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Null controllability of the Lotka-McKendrick

system with spatial diffusion

Nicolas Hegoburu∗, Marius Tucsnak†

November 24, 2017

Abstract

We consider the infinite dimensional linear control system described by the population dynam-
ics model of Lotka-McKendrick with spatial diffusion. Considering control functions localized
with respect to the spatial variable but active for all ages, we prove that the whole population
can be steered to zero in any positive time. The main novelty we bring is that, unlike the
existing results in the literature, we can also control the population of ages very close to 0.
Another novelty brought in is the employed methodology: as far as we know, the present work
is the first one remarking that the null controllability of the considered system can be obtained
by using the Lebeau-Robbiano strategy, originally developed for the null-controllability of the
heat equation.

1 Introduction

We consider a linear controlled age-structured population model with spatial diffusion described
by the following system:

∂tp(t, a, x) + ∂ap(t, a, x) + µ(a)p(t, a, x)−∆p(t, a, x)

= χω(x)u(t, a, x), t > 0, a ∈ (0, a†), x ∈ Ω,

∂p

∂ν
(t, a, x) = 0, t > 0, a ∈ (0, a†), x ∈ ∂Ω,

p(t, 0, x) =

∫ a†

0

β(a)p(t, a, x) da, t > 0, x ∈ Ω,

p(0, a, x) = p0(a, x), a ∈ (0, a†), x ∈ Ω.

(1.1)

In the above equations:

• Ω ⊂ Rn, n > 1, denotes a smooth connected bounded domain and ∆ is the laplacian with
respect to the variable x;

• ∂

∂ν
denotes the derivation operator in the direction of the unit outer normal to ∂Ω. We thus

have homogeneous Neumann boundary conditions, thus the considered population is isolated
from the exterior of Ω;

• p(t, a, x) denotes the distribution density of the population at time t, of age a at spatial
position x ∈ Ω;
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• p0 denotes the initial population distribution;

• a† ∈ (0,+∞) is the maximal life expectancy;

• β(a) and µ(a) are positive functions denoting respectively the birth and death rates, which
are supposed to be independent of t and x;

• ω ⊂ Ω is a nonempty open susbet of Ω and χω denotes the characteristic function of ω.

We make the following classical assumptions on β and µ:

(H1) β ∈ L∞(0, a†), β(a) > 0 for almost every a ∈ (0, a†),

(H2) µ ∈ L1[0, a∗] for every a∗ ∈ (0, a†), µ(a) > 0 for almost every a ∈ (0, a†),

(H3)

∫ a†

0

µ(a) da = +∞.

We also introduce the function

π(a) := exp

(
−
∫ a

0

µ(s) ds

)
, (1.2)

which is the probability of survival of an individual from age 0 to a.

Our main result is

Theorem 1.1. With the above notations and assumptions, for every τ > 0 and for every p0 ∈
L2((0, a†)×Ω), there exists u ∈ L∞((0, τ);L2((0, a†)×ω)) such that the solution p of (1.1) satisfies

p(τ, a, x) = 0 (a ∈ (0, a†), x ∈ Ω a.e.). (1.3)

The null-controllability of the the system modelling age-dependant population dynamics is by
now well understood in the case in which diffusion is neglected (see Barbu, Ianelli and Martcheva [6]
and Hegoburu, Magal, Tucsnak [8]). In the case when spatial diffusion is taken into account, namely
for (1.1), the particular case when the control acts in the whole space (the case corresponding to
ω = Ω) was investigated by S. Aniţa (see [5], p 148). The case when the control acts in a spatial
subdomain ω was firstly studied by B. Ainseba [1], where the author proves the null controllability
of the above system (1.1), except for a small interval of ages near zero. The case when the control
acts in a spatial subdomain ω and also only for small age classes was investigated by B. Ainseba
and S. Aniţa [2], for initial data p0 in a neighborhood of the target p̃. Related approximate and
exact controllability issues have also been studied in Ainseba and Langlais [4], Ainseba and Iannelli
[3], Traore [20], Kavian and Traore [13]. The main novelty (with respect to the literature quoted
above) brought in Theorem 1.1 is in our case u can be chosen such that (1.3) holds for every
a ∈ (0, a+) instead of (δ, a+), with δ > 0, as it has been done, for instance, in [1]. We can thus
find a control driving to zero the whole population, without excluding very young individuals.
Moreover, we do not assume that the birth rate vanishes for small ages.

The remaining part of this work is organized as follows. In Section 2 we recall some basic
results on the Lotka-McKendrick semigroup, with or without spatial diffusion, and we state a null
controllability result associated to system (1.1) without spatial diffusion. Section 3 is devoted to
study the null controllability of low frequencies for the solution of system (1.1). We prove the main
result in Section 4, by using a version of the Lebeau-Robbiano strategy.

Notation: In all what follows, C will denote a generic constant, depending only of the coeffi-
cients in (1.1), on Ω and ω, whose value may change from line to line.
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2 Some background on the Lotka-McKendrick semigroup

In this section we recall, with no claim of originality, some existing results on the population
semigroup for the linear age-structured model without and with spatial diffusion. In particular, we
recall the structure of the spectrum of the semigroups generators, together with some controllability
results concerning the free diffusion case.

2.1 The free diffusion case

In this paragraph we remind some results on the diffusion free case, which is described by the
so-called McKendrick-Von Foster model. With one exception, we do not give proofs and we refer,
for instance, to Song et al. [18] or Inaba [10] for a detailed presentation of these issues.

The considered system is:
∂tp(t, a) + ∂ap(t, a) = −µ(a)p(t, a), t > 0, a ∈ (0, a†),

p(t, 0) =

∫ a†

0

β(a)p(t, a) da, t > 0,

p(0, a) = p0(a), a ∈ (0, a†),

(2.1)

where µ and β satisfy the assumptions in Theorem 1.1.

The above system is described by the operator A0 defined by

D(A0) =

{
ϕ ∈ L2[0, a†] | ϕ(0) =

∫ a†

0

β(a)ϕ(a) da; −dϕ

da
− µϕ ∈ L2[0, a†]

}
,

A0ϕ = −dϕ

da
− µϕ (ϕ ∈ D(A0)).

(2.2)

Theorem 2.1. The operator A0 defined by (2.2) has compact resolvent and its spectrum is con-
stituted of a countable (infinite) set of isolated eigenvalues with finite algebraic multiplicity. The
eigenvalues (λ0

n)n>1 of A0 (counted without multiplicity) are the solutions of the characteristic
equation

F (λ) :=

∫ a†

0

β(a)e−λaπ(a) da = 1. (2.3)

The eigenvalues (λ0
n)n>1 are of geometric multiplicity one, the eigenspace associated to λ0

n being
the one-dimensional subspace of L2(0, a†) generated by the function

ϕ0
n(a) = e−λ

0
nπ(a) = e−λ

0
na−

∫ a
0
µ(s) ds.

Finally, every vertical strip of the complex plane α1 6 Re(z) 6 α2, α1, α2 ∈ R, contains a finite
number of eigenvalues of A0.

Theorem 2.2. The operator A0 defined by (2.2) has a unique real eigenvalue λ0
1. Moreover, we

have the following properties :

1. λ0
1 is of algebraic multiplicity one;

2. λ0
1 > 0 (resp. λ0

1 < 0) if and only if F (0) > 1 (resp. F (0) < 1);

3. λ0
1 is a real dominant eigenvalue:

λ0
1 > Re(λ0

n), ∀n > 2. (2.4)

It is well known (see, for instance, Song et al. [18] or Kappel and Zhang [12]) that A generates
a C0 semigroup of linear operators in L2[0, a†] which we denote by TA0 = (TA0

t )t>0. We also have
the following useful result (see, for instance, [10, p 23]):
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Proposition 2.3. The semigroup TA0 generated on L2([0, a†]) by A0 is compact for t > a†.

According to Zabczyk [21, Section 2]), this implies in particular that

wa(A0) = w0(A0),

where ωa(A0) := lim
t→+∞

t−1 ln ‖TA0
t ‖L2(0,a†) denotes the growth bound of the semigroup TA0

t and

ω0(A0) := sup{Reλ | λ ∈ σ(A0)} the spectral bound of A0. It is worth noticing that the above
condition ensures that the exponential stability of TA0 is equivalent to the condition ω0(A0) < 0.
According to Theorem 2.1 and 2.2, it follows that the exponential stability of TA0 is equivalent
to the condition λ0

1 < 0, where λ0
1 < 0 is the unique real solution to the characteristic equation

defined by (2.3).

The free diffusion control problem associated to system (1.1) writes as
∂tp(t, a) + ∂ap(t, a) + µ(a)p(t, a) = v(t, a), t > 0, a ∈ (0, a†),

p(t, 0) =

∫ a†

0

β(a)p(t, a) da, t > 0,

p(0, a) = p0(a), a ∈ (0, a†),

(2.5)

where v is the control function. Let us state a null controllability result for system (2.5):

Proposition 2.4. Under the assumptions of Theorem 1.1, for every τ > 0, there exists v ∈
L∞((0, τ);L2(0, a†)) such that the solution p of (2.5) satisfies

p(τ, a) = 0 (a ∈ (0, a†) a.e.).

Moreover, we have

‖v‖L∞((0,τ);L2(0,a†)) 6

sup
σ∈[0,τ ]

‖TA0
σ ‖L2(0,a†)

τ
‖p0‖L2(0,a†). (2.6)

Proof. Let τ > 0. For almost every (t, a) ∈ (0, τ)× (0, a†), we set

v(t, a) = −1

τ
(TA0
t p0)(a) (t ∈ (0, τ), a ∈ (0, a†)). (2.7)

It is easy to check that the (mild) solution p of (2.5), given by

p(t, a) = TA0
t p0(a) +

∫ t

0

TA0
t−σv(σ)(a) dσ, (2.8)

with v defined in (2.7), satisfies p(τ, ·) = 0. Moreover, the cost stated in inequality (2.6) follows
from the definition of the control v given by (2.7).

2.2 The population dynamics with diffusion

The existence of a semigroup on L2((0, a†) × Ω) describing the linear age-structured population
model with diffusion coefficient and age dependent birth and death rates, with homogeneous Neu-
mann boundary conditions has been proved in Huyer [9] (see also [7] for the case of homogeneous
Dirichlet boundary conditions).

More precisely, let X := L2((0, a†)× Ω) and define the following unbounded operator A on X:

D(A) = {ϕ ∈ X | ϕ ∈ C([0, a†];L
2(Ω)) ∩ L2([0, a†], H

1(Ω)),

ϕ(0, x) =
∫ a†

0
β(a)ϕ(a, x) da; −dϕ

da
− µϕ+ ∆ϕ ∈ X},

Aϕ = −dϕ

da
− µϕ+ ∆ϕ (ϕ ∈ D(A)).

(2.9)
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The generator A of the population semigroup can be seen as the sum of a population operator
without diffusion −d/da−µI and a spatial diffusion term ∆. It turns out that spectral properties
of A can be easily obtained from those of these two operators.

Theorem 2.5. Let 0 = λ0 < λ1 6 λ2 6 . . . be the increasing sequence of eigenvalues of −∆ with
Neumann boundary conditions and let (ϕn)n>0 be a corresponding orthonormal basis of L2(Ω).
Let (λ0

n)n>1 and (ϕ0
n)n>1 be respectively the sequence of eigenvalues and eigenfunctions of the free

diffusion operator A0 defined by (2.2) (see Theorem 2.1). Then the following assertions hold:

1. The eigenvalues of A are given by

σ(A) = {λ0
i − λj | i ∈ N∗, j ∈ N}.

2. A has a dominant eigenvalue:

λ1 = λ0
1 > Re(λ), ∀λ ∈ σ(A), λ 6= λ1.

3. The eigenspace associated to an eigenvalue λ of A is given by

Span{ϕ0
i (a)ϕj(x) = e−λ

0
iaπ(a)ϕj(x) | λ0

i − λj = λ}.

• • • • • •
λ0 λ1 λj → +∞

λ0
1

λ0
2

λ0
3

Figure 1: The spectrum of the free diffusion operator A0 (green crosses) and of −∆ (red circles)

Since the operator A generates a C0 semigroup of linear operators in X which we denote by
TA = (TAt )t>0, this allows to define the concept of (mild) solution of (1.1) in the following standard
way: we say that p is a mild solution of (1.1) if

p(t, ·) = TAt p0 + Φtu (t > 0, u ∈ L2([0,∞);X)), (2.10)

where the control operator B ∈ L(X) is defined by

Bu = χωu (u ∈ X),

and where

Φtu =

∫ t

0

TAt−σBu(σ) dσ (t > 0, u ∈ L2([0,∞);X)). (2.11)

It is worth noticing, for instance by using a spectral decomposition, that the semigroup TA is
exponentially stable if λ0

1 < 0, where we recall that λ0
1 denotes the unique real solution to the

characteristic equation defined by (2.3).
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Remark 2.6. In order to prove the null controllability of system (1.1), we may assume, without
loss of generality, that the so called reproductive number satisfies∫ a†

0

β(a)π(a) da < 1, (2.12)

which implies that both semigroups TA0 and TA are exponentially stable - see the above results.

Indeed, in the case where

∫ a†

0

β(a)π(a) da > 1, we may consider the auxiliary system



∂tz(t, a, x) + ∂az(t, a, x) + µ̃(a)z(t, a, x)−∆z(t, a, x)

= χω(x)v(t, a, x), t > 0, a ∈ (0, a†), x ∈ Ω,

∂z

∂ν
(t, a, x) = 0, t > 0, a ∈ (0, a†), x ∈ ∂Ω,

z(t, 0, x) =

∫ a†

0

β(a)z(t, a, x) da, t > 0, x ∈ Ω,

z(0, a, x) = p0(a, x), a ∈ (0, a†), x ∈ Ω,

(2.13)

with µ̃(a) := µ(a) + λ, where λ > 0 is large enough to have∫ a†

0

β(a)e−
∫ a
0
µ̃(s) ds da < 1.

Suppose that the above system (2.13) is null controllable with control function v. Then, system
(1.1) is null controllable with control function u = eλtv, which has the same regularity as v.

From now on, without loss of generality (see Remark 2.6), we assume that both semigroups TA0

and TA are exponentially stable, which implies that there exists a constant C > 0 and a constant
M > 0 such that for every t > 0, we have

‖TA0
t ‖L(L2[0,a†]) 6 C and ‖TAt ‖L(X) 6M (t > 0). (2.14)

3 Low frequency control

In this section, we prove that the projection of the state trajectory of (1.1) on an infinite subspace
of X (defined using the eigenfunctions of the Neumann Laplacian) can be steered to zero in any
time and we estimate the norm of the associated control. More precisely, let {ϕj}j>0 be an
orthonormal basis in L2(Ω) formed of eigenvectors of the Neumann Laplacian and let (λj)j>0 be
the corresponding non decreasing sequence of eigenvalues. In other words (ϕj)j>0 is an orthonormal
basis in L2(Ω) such that for every j > 0 we have

−∆ϕj = λjϕj in Ω,

∂ϕj
∂ν

= 0 on ∂Ω.
(3.1)

In the sequel, for any µ > 0, we denote by

N (µ) := Card{k : λk 6 µ}, (3.2)

Eµ = Span{φk : λk 6 µ},

and ΠEµ : L2(Ω)→ L2(Ω) the orthogonal projection from L2(Ω) onto Eµ. The main result of this
section is:
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Proposition 3.1. Let µ > 0, and let T > 0. There exists uµ ∈ L∞((0, T );X) such that the
solution p of (1.1) satisfies

ΠEµp(T, a, ·) = 0 (a ∈ (0, a†) a.e.)

Moreover, we have the following estimate:

‖uµ‖L∞((0,T );X) 6
CeC

√
µ

T
‖p0‖X .

The main ingredient of the proof is an inequality involving the eigenfunctions of the Neumann
Laplacian. This inequality, obtained in Jerison and Lebeau [11], can also obtained by combining
results and methods from Lebeau and Robbiano [14], [15].

Theorem 3.2. For any non-empty open subset ω of Ω, there exists C > 0 such that for any µ > 0,
for any sequence (aj)j>0 ⊂ R, we have

∑
j:λj6µ

|aj |2 6 CeC
√
µ

∫
ω

∣∣∣∣∣∣
∑

j:λj6µ

ajϕj(x)

∣∣∣∣∣∣
2

dx. (3.3)

We will also use the following classical lemma, whose proof can be found, for instance, in [19] -
Section 2.

Lemma 3.3. Suppose that W,Y,Z are Hilbert spaces, F ∈ L(W,Z) and that G ∈ L(Y, Z). Denote
by A∗ the adjoint of an operator A. Then the following statements are equivalent:

(i) there exists c > 0 such that

‖F∗z‖W 6 c‖G∗z‖Y (z ∈ Z);

(ii) there exists H ∈ L(W,Y ) such that GH = F and ‖H‖L(W,Y ) 6 c.

Proof of Proposition 3.1. Note that the solution p of (1.1) writes

p(t, a, ·) =

+∞∑
j=0

pj(t, a)ϕj in L2(Ω), a.e. in (0, T )× (0, a†),

where
∂tp

j(t, a) + ∂ap
j(t, a) + (µ(a) + λj)p

j(t, a) =

∫
ω

u(t, a, x)ϕj(x) dx, t > 0, a ∈ (0, a†),

pj(t, 0) =

∫ a†

0

β(a)pj(t, a) da, t > 0,

pj(0, a) = pj0(a), a ∈ (0, a†),

(3.4)

and where

p0(a, ·) =

+∞∑
j=0

pj0(a)ϕj in L2(Ω), a.e. a ∈ (0, a†).

The aim is to solve the following moment problem: find u ∈ L∞((0, T );X) such that for every
j ∈ [0,N (µ)], we have∫

ω

uµ(t, a, x)ϕj(x) dx = vj(t, a) ((t, a) ∈ (0, T )× (0, a†) a.e.), (3.5)
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where vj denotes a null control associated to the system
∂tp

j(t, a) + ∂ap
j(t, a) + (µ(a) + λj)p

j(t, a) = vj(t, a), t > 0, a ∈ (0, a†),

pj(t, 0) =

∫ a†

0

β(a)pj(t, a) da, t > 0,

pj(0, a) = pj0(a), a ∈ (0, a†).

(3.6)

Recall from Proposition 2.4 and assumptions stated in Remark 2.6 that for every j > 0, there
exists vj ∈ L∞((0, T );L2(0, a†)) so that the solution pj of the above system (3.6) satisfies pj(T, a) =

0 for almost every a ∈ (0, a†), with ‖vj‖L∞((0,T );L2(0,a†)) 6 C
T ‖p

j
0‖L2(0,a†), where C is a constant

independent of λj (since we can choose vj(t, a) = − e
−tλj

T (TA0
t pj0)(a)).

Let µ > 0. Define the map G : L2(ω)→ RN (µ)+1 by

Gu :=

(∫
ω

u(x)ϕj(x) dx

)
06j6N (µ)

.

It is easy to check that for every w = (wj)06j6N (µ) ∈ RN (µ)+1, we have

G?w =

N (µ)∑
j=0

wjϕj . (3.7)

Inequality (3.3) ensures that for every w ∈ RN (µ)+1, we have

‖w‖RN(µ)+1 6 CeC
√
µ‖G?w‖L2(ω). (3.8)

By Lemma 3.3 with W = Z = RN (µ)+1, Y = L2(ω) and F = IdL(RN(µ)+1), it follows that there

exists H ∈ L(RN (µ)+1, L2(ω)) such that GH = IdL(RN(µ)+1). Moreover, ‖H‖L(RN(µ)+1) 6 CeC
√
µ

so that for every w ∈ RN (µ)+1, there exists u := H(w) ∈ L2(ω) such that Gu = w and ‖u‖L2(ω) 6
CeC

√
µ‖w‖RN(µ)+1 .

Let (t, a) ∈ (0, T )× (0, a†). Setting w := (vj(t, a))06j6N (µ) where vj is the null control defined
by Proposition 2.4 (with µ(a) replaced by (µ(a) +λj)), it follows that there exists uµ(t, a) ∈ L2(ω)
such that Guµ(t, a) = w, i.e.∫

ω

uµ(t, a, x)ϕj(x) dx = vj(t, a) (j ∈ [|0,N (µ)|], (t, a) ∈ (0, T )× (0, a†) a.e.), (3.9)

with
‖uµ(t, a, ·)‖L2(ω) 6 CeC

√
µ‖w‖RN(µ)+1 . (3.10)

From the above inequality (3.9), it follows that

‖uµ‖2L∞((0,T );X) 6 CeC
√
µ

N (µ)∑
j=0

‖vj‖2L∞((0,T );L2(0,a†))
, (3.11)

where ‖vj‖2L∞((0,T );L2(0,a†))
6 C

T 2 ‖pj0‖2L2(0,a†)
by Proposition 2.4, so that from the above inequality

we have

‖uµ‖2L∞((0,T );X) 6
CeC

√
µ

T 2
(N (µ) + 1)‖p0‖2X .

By Weyl’s formula (see, for instance, Netrusov and Safarov [16] for a reminder), there exists a
constant K > 0 such that N (µ) 6 Kµ

n
2 , so that from the above formula we have

‖uµ‖L∞((0,T );X) 6
CeC

√
µ

T
‖p0‖X ,

for some constant C > 0.
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4 Proof of the main result

In this section we prove Theorem 1.1 by applying a version of the Lebeau-Robbiano strategy,
initially proposed for the heat equation. A distinctive feature of the version of this methodology
we propose here is that the projected systems are infinite dimensional, being described by equations
similar to the Lotka-McKendrick system without spatial diffusion. To apply this strategy, we need
these systems to be null controllable in arbitrarily small time so that our method is limited to the
case of a control which is active for all ages.

Recall from Proposition 3.1 that, given a time T > 0 and a frequency µ > 0, there exists
uµ ∈ L∞((0, T );X) such that the solution p of (1.1) belongs to the orthogonal of Eµ at time T ,
for every a ∈ (0, a†). The control cost behaves like eC

√
µ, and can be compensated by the natural

dissipation of the solution stated in the following proposition.

Proposition 4.1. Let µ > 0. Suppose that ΠEµp0(a, ·) = 0 for almost every a ∈ (0, a†). Then
there exists a constant M > 0 such that for every t > 0, the solution p of (1.1) with u ≡ 0 satisfies

‖p(t, ·, ·)‖X 6Me−µt‖p0‖X (t > 0).

Proof. Suppose that ΠEµp0(a) = 0 for almost every a ∈ (0, a†). With u ≡ 0, the solution p of (1.1)
satisfies

p(t, a, ·) =
∑

j: λj>µ

pj(t, a)ϕj in L2(Ω), a.e. in (0, τ)× (0, a†),

where 
∂tp

j(t, a) + ∂ap
j(t, a) + (µ(a) + λj)p

j(t, a) = 0 t > 0, a ∈ (0, a†),

pj(t, 0) =

∫ a†

0

β(a)pj(t, a) da, t > 0,

pj(0, a) = pj0(a), a ∈ (0, a†).

(4.1)

Let λj > µ. It is easy to check that the solution pj of (4.1) satisfies pj(t, a) = e−tλjTA0
t (pj0)(a),

so that using (2.14) we have

‖pj(t, ·)‖L2(0,a†) 6Me−λjt‖pj0‖L2(0,a†)

6Me−µt‖pj0‖L2(0,a†),
(4.2)

since λj > µ. Using

‖p(t, a, ·)‖2L2(Ω) =
∑

j: λj>µ

|pj(t, a)|2,

it follows that we have

‖p(t, ·, ·)‖2L2((0,a†)×Ω) =
∑

j: λj>µ

‖pj(t, ·)‖2L2(0,a†)

6M2e−2µt
∑

j: λj>µ

‖pj0‖2L2(0,a†)

6M2e−2µt‖p0‖2X ,

(4.3)

so that the estimation of Proposition 4.1 holds.

The following corollary is the key point of the strategy of Lebeau and Robbiano, originally
developed for the null controllability of the heat equation [14]. Given a time T > 0, we construct a
control in two steps in the time interval (0, T ): we control the first frequencies in the time interval
(0, T/2) with the cost obtained in Proposition 3.1, and we let the system to evolve freely in the
time interval (T/2, T ) in order to dissipate the energy possibly transferred to the high frequencies
(see Proposition 4.1).
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Corollary 4.2. For every µ > 0 and every T ∈ (0, τ), there exists uµ ∈ L∞((0, T );X) such that

‖uµ‖L∞((0,T );X) 6
CeC

√
µ

T
‖p0‖X ,

and
‖p(T, ·, ·)‖X 6 CeC

√
µ−Tµ2 ‖p0‖X , (4.4)

where p is the solution of (1.1) with control function uµ.

Proof. Let T ∈ (0, τ). We first use Proposition 3.1 on the time interval (0, T/2). This gives us a
control function vµ ∈ L∞((0, T/2);X) such that the solution p of (1.1) with control function vµ
satisfies

ΠEµp(T/2, a) = 0 (a ∈ (0, a†) a.e.), (4.5)

and

‖vµ‖L∞((0,T/2);X) 6
CeC

√
µ

T
‖p0‖X . (4.6)

In the second half interval (T/2, T ), we choose a null control in order to take advantage of the
natural dissipation given by Proposition 4.1. More precisely, for almost every t ∈ (0, T ), we set

uµ(t) =

{
vµ(t) if t ∈ (0, T/2),

0 if t ∈ (T/2, T ).
(4.7)

Thanks to (4.6) and (4.7), it is clear that we have

‖uµ‖L∞((0,T );X) 6
CeC

√
µ

T
‖p0‖X , (4.8)

and since uµ = 0 on the time interval (T/2, T ), formula (2.10) gives

p(T ) = TAT/2p(T/2), (4.9)

so that using Proposition 4.1 together with (4.5) and (4.9), it follows that we have

‖p(T, ·, ·)‖X 6Me−
Tµ
2 ‖p(T/2, ·, ·)‖X . (4.10)

Moreover, it follows from formula (2.10) and (4.7) that we have

p(T/2) = TAT/2p0 +

∫ T/2

0

TAT/2−σBvµ(σ) dσ,

and it follows from the assumption (2.14) and Cauchy-Schwarz inequality that we have

‖p(T/2, ·, ·)‖X 6M‖p0‖X +M
√
T/2‖vµ‖L2((0,T/2);X)

6M‖p0‖X +
M

2
T‖vµ‖L∞((0,T/2);X)

(4.11)

so that using (4.6), (4.10) and (4.11) we have

‖p(T, ·, ·)‖X 6 CeC
√
µ−Tµ2 ‖p0‖X , (4.12)

for some constant C > 0.

We then use a time-splitting procedure, as described in [14], to get the null controllability of
system (1.1).
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Proof of theorem (1.1). Let τ > 0. Consider the sequences

Tj =
τ

2j
and µj = β(2j)2 (j > 1),

where β > 0 is determined later. Denote by τ0 = 0 and τj =

j∑
k=1

Tk, for every j > 1, so that we

have (0, τ) =
⋃
j>0

(τj , τj+1). Following the strategy of Lebeau and Robbiano [14], we will define a

control by induction on each interval (τj , τj+1) which drives the initial state to zero in time τ .

Firstly, during the time interval (0, τ1) = (0, T1), we apply a control u1 as given by Corollary
4.2 with µ = µ1, so that we have

‖u1‖L∞((0,τ1);X) 6
CeC

√
µ1

T1
‖p0‖X ,

and
‖p(τ1, ·, ·)‖X 6 CeC

√
µ1−T1µ12 ‖p0‖X .

Given j > 1, during the time interval (τj−1, τj), we apply by induction a control function denoted
by uj as given by Corollary 4.2 with µ = µj so that we have

‖uj‖L∞((τj−1,τj);X) 6
CeC

√
µj

Tj
‖p(τj−1, ·, ·)‖X , (4.13)

and

‖p(τj , ·, ·)‖X 6 CeC
√
µj−

Tjµj
2 ‖p(τj−1, ·, ·)‖X . (4.14)

From (4.14), it follows that for every j > 1 we have

‖p(Tj , ·, ·)‖X 6 CjeC
∑j
k=1

√
µk− 1

2

∑j
k=1 Tkµk‖p0‖X , (4.15)

with

C

j∑
k=1

√
µk −

1

2

j∑
k=1

Tkµk = 2(2j − 1)(C
√
β − β

2
τ), (4.16)

by construction of the sequences (Tj)j>1 and (µj)j>1. Then we choose β > 0 large enough so that

β̃ :=
β

2
τ − C

√
β > 0, (4.17)

so that from (4.15), (4.16) and (4.17) we have

‖p(τj , ·, ·)‖X 6 KCje−β̃2j+1

‖p0‖X , (4.18)

for some constant K > 0.

Going back to (4.13) and using the estimate given by (4.18), it follows that we have

‖uj‖L∞((τj−1,τj);X) 6
KC

τ
eC
√
β2j2−jCj−1e−2β̃(2j−1−1)‖p0‖X

=
K̃

τ
Cj2−je2j(C

√
β−β̃)‖p0‖X ,

(4.19)

with K̃ = Ke2β̃ . We choose β > 0 large enough such that

β̄ := β̃ − C
√
β =

β

2
τ − 2C

√
β > 0, (4.20)
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so that from (4.19) and (4.20) we have

‖uj‖L∞((τj−1,τj);X) 6
K̃√
τ
Cj2−je−β̄2j‖p0‖X . (4.21)

The above estimate (4.21) ensures that

sup
j>1
‖uj‖L∞((τj−1,τj);X) < +∞, (4.22)

so that defining the control u by

u =

+∞∑
j=1

uj1(τj−1,τj) (4.23)

gives a control function in L∞((0, τ);X). The corresponding trajectory p is continuous in time
with values in X and satisfies

‖p(τj , ·, ·)‖X −→
j→∞

0, (4.24)

thanks to estimation (4.18). This implies that p(τ, ·, ·) = 0, since τj → τ as j → +∞.

Remark 4.3. Given τ > 0, in the above proof, we can choose β = 2( 4C
τ )2 so that the condition

(4.20) : β̄ := β
2 τ −2C

√
β > 0 is fulfilled (in this case, we have β̄ = 4c2

τ (4−2
√

2)). With this choise
of β, it follows from (4.21) that the control u defined by (4.23) satisfies

‖u‖L∞((0,τ);X) 6 Ke
K
τ ‖p0‖X , (4.25)

for some constant K > 0. The same type of estimation is shown by Seidman [17] for the null
controllability of the heat equation, using also an adaptated Lebeau-Robbiano strategy.
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