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Abstract

By using the Lorentz factor as a viscosity term in Stokes’s law for objects moving
in a vacuum, Mercury’s perihelion precession (classical test of general relativity) and the
Pioneer anomaly are directly and exactly solved, demonstrating that the physical vacuum
is a shear-thickening fluid. The modified Stokes’s equation also correctly indicates that
planetary orbits are stable over billions of years. Furthermore, relativistic kinetic energy is
revealed as the necessary energy to oppose a shear-thickening vacuum. Consequences on
aerospace engineering are eventually discussed.

Introduction

Some authors considered the possibility that the physical vacuum may be a superfluid, a special

Bose-Einstein condensate (1–8). Here, by exactly solving two known anomalies, along with

other correct results, it is demonstrated that the physical vacuum rather behaves as a dilatant

fluid, as shear stress increases. Sect. 1 introduces a modified Stokes’s formula for motion in

a shear-thickening vacuum. In Sect. 2, by applying this formula, the Pioneer anomaly, the

orbital stability of the planets and Mercury’s perihelion precession are correctly calculated.

The Pioneer anomaly is currently considered solved after thermal simulations, whose results,

approximate and based on various assumptions and scenarios (9,10,16), are now challenged by

the simpler, direct and precise result presented in Sect. 2.1, which exactly corresponds to the
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acceleration of −8.74× 10−10m · s−2 measured by the NASA. The modified Stokes’s formula,

put into Newton’s second law of motion, says that due to the large masses of planets (unlike

the case of the Pioneer probes), planetary orbits are stable over billions of years, averting what

would be otherwise a major objection to the existence of a shear-thickening vacuum, i.e. its

effect on orbital stability. Sect. 2.3 shows that vacuum’s apparent (shear-dependent) viscosity

emerges as the real cause of the anomalous precession of perihelia, suggesting that the quantum

foundations of relativity are situated in a fluid, shear-thickening quantum vacuum. In fact, it

is shown that Einstein’s formula for the precession of perihelia is directly derived from the

modified Stokes’s formula. In Sect. 3, we see that the relativistic formula for kinetic energy

corresponds to particle rest energy multiplied by the term of vacuum dilatancy. Relativistic

mass is therefore reinterpreted as the work necessary to oppose the shear-thickening vacuum,

which becomes solid-like as a body approaches the speed of light. Also time dilation and the

Lorentz-Fitzgerald contraction are shown to depend on vacuum dilatancy, as they depend on the

Lorentz factor, which the solved anomalies in Sect. 2 demonstrate to be the rheogram of a shear-

thickening vacuum. Eventually, in Sect. 4, from the result presented in Sect. 2.1 as regards the

Pioneer anomaly, the consequences of the modified Stokes’s law for a dilatant vacuum in the

field of aerospace engineering are discussed.

1 Methods: modified Stokes’s law for a dilatant vacuum

Stokes’ law, derived in 1851, to calculate the viscous force acting on a body traveling through a

viscous, Newtonian fluid (11) reads

Fv = −6πrvη (1)

where v is the translational velocity, r the radius of the object (the law refers to spherical shape)

and η is a coefficient of dynamic viscosity expressed in Pa · s. However, for a shear-thickening
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vacuum, the coefficient of linear viscosity, η, in Eq. (1), is not appropriate, since it is valid only

for Newtonian fluids. In the present investigation it is demonstrated (Sect. 2) that the correct

mathematical behavior of vacuum’s apparent viscosity is expressed by the Lorentz factor, there-

fore reinterpreted as the rheogram of physical vacuum, in which the asymptote at the speed of

light consequently refers to a solid-like condition of the vacuum by approaching a certain level

of shear stress. Let us then multiply η by the Lorentz factor in the expression γ − 1. We arrive

to a modified Stokes’s law

Fv(vac) = −6πr(ηγ − 1)κ = −6πr

 η√
1−

(
v
c

)2 − 1

κ (2)

where η and κ are a unitary constants expressed in Kg ·m−1 · s−1 and m · s−1 (respectively). Let

us define

D = ηγ − 1 (3)

as the term of vacuum dilatancy. The formula is simply written Fv(vac) = −6πrDκ. If we use

this formula for bodies traveling in a vacuum, such as probes or planets, the viscous force it

refers to is of course that of the physical vacuum, so Eq. (2) is the formula for the viscous force

exerted by a dilatant vacuum and its applications and validity are presented in the following

sections, by precisely solving two known anomalies and by obtaining other correct results, such

as the stability of planetary orbits.

2 Results: shear-thickening vacuum proven

2.1 Exact value for the Pioneer acceleration

Being the anomalous negative acceleration of the Pioneer spacecrafts 10 and 11 well-known

(concrete investigations of the anomaly started in 1994 (12)), it is not necessary to summarize

here this issue. In the light of the exact result presented below, it appears evident that this
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problem has not been correctly solved yet, despite copious investigations, based on thermal

simulations (9, 10, 12–16), which gave approximate results based on several assumptions and

different scenarios. In 2012 (9) a value of −7.4(±2.5) × 10−10m · s−2 was proposed. On the

contrary, the exact solution (without models and assumptions) is directly produced by Eq. (2),

that is, via the interaction of the Pioneer probes with a shear-thickening vacuum. Let us put Eq.

(2) in Newton’s second law, using the known data of the Pioneer probes and we directly obtain

the exact negative acceleration of the Pioneer (aP ) detected by the NASA

aP =
Fv(vac)
mP

= −
6πrP

(
η√

1−(vmaxc )
2
−1
)
κ

m =

−
6π·1.371m·

 1 kg·m−1·s−1√
1−( 36737m·s−1

299792458m·s−1 )
2
−1

·1m·s−1

222 kg = (4)

−8.74× 10−10m · s−2.

where mP = 222 kg is the mass of the spacecrafts (258 kg) minus that of the burned fuel (36

kg hydrazine) after the Jupiter flyby; rP = 1.371 m is the radius of the antenna (diameter is

9 ft) and vmax = 36737 m/s is the maximum speed of the probe, as indicated by the NASA’s

Scientific and Technical Information Office (17) after the swing-by caused by Jupiter. This

exact and direct result cannot be ignored and the Pioneer issue has to be reopened. Moreover,

the NASA should now consider to Doppler track other probes. Unfortunately this was not the

case of the New Horizons spacecraft, for which data are missing. Testing other probes (maybe

a dedicated probe) with Eq.(2) is definitely recommended.

2.2 Stability of planetary orbits

The existence of a shear-thickening vacuum lets immediately arise an objection as regards or-

bital stability. However, considering the second law of motion in the form a = F/m and putting
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the large mass of a planet in the denominator and vacuum’s viscous force (2) in the numerator,

we see that, despite the existence of a dilatant vacuum, planetary orbits are stable over billions

of years. For instance, the deceleration of the Earth corresponds to the following negligible

value

a⊕ =
Fv(vac)

m⊕
= −1.557× 10−32m · s−2. (5)

using the mean radius and the mean orbital velocity of the Earth in Eq. (2) (numerator) and

the mass of the Earth in the denominator. Subscript ⊕ refers to the Earth. Such a negative

acceleration corresponds to a decrease in orbital speed of only −4.9 × 10−16 m/s per billion

years. For Jupiter, orbital deceleration is−6.59×10−28m/s2, that is a reduction of 2×10−11 m/s

in orbital speed over one billion years. One therefore concludes that planetary orbits are stable

despite the presence of a shear-thickening vacuum.

2.3 Deriving Einstein’s formula for the precession of perihelia

Net of classical gravitational contributions, perihelia precessions show an anomalous positive

contribution, which is particularly evident for the planet Mercury. The correct calculation of this

anomaly is one of the classical tests for general relativity (GR). Here Einstein’s formula for the

precession of perihelia is differently derived via the modified Stokes’s formula presented above

(2). In this way, it is demonstrated that the long-awaited quantum foundations of general rela-

tivity are situated in a shear-thickening quantum vacuum. In GR (18), the anomalous perihelia

precession is represented by a formula which can be observed in three equivalent forms

∆φ =
24π3a2

T 2(1− e2)c2
= 6π

(v
c

)2 1

1− e2
= 6π

GM

a(1− e2)c2
(6)

where ∆φ expresses the relativistic contribution to perihelia precessions in radians per rev-

olution corresponding, using the data of Mercury, to the known value of 42.98” per century

(or 5.0186 × 10−7rad/rev.), a is the semi-major axis, T the orbital period and e = 0.205 the
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orbital eccentricity. The expression in the center of Eq. (6) is obtained via the equivalence

T 2 = 4π2a2/v2, resorting to mean orbital velocity, and in the expression on the right the stable

second cosmic velocity, v =
√
GM/a, is used, putting the radius r = a. As for the case of the

Pioneer, the modified Stokes’s formula for a dilatant vacuum (2) is now used. In this case, the

treatment of the planet as a point mass is respected, so the direct proportionality to planetary

radius is not taken into account and by resorting to the nondimensionalized norm of Eq. (2) we

obtain

6π

 1√
1−

(
v
c

)2 − 1

 = 6π (γ − 1) (7)

which can be expressed in radians. Resorting to Taylor, let us proceed via the approximation

2 (γ − 1) ≈
(v
c

)2
(8)

and Eq. (7) now reads

3π
(v
c

)2
= 3π

GM

ac2
(9)

where, on the right, we see again the stable second cosmic velocity, as in the rightmost expres-

sion in Eq. (6). Since we are considering an elliptic orbit, we have to use the elliptic parameter,

correcting a into a(1− e2) and we obtain a formula which exactly gives 1/2 the result of GR (6)

∆φ = 3π
GM

a(1− e2)c2
= 3π

(v
c

)2 1

1− e2
(10)

This 1/2 result can be also considered as the precession occurring in a semi-orbit and is due to

the use of mean orbital velocity. Indeed, in the elliptic orbit, orbital speed actually varies as in

Fig. 1 on the left side. Since the mean orbital velocity is given as vmax/2+vmin/2, Let us adopt

the reduced model on the right side of Fig. 1, i.e. one semi-orbit at maximum orbital speed and

one at minimum speed. The full precession (6) is therefore given by

∆φ = 3π
(vmax

c

)2 1

1− e2
+ 3π

(vmin

c

)2 1

1− e2
= 6π

(v
c

)2 1

1− e2
=

24π3a2

T 2(1− e2)c
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Figure 1: Left: variable orbital velocity in the elliptic orbit (P and A refer to perihelion and aphelion, respective-
ly). Right: the reduced model used in the present study which considers half an orbit at maximum orbital velocity
and the other one at minimum velocity.

where vmax and vmin, each referring to a semiorbit, recombine in the mean orbital velocity

v and the rightmost equivalence comes from Eq. (6). Now, by merging in a single formula

the steps presented in this subsection, we can now look at the relationship between Eq. (2),

which expresses the viscous force in a dilatant vacuum, and the contribution to the precession

of perihelia derived in general relativity. The formula reads

∆φ ≡
∥∥∥∥ 2Fv(vac)

κηr(1− e2)

∥∥∥∥ =
12πD

η (1− e2)
(11)

where D is the term of vacuum dilatancy (3). By testing Eq.(11) with the parameters of the

planet Mercury, we see that it exactly gives the well-known value of general relativity

∆φ= 12πD
η(1−e2) =

12π

 η√
1−(GMac2 )

−1


η(1−e2) = (12)

12π

 1Kg·m−1·s−1√
1− (6.67408×10−11 m3·kg−1·s−2)(1.98847×1030kg)

(5.7909×1010 m)(299792458m·s−1)2

−1


(1Kg·m−1·s−1)(1−0.205632) =

5.018649× 10−7rad/rev.⇒ 42.98′′/century

where, in D, the equivalences r = a and v =
√
GM/a are used, as in Eq. (6). The positive

contribution to the precession of perihelia treated in general relativity is in this way revealed as
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a phenomenon driven by a shear-thickening vacuum. We see that nothing in the present study

contradicts general relativity: this investigation, by rederiving Einstein’s formula for perihelia

precession, only highlights that the quantum foundations of relativity are in a dilatant quantum

vacuum and that Einstein’s formula can be rewritten by revealing the role of the shear-thickening

vacuum (11). After all, this is compatible with the stress-energy tensor of the field equation,

in which T 00 is vacuum’s energy density (ρvac), also present in the cosmological constant Λ =

κρvac, and the remaining components of the tensor can be as well hydrodynamically interpreted,

being pressure, shear stress, momentum flux and momentum density. Interestingly, also an

investigation by Conti and Marcucci (19), following the present findings (20), shows that the

interaction at Planck-scale with a quantum fluid may be cause of precession.

3 Particle acceleration in a shear-thickening vacuum:
revisiting relativistic mass

Since the three exact solutions discussed above indicate the existence of a shear-thickening

vacuum, it becomes clear that, if bodies traveling in a vacuum undergo a nonlinear negative

acceleration due to the viscous force exerted by the dilatant vacuum, relativistic mass increase

should be reinterpreted as actually the braking action of the vacuum, i.e. something that occurs

in the vacuum, leaving particle mass actually unaffected. This agrees with Taylor and Wheeler

(21), who state that the increase of energy originates not in the accelerated object but in the

geometric properties of space-time itself. We say now in the properties of the physical vacuum,

which is fluid and dilatant. While Okun (22) reflects that it is more appropriate to refer to

relativistic momentum instead of relativistic mass.

In general relativity, the kinetic energy of an accelerated particle is given by

Ek = −mgttututobs −mc2 = mc2
√

gtt
gtt + gssv2

−mc2 (13)
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factoring out the rest energy

Ek = mc2
√

gtt
gtt + gssv2

− 1. (14)

According to the present investigation, and especially as regards the case of Mercury’s perihe-

lion, curved space-time is actually the mathematical expression of the hydrodynamics of a fluid,

dilatant vacuum and space is flat. Under this condition, we can substitute gtt = −c2 and gss = 1

and after some simple algebra Eq. (14) reads

Ek = mc2

 1√
1−

(
v
c

)2 − 1

 , (15)

that is, particle rest energy, mc2, multiplied by the term of vacuum dilatancy D (3) nondimen-

sionalized. We are therefore actually observing the energy corresponding to the work done by

the synchrotron on the accelerated particle to oppose vacuum dilatancy,

W = E0
D

η
, (16)

where E0 = mc2 is rest energy (with m rest mass). As accelerated bodies approach the speed

of light, the work to be done becomes infinite, since the vacuum becomes solid-like. Further

solidification is not possible, so we observe an asymptote. As shown in Fig. 2, as the modulus

of the negative tangential acceleration |aTvac| due to the presence of a shear-thickening vacuum

equals that of the tangential acceleration
∣∣aTsyn

∣∣ made possible by the synchrotron, a particle

reaches its maximum speed (vmax, black dotted line in Fig. 2), depending on the maximum

energy of the synchrotron and anyway lower than c. The more powerful the accelerator, the

closer to the speed of light the black dotted line (Fig. 2). As we see, by putting Eq. (2) in

the second law of motion, the tiny mass of a particle exposes it to a huge deceleration. On

the contrary, due to its large mass, if the Earth traveled at 99% the speed of light it would

undergo a negative acceleration of just −1.22 × 10−16m/s2. For the same reason, we have
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Figure 2: Total tangential acceleration of a particle in a synchrotron is zero when the negative nonlinear accelera-
tion due to the presence of a dilatant vacuum equals the acceleration caused by the synchrotron, |aTvac

| =
∣∣aTsyn

∣∣.
Particles reach in this way maximum speed (vmax).

seen (Sect. 2.2) that planetary orbits are stable. This leads to the considerations below, as

regards unexpected aerospace engineering applications, which are already possible with current

technology. But before that, in addition to relativistic mass and to quickly complete the list of

relativistic phenomena in the light of a shear-thickening vacuum, it is interesting to reflect that

also time dilation is due to vacuum dilation, it depends, indeed, on the Lorentz factor, which

is proven to be the rheogram of the physical vacuum, via the exact results of the modified

Stokes’s equation (2). Basically, traveling clocks are slowed down by the increased viscosity of

the physical vacuum (apparent viscosity) with respect to another observer who is not subject to

the apparent flow, or is subject to a weaker apparent flow. Now, as regards gravitational time

dilation, we know it is linked to time dilation in a flat space-time via the second cosmic velocity.

Let us write

∆t′ =
∆t√
1− v2

c2

=
∆t√

1− RS

r

(17)

hence v2

c2
= RS

r
⇒ v2 = 2GM

r
, that is v =

√
2V , where V is the gravitational potential. The

action of gravity is equated to that of speed. To understand this, it is enough to consider the

flux in Gauss’s law for gravity, Fg =
∮
S
g · n(r)dS (equivalent to Newton’s law of universal

gravitation), as a real flow of fluid, dilatant vacuum, to realize that time dilation is due both to
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speed and to gravity, since a gravitational field is actually an inflow of fluid, dilatant vacuum,

as hypothesized by Cahill (23), who considers a quantum foam inflow. In both cases, a body

is subject to an apparent flow, which causes apparent viscosity and consequently time dilation,

according to vacuum’s rheogram (Lorentz factor). To complete the picture of relativistic effects

in special relativity, one can declare that the Lorentz-Fitzgerald contraction also depends on

vacuum dilatancy, as it directly depends on time dilation. In short, every relativistic effect,

in which Lorentz factor (vacuum’s rheogram) is at stake, is directly reinterpretable as due to

vacuum’s dilatancy.

4 New prospects in aerospace engineering?

Since in a = Fv(vac)/m the negative acceleration due to the shear-thickening vacuum nonlin-

early decreases by taking into account greater masses, the case of heavier accelerated objects

is different from what we observe in synchrotrons, where the mass of the accelerated particles

is tiny and vacuum dilatancy prevails. A fact which aerospace engineering and space research

were currently unaware of. Not by case, we see that it is much more difficult to maintain at

vmax electrons than protons, when both are accelerated in a synchrotron, due to the consid-

erable difference in their masses. The lighter the more difficult. For this reason, Hawking’s

and Milner’s nanocrafts (24) could not be a good idea and this experience could confirm an

unexpected deceleration due to the dilatant vacuum, as in the case of the Pioneer spacecrafts

(2.1) but much greater. In short, it seems we already possess the correct technology for quasi-

luminal flight of large spacecrafts being unaware of that. For instance, a hypothetical spherical

spacecraft with the same mass of the International Space Station (ISS) and radius 6 m (i.e. of

a sphere whose volume is equal to the pressurised volume in the ISS) traveling at 0.9999991

c, that is at the maximum speed a proton achieves in the LHC, would undergo a negative ac-

celeration due to the shear-thickening vacuum of just −0.2 m/s2, which even reduces to only
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−0.002 m/s2 by increasing 100 times the mass of the spacecraft. Space exploration at quasi-

luminal speed using large spacecrafts would therefore be possible, if not for different reasons

such as those concerning propulsion etc. However, transporting great quantities of fuel would

increase the mass, reducing the braking action of the vacuum. Another aspect of what we might

call vacuum-applied aerodynamics (vacuodynamics?) emerging from Eq. (2) once put into

Newton’s second law, is that the smaller the section of the accelerated body perpendicular to

the direction of motion, the weaker vacuum’s viscous force. Cylindrical shapes would be there-

fore advantageous. Progressive in-orbit assembly of large-mass spacecrafts with very capacious

tanks is therefore indicated as a future correct strategy for deep space exploration directed to-

ward other stars at quasi-luminal speed. Also, being the deceleration of large masses due to

shear-thickening vacuum so small, if compared that of subatomic particles in synchrotrons, the

question whether superluminal speed is possible comes back on the table. Vacuum’s quasi-

lattice (solid-like condition) could indeed collapse under the action of large-mass objects trying

to overstep the speed of light.

Conclusion

The modification of Stokes’s law, obtained by multiplying its viscosity coefficient η by the

Lorentz factor (in the form ηγ − 1) and therefore reinterpreting the latter as the rheogram of

a fluid, shear-thickening vacuum, has produced a new formula expressing the viscous force

exerted by physical vacuum. This formula has been confirmed valid by solving two well-known

anomalies, the relativistic contribution to perihelia precession, rederiving Einstein’s equation,

and the Pioneer anomaly, for which a direct and exact result has been obtained, to be therefore

preferred to the more approximate and complicate solutions sofar presented. Deriving Einstein’s

formula for the precession of perihelia from the viscous force of the vacuum, along with the

presence of the term of vacuum dilatancy in the relativistic formula for kinetic energy and the
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dependence of time dilation and length contraction on vacuum’s rheogram, indicate that the

quantum foundations of relativity are rooted in the existence of a shear-thickening quantum

vacuum, whose hydrodynamics is mathematically interpreted as curved space-time. We can

conclude by reflecting that this fluid, dilatant vacuum likely corresponds to the dark sector,

i.e. to 95% of the universe’s mass-energy, in which diffused particle dark matter (a granular

component) could play the role of a dopant in superfluid dark energy, determining vacuum

dilatancy. For sure, the shear-thickening aspect of the physical vacuum now helps us to better

understand its nature, along with that of dark energy and dark matter. In this investigation, we

have finally seen that the more massive a body the less deceleration it undergoes when it travels

through the dilatant vacuum and this indicates that the use of very massive spacecrafts is the

correct direction to interstellar space exploration. After this investigation, Einstein’s relativity

remains quantitatively correct and its equations only needs to be reinterpreted in the light of a

shear-thickening quantum vacuum, paving the way to a theory of quantum relativity.
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