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This paper aims to understand how sequential, separate and independent impacts of particles on the screen of a double-slit experiment produce an interference pattern when both slits are open and how no such pattern is produced when detectors are placed at the slits. These strange phenomena can be explained by conjecturing the existence of a certain "thickness" of time. This conjecture is falsifiable, fits the observed results and maximizes simplicity for explaining other quantum phenomena without contradicting the established principles and laws of quantum mechanics.

Introduction

The double-slit experiment illustrates well some of the startling features of quantum mechanics. When particles such as electrons are sent one at a time through a double-slit plate (hereafter called slit A and slit B), single random impacts are observed on a screen behind the plate as expected out of individual particles. However, when the electrons are allowed to build up one by one, the cumulative effect of a great number of impacts on the screen reveals an interference pattern of light and dark bands characteristic of waves arriving at the screen from the two slits. Meanwhile, the interference pattern is made up of individual and sequential impacts and although these sequential impacts are separate and independent, yet it seems as if the electrons work together to produce the interference pattern on the screen. This phenomenon seems to entail that the electrons embody a wave-like feature in addition to their particle nature hence illustrating a particle-wave duality structure.

When the electrons are made to build up one by one while detectors DA and DB are placed at slits A and B respectively to find out through which slit each electron went, the interference pattern disappears and the electrons behave solely as particles. It seems thus impossible to observe interference and to simultaneously know through which slit the particle has passed. The best explanation that can be made out of these strange features is that the same electron seems to pass simultaneously through both slits when no detectors are present and through only one slit when detectors are present [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF][START_REF] Rickles | The Philosophy of Physics[END_REF]. This seemingly paradoxical statement is in conformity with the experimental data.

The state vector of an electron passing through slit A may be denoted |𝐴⟩, similarly, the state vector of an electron passing through slit B may be denoted |𝐵⟩. An electron passing through both slits A and B at the same time is said to be in a superposition state and its state-vector is denoted |𝜓⟩ = 𝑎|𝐴⟩ + 𝑏|𝐵⟩, where "a" and "b" are called the probability amplitudes. The modsquare of "𝑎" represents the probability of the particle to be measured by the DA detector at the slit A and likewise the mod-square of "𝑏" represents the probability of the particle to be measured by the DB detector at the slit B.

Conventionally, when no detectors are present, the state-vector |𝜓⟩ = 𝑎|𝐴⟩ + 𝑏|𝐵⟩ of the electron is said to evolve per a deterministic continuous unitary evolution U whereas, when detectors DA and DB measure from which slit the electron passes, the deterministic evolution of the state-vector |𝜓⟩ is transformed into a probabilistic discontinuous and non-linear state reduction R as explained by Penrose [START_REF] Rickles | The Philosophy of Physics[END_REF]. The two processes U and R create a conflict in the formalism of quantum mechanics. Different ontologies have been proposed to interpret the strange combination of the deterministic continuous U process with the probabilistic discontinuous R process.

According to the Copenhagen interpretation [START_REF]Penrose The Road to Reality[END_REF][START_REF] Wimmel | Quantum physics & observed reality[END_REF], the state-vector |𝜓⟩ and the U and R processes should be regarded as a description of the experimenter's knowledge. There exist several other interpretations amongst which the Everett interpretation or what is more commonly known as the many-world interpretation [START_REF] Everett | The Theory of the Universal Wave function[END_REF][START_REF] Everett | [END_REF], according to which there is no wave function collapse and all measurement results exist but in different worlds. In line with this interpretation, it is claimed [START_REF] Wallace | Emergent Multiverse[END_REF] that when a measurement is conducted on an electron in the superposition state 𝑎|𝐴⟩ + 𝑏|𝐵⟩, a deterministic branching takes place where on one branch detector A detects the electron while detector B doesn't and at the same time but on the other branch (i.e. another world), detector A doesn't detect the electron while detector B does detect it. However, this interpretation pauses some probabilistic as well as ontological problems. In particular, the axioms of quantum mechanics say nothing about the existence of multiple physical worlds [START_REF] Kent | [END_REF].

Another interpretation is the De Broglie-Bohm deterministic theory according to which particles interact via a quantum potential and are assumed to have existing trajectories at all times. This model seems to make more sense of quantum mechanics than the other interpretations as discussed in detail by Jean Bricmont in his book "Making Sense of Quantum Mechanics [START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF].

In this paper, it is intended to introduce an alternative explanatory hypothesis that makes sense of the double-slit experiment and in which the process of measurement does not come in conflict with the deterministic evolution of the states of a particle.

It is learned from the above double-slit experiment that when no measurement is conducted, the state-vector is a bloc of two states |𝐴⟩ and |𝐵⟩ whereas, an act of measurement reveals only one of these two states. In this article both states |𝐴⟩ and |𝐵⟩ are considered as separate and equally real events. Indeed, it is conjectured the existence of a three-dimensional-time composed of the usual one-dimensional-time augmented with an unnoticeably small two-dimensional cross section. According to this model, time can be viewed as a non-geometrical line presenting a thread-like-form having a certain tiny "thickness" such that the two states |𝐴⟩ and |𝐵⟩ form separate events with respect to the cross-section (or thickness) of this three-dimensional-thread of time. Meanwhile, in the conventional picture of time, the cross-section of the time-thread is considered as a geometrical point and thus, the two states |𝐴⟩ and |𝐵⟩ are astonishingly considered to form a single event.

Formalism

Time-threads

Time is considered to have a three-dimensional thread-like-form, hereinafter referred to as "elementary-time-thread". The "longitudinal direction" of the elementary-time-thread corresponds to the usual physical-time-axis where each point is specified by a physical-timeindex. However, the "cross-section" of the elementary-time-thread is referred to as a "statetime-plane" where each point is specified by a "state-time-index" defined by a couple of statetime-coordinates. Finally, each point -referred to as "elementary-time-instant" -of the elementary-time-thread is specified by a triplet of time-coordinates (one physical-timecoordinate and two state-time-coordinates).

Each elementary-time-thread can be defined in a reference frame consisting of a threedimensional coordinate system in R 3 (or in R-C) composed of the ordinary "physical-time-axis" (𝑡 -𝑎𝑥𝑖𝑠) along a real coordinate axis R, a "first-state-time-axis" (𝑢 -𝑎𝑥𝑖𝑠) and a "secondstate-time-axis" (𝑣 -𝑎𝑥𝑖𝑠). The elementary-time-thread has thus its cross-section comprised in a "state-time-plane" (𝑢, 𝑣) defined by the 𝑢 -𝑎𝑥𝑖𝑠 and 𝑣 -𝑎𝑥𝑖𝑠 and its longitudinal orientation defined along the ordinary physical 𝑡 -𝑎𝑥𝑖𝑠. Each "elementary-time-instant" of the elementary-time-thread is specified by a point 𝑤 = (𝑡, 𝑢, 𝑣) where 𝑡, 𝑢 and 𝑣 are real numbers. For simplicity, the coordinates in the state-time-plane are defined by a single symbol s = (𝑢, 𝑣) called a "state-time-index" which can also be defined by a complex number of the form:

s = 𝑢 + 𝑖𝑣 = |s|𝑒 𝑖𝜑 (1)
where |s| and 𝜑 are the magnitude and argument of the state-time-index s. Thus, each "elementary-time-instant" 𝑤 of the elementary-time-thread is specified by the point 𝑤 = (𝑡, s ).

Quantum features with respect to dynamical time-threads

Conventionally, a quantum system (e.g. spin of a particle) can be defined by a state-vector in an orthonormal eigenvector basis. For any observable Q, the state-vector |𝜓⟩ is defined by a superposition of vector projections in an eigenbasis {|𝜓 𝑖 ⟩}. In other words, the state-vector |𝜓⟩ is defined as a linear combination of the different possible states. The normalized conventional state-vector of the quantum system is expressed as follows:

|𝜓⟩ = ∑ 𝑐 𝑖 𝑖 |𝜓 𝑖 ⟩ (2)
where |𝜓 𝑖 ⟩ are orthonormal states of the quantum system verifying ⟨𝜓 𝑖 |𝜓 𝑗 ⟩ = 𝛿 𝑖𝑗 (Kronecker delta) and the coefficients 𝑐 𝑖 of the state-vector |𝜓⟩ define the "probability amplitudes" in the specific orthonormal eigenvector basis {|𝜓 𝑖 ⟩}.

In contrast, according to the present three-dimensional-time-model, the quantum system can be represented by a fundamental-state-vector -noted hereafter |𝜓⟩ 𝐹 . The different points (i.e. the different state-time-indices s(𝑢, 𝑣) belonging to the state-time-plane) visited by the different states of a given fundamental-state-vector |𝜓⟩ 𝐹 at a given physical-time-index 𝑡 form a "statetime-domain" denoted "𝐷s" belonging to the "state-time-plane" (𝑢, 𝑣). The "state-time-domain 𝐷s" is an open subset of the "state-time-plane" (𝑢, 𝑣). The area (denoted "𝐿s") of the state-time-domain 𝐷s is a measure 𝜇 of 𝐷s (i.e. 𝐿s = 𝜇(𝐷s(t))) which represents the "state-timeduration" (hereafter called the "state-time-term") of the fundamental-state-vector |𝜓⟩ 𝐹 at a given physical-time-index 𝑡.

The fundamental-state-vector |𝜓⟩ 𝐹 may thus be viewed as evolving with respect to a threedimensional-time-manifold (i.e. a "time-volume" referred hereafter "3d-time-manifold") embedded in the elementary-time-thread and made up of elementary-time-instants 𝑤 = (𝑡, 𝑢, 𝑣) = (t, s) wherein, each physical-time-index 𝑡 is mapped to a corresponding state-timedomain 𝐷s(t) whose measure 𝐿s(t) represents the "state-time-term" of the fundamental-statevector |𝜓⟩ 𝐹 at that physical-time-index 𝑡. Schematically, a state-time-domain 𝐷s(t) belonging to a 3d-time-manifold is formed by the intersection between the 3d-time-manifold and the cross-section (i.e. the state-time-plane (𝑢, 𝑣)) of the elementary-time-thread at the physicaltime-index 𝑡. In the following text, the suffix "𝑡" is sometimes dropped as it is implicitly clear that any state-time-domain 𝐷s is defined with respect to a corresponding physical-time-index 𝑡.

The fundamental-state-vector |𝜓⟩ 𝐹 associated to a given observable and evolving with respect to its corresponding 3d-time-manifold (t, s) can thus be expressed by a complex valued statevector |𝜓(𝑥, 𝑡, s)⟩ as follows:

|𝜓⟩ 𝐹 = |𝜓(𝑥, 𝑡, s)⟩ 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑹 𝟑 , 𝑠 𝜖𝐷𝑠 𝑎𝑛𝑑 𝑡 ∈ 𝑹 (3) 
The above expression (3) indicates that at any current physical-time-index 𝑡, the different states |𝜓(𝑥, 𝑡, s)⟩ with respect to s can be viewed as forming a "state-time-block" wherein, all potential state-outcomes coexist but do not occur at once, or "simultaneously", with respect to the corresponding state-time-domain 𝐷𝑠. In the "state-time-block" all states are labelled by different "state-dates" and thus, at any given time-index 𝑡, the different states do not occur simultaneously with respect to the state-time-domain 𝐷𝑠, but may be considered to occur "at once" only with respect to the physical-time 𝑡. In this case these states may be called "physicaltime-simultaneous" or simply "partially simultaneous" implicitly with respect to only the physical-time 𝑡. 

Therefore, a given fundamental-state-vector |𝜓⟩ 𝐹 evolving with respect to its state-time-domain 𝐷s at a given physical-time-index 𝑡, can be expressed by its different states |𝜓 𝑘 (𝑥)⟩, as follows:

|𝜓⟩ 𝐹 = |𝜓(𝑥, 𝑡, s)⟩ = { |𝜓 𝑘 (𝑥)⟩ 𝑖𝑓 s 𝜖𝐷s 𝑘 (t) 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5) 
The above equation is defined at any given physical-time-index 𝑡 and may also be expressed as follows:

|𝜓⟩ 𝐹 = |𝜓(𝑥, 𝑡, s)⟩ = ∑ 𝛿 s (𝐷s 𝑘 (t))|𝜓 𝑘 (𝑥)⟩ 𝑘 (6) 
where 𝛿 s (𝐷s 𝑘 (t)) is the Dirac measure (or indicator function) defined by:

𝛿 s (𝐷s 𝑘 ) = { 1 𝑖𝑓 s 𝜖𝐷s 𝑘 0 𝑖𝑓 𝑛𝑜𝑡 (7) 
The dynamics of the fundamental-state-vector |𝜓⟩ 𝐹 of the present model obeys a deterministic process with respect to the 3d-time-manifold and can be decomposed into a set of two equations comprising the above equation ( 6) defined with respect to the state-time as well as Schrodinger equation defined with respect to the physical time:

𝑖ℏ 𝜕 𝜕t |𝜓(𝑥, 𝑡)⟩ = 𝐻|𝜓(𝑥, 𝑡)⟩ (8) 
Equation ( 6) expresses the form of the fundamental-state-vector |𝜓(𝑥, 𝑡, s)⟩ with respect to the "state-time-plane" (𝑢, 𝑣) and in particular, with respect to the state-time-domain 𝐷s at each physical-time-index 𝑡. Thus, at each 𝑡, the state-vector |𝜓(𝑥, 𝑡, s)⟩ can be viewed as an "intrinsic signal" in function of s bounded by the state-time-domain 𝐷s. In contrast, equation ( 8) is the conventional Schrodinger equation that governs the evolution of the intrinsic signal as a bloc with respect to the physical-time-axis (𝑡 -𝑎𝑥𝑖𝑠).

Equation ( 6) can also be expressed in a continuous spectrum as follows:

|𝜓(𝑥, 𝑡, 𝑠)⟩ = ∫ 𝑑𝑥𝛿 𝑠 (𝐷𝑠(𝑥, 𝑡)) |𝜓(𝑥)⟩ (9)
Where for a given 𝑡, 𝐷𝑠(𝑥, 𝑡) represents the set of all the state-time-indices 𝑠 during which the quantum system is in the state |𝜓(𝑥)⟩ and where:

𝛿 𝑠 (𝐷𝑠(𝑥, 𝑡)) = { 1 𝑖𝑓 s 𝜖𝐷𝑠(𝑥, 𝑡) 0 𝑖𝑓 𝑛𝑜𝑡 (10) 
Conventionally, the solution of the Schrodinger equation ( 8) has the following form:

|𝜓(𝑥, 𝑡)⟩ = ∑ 𝑐 𝑗 (𝑥, 𝑡)|𝜓 𝑗 (𝑥)⟩ 𝑗 (11) 
where the mod-square of 𝑐 𝑗 (i.e. ‖𝑐 𝑗 ‖ 2 ) represents the probability associated to the state |𝜓 𝑗 (𝑥)⟩ and where:

∑ ‖𝑐 𝑗 ‖ 2 𝑗 = 1 (12)
All the states {|𝜓 𝑗 (𝑥)⟩ } are visited by the state-time-indices s while spanning 𝐷s and thus, each state |𝜓 𝑗 (𝑥)⟩ should be the image of a corresponding state-time-sub-domain 𝐷𝑠 𝑘 ⊂ 𝐷s. In other terms, for each 𝑡, there exists a bijective correspondence between the set of state-time-subdomains {𝐷𝑠 𝑘 ; ⋃ 𝐷𝑠 𝑘 𝑘 = 𝐷s} and the set of states {|𝜓 𝑘 (𝑥)⟩ }. This bijective correspondence is indeed expressed by equation [START_REF] Everett | [END_REF].

On the other hand, when the state-time-index s is made to span the state-time-domain 𝐷s, then at each physical-time-index 𝑡, the state-vector |𝜓(𝑥, 𝑡, s)⟩ should satisfy the normalisation property:

‖|𝜓(𝑥, 𝑡, s)⟩‖ 2 = ⟨𝜓(𝑥, 𝑡, s)|𝜓(𝑥, 𝑡, s)⟩ = ∑ (𝛿 s (𝐷s 𝑘 )) 2 = 𝑘 1 (13) 
The last equality in equation ( 13) is justified because when the whole state-time-domain 𝐷s is spanned by the state-time-index s, then necessarily 𝛿 s (𝐷s 𝑘 ) = 1 for each 𝑘 and thus, equation ( 13) is consistent with equation (12).

It is to be noted that when the state-time-index s spans the state-time-domain 𝐷s, the state of the system at a given 𝑡 is defined by a set of states:

(𝜓(𝑥, 𝑡, s)⟩) s∈𝐷s = {|𝜓 𝑘 (𝑥)⟩ ; 𝑘 = 1, 2, … . . } (14)
The average value of the above set of states can be expressed as follows:

∑ 𝑃 𝑘 |𝜓 𝑘 (𝑥)⟩ 𝑘 ( 15 
)
where 𝑃 𝑘 is the probability associated to the state |𝜓 𝑘 (𝑥)⟩ which is also equal to ‖𝑐 𝑘 ‖ 2 as expressed in equation ( 12).

On the other hand, the average value of the above set of states (𝜓(𝑥, 𝑡, s)⟩) s∈𝐷s of equation ( 13) can also be expressed by normalising the sum of the fundamental-state-vector |𝜓⟩ 𝐹 over all the state-time-domain 𝐷s as follows:

∫|𝜓⟩ 𝐹 𝑑s ∫ 𝑑s = ∫|𝜓(𝑥,𝑡,s)⟩ 𝑑s ∫ 𝑑s = ∑ 𝑃 𝑘 |𝜓 𝑘 (𝑥)⟩ 𝑘 = ∑ ‖𝑐 𝑘 ‖ 2 |𝜓 𝑘 (𝑥)⟩ 𝑘 (16) 
However, the left-hand side of equation ( 16) can be expressed as follows: 

Comparing equation (18) to equation ( 16), it is deduced that the probability 𝑃 𝑘 is:

𝑃 𝑘 = ‖𝑐 𝑘 ‖ 2 = 𝑙 sk 𝐿 s (19) 
However, ∑ 𝑙 sk 𝑘 = 𝐿 s and thus ∑ 𝑙 sk 𝐿 s 𝑘 = 1 which is also consistent with equation (12).

Therefore, the probability amplitude can be expressed as follows:

𝑐 𝑘 = √𝑙 sk 𝐿 s ⁄ 𝑒 𝑖𝜑 𝑘 (𝑡,s) (20)
where 𝜑 𝑘 (𝑡, s) is a phase function that may depend on 𝑡 and s:

Thus, equation (11) -solution of the Schrodinger equation -can be expressed as follows:

|𝜓(𝑥, 𝑡)⟩ = ∑ 𝑐 𝑗 (𝑥, 𝑡)|𝜓 𝑗 (𝑥)⟩ 𝑗 = ∑ √𝑙 sk 𝐿 s ⁄ 𝑒 𝑖𝜑 𝑘 (𝑡,s) |𝜓 𝑘 (𝑥)⟩ 𝑘 (21) 
The state of a quantum system can be therefore specified by the set of equations ( 6) and ( 21 𝑙 sk during which the state has been visited. Indeed, when the structure and details in the statetime-domain 𝐷s are not taken into consideration, it is evident that all the states |𝜓 𝑘 (𝑥)⟩ would be seen as superposed and would seem to occur at once when in fact it is not the case. However, the dependence with respect to the state-time-domain 𝐷s remains intrinsically in-built in the probability amplitudes which depend on 𝑙 sk and 𝐿 s . Nevertheless, the intrinsic dynamics is occulted by equation ( 21) leading to the seemingly mysterious measurement problem.

Indeed, if we take conventional equation (11) where the state-time-indices are completely ignored and their existence is not even suspected, the different states |𝜓 𝑘 (𝑥)⟩ occur at once and thus, a measurement at any physical-time instant 𝑡, would seem to impose a collapse of the state-vector |𝜓(𝑥, 𝑡)⟩ into an arbitrary outcome.

However, even if we don't have any knowledge about the state-time-indices and if a measurement is to take place at any physical-time-instant 𝑡, then equation (21) shows that the outcome could be any state |𝜓 𝑘 (𝑥)⟩ with a corresponding probability 𝑙 sk 𝐿 s ⁄ without any collapse whatsoever because the different states |𝜓 𝑘 (𝑥)⟩ as shown by equation [START_REF] Everett | [END_REF] do not occur at once with respect to the state-time-indices. It should be noted, that the outcome can be deterministically predicted if in addition to the physical-time-index, the state-time-index is also known. Nevertheless, once the act of measurement is carried out, suppose at the elementary time-instant 𝑤 𝑀 = (𝑡 𝑀 , s 𝑀 ) then, the state |𝜓 𝑀 (𝑥, 𝑡 𝑀 , s 𝑀 )⟩ that happened to exist at that elementary instant is selected and this outcome is "trapped", "frozen" or "captured" by the interaction between the system and the measuring device. Thus, just after the measurement, the state-vector |𝜓(𝑥, 𝑡, s)⟩ becomes stationary with respect to the state-time-indices s (i.e. 𝛿 s (𝐷s 𝑀 (t)) = 1, ∀ s 𝜖𝐷s ) and can be expressed as follows:

|𝜓(𝑥, 𝑡, s)⟩ = ∑ 𝛿 s (𝐷s 𝑘 (t)) 𝑘 |𝜓 𝑘 (𝑥)⟩ = |𝜓 𝑀 (𝑥)⟩ (25)
On the other hand, immediately after the measurement the state-time-term 𝑙 sM of the subdomain 𝐷𝑠 𝑀 corresponding to the measured state |𝜓 𝑀 ⟩ becomes equal to the state-time-term 𝐿 s of the whole state-time-domain 𝐷s. In other terms the state-vector |𝜓(𝑥, 𝑡)⟩ also becomes stationary (i.e. 𝑙 sM = 𝐿 s and 𝑙 sk = 0, 𝑘 ≠ 𝑀) and can be expressed as follows:

|𝜓(𝑥, 𝑡)⟩ = ∑ √𝑙 sk 𝐿 s ⁄ 𝑒 𝑖𝜑 𝑘 (𝑡,s) |𝜓 𝑘 (𝑥)⟩ 𝑘 = 𝑒 𝑖𝜑 𝑀 (𝑡) |𝜓 𝑀 (𝑥)⟩ (26)
It should be noted that the phase term in equation ( 26) expresses the dependence on the physical-time-indices 𝑡.

Free particle

The state of a free particle can be specified by the Schrodinger equation ( 8) in combination to anyone of equations ( 9) and (24) which can be expressed in a one-dimensional position representation along an x-axis as follows:

|𝑥 where the kets |𝑥⟩ are the states in which the particle is definitely at the position 𝑥 and where 𝜓(𝑥, 𝑡, s) and 𝜓(𝑥, 𝑡) are the probability amplitudes. In particular, the probability amplitude 𝜓(𝑥, 𝑡, s) = 𝛿 𝑠 (𝐷𝑠(𝑥)) is a binary function which can only be equal to either 1 or 0 and hence, specifies whether the quantum system is in the position 𝑥 (i.e. state |𝑥⟩) or not at a given 𝑠 and a given 𝑡.

In contrast, the probability amplitude 𝜓(𝑥, 𝑡) = √𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ 𝑒 𝑖𝜑(𝑡,s) indicates the "rate of presence" of a given state |𝑥⟩ at a specific physical-time-index 𝑡. In particular, ‖𝜓(𝑥, 𝑡)‖ 2 = 𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ represents for a given physical-time-index 𝑡, the total rate of the state-time presence of the particle at the position 𝑥, which is also equal to the probability of finding the particle at that position. Indeed, it is straightforwardly evident that the probability of detecting the particle at the position 𝑥 is proportional to the state-time spent by the particle at that position.

The free particle can be viewed at a given physical instant 𝑡, as a spatial cloud formed by the different positions visited by the particle at the different state-time-indices of its state-timedomain. Indeed, at each 𝑡, the particle may be considered as having an oscillatory movement in space with respect to the state-time and thus, at each 𝑡, the particle has multiple positions as if there is not only one particle but plenty of particles that can be represented by a wavelet with respect to 𝑥. The oscillatory-like movement of the particle with respect to the state-time-indices 𝑠 in combination with its proper dynamics with respect to the physical-time-indices 𝑡 create the wavelike movement of the particle.

For simplicity, it can be assumed as described in Binney et al [START_REF] Binney | The Physics of Quantum Mechanics[END_REF], that the free particle has a well-defined energy 𝐸. Thus, the phase term 𝑒 𝑖𝜑(𝑡,s) in equation ( 28) can be expressed by 𝑒 -𝑖𝐸𝑡 ℏ ⁄ which can be approximated by a state of well-defined momentum |𝑝⟩ and can be described by a plane wave of wavelength 𝜆 = ℎ 𝑝 ⁄ as follows:

𝑒 𝑖𝜑(𝑡,s) = 𝑒 𝑖𝑝𝑑 ℏ ⁄ ( 29 
)
where 𝑑 is the distance covered by the particle with respect to the physical-time 𝑡.

On the other hand, it is reasonable to suppose that the spatial points of the cloud furthest away from its centre are visited less "frequently" by the particle than those nearest to the centre. Here, the term "frequently" is to be understood with respect to the state-time and not with respect to the physical-time. Thus, it is sensible to suppose that at a given physical-time 𝑡, the probability amplitude of the particle's positions 𝑥 is the square-root of a Gaussian:

𝜓(𝑥, 𝑡) = √𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ = 1 (2𝜋𝜎 2 ) 1 4 ⁄ 𝑒 -x 2 4𝜎 2 ⁄ (30)
where 𝜎 2 is the variance of the distribution.

Inserting expressions (29) and (30) into equation ( 28), one gets:

|𝑥(𝑡)⟩ = ∫ 𝑑𝑥 𝜓(𝑥, 𝑡) |𝑥⟩ = 1 (2𝜋𝜎 2 ) 1 4 ⁄ ∫ 𝑑𝑥𝑒 -x 2 4𝜎 2 ⁄ 𝑒 𝑖𝑝𝑑 ℏ ⁄ |𝑥⟩ (31)
Equation ( 31) expresses the state of the particle at a physical-time-index 𝑡.

However, concerning measurement, equation ( 27) shows that at a given physical-time-instant 𝑡, all the different positions of the particle do not occur at once with respect to the state-timeindices and thus, if a measurement is to take place, the outcome could be any position 𝑥 with a corresponding probability 𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ as expressed in equation ( 28) without any collapse whatsoever. Now, suppose that at the elementary time-instant 𝑤 𝑀 = (𝑡 𝑀 , s 𝑀 ), the particle has been detected to be at the position 𝑥 𝑀 . Then, just after the measurement, the position becomes stationary with respect to the state-time-indices s (i.e. 𝛿 s (𝐷𝑠(𝑥, t)) = 1, ∀ s 𝜖𝐷s ) but not necessarily with respect to the physical-time 𝑡. In other words, just after the measurement the position of the particle may evolve only with respect to 𝑡 in the same way as a classical evolution of a point particle. At each physical-time 𝑡 immediately after the measurement, the particle would have only one definite position knowing that the particle's position remains stationary with respect to the state-time-indices s (i.e. the position of the particle with respect to the state-time becomes a rectangular function 𝑥(𝑠, 𝑡) = 𝑥(𝑡), ∀ 𝑠 𝜖𝐷𝑠 ). Thus, immediately after the measurement, equation ( 27 On the other hand, the state-vector |𝑥(𝑡)⟩ of equation (31) also becomes stationary (i.e. 𝑙 𝑠 (𝑥, 𝑡) = 𝐿 s ) and thus immediately after the measurement, the outcome probability of finding the particle at the position 𝑥(𝑡) is:

𝑃(𝑥) = ‖𝜓(𝑥, 𝑡)‖ 2 = ‖√𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ 𝑒 𝑖𝜑(𝑡,s) ‖ 2 = ‖√𝐿 𝑠 𝐿 𝑠 ⁄ 𝑒 𝑖𝜑(𝑡,s) ‖ 2 = 1 (33)

Revisiting the double-slit experiment

In this section, we consider a double-slit apparatus comprising a source S of particles, a doubleslit-plate and an impact-screen according to the representation described for example in Binney et al. [START_REF] Binney | The Physics of Quantum Mechanics[END_REF]. Let the double-slit plate and the impact screen be disposed on parallel (x,y) planes with respect to a cartesian coordinate system (x,y,z) having its origin at the source S. Let 2𝛼 be the distance between the slits along the x-axis and let the source S be equidistant from the slits A and B. Let the x-coordinates of slits A and B be 𝑥 𝐴 and 𝑥 𝐵 respectively. Finally, let 𝐿 be the distance along the z-axis between the impact screen and the double-slit plate. We are essentially interested in the particle's impact on the screen along the x-axis and thus, it is sufficient, without much loss of generality, to define the state-vector of a particle only with respect to the xcoordinates.

As described in section 2.3, a free particle emanating out of the source S can be viewed at a given physical-time-instant 𝑡, as a wavelet formed by the different positions visited by the particle at the different state-time-indices 𝑠 of its state-time-domain 𝐷𝑠 whose dynamics is defined by equations ( 27) and (31).

According to equation (31), the probability amplitude 𝜓(𝑥, 𝑡) of the particle can be expressed as follows:

𝜓(𝑥, 𝑡) = 1 (2𝜋𝜎 2 ) 1 4 ⁄ 𝑒 -x 2 2𝜎 2 ⁄ 𝑒 𝑖𝑝𝑑 ℏ ⁄ (34) 
When the particle (represented at each physical-time-instant 𝑡, by a wavelet of different positions) strikes the double-slit-plate, two outgoing wavelets emerge out of the slits. In other words, the primary wavelet coming from the source is separated into two secondary wavelets spanned by the same particle at each given physical-time-instant 𝑡. 

The state-vectors |𝑥 𝐴 (𝑡)⟩ and |𝑥 𝐵 (𝑡)⟩ represent the different positions of the same particle around slits A and B respectively, at different state-time-indices 𝑠 but at the same physicaltime-index 𝑡.

Similarly, in accordance to equation (28), the main wavelet represented by the state-vector |𝑥(𝑡)⟩ can be expressed as follows: where 𝑙 sA and 𝑙 sB represent the state-time-terms during which the particle is in the state of being around slits A and B respectively. In other terms, at a given physical-time-instant 𝑡, the particle spends the fraction 𝑙 sA of its state-time-term 𝐿 s around slit A and the fraction 𝑙 sB of its state-time-term 𝐿 s around slit B.

Meanwhile, 𝐿 s = 𝑙 sA + 𝑙 sB and it is realistic to suppose that both states have equal state-timeterms (i.e. 𝑙 sA = 𝑙 sB = 𝐿 s 2 ⁄ ). Moreover, it is reasonably supposed that the probability distribution of the particle around each slit with respect to 𝑥 is a Gaussian. In addition, it is assumed that the particle coming out of the slits retains its former wavelength and thus, the particle around each slit can be described (as in section 2.3) by a plane wave of wavelength 𝜆 = ℎ 𝑝 ⁄ such that equation (37) can be expressed as follows:

|𝑥(𝑡)⟩ = 1 (2𝜋𝜎 2 ) 1 4 ⁄ √2 2 [∫ 𝑑𝑥 𝑒 -(𝑥-𝑥 𝐴 ) 2 4𝜎 2 ⁄ 𝑒 𝑖𝑝𝑑 𝐴 ℏ ⁄ |𝑥 𝐴 ⟩ + ∫ 𝑑𝑥 𝑒 -(𝑥-𝑥 𝐵 ) 2 4𝜎 2 ⁄ 𝑒 𝑖𝑝𝑑 𝐵 ℏ ⁄ |𝑥 𝐵 ⟩] (38) 
According to equation (38), the probability amplitudes 𝜓 𝐴 (𝑥, 𝑡) and 𝜓 𝐵 (𝑥, 𝑡) arriving at the point 𝑥 on the screen after covering distances 𝑑 𝐴 and 𝑑 𝐵 from slits A and B respectively are given by:

𝜓 𝐴 (𝑥, 𝑡) = 1 (2𝜋𝜎 2 ) 1 4 ⁄ √2 2 𝑒 -(𝑥-𝑥 𝐴 ) 2 4𝜎 2 ⁄ 𝑒 𝑖𝑝𝑑 𝐴 ℏ ⁄ (39) 𝜓 𝐵 (𝑥, 𝑡) = 1 (2𝜋𝜎 2 ) 1 4 ⁄ √2 2 𝑒 -(𝑥-𝑥 𝐵 ) 2 4𝜎 2 ⁄ 𝑒 𝑖𝑝𝑑 𝐵 ℏ ⁄ (40)
Thus, the same particle has a movement at each physical-time-instant 𝑡 that can be assimilated to two waves and thus, the particle interferes with itself or in other words, viewed from the perspective of the physical-time, the particle seems to be formed of an infinite number of pointparticles moving in a wave-like structure. Each point-particle represents the particle at a specific position at a corresponding state-time-index.

The probability of the particle to be at the position 𝑥 on the screen is thus given by:

𝑃(𝑥) = |𝜓 𝐴 (𝑥, 𝑡) + 𝜓 𝐵 (𝑥, 𝑡)| 2 = |𝜓 𝐴 | 2 + |𝜓 𝐵 | 2 + 2𝑅𝑒(𝜓 𝐴 * 𝜓 𝐵 ) (41)
The last term refers to the interference 𝐼(𝑥) between the two probability amplitudes:

𝐼(𝑥) = 2𝑅𝑒(𝜓 𝐴 * 𝜓 𝐵 ) = 1 (2𝜋𝜎 2 ) 1 2 ⁄ 𝑒 -[(𝑥-𝑥 𝐴 ) 2 +(𝑥-𝑥 𝐵 ) 2 ] 2𝜎 2 ⁄ 𝑒 𝑖𝑝(𝑑 𝐵 -𝑑 𝐴 ) ℏ ⁄ (42)
However, by using Pythagoras' theorem and by assuming that both 𝑥 and 𝛼 are much smaller than 𝐿, it is deduced:

𝑑 𝐴 = √𝐿 2 + (𝑥 -𝛼) 2 ≈ 𝐿 2 ⁄ + (𝑥 -𝛼) 2 2𝐿 ⁄ (43) 
𝑑 𝐵 = √𝐿 2 + (𝑥 + 𝛼) 2 ≈ 𝐿 2 ⁄ + (𝑥 + 𝛼) 2 2𝐿 ⁄ (44) 
Therefore:

𝑑 𝐵 -𝑑 𝐴 ≈ 2𝑥𝛼 𝐿 ⁄ (45) 
Equation (42) can thus be expressed as follows:

𝐼(𝑥) = 1 (2𝜋𝜎 2 ) 1 2 ⁄ 𝑒 -[(𝑥-𝑥 𝐴 ) 2 +(𝑥-𝑥 𝐵 ) 2 ] 2𝜎 2 ⁄ cos (2𝑝𝛼𝑥 ℏ𝐿 ⁄ ) (46) 
The above equation (39) illustrates a Gaussian distribution of the interference phenomenon produced on the screen as confirmed by experiment.

On the other hand, once detectors are placed at the slits, the particle is detected at either slit A or slit B. Indeed, suppose that the particle at the elementary instant 𝑤 𝑀 = (𝑡 𝑀 , s 𝑀 ) happened to be at the position |𝑥 𝐴 ⟩, then this position is trapped by the interaction between the particle and the detector at that elementary instant 𝑤 𝑀 and thus, the particle is observed at slit A.

Immediately after the detection, the position at which the particle was trapped becomes stationary with respect to the state-time-indices s. That is, 𝛿 s (𝐷𝑠(𝑥, t)) = 1, ∀ s 𝜖𝐷s or equivalently the state-time-term 𝑙 𝑠 (𝑥, 𝑡) during which the particle is at the position 𝑥(𝑡) is equal to the total state-time-term 𝐿 s . Therefore, the particle may evolve only with respect to 𝑡 having only one definite position at each 𝑡 and thus, no interference can take place. After detection the electron simply behaves as a simple particle coming from slit A and impacts the screen at a specific point as confirmed by experiment.

Uncertainty

The uncertainty principle comes from a statistical distribution of the different states of a particle with respect to the state-time-indices 𝑠 at any given physical-time-index 𝑡.

Indeed, consider a particle whose position |𝑥⟩ is defined by a one-dimensional representation along the x-axis according to equations ( 27) and (28). Equation ( 27) implies that when the statetime-index s spans the state-time-domain 𝐷s, the position of the particle at a given 𝑡 can be considered as a continuous random variable that takes its values in R. Equation (28) implies that the probability distribution density of the position is given by:

𝑃(𝑥) = ‖𝜓(𝑥)‖ 2 = 𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ (47) 
where 𝜓(𝑥) is the wave function defining the position of the particle. It should be noted that the probability distribution 𝑃(𝑥) reflects the statistical distribution of the different positions of the particle in the state-time-domain 𝐷s at a given physical-time-index 𝑡.

Fourier analysis shows that the probability distribution of the momentum |𝑝⟩ of the particle is given by ‖𝜓 ̂(𝑝)‖ 2 where 𝜓 ̂ is the Fourier transform of 𝜓. A variance 𝑉𝑎𝑟(𝑥) for the distribution of position 𝑥 and a variance 𝑉𝑎𝑟(𝑝) for the distribution of momentum 𝑝 satisfy the following well-known [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF][START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF] classical mathematical relation:

𝑉𝑎𝑟(𝑥)𝑉𝑎𝑟(𝑝) ≥ ℎ 4 ⁄ (48) 
It should be emphasised that the above uncertainty relation (48) comes from the statistical distribution of the different positions and momenta of a single particle at a given 𝑡 taken by the different state-time-indices belonging to the time thickness. It does not come from a statistical distribution of the different positions and momenta of different particles.

The down bound of the uncertainty relation (48) is attained when the probability distribution is Gaussian. Indeed, let the probability distribution 𝑃(𝑥) of the different positions of a particle at a given 𝑡 taken with respect to different state-time-indices 𝑠 be defined by equation (30). Thus, by making abstraction of the phase term, the probability amplitude 𝜓(𝑥, 𝑡) of the particle at a given 𝑡 can be expressed as follows:

𝜓(𝑥, 𝑡) = 1 (2𝜋𝜎 𝑥 2 ) 1 4 ⁄ 𝑒 -x 2 4𝜎 𝑥 2 ⁄ ( 49 
)
where 𝜎 𝑥 is the dispersion with respect to the position 𝑥 of the particle around an origin.

On the other hand, it is known [START_REF] Binney | The Physics of Quantum Mechanics[END_REF] that the normalised wave-function of a particle of momentum 𝑝 in the one-dimensional space representation is given by: ⟨𝑥|𝑝⟩ = where 𝜎 𝑝 = ℏ 2𝜎 𝑥 ⁄ and thus:

𝜎 𝑥 𝜎 𝑝 = ℏ 2 ⁄ (53) 
Equation ( 53) indicates that at a given 𝑡, a single particle has a spectrum of different positions scattered with a dispersion 𝜎 𝑥 and a spectrum of different momenta scattered with a dispersion 𝜎 𝑝 such that their product is a constant equal to ℏ 2 ⁄ .

The particle has a definite position and momentum at each elementary instant 𝑤 = (𝑡, 𝑠) but of course, for each physical time-index 𝑡, there exists a plurality of state-time-indices 𝑠 at which the particle has its position and momentum scattered according to the dispersions 𝜎 𝑥 and 𝜎 𝑝 which are related in accordance to equation (53). If the position of the particle is measured, its position is confined to a small delta of space with respect to the state-time-indices whereas, the dispersion of its momentum is enlarged.

Indeed, the thickness of time provides a particle with a wave-like nature that creates interference as already discussed in section 3. Thus, a particle that has a wide range of momenta taken by the different state-time-indices 𝑠 at a given 𝑡, creates a high interference pattern leading the particle to be confined into a smaller space. Indeed, for a given 𝑡, a particle that keeps changing its momentum with respect to the state-time-indices 𝑠 stagnates around its position. In contrast, for a given 𝑡, a particle that has a definite momentum creates less interference and thus spreads out in space.

Conclusion

By assuming the existence of a time-thickness, the superposition principle and measurement become logically simple and the inconsistencies of quantum mechanics seem to vanish. Indeed, from the viewpoint of the physical-time, the particle has a plurality of equally real positions at each physical-time-index and thus seems to behave as a plurality of different particles having a wave-like movement. However, when a measurement is conducted, the particle is "captured" at one specific position with respect to the state-time-indices and thus after the measurement the position of the particle may vary only with respect to the physical-time and not with respect to the state-time-indices.

The concept of the above interpretation may be summarised by readapting the above Wheeler's citation by saying that thickness of time is particle's way to be all over "at once".

  (𝑡, s)⟩ = ∫ 𝑑𝑥 𝜓(𝑥, 𝑡, s) |𝑥⟩ = ∫ 𝑑𝑥 𝛿 𝑠 (𝐷𝑠(𝑥, 𝑡))|𝑥⟩ (27) |𝑥(𝑡)⟩ = ∫ 𝑑𝑥 𝜓(𝑥, 𝑡) |𝑥⟩ = ∫ 𝑑𝑥√𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ 𝑒 𝑖𝜑(𝑡,s) |𝑥⟩ (28)

  ) becomes: |𝑥(𝑡, s)⟩ = ∫ 𝑑𝑥 𝜓(𝑥, 𝑡, s) |𝑥⟩ = ∫ 𝑑𝑥 𝛿 𝑠 (𝐷𝑠(𝑥, 𝑡))|𝑥⟩ = |𝑥⟩ (32)

  |𝑥(𝑡)⟩ = ∫ 𝑑𝑥 𝜓(𝑥, 𝑡) |𝑥⟩ = ∫ 𝑑𝑥 𝜓 𝐴 (𝑥, 𝑡) |𝑥 𝐴 ⟩ + ∫ 𝑑𝑥 𝜓 𝐵 (𝑥, 𝑡) |𝑥 𝐵 ⟩ (36) |𝑥(𝑡)⟩ = ∫ 𝑑𝑥√𝑙 𝑠𝐴 (𝑥, 𝑡) 𝐿 𝑠 ⁄ 𝑒 𝑖𝜑 𝐴 (𝑡,s) |𝑥 𝐴 ⟩ + ∫ 𝑑𝑥√𝑙 𝑠𝐵 (𝑥, 𝑡) 𝐿 𝑠 ⁄ 𝑒 𝑖𝜑 𝐵 (𝑡,s) |𝑥 𝐵 ⟩ (37)

  of momentum 𝜓(𝑝, 𝑡) of the particle at a given 𝑡 can thus be expressed as follows: 𝜓(𝑝, 𝑡) = ∫ 𝑑𝑥 above Gauss integral, the above equation (51) becomes:

  At each physical-time-index 𝑡, equation (6) (i.e. first equation of system (22)) expresses the state-vector |𝜓(𝑥, 𝑡, s)⟩ with respect to all eigenvectors |𝜓 𝑘 (𝑥)⟩ while having a single outcome at each state-time-index s. However, equation (21) (i.e. second equation of system (22)) describes the state-vector |𝜓(𝑥, 𝑡)⟩ as a superposition of eigenvectors |𝜓 𝑘 (𝑥)⟩ in a conventional manner but where the probability of a given state |𝜓 𝑘 (𝑥)⟩ is proportional to the state-time-term

				) as
	follows:	
	{	|𝜓(𝑥, 𝑡, s)⟩ = ∑ 𝛿 s (𝐷s 𝑘 (t))|𝜓 𝑘 (𝑥)⟩ 𝑘 |𝜓(𝑥, 𝑡)⟩ = ∑ 𝑐 𝑗 (𝑡)|𝜓 𝑗 (𝑥)⟩ 𝑗 = ∑ √𝑙 sk 𝐿 s 𝑘 ⁄ 𝑒 𝑖𝜑 𝑘 (𝑡,s) |𝜓 𝑘 (𝑥)⟩	(22)
	In a continuous spectrum, the above set of equations becomes:
	|𝜓(𝑥, 𝑡, s)⟩ = ∫ 𝑑𝑥 𝛿 𝑠 (𝐷𝑠(𝑥, 𝑡))|𝜓(𝑥)⟩	(23)
	|𝜓(𝑥, 𝑡)⟩ = ∫ 𝑑𝑥 𝜓(𝑥, 𝑡) |𝜓(𝑥)⟩ = ∫ 𝑑𝑥√𝑙 𝑠 (𝑥, 𝑡) 𝐿 𝑠 ⁄ 𝑒 𝑖𝜑(𝑡,s) |𝜓(𝑥)⟩	(24)

  The primary wavelet represented by the state-vector |𝑥(𝑡, s)⟩ can be thus expressed as the sum of the secondary wavelets represented by the state-vectors |𝑥 𝐴 (𝑡, 𝑠)⟩ and |𝑥 𝐵 (𝑡, 𝑠)⟩ in accordance with equation (27) as follows: |𝑥(𝑡, s)⟩ = 𝛿 s (𝐷s 𝐴 (t))|𝑥 𝐴 (𝑡)⟩ + 𝛿 s (𝐷s 𝐵 (t))|𝑥 𝐵 (𝑡)⟩ = { |𝑥 𝐴 (𝑡)⟩ 𝑖𝑓 s𝜖𝐷s 𝐴 |𝑥 𝐵 (𝑡)⟩ 𝑖𝑓 s𝜖𝐷s 𝐵