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Construction of a micromechanics-based intralaminar mesomodel,
and illustrations in ABAQUS/Standard

G. Lubineau a,*, P. Ladevèze a,b

a LMT-Cachan (E.N.S. de Cachan, Université Paris 6, C.N.R.S., UniverSud Paris), 61 Avenue du Président Wilson, 94235 Cachan Cedex, France
b EADS Foundation Chair, Advanced Computational Structural Mechanics, France
The recent advances in the modeling of degradations in stratified composites have led to improved models on all scales. In particular,
today, micromechanics derived in a generic framework enables one to define a reference virtual material which integrates most of the
knowledge of a material. Thus, a model using damage mechanics on the mesoscale and usable for structural analysis can be built as a
homogenized version of this reference model through previously-developed bridges. The objective is to derive a refined model worthy of
micromechanics confidence, but transposable into a commercial code (here, ABAQUS/Standard).
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1. Introduction

In the past thirty years or so, due to the increasing use of
composite materials, the prediction of their degradation
has spawned numerous works among diverse communities.
Today, degradation models exist on very different scales
(from the fiber’s scale to the structure’s scale, including
what is known as the ‘‘meso’’ scale of the elementary layer)
using equally varied theoretical tools (fracture mechanics,
damage mechanics).

Micromechanics-based models usually address specific
mechanisms (primarily transverse cracking [1–5]) under
particular loading conditions. The advantage of these mod-
els is that they have a strong physical meaning, but they
hardly lend themselves to analysis or reanalysis of actual
industrial structures.

Another approach developed more recently [6,7] and
usable in structural analysis consists in using damage
mechanics on the mesoscale. The governing assumption is
that the behavior of any stratified structure can be
described through two families of basic damageable con-
* Corresponding author. Tel.: +33 1 47 40 22 36; fax: +33 1 47 40 27 85.
E-mail address: lubineau@lmt.ens-cachan.fr (G. Lubineau).
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stituents: the elementary layer [8] and the interlaminar
interface [9]. The behavior of each mesoconstituent is
assumed to be intrinsic. This approach provides a general
formalism and can be transposed more easily into commer-
cial calculation tools. However, it relies mainly on heuristic
laws and a single damage variable is usually associated with
several degradation mechanisms, which reduces one’s con-
fidence and impairs the readability of the results compared
to experimental data.

Continuing the works done in [10,11], in order to bring
these two approaches together, a micromechanics reference
model was developed [12,13]. This micromechanics model
is hybrid in the sense that the description of the degrada-
tion uses damage mechanics and fracture mechanics alter-
natively, depending on the mechanism being considered.
Thus, diffuse degradation (fiber/matrix splitting) in the ele-
mentary layer is described through damage mechanics on
the mesoscale according to [8]. Conversely, transverse
cracks and associated delamination are described in a dis-
crete manner by introducing minimum surfaces whose rup-
ture is determined by a criterion of the ‘‘finite energy
recovery rate’’ type [14]. This micromechanics model plays
the role of a virtual reference material. It contains all the
material information in the description specific to each



mechanism. However, it leads to prohibitive numerical
costs and requires the use of sophisticated multiscale strat-
egies even for the analysis of geometric details.

The objective of this paper is to present the derivation of
a model written according to the damage mechanics for-
malism, but resulting from the systematic homogenization
of this reference model.

In the first section of the paper, the main features of the
micromechanics reference model and the degradation
mechanisms being considered are reviewed. The rest of
the paper concerns the construction of the associated intra-
laminar model alone.

In the second section, each intralaminar degradation
mechanism is introduced progressively into the expression
of the strain energy on the mesoscale. While for some
mechanisms (rupture along the fibers and diffuse damage)
the formulations presented are similar to those used classi-
cally, the introduction of transverse cracking relies on the
micro–meso relations introduced in [10,15].

The third section compiles the constitutive relations
used for each mechanism. In general terms, the meso dam-
age law for transverse cracking is the homogenized version
of the micromechanics law.

Finally, the fourth section gives an illustration of the
type of result which can be expected with such an
approach. Rewriting the model using a damage mechanics
formalism on the mesoscale enabled us to introduce it into
a commercial analysis code (specifically ABAQUS/Stan-
dard), the first results of which are presented. We show that
the advantage of this approach is not only that it relies as
much as possible on the micro laws, but also that at the end
of the calculation it provides for each mechanism separate
indicators (microcracking rate in particular) which can be
easily interpreted in relation to experiments.

2. The computational hybrid micromodel for laminates

Our reference material model is the computational dam-
age micromodel for laminates introduced in [16,12] and
described in detail in [13]. The novelty of this approach is
that it provides a micromechanics framework within which
each classical degradation mechanism is described explicitly
by its own optimum model. In this sense, it is completely
different from classical micromechanics approaches (see
Refs. [17,18] for a review) or models based on damage
mechanics (in which the damage variables used represent
several underlying mechanisms in a global manner).

Let us first recall that this approach assumes that any
complex degradation state can be described as the result
of the concurrent development of classically established
elementary mechanisms for the material being considered.
In the special case of stratified organic composites, these
elementary mechanisms are:

• Diffuse intralaminar degradation: this mechanism is
associated with degradations on a very small scale (the
fiber’s scale), such as fiber–matrix splitting or matrix
2

rupture between fibers ([19–21]). This degradation is
assumed to be locally homogeneous (on the scale of
the elementary ply).

• Transverse intralaminar degradation: this mechanism
corresponds to the percolation of diffuse damage into
cracks parallel to the fibers which extend completely
across the elementary ply. Many studies of this phenom-
enon can be found in the literature on the micromechan-
ics of stratified materials.

• Diffuse interface degradation: this mechanism concerns
microcracks in the interlaminar matrix layer.

• Distributed delamination: transverse microcracks
extend throughout the thickness of the elementary ply
and are stopped by the interlaminar interface. Thus,
they create high-stress zones at the crack tips, leading
to local degradations of the interlaminar interface which
can be easily observed on the elementary ply’s scale
[2,22].

• Fiber breakage, which can occur in traction as well as in
compression.

The hybrid model is based on the separation of these
basic mechanisms, in terms of both scale and morphology,
in order to derive the most appropriate model for each
mechanism. Our reference scale for studying stratified com-
posites is the mesoscale (i.e. the scale of the elementary ply)
because the stacking of these plies is responsible, for the
most part, for the heterogeneity of the stress and strain
fields in the structure. On this scale, diffuse mechanisms
can be viewed as naturally homogenized because they
occur on a much smaller scale. Therefore, they are
described through damage mechanics in the classical sense
of the ‘‘damage mesomodel for stratified materials’’ intro-
duced in [8]. The degradation morphology of discrete
mechanisms (transverse cracking and distributed delamina-
tion), however, takes place on a scale comparable to the
mesoscale. In the hybrid model, we choose to model these
degradations in a fully discrete manner through a general-
ization of the ‘‘finite fracture mechanics’’ concept intro-
duced by [14]. Both transverse cracking and distributed
delamination propagate within the structure through com-
plete breakage of ‘‘elementary rupture surfaces’’, the break-
age of each interface being controlled by a criterion of the
‘‘discrete energy recovery rate’’ type.

This approach has the advantage of being extremely
robust thanks to the discrete vision of the degradation.
Besides, it enables the successful calculation, with no major
additional assumption, of zones with high solicitation gra-
dients in which complex coupling among the mechanisms
(in particular between discrete degradations of the ply
and interface) takes place. However, it requires a refined
discretization of the structure (several billion DOFs for
the analysis of a geometric defect of limited extent), which
demands highly effective multiscale strategies [23], and the
description retained for the degradation (hybrid continu-
ous/discrete) requires the development of a dedicated cal-
culation tool.



Therefore, the objective of the next section, on the basis
of this micromechanics reference model, is to build a
‘‘pragmatic’’ model compatible with the standard formal-
isms used in industrial analysis codes, which are often those
used in damage mechanics. The resulting model must com-
bine a certain flexibility in the analysis, due to its ‘‘meso’’
aspect, with a certain reliability (contrary to standard dam-
age models) due to its underlying micromechanics bases.

Here, we will limit ourselves to the definition of the asso-
ciated intralaminar model because the ply can be affected
by three purely intralaminar basic mechanisms: fiber break-
age, diffuse intralaminar degradation and transverse crack-
ing. The extension to the other mechanisms and to the
interface can be completed in order to achieve a nonlocal
model coupling intra and interlaminar damage. The details
of this more elaborate model have already been mentioned
in [24] and its complete development will be the subject of
future works.

3. Strain energy of the damaged ply

In the elementary ply (i.e. the set of the adjacent fibers
with the same direction, which can possibly be composed
of several adjacent plies with the same direction), 1, 2

and 3 will denote respectively the direction of the fibers,
the transverse direction in the plane of the stratified mate-
rial and the out-of-plane transverse direction. The material
quantities denoted (Æ0) refer to the healthy material (exempt
from any degradation mechanism).

3.1. Layer with damage along the fibers alone

Let us first consider the case of the layer (initially
assumed to be transverse isotropic) being possibly
degraded by rupture along the fibers quantified by the
damage indicator dF. In this case, the layer’s strain energy
is given by
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Remark. In order to simplify the expressions, we omitted
elastic nonlinearities. These can be introduced easily and
are necessary for an accurate representation of the behav-
ior in traction as well as in compression in the fibers’
direction.

Remark. As classical in damage mechanics, the range for
the damage parameter is limited by the positive definition
of the stiffness operator (and not systematically between
0 and 1).
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3.2. Layer with diffuse damage alone

Here, the layer is assumed to be affected by diffuse intra-
laminar degradation alone.

The diffuse degradation level of the fiber/matrix material
is quantified, as in the damage mesomodel for stratified
materials introduced by [8], by two damage variables: ~d
corresponding to the shear moduli and ~d 0 corresponding
to the transverse moduli.

In order to extend the method to three-dimensional cal-
culations, a choice must be made concerning the out-of-
plane shape of this part of the model. Our pragmatic choice
here consists in assuming that diffuse damage is roughly
isotropic.
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where [x]+ = 1 if x P 0 and [x]+ = 0 if x < 0 in order to
introduce the unilateral character of damage.

Remark. The transverse isotropy assumption is an approx-
imation which could be refined through more precise
micromechanics studies on the fiber’s scale [25]. As it
stands, this assumption enables one to retain a simple,
common-sense model, given that for the most part the out-
of-plane behavior is not governed by this mechanism but
by delamination possibly coupled with transverse cracking.
Thus, the damage ~d23 is not an additional variable, but is
defined through transverse isotropy as

ð1� ~d23Þ ¼
1� ~d 0

1� m0
23

1þm0
23

~d 0
ð3Þ

Remark. In the classical version of the damage mesomodel
for stratified materials, the two damage variables ~d and ~d 0

represent globally the modulus reductions due to the differ-
ent mechanisms. Here, only the diffuse mechanism is con-
cerned by these two variables.
3.3. Layer with transverse cracking alone

Here, we assume that the layer is affected only by trans-
verse cracking.

Assuming that transverse cracking is locally periodical
and quantified by the classically associated micromechanics
variable q (microcracking rate), the micro–meso relations
developed previously in [10,11] enable one to homogenize
this mechanism in order to define three damage indicators
�d12, �d22 and �d23. These indicators are not independent



because they are all connected to the microcracking rate q
through the layer homogenization problem.

In this context, the strain energy density of the degraded
layer is given by Eq. (4). (The calculations leading to this
equation are detailed in Annex A.)
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Remark. Here, the advantage of constructing the meso-
model through the homogenization of micromechanics
schemes is obvious because this approach governs the form
of the energy for each mechanism. It is clear that transverse
cracking affects only components 22, 12 and 23, and that
the effect of transverse cracking in each of these directions
is known and imposed by micromechanics.
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3.4. Degraded layer in the general case

Now, let us assume that the layer is affected by the three
previous mechanisms simultaneously. Then, the resulting
strain energy density is given by
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where [S] is defined by
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Remark. Eq. (5) assumes that on the scale of the cracking
step the diffuse degradation remains locally homogeneous
in spite of the existence of transverse cracks. One could
argue about this assumption, but Eq. (5) introduces
between these two mechanisms a ‘‘small’’ coupling which
is probably sufficient in most cases.

Remark. These degradation mechanisms (particularly dif-
fuse degradation) are accompanied by unrecoverable plas-
tic behavior due, in our case, to friction along the splitting
interfaces. The classical model introduced in [8] can be used
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provided, of course, that the effective stresses are redefined
according to the modified damage equation.
4. Constitutive relations

Having described the different mechanisms separately
on the strain energy level (Expression (5)), we can now
develop each mechanism using separate constitutive rela-
tions as well.
4.1. Rupture along the fibers/diffuse degradation

These mechanisms are classically introduced into the
damage mesomodel for stratified materials. Therefore, we
can reuse the classical constitutive relations defined in this
framework. Let us simply observe that even though the def-
inition of the associated thermodynamic forces remains
unchanged from the classical model, their definition takes
the existence of transverse cracking into account through
Expression (5).

Thus, concerning fiber breakage, we retain a brittle law
which distinguishes rupture in traction and rupture in com-
pression through two thresholds Y t

F and Y c
F (hh Æ ii repre-

senting the mean value across the layer).
Regarding diffuse damage, its progressive evolution is given
by the classical law
b2, b3, Y0 and Yc are experimentally identified quantities.
Let us note that the progressive part of the constitutive
relation alone is preserved. The thresholds initially intro-
duced in [8] were intended to represent the rapid develop-
ment of the microcracks, which is now described
separately in the following section.
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4.2. Evolution of transverse cracking

Now, let us derive the constitutive relation for transverse
cracking in the elementary ply using a micromechanics
model with the following assumptions:

• The evolution of cracking is governed by a criterion of
the ‘‘energy recovery rate’’ type. We choose a continu-
ous representation as a function of q:

G ¼ � oEp

oA
; ð10Þ

where Ep is the potential energy of the degraded layer and
A is the area of the transverse cracks. It was shown in [13]
that, by taking into account the variabilities, this defini-
tion leads to a good approximation of the discrete energy
recovery rate (DG = � DEp/DA) used in micromechanics.

• Transverse cracking, as observed experimentally (e.g.
[26]) is assumed to stop once a limit microcracking rate
qs has been reached. Beyond this limit, interlaminar phe-
nomena take place (especially distributed delamination),
which requires more elaborate models.

• Here, we are developing only the criterion for ‘‘thin’’
layers (at most two or three elementary plies, which is
true of most industrial cases). Thus, the micromechanics
model is based entirely on an energy criterion. More
complex models including the behavior of thick plies
[13] could be introduced if necessary.

Let us consider the integral of the energy density over a
length L of the elementary ply of thickness H. Let A be the
cracked area within this zone. Thus, starting from (5) and
(10), the energy recovery rate, which plays the role of the
damage force associated with the evolution of the trans-
verse cracks, can be expressed as (h Æ i representing the posi-
tive part)
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Now, let us introduce the notations
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Y 22, Y 12 and Y 23 are not strictly damage forces because
the variables �d22, �d12 and �d23 are not independent, but
related to the underlying quantity q. They are distributions
of the damage force Y q according to the modes.

Then, considering that q = A/L, Expression (11) can be
rewritten as

Y q ¼ Y 22
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oq
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where Gc
I , Gc

II and Gc
III designate the critical energy recovery

rates in Mode-I, Mode-II and Mode-III, respectively. The
rupture envelope is then described by a classical mixed cri-
terion of fracture mechanics
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Finally, this leads to the following evolution of
microcracking:
Functions ½�d22 ! q�, ½�d12 ! q� and ½�d23 ! q� are
obtained through the homogenization of the layer problem
which defines the micro–meso relations as presented in [10].

5. First example of application

5.1. Implementation

The previous section enabled us to build a model which
follows the formalism of damage mechanics on the meso-
scale, yet includes (and is based on) the micromechanics
contained in a micromechanics reference model. This for-
malism can be implemented into a commercial analysis
code. Such codes usually follow an incremental strategy



Table 1
Material properties used for elasticity and damage laws

E0
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with respect to time for the resolution of nonlinear prob-
lems, and the implementation of our model consists in cre-
ating a new material behavior within what is called the
‘‘local’’ loop.

With this technique, our model was implemented into
ABAQUS/Standard, which enables one to create a new
material behavior through the user subroutine U-MAT.
The only difficulty at this point is related to the manage-
ment of the nonlocal aspect of the model, which defines
the damage forces using integrals or mean values over the
thickness of the elementary layer. This requires that when
the behavior at each integration point is being calculated
information about its vicinity be available, which is not
the case a priori in the U-MAT formalism. Solutions to
make this feature available in the case of arbitrary discret-
izations are being sought. In the example presented in (5.2),
this point was treated pragmatically through the use of a
linear element subintegrated across the thickness.

The four sources of intralaminar nonlinearities men-
tioned in Section 4 were implemented: damage by fiber rup-
ture, diffuse damage, transverse cracking damage and
plasticity. Each nonlinearity is solved successively, plastic-
ity being dealt with after damage using a radial recovery
algorithm.

Remark. The damage laws which we introduced classically
lead to localization and mesh dependency phenomena
unless special precautions are taken. We used a formalism
with delay effect for all these laws in order to limit this
localization [27,28].
5.2. Illustration

For our first example, let us consider the case of the
holed plate [02/902]s shown in Fig. 1. This problem was
inspired by the availability of detailed experimental results
in [29]. The calculation was performed in traction with pre-
Fig. 1. Finite element mod

6

scribed displacements and limited to one-quarter of the
geometry due to symmetry considerations.

The material quantities used in the calculation are
defined in Table 1. They correspond to standard quantities
for a carbon-epoxy material, but do not relate to a specific
material.

Figs. 2 and 3 show the maps of the different types of
damage in the two types of plies for a 0.633% longitudinal
deformation of the plate, near final rupture. At higher
loading levels, a delamination mechanism along with cou-
pling between splitting and microcracking appeared clearly
and would require the use of more elaborate models with
intra–interlaminar coupling [24].

The 90� ply was free of fiber rupture. Slight diffuse dam-
age progressed throughout the plate. The main point to be
observed is the development of a relatively high micro-
cracking level in an extensive zone going from the hole to
the edge of the sample, limited by splitting in the 0� ply.

The 0� ply was significantly degraded by transverse
cracking in the longitudinal direction of the sample and
tangent to the hole, which represents the splitting observed
experimentally. Initial fiber breakage also started to appear
at the edge of the hole.

These results are perfectly consistent with those
obtained with X-ray radiography on this type of laminates
and presented in [29]. The interest of this type of simulation
is that it provides not only a local damage level, but also a
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Fig. 2. Map of damage in the 90� ply: (A) damage along the fibers dF, (B) diffuse damage ~d 0 and (C) microcracking damage �d22. Longitudinal deformation
of the sample: 0.633%.
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Fig. 3. Map of damage in the 0� ply: (A) damage along the fibers dF, (B) diffuse damage ~d 0, and (C) microcracking damage �d22. Longitudinal deformation
of the sample: 0.633%.
distribution of this damage according to the underlying
degradation mechanisms.

6. Conclusion

We introduced an intralaminar model formulated within
the framework of damage mechanics and based on a
micromechanics reference model. This strategy enables
one to take advantage of recent advances in commercial
analysis codes, which we illustrated with a simple example.
7

Future works will focus on the extension of this
approach to the interlaminar interface and the correspond-
ing implementation. Indeed, the homogenization method
proposed in [24] enables one to couple the intra and inter-
laminar degradations explicitly in the framework of a non-
local damageable interface model. Therefore, future works
will concentrate on the implementation of this model in
order to improve, most of all, the simulation of the cou-
pling between transverse cracking and delamination, which
is a major industrial problem.
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Annex A. Let us consider a stratified medium containing
a layer of interest (S), initially transverse isotropic, the rest
of the stack being represented in homogeneous fashion
through peripheral parts (S) and (S00). We are studying a
periodical cell of length l of this stack.

This cell, initially healthy, is subjected to a uniform mac-
roscopic loading characterized by the plane part of the
macroscopic strain [e11, e22, e12] and by the out-of-plane
part of the stresses [r13,r23,r33]. This choice for the
description of the macroscopic loading is not inconsequen-
tial and results from the micro–meso relations developed in
[11]. Then, generally speaking, the stress state in the
healthy cell under such loading is denoted ~r and called
‘‘effective stress’’.

Now, let us assume that layer (S) has been degraded due
to a transverse cracking mechanism of density q = H/l. In
order to find the solution of this new problem, the
‘‘healthy’’ solution ~r must be corrected through three peri-
odic residual problems corresponding to the three residuals
½�~r22� � n2, ½�~r12� � n2 and ½�~r23� � n2 along the lips of the
transverse cracks. This layer homogenization problem has
some remarkable properties and leads to the definition of
three damage indicators �d22, �d12 and �d23 on the energy level,
such that the strain energy of the degraded layer can be
expressed as [10,11]:

2ed ¼
~r11

~r22

~r33
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t
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1�½~r22�þ�d22
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� m0
23

E0
2

� m0
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� m0
23

E0
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1
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2
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~r22

~r33

2
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þ ð1�
�d12Þ~r2

12

2G0
12

þ ~r2
13

2G0
12

þ ð1�
�d23Þ~r2

23

2G0
23

ð22Þ

Now, in order to obtain a more standard expression, let
us substitute the actual stress for the effective stress in Eq.
(22). These stresses are related through

r11 ¼ ~r11 �
m0

12
�d22

1� m0
12m

0
21

~r22½~r22�þ ð23Þ

r22 ¼ ~r22 �
�d22

1� m0
12m

0
21

~r22½~r22�þ ð24Þ

r33 ¼ ~r33 ð25Þffiffiffi
2
p

r12 ¼
ffiffiffi
2
p
ð1� �d12Þ~r12 ð26Þffiffiffi

2
p

r13 ¼
ffiffiffi
2
p

~r13 ð27Þffiffiffi
2
p

r23 ¼
ffiffiffi
2
p
ð1� �d23Þ~r23 ð28Þ

In addition, one has

½~r22�þ ¼ ½r22�þ ð29Þ

The transformation of Eq. (22) yields the equation in
actual stresses
8

2ed ¼
r11

r22

r33
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with

A ¼ ððE
0
1 � m02

12E0
2Þ � ½r22�þ�d22E0

1Þ
ðE0

1 � m02

12E0
2Þ � ½r22�þ�d22m02

12E0
2

ð31Þ

B ¼ ððE
0
1 � m02

12E0
2Þ � ½r22�þ�d22E0

1Þ

ððE0
1 � m02

12E0
2Þ þ ½r22�þ�d22

m02

12
E0

2

m0
23

Þ
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We had already proven [15] that

A � ð1� ½r22�þ�d22Þ ð33Þ

We also have, with an excellent approximation (Fig. 4)

B � ð1� ½r22�þ�d22Þ ð34Þ

which leads to the expression of Eq. (4).
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