursion leads obviously to the positive

solution if we start with the boundary condition ω = +1 and to the negative one if we take

ω = −1.

As a consequence we get that in the limit n → ∞ the expectations of half–tree magne-

tization at the root goes to the positive or negative solution according to the choice of the

boundary conditions to be +1 or −1. Fig. 3 shows a plot of the solution E? of the fixed

point equation E = F (E).

To compute these expectations on the full tree is easy. Look at the neighbors of the root,

say y, z, t. We have by recursion

〈σ0〉 = tanh{J0y arctanh(θ〈σy〉+ J0z arctanh(θ〈σz〉+ J0t arctanh(θ〈σt〉}

=
(J0y + J0z + J0t)θE1 + J0xJ0zJ0tθ

3E3
1

1 + (J0yJ0z + J0zJ0t + J0tJ0v)θ2E2
1

(25)

where 〈σy〉 = 〈σy〉 = 〈σy〉 = E1 are the expectations of the half tree magnetization at the

level 1. Here we used the equation

tanh(a+ b+ c) =
tanh a+ tanh b+ tanh c+ tanh a tanh b tanh c

1 + tanh a tanh b+ tanh b tanh c+ tanh c tanh a
(26)

It is obvious that expectation E(〈σ0〉) will behave in the limit n → ∞ as the expectations

of the half tree magnetization.
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FIG. 3: The first moment.

It is easy to understand that this holds also true for any site provided we proceed as

described above. Namely consider a very large box of size n and compute the local magne-

tization for the sites far away from the boundary, i.e. inside a box r. Then, take first the

limit when n→∞ and after that take the limit r →∞.

B. The second moment: Edwards–Anderson parameter.

Consider again the spheres defined in (7), Wm, m = 0, 1, . . . , n + 1, entering in the

recursion (17).

The following lemma says that the expectations with respect to the random variables Jxy

of the square of half–tree magnetization depends only on the level m. It provides, denoting

by Dm these expectations, a one–dimensional recursive equation for these quantities.

Lemma VI.2. Assume that the temperature T = 1/β is positive, then for the probability

distributions µ
n,T,J(p)
ω , the expectations Ep(〈σx〉2) are the same for all the vertices x belonging

to the level m. These expectations Dm satisfy, in case of degree k = 2 and for m = 1, ..., n,

the recursive equations

Dm = G(Dm+1, Em+1) (27)
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where

G(D,E) = [1− 2p(1− p)] 2θ2(D + E2)

1 + 2θ2E2
m+1 + θ4D2

+ 2p(1− p) 2θ2(D − E2)

1− 2θ2E2 + θ4D2
(28)

and the Em are given by the recursive equations (19) of Lemma VI.1.

Proof. Recall that at the level m = n + 1 the quantities 〈σx〉 are the boundary conditions

so that

〈σx〉 = 〈σx〉2 = 1

for all sites belonging to the sphere Wn+1.

In the first step of recursion, that is for the boundary sites x ∈ Wn, we know by (21) that

at this level:

〈σx〉 =
θJxy + θJxz
1 + θ2JxyJxz

(29)

in case ω = +1. Therefore

〈σx〉2 =
2θ2(1 + JxyJxz)

1 + 2θ2JxyJxz + θ4
(30)

By taking the expectation over the random variables Jxy and Jxz we get:

Dn = P(Jxy = 1)P(Jxz = 1)
4θ2

(1 + θ2)2
− P(Jxy = −1)P(Jxz = −1)

4θ2

(1 + θ2)2

+ P(Jxy = 1)P(Jxz = −1)
2θ2 − 2θ2

(1− θ2)2
− P(Jxy = 1)P(Jxz = −1)

2θ2 − 2θ2

(1− θ2)2

= (1− p)2 4θ2

(1 + θ2)2
− p2 4θ2

(1 + θ2)2

= (1− 2p)
2θ2

(1 + θ2)2
(31)

Here we used (as in the proof of Lemma VI.1) that the temperature is positive (θ2 < 1).

Let us next consider the second step of the recursion. From the formula (21), giving the

recursion of half tree magnetization, we have:

〈σx〉2 = θ2
〈σy〉2 + 〈σz〉2 + 2JxyJxz〈σy〉〈σz〉

1 + 2θ2JxyJxz〈σy〉〈σz〉 + θ4〈σy〉2〈σz〉2
(32)

But we know in this second step that for the successors y and z of the site x:

〈σy〉2 = 〈σz〉2 = Dn

and

〈σy〉 = 〈σy〉 = En
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Therefore, the above formula (32) reads:

〈σx〉2 = θ2
2Dn + 2JxyJxzE

2
n

1 + 2θ2JxyJxzE2
n + θ4D2

n

(33)

Let us then compute for the sites x ∈ Wn−1 the expectations E(〈σx〉2) over the random

variables Jxy and Jxz:

Dn−1 = P(Jxy = +1)P(Jxz = +1)
2θ2(Dn + E2

n)

1 + 2θ2E2
n + θ4D2

n

+ P(Jxy = −1)P(Jxz = −1)
2θ2(Dn + E2

n)

1 + 2θ2E2
n + θ4D2

n

+ P(Jxy = +1)P(Jxz = −1)
2θ2(Dn − E2

n)

1− 2θ2E2
n + θ4D2

n

+ P(Jxy = −1)P(Jxz = +1)
2θ2(Dn − E2

n)

1− 2θ2E2
n + θ4D2

n

= [(1− p)2 + p2]
2θ2(Dn + E2

n)

1 + 2θ2E2
n + θ4D2

n

+ 2p(1− p) 2θ2(Dn − E2
n)

1− 2θ2E2
n + θ4D2

n

= [1− 2p(1− p)] 2θ2(Dn + E2
n)

1 + 2θ2E2
n + θ4D2

n

+ 2p(1− p) 2θ2(Dn − E2
n)

1− 2θ2E2
n + θ4D2

n

(34)

The next steps of recursion proceed analogously. The above arguments immediately apply

in case ω = −1

Proof of Proposition IV.2

1. From Proposition IV.1, we know that when T ≥ TSG(p), the first moment vanishes.

Therefore the recursion equation for the second moment will reduce to

G(D,E) = G(D, 0) =
2θ2D

1 + θ4D2
n

(35)

The function G(D, 0) has the following properties. It is increasing and concave, has the

slope kθ2 at the origin, and takes finite values at D = 1.

When kθ2 < 1, D = 0 is the unique solution of the equation D = G(D, 0). Under this

condition, the recursion leads to that solution.

Whenever kθ2 > 1, the equation D = G(D, 0) has a unique positive stable fixed point and

the unstable solution 0. Under this condition, the recursion leads obviously to the positive

solution.
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The solution D? of the fixed-point equation D = G(D, 0) is given by

D? =

√
2θ2 − 1

θ2
(36)

See Fig. 4 for a graphical representation of the solution (when T ≥ TSG(p)) and note that

the bold curve in the plane (p, T ) of Fig. 4 is the involution curve T = TSG(p).

2. When T ≤ TSG(p), the fixed-point equation (19) is readily solved

E? =

√
θ(2− 4p)− 1

θ
(37)

leading to the following expression for G(D, E?)

2(2(p− 1)p+ 1)(1− θ(Dθ − 4p+ 2))

−D2θ4 + θ(8p− 4) + 1
− 4(p− 1)p(θ(Dθ + 4p− 2) + 1)

D2θ4 + θ(8p− 4) + 3
. (38)

Equation D = G(D, E?) is a quintic polynomial in D? whose solutions can be expressed in

terms of special functions, see e.g. [8]. These expressions are too cumbersome to be included

here. See Fig. 4 for a picture of the solution when T ≤ TSG(p).

The complete expression for D? is given by the union of the solutions for T ≤ TSG(p) and

T ≥ TSG(p) along a separatrix (see Fig. 4). Note that the projection of this separatrix on

the plane (p, T ) coincides with the involution curve TSG(p).

VII. GENERAL DEGREE REMARKS

So far we treated the case k = 2. For the general case and concerning the expectation of

magnetization, we can use the formula

tanh(a1 + · · ·+ ak) =

∑
odd p

∑
j
1<j2<···<jp

tanh aj1 · · · tanh ajp∑
even p

∑
j
1<j2<···<jp

tanh aj1 · · · tanh ajp
(39)

Using this formula and proceeding as in Lemma VI.1, we get that the recursion formula

(23) reads now:

〈σx〉 = (1/D)(Jxy1 + Jxy2 + · · ·+ Jxyk)θEn

+ (1/D)
∑

j1<j2<j3

Jxyj1Jxyj2Jxyj3θ
3E3

n

+ (1/D)
∑

5≤p≤k:odd

∑
j1<j2<···<jp

p∏
i=1

Jxyjiθ
pEp

n (40)
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FIG. 4: The second moment.

with

D = 1

+
∑
j1<j2

Jxyj1Jxyj2θ
2E2

n

+
∑

4≤p≤k:even

∑
j1<j2<···<jp

p∏
i=1

Jxyjpθ
pEp

n (41)

Here, y1, . . . , yk denote the successors of the vertex x.

We can next perform the expectations over the random variables Jxy1 , . . . , Jxyk to get

that the function F (E) has the following properties:

1. F (E) is an odd function.

2. F (E) is concave for positive E and convex for negative E.

Indeed, there is no need to write down a formula for F (E) to catch the two above properties.

However, in this straightforward computation, we still have to assume the condition θ2 < 1

which excludes the zero temperature case.

Next, we want to know the slope of that function at the origin. Here, it is easy to realize
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that this slope will be given by the linear term

(Jxy1 + Jxy2 + · · ·+ Jxyk)θEn (42)

Remind that the random variables are independent and that their expectations are given by

1− 2p. Hence, the slope at the origin of the function F (E) is k(1− 2p)θ.

As a consequence we extend in this way our conclusions to the case of general degree

(with analogous arguments for the second moment).
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