Binarsity: a penalization for one-hot encoded features - Archive ouverte HAL
Article Dans Une Revue Journal of Machine Learning Research Année : 2019

Binarsity: a penalization for one-hot encoded features

Résumé

This paper deals with the problem of large-scale linear supervised learning in settings where a large number of continuous features are available. We propose to combine the well-known trick of one-hot encoding of continuous features with a new penalization called binarsity. In each group of binary features coming from the one-hot encoding of a single raw continuous feature, this penalization uses total-variation regularization together with an extra linear constraint to avoid collinearity within groups. Non-asymptotic oracle inequalities for generalized linear models are proposed, and numerical experiments illustrate the good performances of our approach on several datasets. It is also noteworthy that our method has a numerical complexity comparable to standard L1 penalization.
Fichier principal
Vignette du fichier
alaya17a.pdf (4.2 Mo) Télécharger le fichier
code.jpg (173.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01648382 , version 1 (25-11-2017)

Identifiants

  • HAL Id : hal-01648382 , version 1

Citer

Mokhtar Z. Alaya, Simon Bussy, Stéphane Gaïffas, Agathe Guilloux. Binarsity: a penalization for one-hot encoded features. Journal of Machine Learning Research, 2019, 20 (118), pp.1−34. ⟨hal-01648382⟩
623 Consultations
126 Téléchargements

Partager

More