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CONVERGENCE OF DAMPED INERTIAL DYNAMICS GOVERNED BY

REGULARIZED MAXIMALLY MONOTONE OPERATORS

HEDY ATTOUCH AND ALEXANDRE CABOT

Abstract. In a Hilbert space setting, we study the asymptotic behavior, as time t goes to infinity, of the
trajectories of a second-order differential equation governed by the Yosida regularization of a maximally
monotone operator with time-varying positive index λ(t). The dissipative and convergence properties are
attached to the presence of a viscous damping term with positive coefficient γ(t). A suitable tuning of
the parameters γ(t) and λ(t) makes it possible to prove the weak convergence of the trajectories towards
zeros of the operator. When the operator is the subdifferential of a closed convex proper function, we
estimate the rate of convergence of the values. These results are in line with the recent articles by
Attouch-Cabot [3], and Attouch-Peypouquet [8]. In this last paper, the authors considered the case
γ(t) = α

t , which is naturally linked to Nesterov’s accelerated method. We unify, and often improve the
results already present in the literature.

Key words: asymptotic stabilization; damped inertial dynamics; Lyapunov analysis; maximally mono-
tone operators; time-dependent viscosity; Yosida regularization.

AMS subject classification. 37N40, 46N10, 49M30, 65K05, 65K10, 90C25.

1. Introduction

Throughout this paper, H is a real Hilbert space endowed with the scalar product 〈., .〉 and the
corresponding norm ‖.‖. Let A : H → 2H be a maximally monotone operator. Given continuous
functions γ : [t0,+∞[→ R+ and λ : [t0,+∞[→ R∗+ where t0 is a fixed real number, we consider the
second-order evolution equation

(RIMS)γ,λ ẍ(t) + γ(t)ẋ(t) +Aλ(t)(x(t)) = 0, t ≥ t0,
where

Aλ =
1

λ

(
I − (I + λA)

−1
)

is the Yosida regularization of A of index λ > 0 (see Appendix A.1 for its main properties). The
terminology (RIMS)γ,λ is a shorthand for ”Regularized Inertial Monotone System” with parameters γ, λ.
Thanks to the Lipschitz continuity properties of the Yosida approximation, this system falls within the
framework of the Cauchy-Lipschitz theorem, which makes it a well-posed system for arbitrary Cauchy
data. The above system involves two time-dependent positive parameters: the damping parameter γ(t),
and the Yosida regularization parameter λ(t). We shall see that, under a suitable tuning of the parameters
γ(t) and λ(t), the trajectories of (RIMS)γ,λ converge to solutions of the monotone inclusion

0 ∈ A(x).

Indeed, the design of rapidly convergent dynamics and algorithms to solve monotone inclusions is a
difficult problem of fundamental importance in many domains: optimization, equilibrium theory, eco-
nomics and game theory, partial differential equations, statistics, among other subjects. Trajectories of
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(RIMS)γ,λ do so in a robust manner. Indeed, when A is the subdifferential of a closed convex proper

function Φ : H → R ∪ {+∞}, we will obtain rates of convergence of the values, which are comparable
to the accelerated method of Nesterov. With this respect, as a main advantage of our approach, we can
handle nonsmooth functions Φ.

1.1. Introducing the dynamics. The (RIMS)γ,λ system is a natural development of some recent studies
concerning rapid inertial dynamics for convex optimization and monotone equilibrium problems. We will
rely heavily on the techniques developed in [3] concerning the general damping coefficient γ(t), and in [8]
concerning the general Yosida regularization parameter λ(t).

1.1.1. General damping coefficient γ(t). Some simple observations lead to the introduction of quantities
that play a central role in our analysis. Taking A = 0, then Aλ = 0, and (RIMS)γ,λ boils down to the
linear differential equation

ẍ(t) + γ(t)ẋ(t) = 0.

Let us multiply this equality by the integrating factor

p(t) = e
∫ t
t0
γ(τ) dτ

and integrate on [t0, t]. We obtain p(t)ẋ(t) = ẋ(t0) for every t ≥ t0. By integrating again, we find

x(t) = x(t0) +

(∫ t

t0

ds

p(s)

)
ẋ(t0).

It ensues immediately that the trajectory x(.) converges if and only if ẋ(t0) = 0 or

(H0)

∫ +∞

t0

ds

p(s)
< +∞.

Throughout the paper, we always assume that condition (H0) is satisfied. For s ≥ t0, we then define the
quantity Γ(s) by

(1) Γ(s) =

(∫ +∞

s

du

p(u)

)
p(s).

The function s 7→ Γ(s) plays a key role in the asymptotic behavior of the trajectories of (RIMS)γ,λ. This

was brought to light by the authors in the potential case, see [3] (no regularization process was used in
this work). The theorem below gathers the main results obtained in [3] for a gradient operator A = ∇Φ.
It enlights the basic assumptions on the function γ(t) which give rates of convergence of the values.

Theorem (Attouch and Cabot [3]). Let Φ : H → R be a convex function of class C1 such that
argmin Φ 6= ∅. Let us assume that γ : [t0,+∞[→ R+ is a continuous function satisfying:

(i)
∫ +∞
t0

ds
p(s) < +∞;

(ii) There exist t1 ≥ t0 and m < 3
2 such that γ(t)Γ(t) ≤ m for every t ≥ t1;

(iii)
∫ +∞
t0

Γ(s) ds = +∞.

Then every solution trajectory x : [t0,+∞[→ H of

(IGS)γ ẍ(t) + γ(t)ẋ(t) +∇Φ(x(t)) = 0,

converges weakly toward some x∗ ∈ argmin Φ, and satisfies the following rates of convergence:

Φ(x(t))−min
H

Φ = o

(
1∫ t

t0
Γ(s) ds

)
and ‖ẋ(t)‖ = o

(
1∫ t

t0
Γ(s) ds

)1/2

as t→ +∞.
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The (IGS)γ system was previously studied by Cabot, Engler and Gadat [17, 18] in the case of a vanishing

damping coefficient γ(t) and for a possibly nonconvex potential Φ. The importance of the dynamics
(IGS)γ in the case γ(t) = α/t (α > 1) was highlighted by Su, Boyd and Candés in [28]. They showed
that taking α = 3 gives a continuous version of the accelerated gradient method of Nesterov. The
corresponding rate of convergence for the values is at most of order O(1/t2) as t → +∞. Let us show
how this result can be obtained as a consequence of the above general theorem. Indeed, taking γ(t) = α/t
gives after some elementary computation

Γ(t) =

(
t

t0

)α [∫ +∞

t

(
t0
τ

)α
dτ

]
= tα

[
τ−α+1

−α+ 1

]+∞

t

=
t

α− 1
.

Then, the condition γ(t)Γ(t) ≤ m with m < 3
2 is equivalent to α > 3. As a consequence, for γ(t) = α/t

and α > 3, we obtain the convergence of the trajectories of (IGS)γ and the rates of convergence

Φ(x(t))−min
H

Φ = o

(
1

t2

)
and ‖ẋ(t)‖ = o

(
1

t

)
as t→ +∞.

This result was first established in [4] and [22]. Because of its importance, a rich literature has been
devoted to the algorithmic versions of these results, see [4, 7, 12, 19, 28] and the references therein.
The above theorem relies on energetical arguments that are not available in the general framework of
monotone operators. It ensues that the expected results in this context are weaker than in the potential
case, and require different techniques. That’s where the Yosida regularization comes into play.

1.1.2. General regularization parameter λ(t). Our approach is in line with Attouch and Peypouquet [8]
who studied the system (RIMS)γ,λ with a general maximally monotone operator, and in the particular

case γ(t) = α/t (the importance of this system has been stressed just above). This approach can be

traced back to Álvarez-Attouch [1] and Attouch-Maingé [6] who studied the equation

ẍ(t) + γẋ(t) +A(x(t)) = 0,

where A is a cocoercive operator. Several variants of the above equation were considered by Bot and
Csetnek (see [13] for the case of a time-dependent coefficient γ(t), and [14] for a linear anisotropic
damping). Cocoercivity plays an important role, not only to ensure the existence of solutions, but also in
analyzing their long-term behavior. Attouch-Maingé [6] proved the weak convergence of the trajectories
to zeros of A if the cocoercivity parameter λ and the damping coefficient γ satisfy the condition λγ2 > 1.
Taking into account that for λ > 0, the operator Aλ is λ-cocoercive and that A−1

λ (0) = A−1(0) (see
Appendix A.1), we immediately deduce that, under the condition λγ2 > 1, each trajectory of

ẍ(t) + γẋ(t) +Aλ(x(t)) = 0

converges weakly to a zero of A. In the quest for a faster convergence, in the case γ(t) = α/t, Attouch-
Peypouquet introduced a time-dependent regularizing parameter λ(·) satisfying

λ(t)× α2

t2
> 1

for t ≥ t0. So doing, in the case of a general maximal monotone operator, they were able to prove the
asymptotic convergence of the trajectories to zeros of A. Our approach will consist in extending these
results to the case of a general damping coefficient γ(t), taking advantage of the techniques developed in
the above mentioned papers [3] and [8].
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1.2. Organization of the paper. The paper is divided into three parts. Part A concerns a general
maximally monotone operator A. We show that a suitable tuning of the damping parameter and of the
Yosida regularization parameter, gives the weak convergence of the trajectories. Then, we specialize our
results to some important cases, including the case of the continuous version of the Nesterov method, that
is, γ(t) = α

t . In part B, we examine the ergodic convergence properties of the trajectories. In part C, we
consider the case where A is the subdifferential of a closed convex proper function Φ : H → R ∪ {+∞}.
In this case, we will obtain rates of convergence of the values. In the Appendix we have collected several
lemmas related to Yosida’s approximation, to Moreau’s envelopes and to the study of scalar differential
inequalities that play a central role in the Lyapunov analysis of our system.

PART A: DYNAMICS FOR A GENERAL MAXIMALLY MONOTONE OPERATOR

In this part, A : H → 2H is a general maximally monotone operator such that zerA 6= ∅, and t0 is a
fixed real number.

2. Convergence results

Let us first establish the existence and uniqueness of a global solution to the Cauchy problem associated
with equation (RIMS)γ,λ.

Proposition 2.1. Let A : H → 2H be a maximally monotone operator, and let γ : [t0,+∞[→ R+ and
λ : [t0,+∞[→ R∗+ be continuous functions. Then, for any x0 ∈ H, v0 ∈ H, there exists a unique global
solution x ∈ C2([t0,+∞[,H) to equation (RIMS)γ,λ, satisfying the initial conditions x(t0) = x0 and

ẋ(t0) = v0.

Proof. The argument is standard and consists in writing (RIMS)γ,λ as a first-order system in H×H. By
setting

X(t) =

(
x(t)
ẋ(t)

)
and F (t, u, v) =

(
v

−γ(t)v −Aλ(t)(u)

)
,

equation (RIMS)γ,λ amounts to the first-order differential system Ẋ(t) = F (t,X(t)). Owing to the
1
λ -Lipschitz continuity of Aλ, one can easily check that the conditions of the global Cauchy-Lipschitz
theorem are satisfied. The reader is referred to [20, Proposition 6.2.1] for such a global non-autonomous
version of the Cauchy-Lipschitz theorem. �

To establish the weak convergence of the trajectories of (RIMS)γ,λ, we will apply Opial lemma [24],
that we recall in its continuous form.

Lemma 2.2 (Opial). Let S be a nonempty subset of H, and let x : [t0,+∞[→ H. Assume that

(i) for every z ∈ S, limt→+∞ ‖x(t)− z‖ exists;
(ii) every weak sequential limit point of x(t), as t→ +∞, belongs to S.

Then x(t) converges weakly as t→ +∞ to a point in S.

We associate to the continuous function γ : [t0,+∞[→ R+ the function p : [t0,+∞[→ R∗+ given by

p(t) = e
∫ t
t0
γ(τ) dτ

for every t ≥ t0. Under assumption (H0), the function Γ : [t0,+∞[→ R∗+ is then defined

by Γ(s) =
(∫ +∞

s
du
p(u)

)
p(s) for every s ≥ t0. Besides the function Γ, to analyze the asymptotic behavior

of the trajectory of the system (RIMS)γ,λ we will also use the quantity Γ(s, t), which is defined by, for

any s, t ∈ [t0,+∞[,

(2) Γ(s, t) =

(∫ t

s

du

p(u)

)
p(s) if s ≤ t, and Γ(s, t) = 0 if s > t.
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For each s ∈ [t0,+∞[, the quantity Γ(s, t) tends increasingly toward Γ(s) as t → +∞. The monotone
convergence theorem then implies that

(3) lim
t→+∞

∫ t

t0

Γ(s, t) ds = lim
t→+∞

∫ +∞

t0

Γ(s, t) ds =

∫ +∞

t0

Γ(s) ds,

since Γ(s, t) = 0 for s ≥ t. Let us state the main result of this section.

Theorem 2.3. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅. Let γ :
[t0,+∞[→ R+ and λ : [t0,+∞[→ R∗+ be differentiable functions. Assuming (H0), let Γ : [t0,+∞[→ R+

be the function defined by Γ(s) =
(∫ +∞

s
du
p(u)

)
p(s). Suppose that there exists ε ∈]0, 1[ such that for t

large enough,

(H1) (1− ε)λ(t)γ(t) ≥
(

1 +

∣∣∣∣ ddt (λ(t)γ(t))

∣∣∣∣)Γ(t).

Then for any global solution x(.) of (RIMS)γ,λ, we have

(i)

∫ +∞

t0

λ(s)γ(s) ‖ẋ(s)‖2 ds < +∞, and as a consequence

∫ +∞

t0

Γ(s) ‖ẋ(s)‖2 ds < +∞.

(ii)

∫ +∞

t0

λ(s)Γ(s) ‖Aλ(s)(x(s))‖2 ds < +∞.

(iii) For any z ∈ zerA, limt→+∞ ‖x(t)− z‖ exists, and hence x(·) is bounded.

(iv) There exists a positive constant C such that for t large enough,

‖ẋ(t)‖ ≤ C

p(t)

∫ t

t0

p(s)

λ(s)
ds and ‖ẍ(t)‖ ≤ C γ(t)

p(t)

∫ t

t0

p(s)

λ(s)
ds+

C

λ(t)
.

Assuming that

(H2)
λ(t)

p(t)

∫ t

t0

p(s)

λ(s)
ds = O(Γ(t)) and |λ̇(t)| = O(Γ(t)) as t→ +∞,

(H3)

∫ +∞

t0

Γ(s)

λ(s)
ds = +∞,

the following holds

(v) limt→+∞ λ(t)Aλ(t)(x(t)) = 0.

(vi) If λ(·) is minorized by some positive constant on [t0,+∞[, then there exists x∞ ∈ zerA such that
x(t) ⇀ x∞ weakly in H as t→ +∞.

Finally assume that (H3) is not satisfied, i.e.

∫ +∞

t0

Γ(s)

λ(s)
ds < +∞. Then we obtain

(vii)

∫ +∞

t0

‖ẋ(s)‖ ds < +∞, and hence x(·) converges strongly toward some x∞ ∈ H.

Proof. (i) Let z ∈ zerA, and let us set h(t) = 1
2‖x(t) − z‖2 for every t ≥ t0. By differentiating, we find

for every t ≥ t0,

ḣ(t) = 〈ẋ(t), x(t)− z〉 and ḧ(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t)− z〉.
It ensues that

ḧ(t) + γ(t)ḣ(t) = ‖ẋ(t)‖2 + 〈ẍ(t) + γ(t)ẋ(t), x(t)− z〉
= ‖ẋ(t)‖2 − 〈Aλ(t)(x(t)), x(t)− z〉.(4)
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Since z ∈ zerA = zerAλ(t), we have Aλ(t)(z) = 0. We then deduce from the λ(t)-cocoercivity of Aλ(t)

that

〈Aλ(t)(x(t)), x(t)− z〉 ≥ λ(t)‖Aλ(t)(x(t))‖2,
whence

(5) ḧ(t) + γ(t)ḣ(t) ≤ ‖ẋ(t)‖2 − λ(t)‖Aλ(t)(x(t))‖2.

Writing that Aλ(t)(x(t)) = −ẍ(t)− γ(t)ẋ(t), we have

λ(t)‖Aλ(t)(x(t))‖2 = λ(t)‖ẍ(t) + γ(t)ẋ(t)‖2

= λ(t)‖ẍ(t)‖2 + λ(t)γ(t)2‖ẋ(t)‖2 + 2λ(t)γ(t)〈ẍ(t), ẋ(t)〉

≥ λ(t)γ(t)2‖ẋ(t)‖2 + λ(t)γ(t)
d

dt
‖ẋ(t)‖2

=

(
λ(t)γ(t)2 − d

dt
(λ(t)γ(t))

)
‖ẋ(t)‖2 +

d

dt
(λ(t)γ(t)‖ẋ(t)‖2).

In view of (5), we infer that

ḧ(t) + γ(t)ḣ(t) ≤ −
(
λ(t)γ(t)2 − d

dt
(λ(t)γ(t))− 1

)
‖ẋ(t)‖2 − d

dt
(λ(t)γ(t)‖ẋ(t)‖2).

Let’s use Lemma B.1 (i) with g(t) = −
(
λ(t)γ(t)2 − d

dt (λ(t)γ(t))− 1
)
‖ẋ(t)‖2 − d

dt (λ(t)γ(t)‖ẋ(t)‖2). Set-

ting k(t) := h(t0) + ḣ(t0)
(∫ t

t0
du
p(u)

)
, we obtain for every t ≥ t0,

h(t) ≤ k(t)−
∫ t

t0

Γ(s, t)

[(
λ(s)γ(s)2 − d

ds
(λ(s)γ(s))− 1

)
‖ẋ(s)‖2 +

d

ds
(λ(s)γ(s)‖ẋ(s)‖2)

]
ds

= k(t)−
∫ t

t0

Γ(s, t)

(
λ(s)γ(s)2 − d

ds
(λ(s)γ(s))− 1

)
‖ẋ(s)‖2 ds

−
[
Γ(s, t)λ(s)γ(s)‖ẋ(s)‖2

]t
t0

+

∫ t

t0

(
d

ds
Γ(s, t)

)
λ(s)γ(s)‖ẋ(s)‖2 ds.

Let us observe that Γ(t, t) = 0 and that

d

ds
Γ(s, t) =

d

ds

[(∫ t

s

du

p(u)

)
p(s)

]
= −1 + γ(s)Γ(s, t).

Then it follows from the above inequality that

h(t) ≤ k(t)−
∫ t

t0

[
λ(s)γ(s)− Γ(s, t)

(
1 +

d

ds
(λ(s)γ(s))

)]
‖ẋ(s)‖2 ds

+Γ(t0, t)λ(t0)γ(t0)‖ẋ(t0)‖2.

Since Γ(t0, t) ≤ Γ(t0) and h(t) ≥ 0, we deduce that

(6)

∫ t

t0

[
λ(s)γ(s)− Γ(s, t)

(
1 +

d

ds
(λ(s)γ(s))

)]
‖ẋ(s)‖2 ds ≤ C1,

with

C1 := h(t0) + |ḣ(t0)|
(∫ +∞

t0

du

p(u)

)
+ Γ(t0)λ(t0)γ(t0)‖ẋ(t0)‖2.

Now observe that

Γ(s, t)

(
1 +

d

ds
(λ(s)γ(s))

)
≤ Γ(s, t)

(
1 +

∣∣∣∣ dds (λ(s)γ(s))

∣∣∣∣) ≤ Γ(s)

(
1 +

∣∣∣∣ dds (λ(s)γ(s))

∣∣∣∣) .
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We then infer from (6) that∫ t

t0

[
λ(s)γ(s)− Γ(s)

(
1 +

∣∣∣∣ dds (λ(s)γ(s))

∣∣∣∣)] ‖ẋ(s)‖2 ds ≤ C1.

By assumption, inequality (H1) holds true for t large enough, say t ≥ t1. It ensues that for t ≥ t1,∫ t

t1

ελ(s)γ(s)‖ẋ(s)‖2 ds ≤ C1 − C2,

with

C2 =

∫ t1

t0

[
λ(s)γ(s)− Γ(s)

(
1 +

∣∣∣∣ dds (λ(s)γ(s))

∣∣∣∣)] ‖ẋ(s)‖2 ds.

Taking the limit as t→ +∞, we find∫ +∞

t1

λ(s)γ(s)‖ẋ(s)‖2 ds ≤ 1

ε
(C1 − C2) < +∞.

By using again (H1), we deduce that

∫ +∞

t1

Γ(s) ‖ẋ(s)‖2 ds < +∞.

(ii) Let us come back to inequality (5). Using Lemma B.1 (i) with g(t) = ‖ẋ(t)‖2 − λ(t)‖Aλ(t)(x(t))‖2,
we obtain for every t ≥ t0,

h(t) ≤ h(t0) + ḣ(t0)

(∫ t

t0

du

p(u)

)
+

∫ t

t0

Γ(s, t)
[
‖ẋ(s)‖2 − λ(s)‖Aλ(s)(x(s))‖2

]
ds.

Since h(t) ≥ 0 and Γ(s, t) ≤ Γ(s), we deduce that∫ t

t0

Γ(s, t)λ(s)‖Aλ(s)(x(s))‖2 ds ≤ h(t0) + ḣ(t0)

(∫ t

t0

du

p(u)

)
+

∫ t

t0

Γ(s)‖ẋ(s)‖2 ds.

Recalling from (i) that
∫ +∞
t0

Γ(s)‖ẋ(s)‖2 ds < +∞, we infer that for every t ≥ t0,∫ t

t0

Γ(s, t)λ(s)‖Aλ(s)(x(s))‖2 ds ≤ C3,

where we have set

C3 := h(t0) + |ḣ(t0)|
(∫ +∞

t0

du

p(u)

)
+

∫ +∞

t0

Γ(s)‖ẋ(s)‖2 ds.

Since Γ(s, t) = 0 for s ≥ t, this yields in turn∫ +∞

t0

Γ(s, t)λ(s)‖Aλ(s)(x(s))‖2 ds ≤ C3.

Letting t tend to +∞, the monotone convergence theorem then implies that∫ +∞

t0

Γ(s)λ(s)‖Aλ(s)(x(s))‖2 ds ≤ C3 < +∞.

(iii) From inequality (5), we derive that

ḧ(t) + γ(t)ḣ(t) ≤ ‖ẋ(t)‖2 on [t0,+∞[.

Recall from (i) that
∫ +∞
t0

Γ(s)‖ẋ(s)‖2 ds < +∞. Applying Lemma B.1 (ii) with g(t) = ‖ẋ(t)‖2, we infer

that limt→+∞ h(t) exists. Thus, we have obtained that limt→+∞ ‖x(t) − z‖ exists for every z ∈ zerA,
whence in particular the boundedness of the trajectory x(·).
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(iv) Using that the operator Aλ(t) is 1
λ(t) -Lipschitz continuous and that Aλ(t)(z) = 0, we obtain that

(7) ‖Aλ(t)(x(t))‖ ≤ 1

λ(t)
‖x(t)− z‖ ≤ C4

λ(t)
,

with C4 := supt≥t0 ‖x(t) − z‖ < +∞. Let us multiply (RIMS)γ,λ by p(t) = e
∫ t
t0
γ(τ) dτ

, and integrate on

[t0, t]. We find for every t ≥ t0,

ẋ(t) =
1

p(t)
ẋ(t0)− 1

p(t)

∫ t

t0

p(s)Aλ(s)(x(s)) ds.

Taking the norm of each member, we deduce that

‖ẋ(t)‖ ≤ 1

p(t)
‖ẋ(t0)‖+

C4

p(t)

∫ t

t0

p(s)

λ(s)
ds.

Hence there exists C5 ≥ C4 such that for t large enough

(8) ‖ẋ(t)‖ ≤ C5

p(t)

∫ t

t0

p(s)

λ(s)
ds.

This proves the first inequality of (iv). For the second one, take the norm of each member of the equality
ẍ(t) = −γ(t)ẋ(t)−Aλ(t)(x(t)). The triangle inequality yields

‖ẍ(t)‖ ≤ γ(t)‖ẋ(t)‖+ ‖Aλ(t)(x(t))‖.

The announced majorization of ‖ẍ(t)‖ then follows from (7) and (8).

(v) Recall the estimate of (ii) that we write as

(9)

∫ +∞

t0

Γ(s)

λ(s)
‖u(s)‖2 ds < +∞,

with the function u : [t0,+∞[→ H defined by u(t) = λ(t)Aλ(t)(x(t)). By applying [8, Lemma A.4] with
γ = λ(t), δ = λ(s), x = x(t) and y = x(s) with s, t ≥ t0, we find

‖λ(t)Aλ(t)(x(t))− λ(s)Aλ(s)(x(s))‖ ≤ 2‖x(t)− x(s)‖+ 2‖x(t)− z‖ |λ(t)− λ(s)|
λ(t)

.

This shows that the map t 7→ λ(t)Aλ(t)(x(t)) is locally Lipschitz continuous, hence almost everywhere
differentiable on [t0,+∞[. Dividing by t− s with t 6= s, and letting s tend to t, we infer that

‖u̇(t)‖ =

∥∥∥∥ ddt (λ(t)Aλ(t)(x(t)))

∥∥∥∥ ≤ 2‖ẋ(t)‖+ 2‖x(t)− z‖ |λ̇(t)|
λ(t)

,

for almost every t ≥ t0. In view of (8), we deduce that for almost every t large enough,

‖u̇(t)‖ ≤ 2
C5

p(t)

∫ t

t0

p(s)

λ(s)
ds+ 2C4

|λ̇(t)|
λ(t)

,

with C4 = supt≥t0 ‖x(t)− z‖ < +∞. Recalling the assumption (H2), we obtain the existence of C6 ≥ 0
such that for almost every t large enough

‖u̇(t)‖ ≤ C6
Γ(t)

λ(t)
.

Then we have
d

dt
‖u(t)‖3 ≤ 3 ‖u̇(t)‖‖u(t)‖2 ≤ 3C6

Γ(t)

λ(t)
‖u(t)‖2.
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Taking account of estimate (9), this shows that(
d

dt
‖u(t)‖3

)
+

∈ L1(t0,+∞).

From a classical result, this implies that limt→+∞ ‖u(t)‖3 exists, which entails in turn that limt→+∞ ‖u(t)‖
exists. Using again the estimate (9), together with the assumption (H3), we immediately conclude that
limt→+∞ ‖u(t)‖ = 0.

(vi) To prove the weak convergence of x(t) as t→ +∞, we use the Opial lemma with S = zerA. Item (iii)
shows the first condition of the Opial lemma. For the second one, let tn → +∞ be such that x(tn) ⇀ x
weakly as n→ +∞. By (v), we have limn→+∞ λ(tn)Aλ(tn)(x(tn)) = 0 strongly in H. Since the function
λ is minorized by some positive constant on [t0,+∞[, we also have limn→+∞Aλ(tn)(x(tn)) = 0 strongly
in H. Passing to the limit in

Aλ(tn)(x(tn)) ∈ A
(
x(tn)− λ(tn)Aλ(tn)(x(tn))

)
,

and invoking the graph-closedness of the maximally monotone operator A for the weak-strong topology
in H×H, we find 0 ∈ A(x). This shows that x ∈ zerA, which completes the proof.

(vii) Let us now assume that
∫ +∞
t0

Γ(s)
λ(s) ds < +∞. Recalling inequality (7), we deduce that∫ +∞

t0

Γ(s)‖Aλ(s)(x(s))‖ ds < +∞.

By applying Lemma B.2 with F (t) = −Aλ(t)(x(t)), we obtain that
∫ +∞
t0
‖ẋ(s)‖ ds < +∞, and hence x(t)

converges strongly as t→ +∞ toward some x∞ ∈ H. �

Remark 2.4. When
∫ +∞
t0

Γ(s)
λ(s) ds < +∞, the trajectories of (RIMS)γ,λ have a finite length, and hence

are strongly convergent. However, the limit point is not a zero of the operator A in general.

Let us now particularize Theorem 2.3 to the case of a constant parameter λ > 0. In this case, the
operator arising in equation (RIMS)γ,λ is constant and equal to the λ-cocoercive operator Aλ. On the
other hand, it is well-known that every λ-cocoercive operator B : H → H can be viewed as the Yosida
regularization Aλ of some maximally monotone operator A : H → 2H, see [11, Proposition 23.20]. This
leads to the following statement.

Corollary 2.5. Let λ > 0 and let B : H → H be a λ-cocoercive operator such that zerB 6= ∅. Given
a differentiable function γ : [t0,+∞[→ R+ satisfying (H0), let Γ, ∆ : [t0,+∞[→ R+ be the functions

respectively defined by Γ(s) = p(s)
(∫ +∞

s
du
p(u)

)
and ∆(s) = 1

p(s)

(∫ s
t0
p(u) du

)
. Assume that there exists

ε ∈]0, 1[ such that for s large enough,

(10) (1− ε)λγ(s) ≥ (1 + λ|γ̇(s)|)Γ(s).

Then for any global solution x(.) of

ẍ(t) + γ(t)ẋ(t) +B(x(t)) = 0, t ≥ t0,
we have

(i)

∫ +∞

t0

γ(s) ‖ẋ(s)‖2 ds < +∞, and as a consequence

∫ +∞

t0

Γ(s) ‖ẋ(s)‖2 ds < +∞.

(ii)

∫ +∞

t0

Γ(s) ‖B(x(s))‖2 ds < +∞.

(iii) For any z ∈ zerB, limt→+∞ ‖x(t)− z‖ exists, and hence x(·) is bounded.

(iv) There exists C ≥ 0 such that for t large enough,

‖ẋ(t)‖ ≤ C ∆(t) and ‖ẍ(t)‖ ≤ C γ(t)∆(t) + C.
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Assuming that

∫ +∞

t0

Γ(s) ds = +∞, and that ∆(t) = O(Γ(t)) as t→ +∞, the following holds

(v) limt→+∞B(x(t)) = 0.

(vi) There exists x∞ ∈ zerB such that x(t) ⇀ x∞ weakly in H as t→ +∞.

Finally assume that

∫ +∞

t0

Γ(s) ds < +∞. Then we obtain

(vii)

∫ +∞

t0

‖ẋ(s)‖ ds < +∞, and hence x(·) converges strongly toward some x∞ ∈ H.

Assume now that the function γ is constant, say γ(t) ≡ γ > 0. In this case, it is easy to check that

(11) Γ(t) ∼ 1

γ
and ∆(t) ∼ 1

γ
as t→ +∞,

see Proposition 3.1. As a consequence of Corollary 2.5, we then obtain the following result that was
originally discovered by Attouch-Maingé [6].

Corollary 2.6 (Attouch-Maingé [6]). Let λ > 0 and let B : H → H be a λ-cocoercive operator such that
zerB 6= ∅. Let γ > 0 be such that λγ2 > 1. Then for any global solution x(.) of

(12) ẍ(t) + γẋ(t) +B(x(t)) = 0, t ≥ t0,

we have

(i)

∫ +∞

t0

‖ẋ(s)‖2 ds < +∞.

(ii)

∫ +∞

t0

‖B(x(s))‖2 ds < +∞.

(iii) For any z ∈ zerB, limt→+∞ ‖x(t)− z‖ exists, and hence x(·) is bounded.
(iv) limt→+∞ ẋ(t) = 0 and limt→+∞ ẍ(t) = 0.
(v) limt→+∞B(x(t)) = 0.

(vi) There exists x∞ ∈ zerB such that x(t) ⇀ x∞ weakly in H as t→ +∞.

Proof. Since γ(t) ≡ γ > 0, we have the equivalences (11) as t → +∞. It ensues that condition (10)
is guaranteed by λγ2 > 1. All points are then obvious consequences of Corollary 2.5, except for (iv).
Corollary 2.5 (iv) shows that the acceleration ẍ is bounded on [t0,+∞[. Taking account of (i), we deduce
classically that limt→+∞ ẋ(t) = 0. In view of equation (12) and the fact that limt→+∞B(x(t)) = 0 by (v),
we conclude that limt→+∞ ẍ(t) = 0. �

3. Application to particular classes of functions γ and λ

We now look at special classes of functions γ and λ, for which we are able to estimate precisely

the quantities
∫ +∞
t

ds
p(s) and

∫ t
t0

p(s)
λ(s) ds as t → +∞. This consists of the differentiable functions γ,

λ : [t0,+∞[→ R∗+ satisfying

(13) lim
t→+∞

γ̇(t)

γ(t)2
= −c and lim

t→+∞

d
dt (λ(t)γ(t))

λ(t)γ(t)2
= −c′,

for some c ∈ [0, 1[ and c′ > −1. Some properties of the functions γ satisfying the first condition above
were studied by Attouch-Cabot [3], in connection with the asymptotic behavior of the inertial gradient
system (IGS)γ . The next proposition extends some of these properties.

Proposition 3.1. Let γ, λ : [t0,+∞[→ R∗+ be two differentiable functions.
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(i) Assume that there exists c ∈ [0, 1[ such that limt→+∞ γ̇(t)/γ(t)2 = −c. Then the conditions∫ +∞
t0

γ(s) ds = +∞ and (H0) are satisfied, and∫ +∞

t

ds

p(s)
∼ 1

(1− c) p(t)γ(t)
as t→ +∞.

The above equivalence can be reformulated as Γ(t) ∼ 1

(1− c) γ(t)
as t→ +∞.

(ii) Assume moreover that there exists c′ > −1 such that

lim
t→+∞

d
dt (λ(t)γ(t))

λ(t)γ(t)2
= −c′.

Then we have
∫ +∞
t0

p(s)
λ(s) ds = +∞ and the following equivalence holds true∫ t

t0

p(s)

λ(s)
ds ∼ 1

1 + c′
p(t)

λ(t)γ(t)
as t→ +∞.

Proof. (i) This result was proved by the authors in a previous paper, see [3, Proposition 2.6].

(ii) Let us evaluate the derivative of the function t 7→ p(t)
λ(t)γ(t)

d

dt

(
p(t)

λ(t)γ(t)

)
= −

d
dt (λ(t)γ(t))

λ(t)2γ(t)2
p(t) +

1

λ(t)γ(t)
γ(t)p(t) =

(
−

d
dt (λ(t)γ(t))

λ(t)γ(t)2
+ 1

)
p(t)

λ(t)
.

Since limt→+∞
d
dt (λ(t)γ(t))

λ(t)γ(t)2 = −c′, we infer from the above equality that

(14)
d

dt

(
p(t)

λ(t)γ(t)

)
∼ (1 + c′)

p(t)

λ(t)
as t→ +∞.

Recalling that c′ > −1, we deduce that the function t 7→ p(t)
λ(t)γ(t) is increasing for t large enough. This

implies that this function is minorized on [t0,+∞[ by some m > 0. Writing that

p(t)

λ(t)
=

p(t)

λ(t)γ(t)
γ(t) ≥ mγ(t)

and using that
∫ +∞
t0

γ(s) ds = +∞ by (i), we conclude that
∫ +∞
t0

p(s)
λ(s) ds = +∞.

Integrating the equivalence (14), we then obtain

p(t)

λ(t)γ(t)
∼ (1 + c′)

∫ t

t0

p(s)

λ(s)
ds as t→ +∞,

which completes the proof. �

We now show that the key condition (H1) of Theorem 2.3 takes a simple form for functions γ and λ
satisfying conditions (13).

Proposition 3.2. Let γ, λ : [t0,+∞[→ R∗+ be two differentiable functions satisfying conditions (13) for
some c ∈ [0, 1[ and c′ ∈]− 1, 1[ such that |c′| < 1− c. Then condition (H1) is equivalent to

(15) lim inf
t→+∞

λ(t)γ(t)2 >
1

1− c− |c′|
.

Proof. The inequality arising in condition (H1) can be rewritten as

(16) (1− ε)λ(t)
γ(t)

Γ(t)
−
∣∣∣∣ ddt (λ(t)γ(t))

∣∣∣∣ ≥ 1.
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The assumption limt→+∞
γ̇(t)
γ(t)2 = −c implies that Γ(t) ∼ 1

(1−c) γ(t) as t → +∞, see Proposition 3.1 (i).

It ensues that

(17) λ(t)
γ(t)

Γ(t)
= (1− c)λ(t)γ(t)2 + o(λ(t)γ(t)2) as t→ +∞.

On the other hand, we deduce from the second condition of (13) that

(18)

∣∣∣∣ ddt (λ(t)γ(t))

∣∣∣∣ = |c′|λ(t)γ(t)2 + o(λ(t)γ(t)2) as t→ +∞.

In view of (17) and (18), inequality (16) amounts to

λ(t)γ(t)2[(1− ε)(1− c)− |c′|+ o(1)] ≥ 1 as t→ +∞.

Therefore condition (H1) is equivalent to the existence of ε′ ∈]0, 1− c− |c′|[ such that

λ(t)γ(t)2[1− c− |c′| − ε′] ≥ 1,

for t large enough. This last condition is equivalent to (15), which ends the proof. �

Combining Theorem 2.3 and Propositions 3.1 and 3.2, we obtain the following result.

Corollary 3.3. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅. Let γ,
λ : [t0,+∞[→ R∗+ be two differentiable functions satisfying conditions (13) for some c ∈ [0, 1[ and
c′ ∈]− 1, 1[ such that |c′| < 1− c. Assume moreover that

lim inf
t→+∞

λ(t)γ(t)2 >
1

1− c− |c′|
.

Then for any global solution x(.) of (RIMS)γ,λ, we have

(i)

∫ +∞

t0

λ(s)γ(s) ‖ẋ(s)‖2 ds < +∞.

(ii)

∫ +∞

t0

λ(s)

γ(s)
‖Aλ(s)(x(s))‖2 ds < +∞.

(iii) For any z ∈ zerA, limt→+∞ ‖x(t)− z‖ exists, and hence x(·) is bounded.

(iv) ‖ẋ(t)‖ = O
(

1

λ(t)γ(t)

)
and ‖ẍ(t)‖ = O

(
1

λ(t)

)
as t→ +∞.

Assuming that

∫ +∞

t0

1

λ(s)γ(s)
ds = +∞ and that |λ̇(t)| = O

(
1

γ(t)

)
as t→ +∞, the following holds

(v) limt→+∞ λ(t)Aλ(t)(x(t)) = 0.

(vi) If λ is minorized by some positive constant on [t0,+∞[, there exists x∞ ∈ zerA such that x(t) ⇀
x∞ weakly in H as t→ +∞.

Finally assume that

∫ +∞

t0

1

λ(s)γ(s)
ds < +∞. Then we obtain

(vii)

∫ +∞

t0

‖ẋ(s)‖ ds < +∞, and hence x(·) converges strongly toward some x∞ ∈ H.

Proof. The key condition (H1) of Theorem 2.3 is satisfied owing to Proposition 3.2. On the other hand,
Proposition 3.1 shows that

Γ(t) ∼ 1

(1− c) γ(t)
and

1

p(t)

∫ t

t0

p(s)

λ(s)
ds ∼ 1

(1 + c′)λ(t)γ(t)
as t→ +∞.
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It ensues that the first condition of (H2) is automatically satisfied, while the second one is given by

|λ̇(t)| = O
(

1
γ(t)

)
as t → +∞. Condition (H3) is implied by the assumption

∫ +∞
t0

1
λ(s)γ(s) ds = +∞.

Items (i)-(vii) follow immediately from the corresponding points in Theorem 2.3. �

Let us now particularize to the case γ(t) = α tq and λ(t) = β tr, for some α, β > 0, q ≥ −1 and r ∈ R.

Corollary 3.4. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅. Assume that
γ(t) = α tq and λ(t) = β tr for every t ≥ t0 > 0. Suppose that (q, r) ∈ ] − 1,+∞[×R is such that
2q + r ≥ 0, and that (α, β) ∈ R∗+ ×R∗+ satisfies α2β > 1 if 2q + r = 0 (no condition if 2q + r > 0). Then
for any global solution x(.) of (RIMS)γ,λ, we have

(i)

∫ +∞

t0

sq+r ‖ẋ(s)‖2 ds < +∞.

(ii)

∫ +∞

t0

sr−q ‖Aλ(s)(x(s))‖2 ds < +∞.

(iii) For any z ∈ zerA, limt→+∞ ‖x(t)− z‖ exists, and hence x(·) is bounded.

(iv) ‖ẋ(t)‖ = O
(

1

tq+r

)
and ‖ẍ(t)‖ = O

(
1

tr

)
as t→ +∞.

Assuming that q + r ≤ 1, the following holds

(v) limt→+∞ trAλ(t)(x(t)) = 0.

(vi) If r ≥ 0, there exists x∞ ∈ zerA such that x(t) ⇀ x∞ weakly in H as t→ +∞.

Finally assume that q + r > 1. Then we obtain

(vii)

∫ +∞

t0

‖ẋ(s)‖ ds < +∞, and hence x(·) converges strongly toward some x∞ ∈ H.

Proof. Since q > −1, the first (resp. second) condition of (13) is satisfied with c = 0 (resp. c′ = 0). On
the other hand, we have λ(t)γ(t)2 = α2β t2q+r, hence

lim
t→+∞

λ(t)γ(t)2 =

{
+∞ if 2q + r > 0
α2β if 2q + r = 0.

It ensues that the condition lim inft→+∞ λ(t)γ(t)2 > 1 is guaranteed by the hypotheses of Corollary 3.4.

Conditions
∫ +∞
t0

ds
λ(s)γ(s) = +∞ and |λ̇(t)| = O (1/γ(t)) as t → +∞ amount respectively to q + r ≤ 1.

Items (i)-(vii) are immediate consequences of the corresponding points in Corollary 3.3. �

When q = r = 0, the functions γ and λ are constant: γ(t) ≡ α > 0 and λ(t) ≡ β > 0. We then recover
the result of [6, Theorem 2.1] with the key condition α2β > 1. To finish, let us consider the case q = −1,
thus leading to a damping parameter of the form γ(t) = α

t . This case was recently studied by Attouch
and Peypouquet [8] in the framework of Nesterov’s accelerated methods.

Corollary 3.5. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅. Let r ≥ 2,
α > r and β ∈ R∗+ be such that β > 1

α(α−r) if r = 2 (no condition on β if r > 2). Assume that γ(t) = α
t

and λ(t) = β tr for every t ≥ t0 > 0. Then for any global solution x(.) of (RIMS)γ,λ, we have

(i)

∫ +∞

t0

sr−1 ‖ẋ(s)‖2 ds < +∞.

(ii)

∫ +∞

t0

sr+1 ‖Aλ(s)(x(s))‖2 ds < +∞.

(iii) For any z ∈ zerA, limt→+∞ ‖x(t)− z‖ exists, and hence x(·) is bounded.

(iv) ‖ẋ(t)‖ = O
(

1

tr−1

)
and ‖ẍ(t)‖ = O

(
1

tr

)
as t→ +∞.
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Assuming that r = 2, the following holds

(v) limt→+∞ t2Aλ(t)(x(t)) = 0.

(vi) There exists x∞ ∈ zerA such that x(t) ⇀ x∞ weakly in H as t→ +∞.

Finally assume that r > 2. Then we obtain

(vii)

∫ +∞

t0

‖ẋ(s)‖ ds < +∞, and hence x(·) converges strongly toward some x∞ ∈ H.

Proof. The first (resp. second) condition of (13) is satisfied with c = 1
α (resp. c′ = 1−r

α ). Since r ≥ 2 and
α > r, we have

c ∈]0, 1/2[ and |c′| = r − 1

α
<
α− 1

α
= 1− c.

On the other hand, observe that λ(t)γ(t)2 = α2β tr−2, hence

lim
t→+∞

λ(t)γ(t)2 =

{
+∞ if r > 2
α2β if r = 2.

Condition lim inft→+∞ λ(t)γ(t)2 > 1
1−c−|c′| is automatically satisfied if r > 2, while it amounts to

α2β >
1

1− 1
α −

r−1
α

=
α

α− r
⇐⇒ β >

1

α(α− r)
if r = 2.

Items (i)-(vii) follow immediately from the corresponding points in Corollary 3.3. �

Taking r = 2 in the previous corollary, we recover the result of [8, Theorem 2.1] as a particular case.

PART B: ERGODIC CONVERGENCE RESULTS

Let A : H → 2H be a maximally monotone operator. The trajectories associated to the semigroup
of contractions generated by A are known to converge weakly in average toward some zero of A, cf. the
seminal paper by Brezis and Baillon [9]. Our purpose in this part of the paper is to study the ergodic
convergence of the solutions of the system (RIMS)γ,λ. When the regularizing parameter λ(·) is minorized

by some positive constant, it is established in part A that the trajectories of (RIMS)γ,λ do converge

weakly toward a zero of A, see Theorem 2.3 (vi). Our objective is to show that weak ergodic convergence
can be expected when the regularization parameter λ(t) tends toward 0 as t→ +∞. The key ingredient
is the use of some suitable ergodic variant of the Opial lemma.

4. Weak ergodic convergence of the trajectories

4.1. Ergodic variants of Opial’s lemma. Ergodic versions of the Opial lemma were derived by Brézis-
Browder [16] and Passty [26] in a discrete setting. In order to give a continuous ergodic version, let us
consider a measurable function Λ : [t0,+∞[×[t0,+∞[→ R+ satisfying the following assumptions

(19)

∫ +∞

t0

Λ(s, t) ds = 1 for every t ≥ t0,

(20) lim
t→+∞

∫ T

t0

Λ(s, t) ds = 0 for every T ≥ t0.

To each bounded map x : [t0,+∞[→ H, we associate the averaged map x̂ : [t0,+∞[→ H by

(21) x̂(t) =

∫ +∞

t0

Λ(s, t)x(s) ds.



15

Lemma B.4 in the appendix shows that the map x̂ is well-defined, bounded and that convergence of
x(t) as t → +∞ implies convergence of x̂(t) toward the same limit (Cesaro property). The extension of
Opial lemma to a general averaging process satisfying (19) and (20) is given hereafter. This result was
established in [5] for the particular case corresponding to Λ(s, t) = 1

t if s ≤ t and Λ(s, t) = 0 if s > t.

Proposition 4.1. Let S be a nonempty subset of H and let x : [t0,+∞[→ H be a continuous map,
supposed to be bounded on [t0,+∞[. Let Λ : [t0,+∞[×[t0,+∞[→ R+ be a measurable function satisfying
(19) and (20), and let x̂ : [t0,+∞[→ H be the averaged trajectory defined by (21). Assume that

(i) for every z ∈ S, limt→+∞ ‖x(t)− z‖ exists;
(ii) every weak sequential limit point of x̂(t), as t→ +∞, belongs to S.

Then x̂(t) converges weakly as t→ +∞ to a point in S.

Proof. From Lemma B.4 (i), the map x̂ is bounded, therefore it is enough to establish the uniqueness of
weak limit points. Let (x̂(tn)) and (x̂(tm)) be two weakly converging subsequences satisfying respectively
x̂(tn) ⇀ x1 as n→ +∞ and x̂(tm) ⇀ x2 as m→ +∞. From (ii), the weak limit points x1 and x2 belong
to S. In view of (i), we deduce that limt→+∞ ‖x(t)− x1‖2 and limt→+∞ ‖x(t)− x2‖2 exist. Writing that

‖x(t)− x1‖2 − ‖x(t)− x2‖2 = 2

〈
x(t)− x1 + x2

2
, x2 − x1

〉
,

we infer that limt→+∞〈x(t), x2 − x1〉 exists. Observe that

〈x̂(t), x2 − x1〉 =

〈∫ +∞

t0

Λ(s, t)x(s) ds, x2 − x1

〉
=

∫ +∞

t0

Λ(s, t) 〈x(s), x2 − x1〉 ds.

By applying Lemma B.4 (ii) to the real-valued map t 7→
〈
x(t), x2−x1

〉
, we deduce that limt→+∞〈x̂(t), x2−

x1〉 exists. This implies that

lim
n→+∞

〈x̂(tn), x2 − x1〉 = lim
m→+∞

〈x̂(tm), x2 − x1〉,

which entails that 〈x1, x2−x1〉 = 〈x2, x2−x1〉. We conclude that ‖x2−x1‖2 = 0, which ends the proof. �

Now assume that the function Λ : [t0,+∞[×[t0,+∞[→ R+ is given by

(22) Λ(s, t) =
Γ(s, t)∫ t

t0
Γ(u, t) du

,

where the quantity Γ(s, t) is defined by (2). We then obtain the following consequence of Proposition 4.1.

Corollary 4.2. Let S be a nonempty subset of H, and let x : [t0,+∞[→ H be a continuous map,
supposed to be bounded on [t0,+∞[. Given a continuous function γ : [t0,+∞[→ R+ satisfying (H0), let

Γ(s) and Γ(s, t) be the quantities defined respectively by (1) and (2). Suppose that
∫ +∞
t0

Γ(s) ds = +∞.

Let x̂ : [t0,+∞[→ H be the averaged map defined by

x̂(t) =
1∫ t

t0
Γ(s, t) ds

∫ t

t0

Γ(s, t)x(s) ds.

Assume that

(i) for every z ∈ S, limt→+∞ ‖x(t)− z‖ exists;
(ii) every weak sequential limit point of x̂(t), as t→ +∞, belongs to S.

Then x̂(t) converges weakly as t→ +∞ to a point in S.
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Proof. Just check that conditions (19) and (20) of Proposition 4.1 are satisfied for the function Λ :
[t0,+∞[×[t0,+∞[→ R+ given by (22). Property (19) clearly holds true. Observe that for every T ≥ t0,∫ T

t0

Λ(s, t) ds =

∫ T
t0

Γ(s, t) ds∫ t
t0

Γ(u, t) du
≤

∫ T
t0

Γ(s) ds∫ t
t0

Γ(u, t) du
.

The quantity
∫ T
t0

Γ(s) ds is finite and independent of t. On the other hand, from the assumption∫ +∞
t0

Γ(s) ds = +∞ we deduce that limt→+∞
∫ t
t0

Γ(u, t) du = +∞, see (3). We deduce from the above

inequality that limt→+∞
∫ T
t0

Λ(s, t) ds = 0, hence property (20) is satisfied. It ensues that Proposition 4.1

can be applied, which ends the proof. �

4.2. Ergodic convergence of the trajectories. To each solution x(.) of (RIMS)γ,λ, we associate the

averaged trajectory x̂(.) defined by

x̂(t) =
1∫ t

t0
Γ(s, t) ds

∫ t

t0

Γ(s, t)x(s) ds.

We show that under suitable conditions, every averaged trajectory x̂(.) converges weakly as t → +∞
toward some zero of the operator A.

Theorem 4.3. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅ and let
λ : [t0,+∞[→ R∗+ be a differentiable function. Suppose that the differentiable function γ : [t0,+∞[→ R+

satisfies (H0). For s, t ≥ t0, let Γ(s) and Γ(s, t) be the quantities respectively defined by (1) and (2).

Assume that conditions (H1)-(H2)-(H3) hold, together with
∫ +∞
t0

Γ(s) ds = +∞. Then for any global

solution x(.) of (RIMS)γ,λ, there exists x∞ ∈ zerA such that

x̂(t) =
1∫ t

t0
Γ(s, t) ds

∫ t

t0

Γ(s, t)x(s) ds ⇀ x∞ weakly in H as t→ +∞.

Proof. We apply Corollary 4.2 with S = zerA. Condition (i) of Corollary 4.2 is realized in view of
Theorem 2.3 (iii). Let us now assume that there exist x∞ ∈ H and a sequence (tn) such that tn → +∞ and
x̂(tn) ⇀ x∞ weakly in H as n→ +∞. Let us fix (z, q) ∈ gphA and define the function h : [t0,+∞[→ R+

by h(t) = 1
2‖x(t)− z‖2. Since q ∈ A(z) and Aλ(t)(x(t)) ∈ A

(
x(t)− λ(t)Aλ(t)(x(t))

)
, the monotonicity of

A implies that

〈x(t)− λ(t)Aλ(t)(x(t))− z,Aλ(t)(x(t))− q〉 ≥ 0,

hence

〈x(t)− z,Aλ(t)(x(t))〉 ≥ λ(t)‖Aλ(t)(x(t))‖2 + 〈x(t)− λ(t)Aλ(t)(x(t))− z, q〉
≥ 〈x(t)− λ(t)Aλ(t)(x(t))− z, q〉.

Recalling equality (4), we obtain for every t ≥ t0,

ḧ(t) + γ(t)ḣ(t) ≤ ‖ẋ(t)‖2 − 〈x(t)− λ(t)Aλ(t)(x(t))− z, q〉.

Using Lemma B.1 (i) with g(t) = ‖ẋ(t)‖2 − 〈x(t)− λ(t)Aλ(t)(x(t))− z, q〉, we obtain for every t ≥ t0,

h(t) ≤ h(t0) + ḣ(t0)

(∫ t

t0

du

p(u)

)
+

∫ t

t0

Γ(s, t)
[
‖ẋ(s)‖2 − 〈x(s)− λ(s)Aλ(s)(x(s))− z, q〉

]
ds.

Since h(t) ≥ 0 and Γ(s, t) ≤ Γ(s), we deduce that∫ t

t0

Γ(s, t)〈x(s)− λ(s)Aλ(s)(x(s))− z, q〉 ds ≤ h(t0) + ḣ(t0)

(∫ t

t0

du

p(u)

)
+

∫ t

t0

Γ(s)‖ẋ(s)‖2 ds.
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Recalling the assumption
∫ +∞
t0

du
p(u) < +∞ and the estimate

∫ +∞
t0

Γ(s)‖ẋ(s)‖2 ds < +∞ (see Theo-

rem 2.3 (i)), we infer that for every t ≥ t0,

(23)

∫ t

t0

Γ(s, t)〈x(s)− λ(s)Aλ(s)(x(s))− z, q〉 ds ≤ C,

where we have set

C := h(t0) + |ḣ(t0)|
(∫ +∞

t0

du

p(u)

)
+

∫ +∞

t0

Γ(s)‖ẋ(s)‖2 ds.

It ensues that ∫ t

t0

Γ(s, t) 〈x(s)− z, q〉 ds ≤ C +

∫ t

t0

Γ(s, t)
〈
λ(s)Aλ(s)(x(s)), q

〉
ds

≤ C + ‖q‖
∫ t

t0

Γ(s, t)λ(s)‖Aλ(s)(x(s))‖ ds.

This can be rewritten as〈∫ t

t0

Γ(s, t)(x(s)− z) ds, q
〉
≤ C + ‖q‖

∫ t

t0

Γ(s, t)λ(s)‖Aλ(s)(x(s))‖ ds.

Dividing by
∫ t
t0

Γ(s, t) ds, we find

(24) 〈x̂(t)− z, q〉 ≤ C∫ t
t0

Γ(s, t) ds
+

‖q‖∫ t
t0

Γ(s, t) ds

∫ t

t0

Γ(s, t)λ(s)‖Aλ(s)(x(s))‖ ds.

The assumption
∫ +∞
t0

Γ(s) ds = +∞ implies that limt→+∞
∫ t
t0

Γ(s, t) ds = +∞, see (3). On the other

hand, we have limt→+∞ λ(t)Aλ(t)(x(t)) = 0 by Theorem 2.3 (v). From the Cesaro property, we infer that

1∫ t
t0

Γ(s, t) ds

∫ t

t0

Γ(s, t)λ(s)‖Aλ(s)(x(s))‖ ds→ 0 as t −→ +∞,

see Lemma B.4 (ii). Taking the limit as t→ +∞ in inequality (24), we then obtain

lim sup
t→+∞

〈x̂(t)− z, q〉 ≤ 0.

Recall that the sequence (tn) is such that x̂(tn) ⇀ x∞ weakly in H as n→ +∞, hence 〈x̂(tn)− z, q〉 →
〈x∞ − z, q〉 as n → +∞. From what precedes, we deduce that 〈x∞ − z, q〉 ≤ 0 for every (z, q) ∈ gphA.
Since the operator A is maximally monotone, we infer that 0 ∈ A(x∞). We have proved that x∞ ∈ zerA,
which shows that condition (ii) of Corollary 4.2 is satisfied. �

Let us now consider the alternate averaged trajectory x defined by

x(t) =
1∫ t

t0
Γ(s) ds

∫ t

t0

Γ(s)x(s) ds,

for every t ≥ t0. The next result gives sufficient conditions that ensure the weak convergence of x(t) as
t→ +∞ toward a zero of A.

Theorem 4.4. Under the hypotheses of Theorem 4.3, assume moreover that

(25)

(∫ +∞

t

ds

p(s)

)(∫ t

t0

p(s) ds

)
= o

(∫ t

t0

Γ(s) ds

)
as t→ +∞.
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Then for any global solution x(.) of (RIMS)γ,λ, there exists x∞ ∈ zerA such that

x(t) =
1∫ t

t0
Γ(s) ds

∫ t

t0

Γ(s)x(s) ds ⇀ x∞ weakly in H as t→ +∞.

The latter result still holds true if the function Γ in the above quotient is replaced with a function Γ̃ :

[t0,+∞[→ R+ such that Γ̃(s) ∼ Γ(s) as s→ +∞.

Proof. We are going to show that limt→+∞ ‖x̂(t) − x(t)‖ = 0, where x̂ is the averaged trajectory of
Theorem 4.3. For that purpose, we use Lemma B.5 with the functions Λ1, Λ2 : [t0,+∞[×[t0,+∞[→ R+

respectively defined by

Λ1(s, t) =
Γ(s, t)∫ t

t0
Γ(u, t) du

, Λ2(s, t) =
Γ(s)∫ t

t0
Γ(u) du

, if s ≤ t,

and Λ1(s, t) = Λ2(s, t) = 0 if s > t. The functions Λ1 and Λ2 clearly satisfy property (19). Let us now
check that

(26) lim
t→+∞

∫ +∞

t0

|Λ1(s, t)− Λ2(s, t)| ds = 0.

For s ≤ t, we have

Λ1(s, t)− Λ2(s, t) =
Γ(s, t)∫ t

t0
Γ(u, t) du

∫ t
t0

(Γ(u)− Γ(u, t)) du∫ t
t0

Γ(u) du
+

Γ(s, t)− Γ(s)∫ t
t0

Γ(u) du

and hence

|Λ1(s, t)− Λ2(s, t)| ≤ Γ(s, t)∫ t
t0

Γ(u, t) du

∫ t
t0
|Γ(u)− Γ(u, t)| du∫ t

t0
Γ(u) du

+
|Γ(s, t)− Γ(s)|∫ t

t0
Γ(u) du

.

By integrating on [t0, t], we find∫ t

t0

|Λ1(s, t)− Λ2(s, t)| ds ≤ 2

∫ t
t0
|Γ(s, t)− Γ(s)| ds∫ t

t0
Γ(s) ds

.

Recalling that Λ1(s, t) = Λ2(s, t) = 0 for s > t, this implies that∫ +∞

t0

|Λ1(s, t)− Λ2(s, t)| ds ≤ 2

∫ t
t0
|Γ(s, t)− Γ(s)| ds∫ t

t0
Γ(s) ds

.

From the expression of Γ(s) and Γ(s, t), see (1) and (2), we immediately deduce that∫ +∞

t0

|Λ1(s, t)− Λ2(s, t)| ds ≤ 2

(∫ +∞
t

ds
p(s)

)(∫ t
t0
p(s) ds

)
∫ t
t0

Γ(s) ds
.

In view of assumption (25), we then obtain (26). By applying Lemma B.5, we infer that limt→+∞ ‖x̂(t)−
x(t)‖ = 0. On the other hand, Theorem 4.3 shows that there exists x∞ ∈ zerA such that x̂(t) ⇀ x∞
weakly in H as t→ +∞. We then conclude that x(t) ⇀ x∞ weakly in H as t→ +∞.

Now assume that the function Γ̃ : [t0,+∞[→ R+ is such that Γ̃(s) ∼ Γ(s) as s→ +∞. Let us denote by

Λ̃2 the function defined by

Λ̃2(s, t) =
Γ̃(s)∫ t

t0
Γ̃(u) du

if s ≤ t,
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and Λ̃2(s, t) = 0 if s > t. The corresponding averaged trajectory is denoted by x̃. By arguing as above,
we obtain that ∫ +∞

t0

|Λ̃2(s, t)− Λ2(s, t)| ds ≤ 2

∫ t
t0
|Γ̃(s)− Γ(s)| ds∫ t
t0

Γ(s) ds
.

Then, using the estimate ∫ t

t0

|Γ̃(s)− Γ(s)| ds = o

(∫ t

t0

Γ(s) ds

)
as t→ +∞,

we deduce that ∫ +∞

t0

|Λ̃2(s, t)− Λ2(s, t)| ds −→ 0 as t→ +∞.

In view of Lemma B.5, this implies that limt→+∞ ‖x̃(t)− x(t)‖ = 0, which ends the proof. �

Let us now apply Theorem 4.4 to the class of differentiable functions γ, λ : [t0,+∞[→ R∗+ satisfying

(27) lim
t→+∞

γ̇(t)

γ(t)2
= 0 and lim

t→+∞

d
dt (λ(t)γ(t))

λ(t)γ(t)2
= 0.

Corollary 4.5. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅. Let γ,
λ : [t0,+∞[→ R∗+ be two differentiable functions satisfying conditions (27). Assume that

(a) lim inf
t→+∞

λ(t)γ(t)2 > 1;

(b) |λ̇(t)| = O (1/γ(t)) as t→ +∞;

(c)

∫ +∞

t0

ds

λ(s)γ(s)
= +∞;

(d)

∫ +∞

t0

ds

γ(s)
= +∞.

Then for any global solution x(.) of (RIMS)γ,λ, there exists x∞ ∈ zerA such that

1∫ t
t0

ds
γ(s)

∫ t

t0

x(s)

γ(s)
ds ⇀ x∞ weakly in H as t→ +∞.

Proof. Let us check that the assumptions of Theorem 4.4 are satisfied. Assumption (H0) is verified in
view of Proposition 3.1 (i) applied with c = 0. Since lim inf

t→+∞
λ(t)γ(t)2 > 1, condition (H1) holds true by

Proposition 3.2 used with c = c′ = 0. On the other hand, Proposition 3.1 shows that

(28)

∫ +∞

t

ds

p(s)
∼ 1

p(t)γ(t)
and

∫ t

t0

p(s)

λ(s)
ds ∼ p(t)

λ(t)γ(t)
as t→ +∞,

thus implying that Γ(t) ∼ 1
γ(t) as t → +∞. It ensues that the first condition of (H2) is automatically

satisfied, while the second one is given by (b). Condition (H3) is implied by the assumption (c). In the

same way, condition
∫ +∞
t0

Γ(s) ds = +∞ is guaranteed by the assumption (d). It remains to establish

condition (25) of Theorem 4.4. By applying Proposition 3.1 (ii) with λ(t) ≡ 1 and c′ = 0, we obtain∫ t

t0

p(s) ds ∼ p(t)

γ(t)
as t→ +∞.

In view of the first equivalence of (28), we infer that(∫ +∞

t

ds

p(s)

)(∫ t

t0

p(s) ds

)
∼ 1

γ(t)2
as t→ +∞.
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It ensues that condition (25) amounts to 1
γ(t)2 = o

(∫ t
t0

Γ(s) ds
)

as t→ +∞, which is in turn equivalent

to

(29)
1

γ(t)2
= o

(∫ t

t0

ds

γ(s)

)
as t→ +∞.

Since limt→+∞ γ̇(t)/γ(t)2 = 0, we have −γ̇(t)/γ(t)3 = o(1/γ(t)) as t→ +∞. By integrating on [t0, t], we
obtain [

1

2γ(t)2

]t
t0

=

∫ t

t0

− γ̇(s)

γ(s)3
ds = o

(∫ t

t0

ds

γ(s)

)
as t→ +∞,

because
∫ +∞
t0

ds
γ(s) = +∞ by assumption. It ensues that condition (29) is fulfilled, hence all the hypotheses

of Theorem 4.4 are satisfied. We deduce that there exists x∞ ∈ zerA such that

1∫ t
t0

Γ(s) ds

∫ t

t0

Γ(s)x(s) ds ⇀ x∞ weakly in H as t→ +∞.

Since Γ(t) ∼ 1/γ(t) as t→ +∞, the above result holds true with the function 1/γ in place of Γ, see the
last assertion of Theorem 4.4. �

Let us now particularize to the case γ(t) = α tq and λ(t) = β tr, for some α, β > 0, q ∈] − 1, 1] and
r ∈ R.

Corollary 4.6. Let A : H → 2H be a maximally monotone operator such that zerA 6= ∅. Assume that
γ(t) = α tq and λ(t) = β tr for every t ≥ t0 > 0. Let (q, r) ∈ ] − 1, 1] × R be such that q + r ≤ 1 and
2q + r ≥ 0, and let (α, β) ∈ R∗+ × R∗+ be such that α2β > 1 if 2q + r = 0 (no condition if 2q + r > 0).
Then for any global solution x(.) of (RIMS)γ,λ, there exists x∞ ∈ zerA such that

1∫ t
t0
ds
sq

∫ t

t0

x(s)

sq
ds ⇀ x∞ weakly in H as t→ +∞.

Proof. The conditions of (27) are guaranteed by q > −1. On the other hand, we have λ(t)γ(t)2 =
α2β t2q+r, hence

lim
t→+∞

λ(t)γ(t)2 =

{
+∞ if 2q + r > 0
α2β if 2q + r = 0.

It follows that the condition lim inft→+∞ λ(t)γ(t)2 > 1 is ensured by the hypotheses of Corollary 4.6.

Conditions |λ̇(t)| = O (1/γ(t)) as t → +∞, and
∫ +∞
t0

ds
λ(s)γ(s) = +∞ amount respectively to q + r ≤ 1,

which holds true by assumption. The condition
∫ +∞
t0

ds
γ(s) = +∞ is implied by q ≤ 1. Then just apply

Corollary 4.5. �

PART C: THE SUBDIFFERENTIAL CASE

Let us particularize our study to the case A = ∂Φ, where Φ : H → R ∪ {+∞} is a convex lower
semicontinuous proper function. Then Aλ = ∇Φλ is equal to the gradient of Φλ : H → R, which is the
Moreau envelope of Φ of index λ > 0. Let us recall that, for all x ∈ H

(30) Φλ(x) = inf
ξ∈H

{
Φ(ξ) +

1

2λ
‖x− ξ‖2

}
.
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In this case, we will study the rate of convergence of the values, when the time t goes to +∞, of the
trajectories of the second-order differential equation

(RIGS)γ,λ ẍ(t) + γ(t)ẋ(t) +∇Φλ(t)(x(t)) = 0,

called the Regularized Inertial Gradient System with parameters γ, λ. As a main feature, the above
system involves two time-dependent positive parameters: the Moreau regularization parameter λ(t), and
the damping parameter γ(t). System (RIGS)γ,λ comes as a natural development of several recent studies
concerning fast inertial dynamics and algorithms for convex optimization. Indeed, when Φ is a smooth
convex function, it was highlighted that the fact of taking a vanishing damping coefficient γ(t) in system

(IGS)γ ẍ(t) + γ(t)ẋ(t) +∇Φ(x(t)) = 0,

is a key property for obtaining fast optimization methods. Precisely Su, Boyd and Candès [28] showed
that, in the particular case γ(t) = 3

t , (IGS)γ is a continuous version of the fast gradient method initiated

by Nesterov [23], with Φ(x(t)) − minH Φ = O( 1
t2 ) in the worst case. Attouch and Peypouquet [7]

and May [22] have improved this result by showing that Φ(x(t)) − minHΦ = o( 1
t2 ) for γ(t) = α

t with
α > 3. Recently, in the case of a general damping function γ(·), the study of the speed of convergence of
trajectories of (IGS)γ was developed by Attouch-Cabot in [3]. Note that a main advantage of (RIGS)γ,λ
over (IGS)γ is that Φ is just assumed to be lower semicontinuous (not necessarily smooth). In line with

these results, by jointly adjusting the tuning of the two parameters in (RIGS)γ,λ, we will obtain fast
convergence results for the values.

5. Convergence rates and weak convergence of the trajectories

The following assumptions and notations will be needed throughout this section:
Φ : H → R ∪ {+∞} convex, lower semicontinuous, proper, bounded from below, argmin Φ 6= ∅;
γ : [t0,+∞[→ R+ continuous, with t0 ∈ R;
λ : [t0,+∞[→ R∗+ continuously differentiable, nondecreasing;
x : [t0,+∞[→ H the solution to (RIGS)γ,λ, with initial conditions x(t0) = x0 , ẋ(t0) = v0;

ξ(t) = proxλ(t)Φ(x(t)) for t ≥ t0 .

5.1. Preliminaries on Moreau envelopes. For classical facts about the Moreau envelopes we refer
the reader to [11, 15, 25, 27]. We point out the following properties that will be useful in the sequel:

(i) λ ∈]0,+∞[ 7→ Φλ(x) is nonincreasing for all x ∈ H;

(ii) infHΦ = infH Φλ for all λ > 0;

(iii) argmin Φ = argmin Φλ for all λ > 0.

It turns out that it is convenient to consider the Moreau envelope as a function of the two variables
x ∈ H and λ ∈]0,+∞[. Its differentiability properties with respect to (x, λ) play a crucial role in our
analysis.

a. Let us first recall some classical facts concerning the differentiability properties with respect to x of
the Moreau envelope x 7→ Φλ(x). The infimum in (30) is achieved at a unique point

(31) proxλΦ(x) = argminξ∈H

{
Φ(ξ) +

1

2λ
‖x− ξ‖2

}
,

which gives

Φλ(x) = Φ(proxλΦ(x)) +
1

2λ
‖x− proxλΦ(x)‖2.

Writing the optimality condition for (31), we get

proxλΦ(x) + λ∂Φ (proxλΦ(x)) 3 x,
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that is
proxλΦ(x) = (I + λ∂Φ)

−1
(x).

Thus, proxλΦ is the resolvent of index λ > 0 of the maximally monotone operator ∂Φ. As a consequence,
the mapping proxλΨ : H → H is firmly expansive. For any λ > 0, the function x 7→ Φλ(x) is continuously
differentiable, with

∇Φλ(x) =
1

λ
(x− proxλΦ(x)) .

Equivalently

∇Φλ =
1

λ

(
I − (I + λ∂Φ)

−1
)

= (∂Φ)λ

which is the Yosida approximation of the maximally monotone operator ∂Φ. As such, ∇Φλ is Lipschitz
continuous, with Lipschitz constant 1

λ , and Φλ ∈ C1,1(H).

b. A less known result is the C1-regularity of the function λ 7→ Φλ(x), for any x ∈ H. Its derivative is
given by

(32)
d

dλ
Φλ(x) = −1

2
‖∇Φλ(x)‖2.

This result is known as the Lax-Hopf formula for the above first-order Hamilton-Jacobi equation, see [2,
Remark 3.32; Lemma 3.27], and [21]. A proof is given in Lemma A.1 for the convenience of the reader.
As a consequence of the semi-group property satisfied by the orbits of the autonomous evolution equation
(32), for any x ∈ H, λ > 0 and µ > 0,

(33) (Φλ)µ(x) = Φ(λ+µ)(x).

5.2. Preliminary estimates. Let us introduce functions W , hz, of constant use in this section.

5.2.1. Global energy. The global energy of the system W : [t0,+∞[→ R+ is given by

W (t) =
1

2
‖ẋ(t)‖2 + Φλ(t)(x(t))−min

H
Φ.

Since infHΦ = infH Φλ, we have W ≥ 0. From (RIGS)γ,λ and property (32), we immediately obtain the
following equality

Ẇ (t) = −γ(t)‖ẋ(t)‖2 − λ̇(t)

2
‖∇Φλ(t)(x(t))‖2.(34)

As a direct consequence of (34), we obtain the following results.

Proposition 5.1. The function W is nonincreasing, and hence W∞ := limt→+∞W (t) exists. In addi-
tion,

sup
t≥t0
‖ẋ(t)‖ < +∞,

∫ ∞
t0

γ(t)‖ẋ(t)‖2 dt < +∞ and

∫ ∞
t0

λ̇(t)‖∇Φλ(t)(x(t))‖2 dt < +∞.

Proof. From (34), and λ nondecreasing, we deduce that Ẇ (t) ≤ 0. Hence, W is nonincreasing. Since W
is nonnegative, W∞ := limt→+∞W (t) exists. After integrating (34) from t0 to t, we get

W (t)−W (t0) +

∫ t

t0

γ(s)‖ẋ(s)‖2ds+
1

2

∫ t

t0

λ̇(s)‖∇Φλ(s)(x(s))‖2 ds ≤ 0.

By definition of W , and using again that infH Φ = infHΦλ, it follows that

1

2
‖ẋ(t)‖2 +

∫ t

t0

γ(s)‖ẋ(s)‖2ds+
1

2

∫ t

t0

λ̇(s)‖∇Φλ(s)(x(s))‖2 ds ≤W (t0).

This being true for any t ≥ t0, we get the conclusion. �
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5.2.2. Anchor. Given z ∈ H, we define hz : [t0,+∞[→ R by

hz(t) =
1

2
‖x(t)− z‖2.

We have the following:

Lemma 5.2. For each z ∈ H and all t ≥ t0, we have

ḧz(t) + γ(t)ḣz(t) + 〈x(t)− z,∇Φλ(t)(x(t))〉 = ‖ẋ(t)‖2(35)

ḧz(t) + γ(t)ḣz(t) + Φλ(t)(x(t))− Φλ(t)(z) ≤ ‖ẋ(t)‖2.(36)

In particular, if z ∈ argmin Φ, then

ḧz(t) + γ(t)ḣz(t) ≤ ‖ẋ(t)‖2.

Proof. First observe that

ḣz(t) = 〈x(t)− z, ẋ(t)〉 and ḧz(t) = 〈x(t)− z, ẍ(t)〉+ ‖ẋ(t)‖2.
By (RIGS)γ,λ and the convexity of Φλ(t), it ensues that

ḧz(t) + γ(t)ḣz(t) = ‖ẋ(t)‖2 + 〈x(t)− z,−∇Φλ(t)(x(t))〉 ≤ ‖ẋ(t)‖2 + Φλ(t)(z)− Φλ(t)(x(t)),

which is precisely (35)-(36). The last statement follows from the fact that argmin Φλ = argmin Φ for all
λ > 0. �

5.3. Rate of convergence of the values. Let x : [t0,+∞[→ H be a solution of (RIGS)γ,λ. Let us fix

x ∈ argmin Φ, and set h = hx , that is, h : [t0,+∞[→ R+ satisfies h(t) = 1
2‖x(t) − x‖2. We define the

function p : [t0,+∞[→ R+ by p(t) = e
∫ t
t0
γ(τ) dτ

. Under the assumption

(H0)

∫ +∞

t0

ds

p(s)
< +∞,

the function Γ : [t0,+∞[→ R+ is defined by Γ(t) = p(t)
∫ +∞
t

ds
p(s) . Clearly, the function Γ is of class C1

and satisfies

(37) Γ̇(t) = γ(t)Γ(t)− 1, t ≥ t0.
Let us define the function E : [t0,+∞[→ R by

E(t) = Γ(t)2W (t) + h(t) + Γ(t)ḣ(t)(38)

= Γ(t)2

(
1

2
‖ẋ(t)‖2 + Φλ(t)(x(t))−min

H
Φ

)
+

1

2
‖x(t)− x‖2 + Γ(t)〈ẋ(t), x(t)− x〉

= Γ(t)2
(

Φλ(t)(x(t))−min
H

Φ
)

+
1

2
‖x(t)− x + Γ(t)ẋ(t)‖2.(39)

The following rate of convergence analysis is based on the decreasing properties of the function E , that
will serve us as a Lyapunov function.

Proposition 5.3 (Decay of E). Let γ : [t0,+∞[→ R+ be a continuous function satisfying (H0). The
energy function E : [t0,+∞[→ R+ satisfies for every t ≥ t0,

(40) Ė(t) + Γ(t) (3− 2γ(t)Γ(t))
(

Φλ(t)(x(t))−min
H

Φ
)
≤ 0.

Under the assumption

(K1) There exists t1 ≥ t0 such that γ(t)Γ(t) ≤ 3/2 for every t ≥ t1,

then we have Ė(t) ≤ 0 for every t ≥ t1.
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Proof. By differentiating the function E , as expressed in (38), we obtain

Ė(t) = Γ(t)2 Ẇ (t) + 2Γ(t)Γ̇(t)W (t) + (1 + Γ̇(t))ḣ(t) + Γ(t)ḧ(t).

Taking into account the expression of W and Ẇ , along with equalities (35) and (37), we obtain

Ė(t) = Γ(t)2 Ẇ (t) + 2Γ(t)Γ̇(t)W (t) + Γ(t)(ḧ(t) + γ(t)ḣ(t))

= −Γ(t)2

(
γ(t)‖ẋ(t)‖2 +

λ̇(t)

2
‖∇Φλ(t)(x(t))‖2

)
+ 2Γ(t)Γ̇(t)

(
1

2
‖ẋ(t)‖2 + Φλ(t)(x(t))−min

H
Φ

)
+Γ(t)

(
‖ẋ(t)‖2 − 〈∇Φλ(t)(x(t)), x(t)− x〉

)
≤ ‖ẋ(t)‖2Γ(t)(−Γ(t)γ(t) + Γ̇(t) + 1) + 2Γ(t)Γ̇(t)(Φλ(t)(x(t))−min

H
Φ)

−Γ(t)〈∇Φλ(t)(x(t)), x(t)− x〉
= 2Γ(t)Γ̇(t)(Φλ(t)(x(t))−min

H
Φ)− Γ(t)〈∇Φλ(t)(x(t)), x(t)− x〉.

In the above calculation, we have neglected the term −Γ(t)2 λ̇(t)
2 ‖∇Φλ(t)(x(t))‖2 which is less or equal

than zero, because λ(·) is a nondecreasing function. To obtain the last equality, we have used again the

equality −Γ(t)γ(t) + Γ̇(t) + 1 = 0. Let us now use the convexity of Φλ(t) and equality (37) to obtain

Ė(t) ≤ −(Γ(t)− 2Γ(t)Γ̇(t)) (Φλ(t)(x(t))−min
H

Φ)

= −Γ(t)(3− 2γ(t)Γ(t)) (Φλ(t)(x(t))−min
H

Φ).

When (K1) is satisfied, we have 3− 2γ(t)Γ(t) ≥ 0. Since Γ(t) and Φλ(t)(x(t))−minHΦ are nonnegative,

we deduce that Ė(t) ≤ 0. �

Corollary 5.4. Let γ : [t0,+∞[→ R+ be a continuous function satisfying (H0) and (K1).
(i) For every t ≥ t1, we have

Φλ(t)(x(t))−min
H

Φ ≤ E(t1)

Γ(t)2
.

As a consequence, setting ξ(t) = proxλ(t)Φ(x(t)), we have

Φ(ξ(t))−min Φ ≤ E(t1)

Γ(t)2
and ‖x(t)− ξ(t)‖2 ≤ 2λ(t)

Γ(t)2
E(t1).

(ii) Assume moreover that

(K+
1 ) There exist t1 ≥ t0 and m < 3/2 such that γ(t)Γ(t) ≤ m for every t ≥ t1.

Then we have

(41)

∫ +∞

t1

Γ(t) (Φλ(t)(x(t))−min
H

Φ) dt ≤ E(t1)

3− 2m
< +∞.

Proof. (i) From Proposition 5.3, the function E is nonincreasing on [t1,+∞[. It ensues that E(t) ≤ E(t1)
for every t ≥ t1. Taking into account the expression (39), we deduce that for every t ≥ t1,

Γ(t)2 (Φλ(t)(x(t))−min
H

Φ) ≤ E(t1) and
1

2
‖x(t)− x + Γ(t)ẋ(t)‖2 ≤ E(t1).

The first assertion follows immediately.
(ii) Now assume (K+

1 ). By integrating (40) on [t1, t], we find

E(t) +

∫ t

t1

(
Φλ(s)(x(s))−min

H
Φ
)

Γ(s)(3− 2γ(s)Γ(s)) ds ≤ E(t1).
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Since E(t) ≥ 0 and γ(t)Γ(t) ≤ m for every t ≥ t1, this implies that

(3− 2m)

∫ t

t1

Γ(s) (Φλ(s)(x(s))−min
H

Φ) ds ≤ E(t1).

The inequality (41) is obtained by letting t tend toward infinity. �

Proposition 5.5. Let γ : [t0,+∞[→ R+ be a continuous function satisfying (H0) and (K+
1 ). Then, we

have

(i)

∫ +∞

t0

Γ(t) ‖ẋ(t)‖2 dt < +∞, and hence

∫ +∞

t0

Γ(t)W (t) dt < +∞;

(ii)

∫ +∞

t0

γ(t)

(∫ t

t0

Γ(s) ds

)
‖ẋ(t)‖2 dt < +∞.

Proof. By (34) and λ nondecreasing we have

Ẇ (t) ≤ −γ(t)‖ẋ(t)‖2.(42)

Let θ : [t0,+∞[→ R+ be a differentiable test function, and let t1 ≥ t0 be given by the assumption (K+
1 ).

Let us multiply the inequality (42) by θ(t) and integrate on [t1, t]∫ t

t1

θ(s)Ẇ (s) ds+

∫ t

t1

θ(s)γ(s)‖ẋ(s)‖2 ds ≤ 0.

Integrating by parts yields

(43) θ(t)W (t) +

∫ t

t1

θ(s)γ(s)‖ẋ(s)‖2 ds ≤ θ(t1)W (t1) +

∫ t

t1

θ̇(s)W (s) ds.

Using the expression of W and rearranging the terms, we find

θ(t)W (t) +

∫ t

t1

(
θ(s)γ(s)− θ̇(s)/2

)
‖ẋ(s)‖2 ds ≤ θ(t1)W (t1) +

∫ t

t1

θ̇(s)(Φλ(s)(x(s))−min
H

Φ) ds.

(i) Choosing θ(t) = Γ(t)2, the above equality gives for every t ≥ t1,

Γ(t)2W (t) +

∫ t

t1

Γ(s)[Γ(s)γ(s)− Γ̇(s)]‖ẋ(s)‖2 ds ≤ Γ(t1)2W (t1) + 2

∫ t

t1

Γ(s)Γ̇(s)(Φλ(s)(x(s))−min
H

Φ) ds.

Recalling that Γ̇ = γΓ− 1, we deduce that

Γ(t)2W (t) +

∫ t

t1

Γ(s)‖ẋ(s)‖2 ds ≤ Γ(t1)2W (t1) + 2

∫ t

t1

Γ(s)(γ(s)Γ(s)− 1)(Φλ(s)(x(s))−min
H

Φ) ds.

By assumption (K+
1 ), we have γ(t)Γ(t) ≤ 3/2 for every t ≥ t1. Since W (t) ≥ 0, it ensues that∫ t

t1

Γ(s)‖ẋ(s)‖2 ds ≤ Γ(t1)2W (t1) +

∫ t

t1

Γ(s)(Φλ(s)(x(s))−min
H

Φ) ds.

Under (K+
1 ), we have the estimate

∫ +∞
t1

Γ(s)(Φλ(s)(x(s))−minH Φ) ds < +∞, see Corollary 5.4 (ii). The

announced estimates follow immediately.

(ii) Take now θ(t) =
∫ t
t0

Γ(s) ds. Recalling that W (t) ≥ 0, inequality (43) then implies that for every
t ≥ t1, ∫ t

t1

[
γ(s)

(∫ s

t0

Γ(u) du

)]
‖ẋ(s)‖2 ds ≤

(∫ t1

t0

Γ(s) ds

)
W (t1) +

∫ t

t1

Γ(s)W (s) ds.

It suffices then to recall that
∫ +∞
t1

Γ(s)W (s) ds < +∞ under hypothesis (K+
1 ), see point (i). �
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Theorem 5.6. Let γ : [t0,+∞[→ R+ be a continuous function satisfying (H0), (K+
1 ), along with

(K2)

∫ +∞

t0

Γ(s) ds = +∞.

Let x(.) be a solution of (RIGS)γ,λ. Then we have

Φλ(t)(x(t))−min
H

Φ = o

(
1∫ t

t0
Γ(s) ds

)
and ‖ẋ(t)‖ = o

(
1∫ t

t0
Γ(s) ds

)1/2

as t→ +∞.

As a consequence, setting ξ(t) = proxλ(t)Φ(x(t)), we have

(44) Φ(ξ(t))−min
H

Φ = o

(
1∫ t

t0
Γ(s) ds

)
and ‖x(t)− ξ(t)‖ = o

(
λ(t)∫ t

t0
Γ(s) ds

)1/2

as t→ +∞.

In particular, we obtain limt→+∞ Φ(ξ(t)) = minHΦ, and limt→+∞ ‖ẋ(t)‖ = 0.

Proof. From Proposition 5.5 (i), we have
∫ +∞
t0

Γ(t)W (t) dt < +∞. On the other hand, the energy

function W is nonincreasing by Proposition 5.1. By applying Lemma B.3 in the Appendix, we obtain
that

W (t) = o

(
1∫ t

t0
Γ(s) ds

)
as t→ +∞.

The announced estimates follow immediately. �

Theorem 5.7. Let γ : [t0,+∞[→ R+ be a continuous function satisfying (H0), (K+
1 ), and (K2). Suppose

that λ : [t0,+∞[→ R∗+ is nondecreasing and satisfies

sup
t≥t0

λ(t)∫ t
t0

Γ(s) ds
< +∞.

Then, for every solution x(.) of (RIGS)γ,λ the following properties hold:

(i) lim
t→+∞

‖ξ(t)− x(t)‖ = 0, where ξ(t) = proxλ(t)Φ(x(t));

(ii) x(t) converges weakly as t→ +∞ toward some x∗ ∈ argmin Φ.

Proof. (i) Since supt≥t0
λ(t)∫ t

t0
Γ(s) ds

< +∞, the second estimate of (44) implies that lim
t→+∞

‖ξ(t)−x(t)‖ = 0.

(ii) We apply the Opial lemma, see Lemma 2.2. Let us fix x ∈ argmin Φ, and show that limt→+∞ ‖x(t)−x‖
exists. For that purpose, let us set h(t) = 1

2‖x(t) − x‖2. Recall from Lemma 5.2 that the function h
satisfies the following differential inequality

ḧ(t) + γ(t) ḣ(t) ≤ ‖ẋ(t)‖2.

From Proposition 5.5 (i), we have
∫ +∞
t0

Γ(s)‖ẋ(s)‖2 ds < +∞. By applying Lemma B.1 with g : [t0,+∞[→
R+ defined by g(t) = ‖ẋ(t)‖2, we obtain that limt→+∞ h(t) exists. This shows the first point of the Opial
lemma. Let us now verify the second point. Let x(tk) converge weakly to x∞ as k → +∞. Point (i)
implies that ξ(tk) also converges weakly to x∞ as k → +∞. Since the function Φ is convex and lower
semicontinuous, it is semicontinuous for the weak topology, hence satisfies

Φ(x∞) ≤ lim inf
t→+∞

Φ(ξ(tk)) = lim
t→+∞

Φ(ξ(t)) = min
H

Φ,

cf. the last point of Theorem 5.6. It ensues that x∞ ∈ argmin Φ, which establishes the second point of
the Opial lemma, and ends the proof. �
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Appendix A. Yosida regularization and Moreau envelopes

A.1. Yosida regularization of an operator A. A set-valued mapping A from H to H assigns to each
x ∈ H a set A(x) ⊂ H, hence it is a mapping from H to 2H. Every set-valued mappping A : H → 2H can
be identified with its graph defined by

gphA = {(x, u) ∈ H ×H : u ∈ A(x)}.

The set {x ∈ H : 0 ∈ A(x)} of the zeros of A is denoted by zerA. An operator A : H → 2H is said to be
monotone if for any (x, u), (y, v) ∈ gphA, one has 〈y − x, v − u〉 ≥ 0. It is maximally monotone if there
exists no monotone operator whose graph strictly contains gphA. If a single-valued operator A : H → H
is continuous and monotone, then it is maximally monotone, cf. [15, Proposition 2.4].

Given a maximally monotone operator A and λ > 0, the resolvent of A with index λ and the Yosida
regularization of A with parameter λ are defined by

JλA = (I + λA)
−1

and Aλ =
1

λ
(I − JλA) ,

respectively. The operator JλA : H → H is nonexpansive and eveywhere defined (indeed it is firmly
non-expansive). Moreover, Aλ is λ-cocoercive: for all x, y ∈ H we have

〈Aλy −Aλx, y − x〉 ≥ λ‖Aλy −Aλx‖2.

This property immediately implies that Aλ : H → H is 1
λ -Lipschitz continuous. Another property that

proves useful is the resolvent equation (see, for example, [15, Proposition 2.6] or [11, Proposition 23.6])

(Aλ)µ = A(λ+µ),

which is valid for any λ, µ > 0. This property allows to compute simply the resolvent of Aλ by

JµAλ =
λ

λ+ µ
I +

µ

λ+ µ
J(λ+µ)A,

for any λ, µ > 0. Also note that for any x ∈ H, and any λ > 0

Aλ(x) ∈ A(JλAx) = A(x− λAλ(x)).

Finally, for any λ > 0, A and Aλ have the same solution set S := A−1
λ (0) = A−1(0). For a detailed

presentation of the properties of the maximally monotone operators and the Yosida approximation, the
reader can consult [11] or [15].

A.2. Differentiability properties of the Moreau envelopes.

Lemma A.1. For each x ∈ H, the real-valued function λ 7→ Φλ(x) is continuously differentiable on
]0,+∞[, with

(45)
d

dλ
Φλ(x) = −1

2
‖∇Φλ(x)‖2.

Proof. By definition of Φλ, we have

(46) λΦλ(x) = inf
ξ∈H

{
λΦ(ξ) +

1

2
‖x− ξ‖2

}
= λΦ(Jλ(x)) +

1

2
‖x− Jλ(x)‖2,

where the infimum in the above expression is achieved at Jλ(x) := (I + λ∂Φ)
−1

(x). Let us prove that

(47)
d

dλ
λΦλ(x) = Φ(Jλ(x)).
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This will immediately give our result, since, by the derivation chain rule,

d

dλ
Φλ(x) =

d

dλ

(
1

λ
× λΦλ(x)

)
=

1

λ
Φ(Jλ(x))− 1

λ2
λΦλ(x)

= − 1

λ

(
Φλ(x)− Φ(Jλ(x))

)
= − 1

2λ2
‖x− Jλ(x)‖2

= −1

2
‖∇Φλ(x)‖2.

To obtain (47), take two values λ1 and λ2 of the parameter λ, and compare the corresponding values of
the function λ 7→ λΦλ(x). By the formulation (46) of λΦλ(x) as an infimal value, we have

λ1Φλ1(x)− λ2Φλ2(x) ≤ λ1Φ(Jλ2(x)) +
1

2
‖x− Jλ2(x)‖2 − λ2Φ(Jλ2(x))− 1

2
‖x− Jλ2(x)‖2

= (λ1 − λ2)Φ(Jλ2(x)).

Exchanging the roles of λ1 and λ2, we obtain

(λ1 − λ2)Φ(Jλ1(x)) ≤ λ1Φλ1(x)− λ2Φλ2(x) ≤ (λ1 − λ2)Φ(Jλ2(x)).

Then note that the mapping λ 7→ Φ(Jλ(x)) is continuous. This follows from (46) and the continuity of
the mappings λ 7→ Φλ(x) and λ 7→ Jλ(x). Indeed, these mappings are locally Lipschitz continuous. This
is a direct consequence of the resolvent equations (33), see [11, Proposition 23.28] for further details.
Then divide the above formula by λ1− λ2 (successively examining the two cases λ1 < λ2, then λ2 < λ1).
Letting λ1 → λ2, and using the continuity of λ 7→ Φ(Jλ(x)) gives the differentiability of the mapping
λ 7→ λΦλ(x), and formula (47). Then, writing Φλ(x) = 1

λ (λΦλ(x)), and applying the derivation chain
rule gives (45). The continuity of λ 7→ ∇Φλ(x) gives the continuous differentiability of λ 7→ Φλ(x). �

Appendix B. Some auxiliary results

In this section, we present some auxiliary lemmas that are used throughout the paper. The following
result allows us to establish some majorization and also the convergence as t → +∞ of a real-valued
function satisfying some differential inequality.

Lemma B.1. Let γ : [t0,+∞[→ R+ be a continuous function satisfying
∫ +∞
t0

ds
p(s) < +∞, where the

function p is defined by p(t) = e
∫ t
t0
γ(τ) dτ

. Let g : [t0,+∞[→ R be a continuous function. Assume that
h : [t0,+∞[→ R+ is a function of class C2 satisfying

(48) ḧ(t) + γ(t) ḣ(t) ≤ g(t) on [t0,+∞[.

(i) For every t ≥ t0, we have

(49) h(t) ≤ h(t0) + ḣ(t0)

(∫ t

t0

du

p(u)

)
+

∫ t

t0

(∫ t

s

du

p(u)

)
p(s)g(s) ds.

(ii) Assume that
∫ +∞
t0

Γ(s) |g(s)| ds < +∞, where Γ : [t0,+∞[→ R+ is given by Γ(t) = p(t)
∫ +∞
t

ds
p(s) .

Then the nonnegative part ḣ+ of ḣ belongs to L1(t0,+∞), and hence limt→+∞ h(t) exists.

Proof. (i) Let us multiply each member of inequality (48) by p(t) = e
∫ t
t0
γ(τ) dτ

and integrate on [t0, t].
We obtain

(50) ḣ(t) ≤ ḣ(t0)
1

p(t)
+

1

p(t)

∫ t

t0

p(s) g(s) ds.
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By integrating again on [t0, t], we find

h(t) ≤ h(t0) + ḣ(t0)

(∫ t

t0

du

p(u)

)
+

∫ t

t0

1

p(u)

(∫ u

t0

p(s) g(s) ds

)
du.

From Fubini theorem, we have∫ t

t0

1

p(u)

(∫ u

t0

p(s) g(s) ds

)
du =

∫ t

t0

(∫ t

s

du

p(u)

)
p(s)g(s) ds,

and the inequality (49) follows immediately.

(ii) Let us now assume that

∫ +∞

t0

Γ(s) |g(s)| ds < +∞. We easily deduce from (50) that for every t ≥ t0,

(51) ḣ+(t) ≤ |ḣ(t0)| 1

p(t)
+

1

p(t)

∫ t

t0

p(s) |g(s)| ds.

By applying Fubini theorem, we find∫ +∞

t0

1

p(t)

(∫ t

t0

p(s) |g(s)| ds
)
dt =

∫ +∞

t0

(∫ +∞

s

dt

p(t)

)
p(s) |g(s)| ds

=

∫ +∞

t0

Γ(s) |g(s)| ds < +∞.(52)

Since
∫ +∞
t0

dt
p(t) < +∞ by assumption, we deduce from (51) and (52) that ḣ+ ∈ L1(t0,+∞). Hence

limt→+∞ h(t) exists. �

Let us now state a vector-valued version of Lemma B.1.

Lemma B.2. Let γ : [t0,+∞[→ R+ be a continuous function satisfying
∫ +∞
t0

ds
p(s) < +∞, where the

function p is defined by p(t) = e
∫ t
t0
γ(τ) dτ

. Let F : [t0,+∞[→ H be a measurable map such that∫ +∞
t0

Γ(t) ‖F (t)‖ dt < +∞. Assume that x : [t0,+∞[→ H is a map of class C2 satisfying

(53) ẍ(t) + γ(t) ẋ(t) = F (t) on [t0,+∞[.

Then ‖ẋ‖ ∈ L1(t0,+∞), and hence x(t) converges strongly as t→ +∞.

Proof. Let us multiply (53) by p(t) = e
∫ t
t0
γ(τ) dτ

and integrate on [t0, t]. We obtain for every t ≥ t0,

ẋ(t) = ẋ(t0)
1

p(t)
+

1

p(t)

∫ t

t0

p(s)F (s) ds.

Taking the norm of each member, we deduce that

‖ẋ(t)‖ ≤ ‖ẋ(t0)‖ 1

p(t)
+

1

p(t)

∫ t

t0

p(s) ‖F (s)‖ ds.

By integrating and applying Fubini theorem as in the proof of Lemma B.1, we find∫ +∞

t0

‖ẋ(t)‖ dt ≤ ‖ẋ(t0)‖
∫ +∞

t0

dt

p(t)
+

∫ +∞

t0

Γ(s) ‖F (s)‖ ds < +∞.

The strong convergence of x(t) as t→ +∞ follows immediately. �

Owing to the next lemma, we can estimate the rate of convergence of a function w : [t0,+∞[→ R+

supposed to be nonincreasing and summable with respect to a weight function Γ.
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Lemma B.3. Let Γ : [t0,+∞[→ R+ be a measurable function such that
∫ +∞
t0

Γ(t) dt = +∞. Assume

that w : [t0,+∞[→ R+ is nonincreasing and satisfies
∫ +∞
t0

Γ(t)w(t) dt < +∞. Then we have

w(t) = o

(
1∫ t

t0
Γ(s) ds

)
as t→ +∞.

Proof. Let F : [t0,+∞[→ R+ be the function defined by F (t) =
∫ t
t0

Γ(s) ds. It follows from the hypothesis∫ +∞
t0

Γ(s) ds = +∞ that the function F is an increasing bijection from [t0,+∞[ onto [0,+∞[. For

every t ≥ t0, let us set α(t) = F−1( 1
2F (t)). By definition, we have

∫ α(t)

t0
Γ(s) ds = 1

2

∫ t
t0

Γ(s) ds, hence∫ t
α(t)

Γ(s) ds = 1
2

∫ t
t0

Γ(s) ds. Recalling that the function w is nonincreasing, we obtain∫ t

α(t)

Γ(s)w(s) ds ≥ w(t)

∫ t

α(t)

Γ(s) ds =
1

2
w(t)

∫ t

t0

Γ(s) ds.

By assumption, we have
∫ +∞
t0

Γ(s)w(s) ds < +∞. Since limt→+∞ α(t) = +∞, we deduce that

lim
t→+∞

∫ t

α(t)

Γ(s)w(s) ds = 0.

The conclusion follows from the two above relations. �

Given a Banach space (X , ‖.‖) and a bounded map x : [t0,+∞[→ X , the next lemma gives basic
properties of the averaged trajectory x̂ defined by (21).

Lemma B.4. Let us give (X , ‖.‖) a Banach space, Λ : [t0,+∞[×[t0,+∞[→ R+ a measurable function
satisfying (19), and x : [t0,+∞[→ X a bounded map. Then we have

(i) For every t ≥ t0, the vector x̂(t) =
∫ +∞
t0

Λ(s, t)x(s) ds is well-defined. The map x̂ is bounded and

supt≥t0 ‖x̂(t)‖ ≤ supt≥t0 ‖x(t)‖.
(ii) Assume moreover that the function Λ satisfies (20). If limt→+∞ x(t) = x∞ for some x∞ ∈ X ,

then limt→+∞ x̂(t) = x∞.

Proof. (i) Let us set M = supt≥t0 ‖x(t)‖ < +∞. In view of (19), observe that for every t ≥ t0,

(54)

∫ +∞

t0

Λ(s, t) ‖x(s)‖ ds ≤M
∫ +∞

t0

Λ(s, t) ds = M.

Since X is complete, we classically deduce that the integral
∫ +∞
t0

Λ(s, t)x(s) ds is convergent. From the

definition of x̂(t), we then have ‖x̂(t)‖ ≤
∫ +∞
t0

Λ(s, t) ‖x(s)‖ ds, and hence ‖x̂(t)‖ ≤M in view of (54).

(ii) Assume that limt→+∞ x(t) = x∞ for some x∞ ∈ X . Observe that for every t ≥ t0,

‖x̂(t)− x∞‖ =

∥∥∥∥∫ +∞

t0

Λ(s, t) (x(s)− x∞) ds

∥∥∥∥ by using (19)

≤
∫ +∞

t0

Λ(s, t) ‖x(s)− x∞‖ ds.(55)

Fix ε > 0 and let T ≥ t0 be such that ‖x(t)− x∞‖ ≤ ε for every t ≥ T . From (55), we obtain

‖x̂(t)− x∞‖ ≤

(
sup

t∈[t0,T ]

‖x(t)− x∞‖

)(∫ T

t0

Λ(s, t) ds

)
+ ε

∫ +∞

T

Λ(s, t) ds

≤ M

∫ T

t0

Λ(s, t) ds+ ε,
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with M = supt≥t0 ‖x(t)−x∞‖ < +∞. Taking the upper limit as t→ +∞, we deduce from property (20)
that

lim sup
t→+∞

‖x̂(t)− x∞‖ ≤ ε.

Since this is true for every ε > 0, we conclude that limt→+∞ ‖x̂(t)− x∞‖ = 0. �

Lemma B.5. Let (X , ‖.‖) be a Banach space, and let x : [t0,+∞[→ X be a continuous map, supposed
to be bounded on [t0,+∞[. Let Λ1, Λ2 : [t0,+∞[×[t0,+∞[→ R+ be measurable functions satisfying (19).
Assume that

(56) lim
t→+∞

∫ +∞

t0

|Λ1(s, t)− Λ2(s, t)| ds = 0.

Let us consider the averaged trajectories x̂1, x̂2 : [t0,+∞[→ X defined by

x̂1(t) =

∫ +∞

t0

Λ1(s, t)x(s) ds and x̂2(t) =

∫ +∞

t0

Λ2(s, t)x(s) ds.

Then we have limt→+∞ ‖x̂1(t)− x̂2(t)‖ = 0.

Proof. Let M ≥ 0 be such that ‖x(t)‖ ≤M for every t ≥ t0. Observe that

‖x̂1(t)− x̂2(t)‖ =

∥∥∥∥∫ +∞

t0

(Λ1(s, t)− Λ2(s, t))x(s) ds

∥∥∥∥
≤

∫ +∞

t0

|Λ1(s, t)− Λ2(s, t) |‖x(s)‖ ds

≤ M

∫ +∞

t0

|Λ1(s, t)− Λ2(s, t))| ds −→ 0 as t→ +∞, in view of (56).

�
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