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Building a suited reduced modal basis for updating 3D acoustic
models with the constitutive law error method

V. Decouvreur a,1, A. Deraemaeker b,2, P. Ladevèze b, Ph. Bouillard a,*

a Structural and Material Computational Mechanics Department, Université Libre de Bruxelles, 50 av. F. D. Roosevelt CP 194/05, 1050 Brussels, Belgium
b Laboratoire de Mécanique et Technologie, ENS-Cachan Université Paris VI/CNRS, 61 av. Président Wilson, 94235 Cachan, France

We have recently reported the possibility of developing an updating technique for acoustic finite element models based on the con-stitutive
law error proposed by P. Ladeve`ze and co-workers in structural dynamics. Like with every updating technique, we are con-fronted with
and interested in reducing the computational time. The main idea of this paper consists in building a reduced modal basis made of two
contributions: static modes complete a truncated modal basis corresponding to the frequency range of computation. The static modes are
associated to the system excitation (for instance a normal velocity boundary condition), but also to the system damping and to the
reference measurements.

Updating acoustic models using the reduced modal basis shows a significant CPU-time saving with respect to the full non reduced
system with an acceptable accuracy.
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1. Introduction

In the last years, computer efficiency has increased
fast, enabling us to manipulate very large models thanks
notably to FEA codes running on a massively parallel
architecture. For instance, the Salinas numerical prediction
software was developed to run hundreds of millions of
degrees of freedom (dofs) problems split among up to tens
of thousands of processors with almost linear speedup
factors (see [13]). These complex heavy models describe
generally quite well the geometry and allows us a higher
frequency resolution of the problem. Nevertheless, the

numerical simulation results are still somewhat too far
from the recorded experimental data, which means that
the model quality remains unsufficient. A possible solution
for improving the model quality makes use of the experi-
mental testing to update the numerical model.

The present paper uses a parametric updating technique
based on the constitutive law error (CLE). The fundamen-
tals of the CLE were first developed by P. Ladevèze in
structural dynamics (see [11]) and then applied to acoustics
in [7]. The main idea in the CLE technique consists in split-
ting the data and equations of the model into ‘reliable’
information and ‘less reliable’ one. Whether one trusts a
given data or equation has to be related to the assumptions
made in its derivation. The choice of the CLE updating
technique among the different methods available in the lit-
erature is motivated in [7].

The updating process is iterative: each step consists in
computing new updating parameters and solving the prob-
lem using these new values. The computed pressure is com-
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pared to the measurements using the constitutive law error,
and the iterative process stops when the error is below a
reference threshold value.

From a CPU-time point of view, an iterative process is
very expensive since the same large model with different
parameters has to be computed at each iteration to solve
and to update the acoustic problem. From these consider-
ations, large industrial setups can only be updated if the
system size is reduced. In following sections, a reduced
basis adapted to the updating of acoustic models with the
CLE is formulated, assuming the knowledge of the excita-
tions, the location of measurements, and the possible vari-
ations of the updated parameters. The reduced basis is
made of a truncated modal basis to which Krylov vectors
associated with the excitations are first added. The Krylov
subspace technique is well known and largely investigated
in the field of structural dynamics [5] or circuit simulation
[10], and references therein. This basis is enriched by static
corrections corresponding to forces located at the sensors
and to the variable parameters. The building of such a
reduced basis is explained and validated on a numerical
example. The reason why this reduction technique is
chosen among the other possibilities is that the present
approach reduces the cost of updating the model drasti-
cally. Though, there exist other reduction techniques. For
instance, the multimodel approach builds a reduced basis
made of truncated modal bases of the model for different
values of the parameters (see [1]). The following techniques
are quite similar in principles to the one developed here: in
[4], the variation of the parameters of the model through
the iterations is interpreted as excitations applied to the ini-
tial problem. Reduction techniques that are based on sen-
sitivity vectors are other variants of this method (see [2]).
Other than using a reduced modal basis, there are alterna-
tive techniques, see for example the multipole expansion
technique [6,14].

The paper is organized as follows: after describing the
acoustic problem, the CLE principles are shortly summa-
rized. The updating process is explained, together with
the discretization of the acoustic problem. The construc-
tion of the reduced basis and its application to project
the initial problem into a sub-space of lower size enables
one to update a numerical example within a significantly
lower computation time compared to the updating of the
full model.

2. The CLE applied to acoustics

2.1. Principles

We are dealing with an acoustic problem defined on a
domain X with boundary oX. In linear acoustics, one
assumes small harmonic perturbations of the particle veloc-
ity v, the pressure p and the density q of the isotropic med-
ium so that these oscillations around steady values are
respectively written as follows:

v ¼ v0ejxt;

p ¼ p0ejxt;

q ¼ q0ejxt;

8
><
>:

ð1Þ

where j2 = �1, x is the angular frequency, and t the time.
The pressure field is the solution of the wave equation

(called Helmholtz equation in the frequency domain) with
associated Dirichlet, Neumann, and mixed Robin bound-
ary conditions on parts o1X, o2X, and o3X of the boundary
respectively. These equations are given by (2).

Helmholtz : Dp þ k2p ¼ 0;

Dirichlet B:C: : pj
o1X

¼ �p;

Neumann B:C: : vnj
o2X

¼ j
xq

op

on

��
o2X

¼ �vn;

mixed Robin B:C: : vnj
o3X

¼ AnðxÞp;

8
>>>>><
>>>>>:

ð2Þ

where c is the sound speed, k ¼ x
c
is the wave number,

An(x) is the admittance coefficient, �vn is the prescribed
velocity exciting the acoustic medium, and �p is the imposed
pressure on boundary o1X. In what follows, the frequency
dependence of the admittance coefficients will not be writ-
ten explicitly and the notation An will be used.

Principles of the CLE and its application to acoustics
are explained in [7]. Here is a short summary of what is nec-
essary to understand the following developments. The idea
is to split the available information into reliable and less
reliable data. It is assumed that the reliable equations are
the Helmholtz wave equation in the frequency domain,
the Dirichlet boundary condition, and the Neumann
boundary condition. It has to be noticed though, that
what is called reliable or less reliable depends on each
application.

The less reliable data considered in the present work is
the admittance boundary condition describing the sound
absorption in porous media. Indeed, different models exist
to approximate the wall absorption, but none is completely
reliable. The less reliable information yields a residue that
is the constitutive law error estimator. Updating a setup
then consists in finding the admissible pressure field mini-
mizing the CLE.

2.2. Definition of the CLE

The CLE is an error measuring the satisfaction of the
less reliable information. The CLE n

2
x measuring the mod-

eling error at angular frequency x is given here by:

n
2
xðp; vnÞ ¼ x2q2

Z

o3X

ðvn � AnpÞ
�
ðvn � AnpÞdC; ð3Þ

where p, vn are independent fields on o3X. The relative error
for each frequency x is obtained by dividing the CLE n

2
x by

the following quantity that normalizes the error:

r2
x ¼

x2q2

2

Z

o3X

ððAnpÞ
�
Anp þ v�nvnÞdC: ð4Þ

The relative modified CLE is then written erelx ¼ nx=rx.
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2.3. The modified CLE

Since we want to update a continuous model with refer-
ence to experimental measurements, an additional mea-
surement error is added to the error nx caused by the
model formulation itself. Just as for the model, it is useful
to define the reliable and less reliable equations for the
measurements and to build an error measure on the less
reliable experimental quantities. Measurement errors are
among others due to the positioning of the sensors and
microphones, their accuracy, calibration, measurement ori-
entation, etc. If we are dealing with pressure measurement
by using microphones and we assume that only the mea-
sured amplitudes are less reliable, then the relative modified
CLE is written:

erelx ¼
n
2
x

r2
x

þ
r

1� r

kPp � ~pk2

k~pk
2

!1=2

: ð5Þ

where P is a projection operator, ~p is the measured pres-
sure, and 0 < r < 1.

2.4. Discrete updating problem

Approximated pressure variables (P,Q) are defined as
follows on o3X:

p ¼ P ; ð6Þ

vn ¼ AnQ: ð7Þ

A variational formulation of equations (2) allows the dis-
cretization of the acoustic problem where nodal unknowns
P, Q are associated to pressure fields P, Q.

½K�Pþ jxq½C�Q� x2½M�P ¼ ½E�P; ð8Þ

where

• ph = NtP is the approximate pressure,

• ½M� ¼ 1
c2

R
X
NtNdX is the mass matrix,

• ½K� ¼
R
X
rtNrNdX is the stiffness matrix,

• ½C� ¼
R
o3X

AnN
tNdC is the admittance matrix,

• ½E� ¼
R
o2X

rt
nNNdC is the system excitation matrix due

to normal velocities prescribed on boundary o2X.

The modeling CLE (3) is written for the discretized
system:

n
2
xðP;QÞ ¼ q2x2ðQ� PÞ

�
½D�ðQ� PÞ; ð9Þ

where ½D� ¼
R
o3X

A�
nAnN

tNdC.
The discrete form of the modified CLE (5) taking into

account the experimental error is given by:

e2x ¼ n
2
x þ

r

1� r
fPP� ePg�½Gw�fPP� ePg; ð10Þ

where [Gw] represents the error measure kÆk2, P is a projec-
tion operator that gives the value of the pressure at the cor-
responding sensors, ~p is the measured pressure, and eP the
corresponding nodal value vector.

A projection operator P is a matrix defined by:

Pii ¼ 1 if the dof i is measured;

Pii ¼ 0 if the dof i is not measured;

Pij ¼ 0 if i 6¼ j:

8
><
>:

ð11Þ

In the numerical example of this paper, [Gw] is a square
unity matrix of size equal to the number of measurements.
The weighting factor r

1�r
is related to the trust that we put in

the measurements with respect to the model accuracy. Ref.
[9] shows that for usual noise level on the experimental data
and modeling error, r = 0.5 is a good choice.

The problem to be solved is:

Find sx ¼ ðP;QÞj
½K�Pþ jxq½C�Q� x2½M�P ¼ ½E�P;

e2xðsxÞ is minimum:

(

ð12Þ

The updating process consists in solving problem (12),
which is done iteratively. At each iteration, the functional
e2x (10) is evaluated and compared to a required quality
level e20 until e

2
x 6 e20.

3. Model reduction

The minimization of e2x under the admissibility con-
straint is achieved here by introducing Lagrange multipli-
ers, which leads to Eq. (13).

1

2
ðQ� PÞ

�
½C�ðQ� PÞ þ

r

2ð1� rÞ
ðPP� ePÞ�½Gw�ðPP� ePÞ

þ K
�fð½K� � x2½M�ÞPþ jxq½C�Q� ½E�Pg: ð13Þ

Problem (12) is solved by deriving equation (13) with re-
spect to P, Q, and the Lagrange multiplier K.

By eliminating the Lagrange multiplier, the previous sys-
tem can be rewritten under the form of two undamped
forced vibration problems, the first in P and the second
in (Q � P):

ð½K� � x2½M�ÞP ¼ b� jxq½C�Q; ð14Þ

ð½K� � x2½M�ÞðQ� PÞ

¼ jxq½C�ðQ� PÞ þ j
xr

1� r
P

t½Gw�ðeP �PPÞ; ð15Þ

where b = [E]P. Such problems can be reduced using a
truncated modal basis to which Krylov vectors associated
to the force-like terms in the right hand side are added.
This technique is inspired from paper [8], that suggested
the idea in the case of the structural dynamics.

3.1. Truncated modal basis

Let us consider the following classical undamped forced
vibration problem at angular frequency x, in its discrete
form:

ð½K� � x2½M�ÞP ¼ F: ð16Þ
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For a system with N degrees of freedom, there are N pairs
ðUi;xiÞ that verify:

ð½K� � x2
i ½M�ÞUi ¼ 0: ð17Þ

A truncated model basis is built by taking L eigenmodes
such that for i > L, x/xi � 1.

The approximation can be improved by adding to the
truncated modal basis series of Krylov vectors associated
with the excitation F. The series are defined as follows:

½K�
�1
ð½M�½K�

�1
Þ
k
F; k ¼ 0; 1; 2; . . . ð18Þ

More details about Krylov series can be found in [12]. The
first term of the series is the static response of the system to
the excitation F, while the next terms represent static re-
sponses to the forces ([M][K]�1)kF.

3.2. Application to the reduction of problem (12)

3.2.1. Excitations in Eqs. (14) and (15)

The right hand side of Eq. (14) can be split into two dif-
ferent contributions:

• b (excitation applied to the system) = F1,
• �jxq[C]Q = F2.

The right hand side of Eq. (15) shows also two
contributions:

• jxq[C](Q � P) = F3,

• jx r
1�r

P
t½Gw�ðeP �PPÞ ¼ F4.

3.2.2. Approximation of the excitations

Among the excitations F1 to F4, only F1 = b is known.
The other forces are approximated in what follows. The
components of F4 are zero except for the measured degrees
of freedom. This force can be considered as the sum of unit
forces F4,i at each of the sensors:

F4 ¼
XNS

i¼1

aiF4;i; ð19Þ

where NS is the number of sensors.
The vector F2 is a function of Q, which can be approx-

imated by:

Q ¼ ½T0�Qr ð20Þ

with ½T0� ¼ U1 . . . UL ½K��1
F4;1 . . . ½K��1

F4;NS

� �
:

ð21Þ

Neglecting the [K]�1F4,i basis vectors that are a correction
to the truncated modal basis [U], F2 can thus be approxi-
mated by:

F2 ¼
XL

i¼1

ai½C�Ui: ð22Þ

This approach is similar to what is done in [4,2,3]. Similarly
with what has been done to approximate F2, the vector F3

can be expressed as:

F3 ¼
XL

i¼1

bi½C�Ui: ð23Þ

Since the forces F2 and F3 are made of the same basis vec-
tors (only the multiplying coefficients are different), only
one of these forces has to be considered concerning its con-
tribution in terms of the basis vectors needed to build the
reduced basis.

3.2.3. Damping matrix modification during the optimization

process

During the optimization process, the damping matrix
[C] is modified at each iteration and becomes [C + DC].
The forced vibration problems are consequently modified
by adding a term of the form Fc = [DC]P on the right hand
side. Using the same approach as in Section (3.2.2), Fc is
approximated by:

Fc ¼
XL

i¼1

ci½DC�Ui: ð24Þ

The Robin boundary condition can be subdivided in H re-
gions that correspond to the different absorbing material
regions. Each region is characterized by an admittance
coefficient An,j and an admittance matrix [Cj] whose coeffi-
cients are zero at the nodes outside this region so that:

½C� ¼
XH

j¼1

An;j½Cj�: ð25Þ

It will now be shown that the modified damping matrices
½DCj� ðj ¼ 1; . . . ;HÞ are proportional to the local matrices
[Cj].

If [Æ]k denotes the iteration number k, Eq. (25) becomes:

½C�k ¼
XH

j¼1

Ak
n;j½Cj�: ð26Þ

Defining the damping matrix modification at iteration k by

½DC�
k
¼ ½C�

k
� ½C�

0
; ð27Þ

combining (26) and (27) gives

½DC�
k
¼

XH

j¼1

Ak
n;j½Cj� �

XH

j¼1

A0
n;j½Cj�; ð28Þ

¼
XH

j¼1

ðAk
n;j � A0

n;jÞ½Cj�; ð29Þ

¼
XH

j¼1

½DCj�
k
: ð30Þ

Comparing the last two lines clearly shows that [DCj]
k is

proportional to [Cj], which yields:

Fc ¼
XL

i¼1

ci½DC�Ui; ð31Þ

¼
XL

i¼1

XH

j¼1

cij½Cj�Ui: ð32Þ
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3.2.4. Model projection in the reduced space

The contributions to the excitation of the undamped
vibration problems lead to build a static basis Tstat. If only
the first term of the Krylov series is kept, the forces
Fi ði ¼ 1; . . . ; 4Þ and Fc yield the corresponding static basis
contributions, that are expressed as follows:

F1 ! Tstat;1 ¼ ½K��1
F1

� �
; ð33Þ

F2;F3 ! Tstat;2 ¼ ½K�
�1
½C�U1 . . . ½K�

�1
½C�UL

� �
; ð34Þ

F4 ! Tstat;4 ¼ ½K�
�1
F4;1 . . . ½K�

�1
F4;NS

� �
; ð35Þ

FC ! Tstat;c ¼ ½K�
�1
½C1�U1 . . . ½K�

�1
½C1�UL

�
ð36Þ

. . . ½K�
�1
½CH�U1 . . . ½K�

�1
½CH�UL

�
:

ð37Þ

Finally, the static basis Tstat,2 is left out because its vectors
are linear combinations of the basis vectors of Tstat,c. The
final reduced basis for the updating system is:

½T� ¼ ½U� ½Tstat;1� ½Tstat;4� ½Tstat;c�½ �: ð38Þ

The reduced quantities can now be expressed as follows:

P ¼ ½T�Pr; ð39Þ

Q� P ¼ ½T�ðQ� PÞr; ð40Þ

br ¼ ½T�
t
b; ð41Þ

½Kr� ¼ ½T�
t
½K�½T�; ð42Þ

½Mr� ¼ ½T�
t
½M�½T�; ð43Þ

½Cr� ¼ ½T�
t
½C�½T�; ð44Þ

½Pr� ¼ ½P�½T�: ð45Þ

Note that the basis is orthonormalized to improve the sys-
tem conditioning. Note also that the reduced basis is built
from undamped eigenmodes. Consequently, that basis
could only be used to represent the behavior of a slightly
damped system, assuming that its eigenmodes are close to
those of the corresponding undamped system.

4. Numerical applications

Two applications of the technique are proposed in this
section. The first test-case addresses a light model. The
objective is to validate the technique feasibility and check
the ability of the different contributions of the reduced
basis to improve the quality of the updated results.

The second numerical application deals with a 20.000
node mesh for which projecting the initial model into a

sub-space is of real interest. A detailed analysis of the
updated parameters is performed along the studied fre-
quency range.

4.1. Validation of the reduced basis on a light model

The studied setup is a simplified model of a 3D car cabin
that is presented in Fig. 1. The finite element mesh contents
1171 nodes and 814 linear elements (69 wedges and 745
bricks), and it is excited by its firewall that vibrates with
normal velocity v0 = 1 mm/s.

The roof of the car is covered by five different absorbing
materials with admittance coefficients An1;An2;An3;An4;An5.
These parameters are complex and frequency dependent
and the goal is to update them by minimizing the CLE.
The remaining bounding surface of the car body is assumed
to be rigid.

Measurements were not performed and the reference
pressure field that is used to validate the model comes from
a finite element simulation with the exact value of the five
unknown parameters. A total of 16 nodal pressures simu-
lating as many sensors located near the absorbing materials
are taken into account. The validation of the model is
achieved in the frequency range 0–150 Hz with a frequency
step of 2 Hz. The natural frequencies in the range 0–300 Hz
are presented in Table 1. The initial values of the five
admittance coefficients at the first iteration of the optimiza-
tion process are set to the double of their exact values. The
validation step is run using different reduced bases.

The results are reported in Table 2, showing the residual
CLE after validating the setup (column 2), the residual
error on the five updated parameters, the size of the basis
used (number of vectors in the basis) and the CPU-time
needed to update the setup on the studied frequency range.
The error levels (in %) are frequency average values. The
error values on the admittance coefficients for the basis 1
explode and are therefore not mentioned.

The description of the three reduced bases is the follow-
ing one:

V0

An1 An2 An3 An4 An5

Fig. 1. Side and top view of the mesh of the light model of a car cabin.

Table 1

Eigenfrequencies of the light acoustic model (Fig. 1) in the range 0–300 Hz

64.3 137.4 183.9 221.4 261.3 280.8

107.9 151.1 189.9 244.8 269.0 286.7

118.9 158.7 217.5 260.1 277.2 294.5
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• basis 1: eigenmodes in the frequency range 0–300 Hz,
• basis 2: basis 1 + Tstat,1 + Tstat,c,
• basis 3: basis 2 + Tstat,4.

Table 2 shows that a classical truncated modal basis
(basis 1) is unable to simulate the behavior of the setup.
Adding the static response of the system to the excitation
b and taking into account the forces related to the system
variations (basis 2) improves significantly the CLE thresh-
old, but very low error levels on the updated parameters
can only be reached by adding static responses linked to
the unity vectors associated to the measured degrees of
freedom (basis 3).

Finally, the residual error levels on the admittance coef-
ficients and the CLE are very low (mostly less than 1%),
which is comparable to the stop criterion e0 that is used
when updating the acoustic problem with the full discrete
system. So, the updating quality with the reduced basis is
like the one of the full system, which validates the reduced
basis.

4.2. Acoustic absorption in a car cabin

This numerical application is intended to apply the con-
stitutive law error updating technique while using the
reduced basis developed trough chapter 3 to a model with
a mesh density justifying the need for the model size reduc-
tion. The geometry is pretty similar to the one of the first
numerical example in the sense that it represents also the
acoustic domain of a car cabin. The outer shape of the
setup is nevertheless somewhat different (in this case
the trunk is not represented for instance) and the seat
sketching was improved. The longitudinal length of the

present device is also somewhat shorter, which explains
why the eigenfrequencies are typically higher.

The mesh is made of 19.725 nodes and 100.087 linear
tetrahedral elements. One focuses on the acoustic absorp-
tion related to the materials covering the roof, the floor
and the back-rest of both the front and the rear seats of
the car. Admittance coefficients correspondence is the fol-
lowing one:

• An1 refers to the roof of the car as represented in Fig. 2,
• An2 refers to the floor of the car,
• An3 refers to the back-rest of the rear seat of the car,
• An4 refers to the back-rest of the front seat.

The surface bounding the acoustic domain which is not
covered by absorbing materials is assumed to be rigid, with
the exception of the firewall that vibrates with a normal
velocity v0 = 1 mm/s and constitutes the only acoustic
source. Fig. 2 highlights the geometry together with the
vibrating firewall and the damping boundary conditions.

The device is updated in the frequency range 100–
400 Hz and the modal basis makes use of eigenvectors up
to 600 Hz. The corresponding natural frequencies of the
setup are reported in Table 3. The admittance coefficients
are updated every 25 Hz, and the initial values of the
admittance coefficients at the first iteration of the optimiza-
tion process are set to the double of their exact values.

The nodal pressure is recorded at 50 different locations
randomly distributed into the acoustic domain to simulate
the measurements.

The updating process is applied twice to the setup. Dur-
ing the second run, the reference finite element pressure
field replacing the measurements is polluted numerically

Table 2

Residual CLE after validating the setup (column 2), residual error on the five updated parameters, size of the basis used (number of vectors in the basis)

and CPU-time needed to update the setup

Basis # CLE (%) An1 error (%) An2 error (%) An3 error (%) An4 error (%) An5 error (%) Size (T) CPU-time (min)

1 19.1 – – – – – 18 50

2 0.49 1.31 5.40 2.03 1.25 4.34 64 94

3 0.07 0.56 2.76 0.88 0.39 0.77 78 127

V0

An1

An2

An3

An4

Fig. 2. Side view of the car cabin mesh and its boundary conditions.
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in order to simulate a slight discrepancies in the experimen-
tal data. The noisy reference field is obtained by multiply-

ing the real and imaginary parts of each measurement by
1 + x * N, where N is a random number chosen from a

Table 3

Eigenfrequencies of the acoustic domain of Fig. 2 in the range 0–600 Hz

88.3 212.5 290.2 347.3 393.4 434.9 480.9 517.6 549.0 596.7

126.5 234.2 298.8 350.3 399.6 439.5 490.5 522.9 555.5 598.6

144.7 245.0 304.8 362.8 407.8 446.0 500.7 526.8 568.4

154.6 255.9 308.9 369.6 410.9 453.6 506.4 530.6 577.8

172.2 269.2 318.4 375.5 422.5 463.0 508.4 534.2 583.3

192.6 277.7 323.2 381.1 426.6 464.3 514.1 538.3 589.5

197.3 285.8 329.5 390.3 430.2 470.7 515.1 544.8 594.1
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normal distribution with mean zero and variance one, and
x is the weight applied to the normal distribution, and so
the average noise level that is set to 5%. The updated
admittance parameters are plotted in Fig. 3. Both the real
and imaginary parts of the coefficients are reported and
compared to the exact values while updating the model
with and without measurement noise. The corresponding
errors on the admittance magnitude are shown in Fig. 4:
the maximum error level is about 5% with perfect experi-
mental data, and it never reaches 10% when polluting the
reference pressure field. The average values over the fre-
quency range are significantly lower.

Fig. 5 draws the residual constitutive law error after
updating along the frequency range of interest. The CLE
varies between 1% and 8.5% with noisy measurements,
and it drops significantly when using perfect experimental
data. The CPU time speedup is also plotted in Fig. 5. It
is computed by the ratio of the running time of the full

non reduced model updating process at a given frequency
and the corresponding time while projecting the model into
the sub-space, and this ratio moves around 110. Actually,
the number of iterations needed for updating the setup at
a given frequency is about the same while using the full
or the reduced model (around 300 iterations). So, the
speedup to update the system at each frequency is close
to the ratio of the CPU times needed to compute one single
iteration with the full and the light models. Note that the
full model computations are achieved in an optimized
way, taking advantage of the sparse property of the finite
element matrices and using a skyline solver to invert the
system of equations. The initial sparse system size is
39,450 (twice the number of nodes) while the reduced
non-sparse equation set size is 818 (twice the number of
vectors in the reduced basis).

The order of magnitude for the time needed to
update the 20.000 node models on a single 2.4 GHz Linux
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processor is around 4 min for each frequency when using
the reduced basis. It yields to somewhat less than one hour
to update the system in the 100–400 Hz frequency range
with an increment of 25 Hz. With a deceleration of ca.
110, the entire non reduced model updating process runs
for four days.

5. Conclusions

The paper discusses the problem of validating large
acoustic setups of industrial size by the mean of the consti-
tutive law error technique. In order to update such models,
the optimization problem is rewritten under the form of a
system of undamped forced vibration problems.

That leads us to build a reduced basis with the following
contributions:

• a truncated modal basis,
• the static response of the system to the excitation of the
acoustic domain (Krylov series),

• static responses to the forces related to the variations of
the system during the updating process,

• static responses associated to the measured degrees of
freedom.

The reduced basis is implemented and tested on two
numerical examples. The paper presents a very simplified
model of a 3D car cabin: the updating of the model is
achieved using three different bases, the first being a classi-
cal truncated modal basis, and the others adding progres-
sively the static contributions listed above. Comparing
the results of the three validations shows that a very good
quality for the updating process is only reached when the
reduced basis is used with all the contributions proposed
in the paper.

A second application deals with a pretty similar geome-
try but with a refinement of about 20.000 nodes. The
absorbing materials covering the roof, the floor and the
back-rest of both the front and the rear seats of the car
are updated with and without measurement noise. A
detailed analysis of the numerical results is presented.
Compared to the validation step that uses the full non
reduced model, the CPU-time of the reduced updating pro-
cess is about 110 times lower for this setup of average size.
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