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Cauchy Problem for the Kuznetsov Equation
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Abstract

We consider the Cauchy problem for a model of non-linear acoustic, named the
Kuznetsov equation, describing a sound propagation in thermo-viscous elastic me-
dia. For the viscous case, it is a weakly quasi-linear strongly damped wave equation,
for which we prove the global existence in time of regular solutions for sufficiently
small initial data, the size of which is specified, and give the corresponding energy
estimates. In the inviscid case, we update the known results of John for quasi-linear
wave equations, obtaining the well-posedness results for less regular initial data.
We obtain, using a priori estimates and a Klainerman inequality, the estimations
of the maximal existence time, depending on the space dimension, which are opti-
mal, thanks to the blow-up results of Alinhac. Alinhac’s blow-up results are also
confirmed by a L?-stability estimate, obtained between a regular and a less regular
solutions.

1 Introduction

The Kuznetsov equation [16] models a propagation of non-linear acoustic waves in thermo-
viscous elastic media. This equation describes the evolution of the velocity potential and
can be derived, as in [20], from a compressible isentropic Navier-Stokes system, for the
viscous case, or the Euler system for the inviscid case, using small perturbations of the
density and of the velocity characterized by a small dimensionless parameter € > 0. The

Cauchy problem for the Kuznetsov equation reads for o = “/c—_Ql , =2 and v = ;io as
Uy — AU — veAuy = asuguy + BeVu Vug, € R, (1)
u(z,0) =up(x), w(z,0)=u(zx), xe€R", (2)

where ¢, po, v, 0 are the velocity of the sound, the density, the ratio of the specific
heats and the viscosity of the medium respectively. In what follows, we can just suppose
that o and  are some positive constants. Eq. (I is a weakly quasi-linear damped
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wave equation, that describes a propagation of a high amplitude wave in fluids. The
Kuznetsov equation is one of the models derived from the Navier-Stokes system, and it is
well suited for the plane, cylindrical and spherical waves in a fluid [7]. Most of the works
on the Kuznetsov equation () are treated in the one space dimension [I1] or in a bounded
spatial domain of R™ [12] [I3] [I7]. For the viscous case Kaltenbacher and Lasiecka [13]
have considered the Dirichlet boundary valued problem and proved for sufficiently small
initial data the global well-posedness for n < 3. Meyer and Wilke [I7] have proved it
for all n. In [I2] it was proven a local well-posedness of the Neumann boundary valued
problem for n < 3.

In this article we study the well-posedness properties of the Cauchy problem ([{I)—(2)). In
the inviscid case for v = 0, the Cauchy problem for the Kuznetsov equation is a particular
case of a general quasi-linear hyperbolic system of the second order considered by Hughes,
Kato and Marsden [§] (see Theorem [I Points 1 and 2 for the application of their results
to the Kuznetsov equation). The local well-posedness result, proved in [§], does not use
a priori estimate techniques and is based on the semi-group theory. Hence, thanks to [§],
we have the well-posedness of ([Il)-(2)) in the Sobolev spaces H* with a real s > ¢ 4 1.
Therefore, actually, to extend the local well-posedness to a global one (for n > 4) and
to estimate the maximal time interval on which there exists a regular solution, John [10]
has developed a priori estimates for the Cauchy problem for a general quasi-linear wave
equation. This time, due to the non-linearities w;uy; and Vu Vu; including the time
derivatives, to have an a priori estimate for the Kuznetsov equation we need to work with
Sobolev spaces with a natural s, thus denoted in what follows by m. If we directly
apply general results of Ref. [I0] to our case of the Kuznetsov equation, we obtain a well-
posedness result with a high regularity of the initial data. We improve it in Theorem
and show John’s results for the Kuznetsov equation with the minimal regularity on the
initial data corresponding to the regularity obtained by Hughes, Kato and Marsden [§].
For instance, we prove the analogous energy estimates in H™ with m > [§ + 2] instead
of John’s m > 3n + 4 (see Eq. (20) in Proposition [} and its slight modified version in
H™ with m > [2+3] instead of m > 3n+7 (see Eq. (2I) in Proposition ). The energy
estimates allow us to evaluate the maximal existence time interval (see Theorem [1 Point 5
and Theorem [l for more details). In R? and R? the optimality of obtained estimations
for the maximal existence time is ensured by the results of Alinhac [2]. In Ref. [2] a
geometric blow-up for small data is proved for 9?u and Au at a finite time of the same
order as predicted by our a priori estimates (see Theorem [ Point 5, our estimates of
the minimum existence time correspond to Alinhac’s maximum existence time results).
From the other hand, the blow-up of d?u and Awu is also confirmed by the stability
estimate () in Theorem [I} if the maximal existence time interval is finite and limited by
T+, by Eq. ([8), we have the divergence

T*
/(; (HUtt”Loo(Rn) + HAU”LOO(Rn)) dr = +00. (3)

For n > 4 and v = 0, we also improve the results of John [I0] and show the global
existence for sufficiently small initial data wy € H™(R") and w; € H™(R") with
m > n + 2 instead of m > %n + 7 (see Proposition Ml and Theorem M). The smallness of
the initial data here directly ensures the hyperbolicity of the Kuznetsov equation for all



time, i.e. it ensures that 1 —aecuy is strictly positive and bounded for all time. The proof
uses the generalized derivatives for the wave type equations [10] and a priori estimate of

Klainerman [I4] 15] (see Section B.2)).

Let us now formulate our main well-posedness result for the inviscid case:

Theorem 1 (Inviscid case) Let v =0, n E N* and s > %+1. Forall uy € H**'(R™)
and u; € Hs(Rn) such that HulﬂLoo(Rn) 2a€ s HuOHLoo(Rn < M, s HVUOHLOO Ry < M, s
with My and My in RY the following results hold:

1. Forall T >0, there exists T" > 0, T" < T, such that there exists a unique solution
w of {@)-(3) with the following regularity

u€ CT([0,T; HSH " (R™) for 0<r<s, (4)
1
YVt € [O,T,], ||ut( )||L00(Rn) < ﬁ ||U||Loo (Rm) < Ml, ||vu||Loo(Rn < M2 (5)
2. The map (ug,uy) — (u(t,.),Owu(t,.)) is continuous in the topology of H*™' x H®
uniformly in t € [0,7"] .

3. Let T™ be the largest time on which such a solution is defined, and in addition
seN, ie. s=m>my=[§+2]. With the notation

m+1

Ep[u](t) = [V a()l[rmzny + D 100() | Fme1os gy (6)

i=1

there exist constants C(n,c, ) > 0 and C(n,c, a,ﬁ) > 0 (see Theorem [3) such
that if the initial data satisfies mo[1](0) < & , then

1
T > — , such that it holds (3). (7)

— eC(n,c,a, B)\/Emg[u](0)

4. For two solutions uw and v of the Kuznetsov equation for v =0 defined on [0, T*[
assume that u be reqular as in ({f))-(3), i.e. uw € L>([0,T*[; H""Y(R")), u, €
Le([0,T*[; H™(R™)) (s=m as in Point 3), and

1
ve L0, T HY(R™)), v, € L=([0, T*[; L*(R™)) with ]| oo (rmy < Toe
«
and with a bounded ||Vvi| peo@ny norm on [0,T*[. Then it holds the following
stability uniqueness result: there exist constants C7; > 0 and Cy > 0, independent
on time, such that

t
(Iu=v)el 241V (u=v)l|72)(2) < Crexp <02€/0 sup([|use| o< ey, IIAUHLOO(Rn))dT)
(llur = w122 + IV (1o — vo) [ 72)- (8)

5. If s =m > n+ 2, then for sufficiently small initial data (see Theorem [{] in Sec-
tion [33)



(a) liminf, ,oe*T* >0 forn =2,
(b) liminf. ,oelog(T*) >0 forn =3,
(¢c) T* = +oo for n>4.

Theorem [Mis principally based on the a priori estimates given in Sections Bl (for Point 3)
and (for Point 5) and on the local existence result updated from Ref. [§] (Points 1
and 2). Point 4 uses the classical ideas of the weak-strong stability, for instance proved
in details for the KZK equation in [I8] Theorem 1.1 Point 4 p. 785. Hence its proof is
omitted. Some technical details on the proof of the a priori estimates of Section B.I] can
be found in Appendix [Al

Analyzing the structure of the Kuznetsov equation and the difficulties involving by
its non-linear terms, we start in Section @ with preliminary remarks on the L?-energy
properties for the Kuznetsov equation to compare with its simplified versions. Developing
the energy estimates in the Sobolev spaces, we however recognize the structure of the
L? -energy of the wave equation which keeps unchanged.

In the presence of the term Aw, for the viscous case v > 0, the regularity of the higher
order time derivatives of u is different (to compare to the inviscid case), and the way to
control the non-linearities in the a priori estimates becomes different. As it was shown
in [21], this dissipative term changes a finite speed of propagation of the wave equation
to the infinite one. Indeed, the linear part of Eq. (Il) can be viewed as two compositions
of the heat operator 9, — A in the following way:

Uy — EAu — veAu, = 0,(Ou — evAu) — EAu.

For the viscous case we prove the global in time well-posedness results in R™ (see
Section M) for small enough initial data, the size of which we specify (see Point 1 of
Theorem [2 and Subsection 1] for its proof). In Subsection for n > 3 (see Point 2
of Theorem [2]) we establish an a priori estimate which gives also a sufficient condition of
the existence of a global solution for a sufficiently small initial energy of the same order
on ¢ as in Point 1 of Theorem 2l The same results (see Point 3 of Theorem [) hold in
(R/LZ) x R™! for n > 2 (with a periodicity and mean value zero on one variable).

Theorem 2 (Viscous case) Let v > 0, n € N*, s > % and R = [0,+o00[. Con-

sidering the Cauchy problem for the Kuznetsov equation (1)—-(2), the following results
hold:

1. Let
X = H*(RT; H*(R")) N HY(RF; H*F(R™)),
the initial data
ug € H¥(R™) and wu, € HTH(R™),

r. = O(1) be the positive constant defined in Eq. [38) and Cy; = O(1) be the mini-
mal constant such that the solution u* of the corresponding linear Cauchy problem

(33) satisfies

&
ve

lu*llx < —=(lluoll ge+2n) + [lurl[ s ny)-



Then for all v € [0,7.] and all initial data satisfying

N

Ch

[uol| e+2(mny + ||l a1 ny < r, (9)
there exists the unique solution u € X of the Cauchy problem for the Kuznetsov
equation and ||ul|x < 2r.

2. Let n>3, s=m &N be even and m > [§ + 3] . With the notation

T+l

B lu](t) = 1Y) By + 3 10508) 261 oy (10)
i=1

there exists a constant p = O(1) > 0 (see Theorem [1 Point 2), independent on
time, such that for all initial data uy € H™ ™ (R™) and u; € H™(R™) satisfying

Ba[u](0) < pe, (11)

there exists a unique u € CO(RT; H™H(R™)) N CYR*Y; H™H2-%(R")), for i =
L,..,% + 1 with the bounded energy

Vi € RY, Eulu)(t) <O G) Eux[u)(0) = O(1).

8. For n e N* in Q= (R/LZ) x R* ' with s =m € N even and m > [% 4 3| there
hold Points 1 and 2 in the class of periodic in one direction functions with the mean
value zero

/ u(t,z,y) de = 0. (12)
R/LZ

Let us notice that the hyperbolicity condition (Bl is also satisfied if we require condi-
tions (@) and (II). For v > 0 Point 4 of Theorem [I] obviously holds for all n € N*.
Point 1 of Theorem Pl is proved in Subsection 1] using a theorem of a non-linear anal-
ysis [22] (see Theorem [B]) and regularity results for the strongly damped wave equation
following [6], which can also be used for Q = (R/LZ) x R™™! in point 3. Point 2 of
Theorem [l is proved in Subsection L2 using a priori estimates given in Proposition [I]
see also Theorem [l The last point of Theorem [2 is a direct corollary of the Poincaré
inequality

||u||L2((R/LZ)><R"*1) < CH@“HB((R/LZ)an*l), (13)

which holds in the class of periodic functions with the mean value zero. Estimate (I3))
allows to have the same estimate as in Lemma [I] (see Section @) for n = 2, which fails
in R?. Thus, it also gives the global existence for rather small initial data detailed in
Point 2.



2 Preliminary remarks on L’-energies

We can notice that Eq. (Il) is a wave equation containing a dissipative term Aw,; and
two non-linear terms: VuVu,; describing local non-linear effects and w;uy; describing
global or cumulative effects. Actually, the linear wave equation appears from Eq. () if
we consider only the terms of the zero order on ¢:

Uy — Au = 0. (14)

The semi-group theory permits in the usual way to show that for uy, € H'(R") and
u; € L*(R™) there exists a unique solution of the Cauchy problem (I4]), (2))

u € CO(RT; HY(R™)) N CH(R*; L2(R™)).

So the energy of the wave equation (I4)

B(t) = / (u)? + A(Vu)(t, 2)dz, (15)
Rn
is well defined and conserved p
—FE(t)=0.

For v > 0 and without non-linear terms, the Kuznetsov equation (II) becomes the
known strongly damped wave equation:

Uy — AU — veAuy = 0, (16)

which is well-posed [9]: for m € N, vy € H™(R") and w; € H™(R") there exists a
unique solution of the Cauchy problem (1)), (2)

u € CO(RY; H™MH(R™)) N CHRY; H™(R™)).

Multiplying Eq. (I6) by u; in L*(R™), we obtain for the energy of the wave equa-

tion (IH)

d

%E@) = —2V€/ (Vug)?(t, z)dz <0,
what means that the energy F(t) decreases in time, thanks to the viscosity term with
v > 0. The decrease rate is found for more regular energies in [21] in accordance with the
regularity of the initial conditions. Without the term VuVu, (local non-linear effects),
the Kuznetsov equation becomes similar to the Westervelt equation, initially derived by
Westervelt [23] before Kuznetsov. The Westervelt equation, historically derived [23] for

the acoustic pressure fluctuation, has the following form

+1

c2

pu — EAp — veAp, = 1 EPtDit; (17)

and can also be seen as an approximation of an isentropic Navier-Stokes system.



In the sequel we conveniently denote p by w. We multiply Eq. (I17) by wu; and
integrate over R™ to obtain

%% (/Rn[(ut)Q + *(Vu)?] dx) + l/e/n(Vut)Q de = %l—ils% </Rn(ut)3 dx) :

Then we have

%% </R Kl _ %76—t15ut) ()’ + CQ(W)?} dx) e /n(Vut)Q dr = 0.

y+1

For a = %c—Q we consider the energy

Eron(t) = /Rn (1= aewy) (w)? + A(Vu)?] da, (18)

which is monotonous decreasing for v > 0 and is conserved for v = 0. Let us also notice
that, taking the same initial data for v =0 and v > 0, we have:

forally >0and ¢t >0 FE,ou(t,v =0) > E,ou(t,v) >0,

in the assumption that 1 — acu; > 0 almost everywhere.

While 1 <1—asu, <32, that is to say ||u(t)|| (&) remains small enough in time,

then we can compare E,,, to the energy of the wave equation

SB() < Buult) < SE().

Then a sufficiently regular solution of the Cauchy problem for the Westervelt equation
has the energy FE controlled by a decreasing in time function:

E(t) <3E(0) — 4ve /Ot /n(Vut(T, r))*dx dr.

Now, let us consider the Kuznetsov equation ([Il). We multiply it by u,; and integrate
on R" to obtain

1d
——FEnoni(t) + VE/ (Vut)Q dr = 28/ Vu Vuy uy de,
2 dt R

n

=1 As

2
3 2

where FE,on(t) is given by Eq. (I8) with a =

2e Vu Vu, ug do = ei uy(Vu)? do — 5/ uy(Vu)? dz,

we find

%% ( /R n {(1 _ %70—_21““) ()2 + (& — 25ut)(Vu)2} dz

t
+ 25/ / Utt|VU|2 dx dT) + 1/5/ (Vut)Z dz = 0. (19)
0 n n



7;1 , the function

Thus, for o = %

F,(t) = /n (1= asuy) () + (¢ — 2eu)(Vu)?] dz + 25/0 /n Uy |Vul? do dr

is constant if v = 0 and decreases if v > 0. Let us notice that while % <1-—oasuy < % ,
the coefficient ¢? — 2eu, is always positive (since ¢ is the sound speed in the chosen
medium, ¢® > 1), hence the first integral in F, (t) is positive, but we a priori don’t know
the sign of the second integral, i.e. the sign of uy. However, for v = 0, F,_o(t) is

positive, as soon as 0 < 1 — aeuy :

F,—o(t) = F,—(0) = / (1= aewr) (w)? + (¢ = 2eu1)(Vug)?] da >0,
and, if we take the same initial data for the Cauchy problems with » =0 and v > 0, for
all t > 0 (for all time where F,_ exists) it holds F,—o(t) = F,—(0) > F,~o(t).

For n > 3, we can control the term 2¢ fRn VuVuuy dr using the Holder inequality
and the Sobolev embeddings (which fails in R?):

Vu Vu; uy dx

<IVullpn | Vullzelluell | 2s, < ClIVulzn[[Vuef7-.
R”

Indeed, in R? we don’t have any estimates of the form
[uller2) < [[Vul r2me),

with p > 2. But such an estimate is essential to control the nonlinear term. Then,
instead of Eq. (I9) for F, , we have the relation for FE,,, :

1d

5 % Buou(t) + (ve — 26C][ V| 1) / (Vun)? dar < 0.

So, if a solution of the Kuznetsov equation u is such that |[Vu(t)||z» and ||us(t)|
stay small enough for all time, then FE,,, decreases in time and, as previously for the
Westervelt equation, thanks to SE(t) < Epeu(t) < 3E(t), the energy E has for upper
bound a decreasing function.

This fact leads us to look for global well-posedness results for the Cauchy problem for
the Kuznetsov equation in the viscous case.

3 Well-posedness for the inviscid case

3.1 Proof of Point 3 of Theorem [

Let us give an estimation of the maximum existence time for a solution of problem ([I])—(2I)
with v = 0. For this we follow the work of John [10] with the use of a priori estimate.
However we don’t directly apply the general results of John, but we improve them for our
specific problem as we can take less regular initial conditions in order to have suitable a
priori estimates.



Proposition 1 For a fited m € N with m > mg = [% + 2} , let u be a local solution

of problem (0)-(2) with v =0 on [0,T] satisfying {{l) and (3) for s =m.
For t € [0, T] we have for Ep[ul(t), defined in Eq. (@),

t
Enlu](t) < B Enfu)(0) + Cy max(a, §)e / Bulu)(r)ddr, (20)

0
with constants B = I‘I]l(i(—iiifé) > 0, depending only on ¢, and C,, > 0, depending only

on m, on the dimension n and on ¢ (only if min(1/2,c*) = ¢ ).

Proof : The proof is given in Appendix [Al 0]

Inequality (20), proved in Proposition[I] gives us an a priori estimate in order to have,
with the help of the Gronwall Lemma, an estimation of the maximum existence time 7.
However, when m increases, (), increases, and the maximum existence time, given by
estimate (20), decreases whereas the initial conditions become more regular. Therefore,
we prove the second a priori estimate (see Eq. (21I)), playing a key role in order to avoid
this problem:

Proposition 2 Let conditions of Proposition [ be satisfied. Then for t € [0,T] and
m > [% +3} we have

I

E,[u](t) < B E,[u](0) + D,, max(«, 6)5/0 Eplu|(7)2 Eyu](7)dT, (21)

with a constant D,, > 0, depending only on m, on n and on ¢ and the same constant

B as in Proposition [.

The proof of Eq. (2I)) is very similar to the proof of Proposition [l given in Appendix [Al
and hence omitted (see Remark @ in Appendix [A]).

Now let us give a first estimation of the lifespan 7™ of a local solution of problem ()
@) with v =0.

Theorem 3 Let m > mo = [2+2] and let u be the unique solution on [0,T*[ of
problem (1)-(3) with v =0 for
1

Ug € Herl(Rn), (S Hm<Rn) and HulﬂLoo(Rn) < 2—

ae
If \/Epo[ul(0) < m , then

1
Tm>T= 92
" C max(a, 8)eVBEy, [u](0) (22)
and
u e C"([0,To); H™'7) for0 <r <m +1,
with

Vi e [0,To], BEnlul(t) < C < +oc.

Here B and C,,, are the constants from estimate (20) and Cw is the embedding constant
from the embedding of the Sobolev space HZTU(R™) in L®(R").

9



Proof : Thanks to Point 1 of Theorem [, for uy € H™ ' (R"), u; € H™(R") and
[Ju]| o mry < 5= there exists a unique solution u on an sufficiently small interval [0, 7]
of problem ([I)-([@) with v = 0, satisfying (@) and (&) for s = m. Moreover it implies
that E,,[u](0) is finite. Hence, we can add the hypothesis

1
< -
4V BC e

without adding further conditions of regularity on uy and u; as it can be reduced on a
smallness condition on ||ug||gm+1 + ||u1]| gm -

Let us take Tp, as defined in Eq. (22)), and show by induction on j € N with my <
7 < m that

Eino [u](0)

VjieN, withmo<j<m sup E;ul(t) < occ.
tE[QTQ]

For j = mg, uy € H™(R") € H™ ' (R") and u; € H™(R") C H™(R"), and
consequently
Eio [u](0) < By, [u](0) < oo,

For ¢ > 0, while [|u;(¢)||zoo(rn) < 5o- , it holds estimate (20) with m = mq . According
to the Gronwall Lemma, applied to 20) with m = mg, we have

Eolu](t) < =(1),
where z(t) is the solution of the Cauchy problem for an ordinary differential equation

2(t) = 20+ Ciny max(a, )z /0 (2()*2dr  with 2 = B Ey [u](0).

This problem can be solved explicitly:

20

zZ(t) = .
() (1— 523/20,”0 max(a, 5)et)?

We can see that, as long as 0 < t < Tp, the function z(¢) has the finite upper bound
2(t) < 4z. Tt implies the upper boundness of E,, [u]:

B [ul(t) < 4B Eypo[u](0). (23)

Moreover, thanks to our notations,

[ (£) || oo e
to—() < ||ut(t)||H[%+1] <V B lu] (),

from where, using inequality (23]), we find

1
e () | oo @y < 2C 0/ B By [u](0) < o

since /FEp,, [u](0) < m . Thus Eq. (@) holds on all interval [0, Tp] and sup;e(o 7,) B[] (f)
is finite. b

10



Let j € N, mg <j <m—1 be such that sup,cj ) E;lul(t) < oo.
Since Eq. ({) holds on all interval [0,7p], we can use the a priori estimate (2I]) and
write that for all ¢ € [0, Tp]

Eyaful(t) < B Ey1[u](0) + Dy max(ar, Be / E () B u] (r)dr.

By the induction hypothesis sup,c(o 7, £;[u](t) is bounded by a constant, denoted here
by E?, and hence on [0,Tp] it holds

Byalul(t) < BE;alul(0) + Dyamax(a, §) Be [ Byalul(ridr

Applying the Gronwall Lemma, we obtain for ¢ € [0, Tg]
Ejru](t) < BEjii[u)(0)eP ™D B < B [u] (0)ePrte mex() BT,

This means, as Ejy1[u](0) < En[u)(0) < 400, that sup,ecin) Ej1[ul(t) < oo and this

finishes the proof. O

Theorem [J] estimates the lifespan T* as at least of the order é, or more precisely,

implies that
liminfeT™ > 0.

e—0
This result is independent on the dimension n. However, much better estimations for the
lifespan can be obtained, if we use an inequality that takes into account the time decay
of the solutions for n > 1, what we do in the next section.

3.2 Proof of Point 5 of Theorem [Il. Optimal estimations of the
existence time

In [I0] John uses the group of linear transformations preserving the equation uy—Au = 0.
The generators of this group (the derivatives with respect to group parameters taken at
the identity), here called generalized derivatives, include in addition to the derivatives
O¢, Ozys .., Oy, , first-order differential operators L, with a = 0,...,n and € with
1<i<k<n:

Definition 1 (Generalized derivatives [10]) The following operators

Lo =1t0; + sz&gi, L; = 2,0, + t0,, fori=1,..,n,

Qi = 2,0y, — 21,0y, for 1 <i <k <mn, and 0, Oy, fori=1,..,n
are called the generalized derivatives. The operators
L07 sty Ln7 Ql?u 9137 LRI anlnu at7 8:1317 ey 8:Bn7

(taken in this order) are denoted respectively by Ty, ..., I, with p = %(712 +3n+2). For
a multi-index A = (Ay, ..., A,) we write in the usual way

Al = Ag+ ...+ A, T4= (T[T )" ... (T,)".
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Therefore, in the framework of the general derivatives, we define for m € N

Eoomlul(t) = sgp ‘i|u<pm [(FAﬁtu(t, 7))+ (FAVU(:U, t))ﬂ , (24)
Evm[u](t) = ) (IT*0ul[72g@n) + 1TVt 200 (). (25)

Al<m
Let us give a remarkable estimate proved in Ref. [I5] by Klainerman:
Proposition 3 (Klainerman 1987) For n* =[5 +1], m €N, and t > 0, as soon as
w is such that Ey . [u](t) is finite, it holds

Eoomul(t) < Ch(1+ t) Ey o [u](1). (26)

Thanks to Proposition 3] we improve the results of John [10] for the case of the Kuznetsov
equation and state:

Proposition 4 For n and m in N*, m >n—+2, let u be a local solution on an interval
0, 7] of problem ({d)-(3) with v = 0, satisfying (4) and (3) with s = m. Then for all
t €0,T], it holds

Ey p[ul(t) < B By, [u](0) + Cy, max(a, f)e /Ot(l + 1))/ ELm[u](T)%dT, (27)

with a positive constant B > 0, depending only on ¢, on o and on (3, and with a positive
constant C,, > 0, depending only on m, on n and on c.

Proof : The proof follows identically the proof of Proposition [l up to Eq. (69) replacing
everywhere D4 by I'“. This time Eq. (69) becomes

L, = 52 (aC’ T4 Uy r4” up + ZﬁE FAJI u A" Oy U) ) (28)

where p is defined in Definition [ C; and E;; depend only on |A| < m, and A’" and
A7? are multi-indexes, such that

|ATY + |A?) < m + 1.

It follows that |A7l| < [mTH] or A% < [mTH] Therefore, if we set m’ = [m—H} , We
obtain

|B|<m/

| T[T 4] (T, 2)| <Chp, max(a,ﬁ)a\/ sup ((T'Boyu(r,x))? + (IBVu(r, x))?))-

. sup ((FBﬁtu(T, z))? + (IPVu(r, x))2))

|Bl<m

<Cpmax(a, B)e\/ B [u)(7) D> ((TP0u(r,2))* + (IPVu(r,x))%),

|B|<m

12



and thus

< Cy, max(a, f)er/ Eoom [0)(T) B [u](T).

/ ) J0A (7, z)dz

By hypothesis on u,
1
H'U/t(t)”Loo(Rn) S r.ég on [O,T],

and then, by integrating of Eq. (63]) on [0,¢] with ¢ € [0,7], we have

1 3
3 1O u ()72 @) + IV u(t) |72 @y <5 1004w (0)[[ 72 @) + I VI Au(0) |72 gy

+ C,, max(a, f)e /Ot \/ Eoo e [0](T) By [u] (T)dT.

By summing for |A| < m, we obtain

Ey m[ul(t) < B Ey ,[u](0) + Cy, max(ay, 6)5/0 \/ Eoom [0](T) By [u] (T)dT.

Now we use the Klainerman inequality (2]), noticing that, if we take m > n+ 2, we have

1
=[5  [] m

This finishes the proof. 0
We use the a priori estimate (27) to improve our estimation of the lifespan 7™ as a
function of n.

Theorem 4 Let m > n+2. For ug € H™™(R") and u; € H™(R™) with ||u]|poe(mn) <
1

5.z we consider the local solution w of problem (1)-(2) with v =0 on an interval [0,T],

satisfying (4) and (@) for s =m as in Point 1 of Theorem[D If \/E1,[u](0) < 4\/§é —,
then -

Elm[u](t) <4B El,m[u](o)a

as long as 72
t < <20m max(a, B)er/ B Ey ] (O)) forn =2,
1
ts2exp (Cm max(c, 5)e\/B Elm[u](())) forn =3,
1< <20m max(«, f)ey/ B Elm[u](0)> - forn > 4.
Consequently,

liminf £2T* >0 forn = 2,
e—0
lim iglf&?log(T*) >0 forn =3,
E—

and, for a small enough ¢, T* = +oo forn >4, i.e. the solution u is global.

13



Proof : This is a direct consequence of the Gronwall lemma, used with the a priori

estimate (27)), as it is done by John in [10]. O

Remark 1 The estimations, given for T* in the case n = 1,2,3, are optimal, as soon
as, thanks to Alinhac [2], they give the existence time of a smooth solution of the same
order as Alinhac’s blow-up time, i.e. up to the time of a geometrical blow-up formation.

4 Well-posedness for the viscous case

4.1 Proof of Point 1 of Theorem

Let us show the global well-posedness, of the solution of the Cauchy problem ([I])-(2). We
start with the study of the linear problem, associated to the Kuznetsov equation.

Theorem 5 Let s > 0 and X be the space defined in Point 1 of Theorem [2. Then the
system

{utt — *Au — veAu, = f, (20)

u(0) = ug, u(0) =wuy

has a unique solution v € X , if and only if f € L*(R™; H*(R™)), uo € H*™(R") and
uy € HTY(R™) . Moreover it holds the following a priori estimate

lullx < C (IIf|lL2@ssms@ny + [toll rerzmn) + [|ual| mssrgny) (30)

with HUHX = |’u”H2(R+;HS) + HuHLQ(R‘F;HS‘W) —+ HutHLz(RhHHz) .

Proof : First we take f € L*(R"; H*(R")), ug € H***(R") and u; € H*"(R"). We
use the ideas of [6] (see Eq. (4.26)). For the sake of clarity, let us take s = 0. We take
the inner product in L*(R™) of the equation with —Awu,; and integrate by parts:

1d

Sdl (HVUtH%Q(Rn) + 02||AUI|%2(R7L)) + V€||Aut||%2(Rn) — i FAu,dz.

Using Young’s inequality and integrating over [0,t], we find

1 ve [
5 (17l + Al ) + 5 [ 10 anydr
<2 i | A2 L[ *dzd 1
< IVl + 51800l + 5 [ [ 1fPdnar. (a1)
Since f € L*(RT x R") and (ug,u;) € H*(R") x H'(R"), the last estimate implies that

+o0
/ / |Au, [Pdadr < +o00.
0 R"

Since the domain of —A is H?, we obtain that

u, u, € L*(RT; H*(R™)), and wuy € L*(RYT x R™),
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and hence, u € X for s =0. For s > 0, as the equation is linear, we perform the same
1
proof, using the fact that, the operator A = (1 — A)z | defined by its Fourier transform

by the formula @(Q) = (1 + [¢[*)2a(¢), relies the norm of H* with the L2 -norm:

S

A =(0-4)  |ul

Hs(Rn) = ||A8u||L2(Rn). (32)

The uniqueness of u follows from the linearity of the operator and the uniqueness of the
solution of system (29)) in the case f =0 [9].
Conversely, if v € X solution of system (29), this implies that

u€ C(RY; H"*(R")) and wu, € H'(RT; H¥(R")) N L*(RT; H¥2(R™)).

Thanks to Theorem 111.4.10.2 in [3], it follows that u; € C(R™; H***(R")). Then we have
uw(0) € H*T(R") and u,(0) € H**(R™). Moreover, it reads directly from the definition
of X, that fe L*(RT; H*(R")) for u € X .

The a priori estimate follows from the closed graph theorem. U
Let us notice that Theorem Bl states that problem (29) has L?-maximal regularity (see [5]
Definition 2.1) on R*.

To be able to give a sharp estimate of the smallness of the initial data and in the
same time to estimate the bound of the corresponding solution of the Kuznetsov equation
(see Point 1 of Theorem RI), we use the following theorem from [22], which allows us
to establish our main result of the global well-posedness of the Cauchy problem for the
Kuznetsov equation:

Theorem 6 (Sukhinin) Let X be a Banach space, let Y be a separable topological vector
space, let L : X —'Y be a linear continuous operator, let U be the open unit ball in X ,
let Pry : LX — [0,00] be the Minkowski functional of the set LU , and let ® : X — LX
be a mapping satisfying the condition

Pro(®(2) = ®(@)) <O() o =zl for |lo—aol <r, |7 —20f <

for some xy € X, where © : [0, 00[— [0,00[ is a monotone non-decreasing function. Set
b(r) = max(1 — O(r),0) for r>0.
Suppose that

/b )dr €]0,00], 1, =sup{r >0|b(r)> 0},
0

/ (r>0) and f(x)=Lx+ ®(x) for zeX.

0
Then for any r € [0,r.[ and y € f(xo) +w(r)LU, there exists an x € xo+rU such that
flx)=y.

Remark 2 [f either L is injective or KerL has a topological complement E in X
such that L(ENU) = LU, then the assertion of Theorem[@ follows from the contraction
mapping principle [22]. In particular, if L is injective, then the solution is unique.
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Now, we have all elements to prove Point 1 of Theorem 2 for all r € [0,r*[ with
r* = 0(e%) = O(1) (to be defined), as soon as the initial data are small as

o]

Hs+1(Rn) S C\/E’I“ with C' = O(l), (33)

Hs+2(Rn) + ||U1|
then the unique solution u € X satisfies ||ul|x < 2r (r=0(1)).

Remark 3 [t is very important to notice that here all physical coefficients of the Cauchy
problem for the Kuznetsov equation are expressed to compare to the powers of € (e is
the dimensionless parameter caracterising the medium perturbation as explained in [19]
and [20]). In particular, if we take into account in Point 3 of Theorem [ that ¢* =
O(%) , we obtain the same types of smallness of the initial energy for the inviscid case

as in Point 2 of Theorem [d: \/Ey,[u](0) < O(ye). But, if we want to understand
the smallness of the initial data by their norms without the calculus of the initial energy,
the results of Point 1 of Theorem [ can be useful. The sharp character of Point 1 of
Theorem[d can be illustrated by the following direct energy estimation approach, presented
in Appendiz[B.

Let suppose that Point 2 of Theorem[2 holds (see also Eq. (I0)). Thus, for n > 3,
m > [%+3] if

T+l

Exg[u](0) = o | Vu(O)[[Fm @y + z; 105 w(0) 13261y gy < O(VE),

then it follows in a sufficient way (see Appendiz [B for more details) that for ug €
H™ M (R™) and for vy € H™(R™) it holds

”vuo”Hm(Rn) + HulﬂHm(Rn) S O(\/&'erl), (34)

which implies the existence of a unique global solution u € CO(R*; H™(R™))NCY(R*; H™(R"))
of problem ([@)-(2) such that for all t € R*

1
€

Enlu)(t) <O ( ) Eux[u](0) = O(1).

Thus we see that by this approach the sufficient condition to have for all ¢ > 0 Ewn [u](t)
bounded by a constant of order zero on ¢ is given by Eq. (34) and depends on the smooth
properties of the initial data (more they are reqular, more they should be small). Hence,
it is much more restrictive to compare to ([33).

Proof :
For uy € H*"2(R") and u; € H*™(R") let us denote by u* € X the unique solution
of the linear problem

{u;} — AAu* — veAu; =0, (35)

u*(0) = ug € H*P2(R™), u}(0) =uy € H*T(R™).
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In addition, according to Theorem [, we take
X = HA(RY; HY(RY) 0 H(RY; H*2(R")),

this time for s > 5 (we need it to control the non-linear terms), and introduce the Banach
spaces

Xo :={u € X|u(0) = u,(0) =0} (36)
and Y = L?*(R*; H*(R™)). Then by Theorem [ the linear operator

L:Xo—Y, ucXo— Lu):=uy —EAu—velAu, €Y,

is a bi-continuous isomorphism.
Let us now notice that if v is the unique solution of the non-linear Cauchy problem

{vtt — AAv —velAv; — ag(v +u)(v + u*)y — BeV (v +u*).V(v+u*); = 0, (37)

v(0) =0, v, (0) =0,

then v = v + u* is the unique solution of the Cauchy problem for the Kuznetsov equa-
tion (I)—(2)). Let us prove the existence of a such v, using Theorem
We suppose that ||u*||x < r and define for v € Xj

P(v) :==ac(v+u")(v+u")y + LeV(v+u").V(v+u).

For w and z in X, such that ||w|x <r and ||z||x <7, we estimate

[®(w) — ®(2)|ly = [Jas(u;(w — 2)i + (W — 2)¢uy + Wewy — 22)
+ Be(Vu'V(w — 2); + V(w — 2)Vu; + VuVw, — VzVz)|y
= |lee(uf(w — 2)u + (w — 2)pufy + wi(w — 2)p + (W — 2)124)

+ Be(Vu'V(w — 2); + V(w — 2)Vu; + VuV(w — 2); + V(w — 2)Vz)|ly

by applying the triangular inequality

J@(w) = ()l < as(ljui(w = 2ully + I (w = e Iy
o lwnw = 2l + 1w = 2)ezully )
+ 82 (V6 (w = 2)lly + IV (w = 2) Vi
+IVwV(w = 2)lly + [V (w - 2)Vzlly ).
Now, for all a and b in X with s > sy > % it holds

||atbtt||Y §||at||L°°(R+an)||btt||Y
SO+ H5%0)— Loo (R+ xR || e || 1 (1 () || 0] x

SCHl(R+;H50)—>Lw(R+ XR") [allx[[b]] x,
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where Cpir+;ps0)— oo (r+xrr) 18 the embedding constant of H'(RT; H*) into the space
L>*(R* x R™), independent on s, but depending only on the dimension n. In the same
way, for all @ and b in X it holds

||V(IVbt||y S CHI(R+;HS())_)LOO(R+><R71)||a,||X||b||X.

Taking a and b equal to u*, w, z or w—2z,as ||[u*||x <r, ||lw||x <r and |z||x <7,
we obtain

|@(w) — @(2)[ly < 4(a+ B)Crrms;mso)— L@t xrmET||W — 2| x-

By the fact that L is a bi-continuous isomorphism, there exists a minimal constant
C. =0(2) > 0 (coming from the inequality Coev|lull)% < ||fllv/ulx for u, a solution
of the linear problem (29) with homogeneous initial data [for a constant Cy = O(1) > 0
maximal|) such that

Vu € Xo |ullx < Cel|Lully.

Hence, for all feY
PLUXO(f) < CapUy(f) = C&HfHY
Then we find for w and z in Xy, such that ||w|x < r, [|z|x < r, and also with

|u*||x < r, that
Pryy, (2(w) = @(2)) < O(r)|w - z|x,

where O(r) := 4C (a + 8)Cy1(r+;m50)— Lo @+ xrr)T . Thus we apply Theorem [ for
f(z) = L(z) — ®(z) and zo = 0. Therefore, knowing that C. = <2 we have, that for
all 7 € [0,r,[ with

v

4G (a+ B)C 11 (Rt H50)— Loo (R xR

= 0(1), (38)

T

for all y € ®(0) + w(r)LUx, C Y with
&

w(r) =r—2 y CHl(R+;HSo)—>Loo(R+an)(@ + 5)7“27

there exists a unique v € 0+ rUy, such that L(v) — ®(v) = y. But, if we want that v
be the solution of the non-linear Cauchy problem (1), then we need to impose y = 0,
and thus to ensure that 0 € ®(0) +w(r)LUx, . Since —ﬁ (0) is an element of Y and
LXy =Y, there exists a unique z € X, such that

1
Lz = = 150(0) (39)

Let us show that ||z||x <1, what will implies that 0 € ®(0) 4+ w(r)LUx, . Noticing that

|12(0)|ly < acgl|lvon|ly + Be||VoVuly
< (a+ B)eCm @) L@ s [0llx

< (a+ B)eChi(r+;mso)— Lo ®+ XR”)T2
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and using (B9), we find

L0y

w(r)
< C€CH1(R+;H50)—>L°°(R+><R”)(Oz + ﬁ)gr < 1
>~ (1 _ 2C€CH1(R+;HSO)*>LOO(R+XR7L)((){ + ﬁ)&'?“) 9’

I2lx < Cel|Lzlly = C:

as soon as r < 71*.

Consequently, z € Ux, and ®(0) +w(r)Lz=0.

Then we conclude that for all r € [0, 7,[, if ||u*||x < r, there exists a unique v € rUx,
such that L(v) — ®(v) = 0, id.e. the solution of the non-linear Cauchy problem (B7).
Thanks to the maximal regularity and a priori estimate following from inequality (3TI)
with f =0, there exists a constant C; = O(g") > 0, such that

G

< e

Thus, for all 7 € [0,7.] and [Juo||gs+2@n) + [[ur][gs+1@n)y < 577, the function u =

u*+v € X is the unique solution of the Cauchy problem for the Kuznetsov equation and
|ullx < 2r. O

lullx <

Hs+2(Rn) T ||u1| Hs+l(Rn)).

4.2 Proof of Point 2 of Theorem 2 Case n > 3

Knowing the existence of a solution u of the Kuznetsov equation in
X = H*(R*; H*(R")) N H'(R™; H*(R")),
we notice that this directly implies that
u€ C(RY; H*P*(R™) and u, € H'Y(R'; H¥(R™)) N L*(R*; H¥2(R™)).
By Theorem 111.4.10.2 in [3], it implies that u; € C(RT; H¥™(R")), which gives that
u € CHRT; H*HH(R™) N C(RT; HP2(R™))

and, this time with the help of the Kuznetsov equation, u; € C(R*; H5~}(R")). Con-
sequently, in the viscous case the regularity of the time derivatives of the order greater
than two of the solutions differs from the regularity, obtained in Section [3] for the inviscid
case. Thus we have to consider estimates with different energies: the energy Ewm[u(t),

defined in Eq. (I0), and the energy

g1

Sulul(t) = Y IVOu()Im-2i-1 n): (40)
i=1

defined, as E'm[u](t), for m € N and m even, which respect to the obtained regularity
of u and its derivatives.
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Lemma 1 Let n € N*, n >3, m e N, and u be the solution of problem (1)-(2). Then
for m > [g +3] , m even, and all multi-index A = (Ap, Ay, ..., An) with |A] — Ay <
m — 2Ay it holds

%( /R (1= acu)(D*ur)? + (VD)) (r.x) da)
+2y5/R (VDu,)* (7, z) da (41)
< Cyumas(a, B)ey /By [u](7) Sz u](7)

with a constant C,, > 0, depending only on m and on the dimension n .

Proof : Following notations of the proof of Proposition [[lin Annexe [Al we redefine

L,v = vy — Av — veAv, — acuy vy — BeVu Vuy,

where w is the solution of problem (Il). For this new L,v with the additional term
veAwv,, we have a modified version of relation ([63l)

d

.. I[v|(t, x)dx 4 2uve /n(Vvt)zdx = /n Jv](t, z)dz, (42)

where I[v] and J[v] are defined in Eqs. (63)-(G4). We still take v = DAu with A =
(Ao, A1, ..., A,), but this time |A] — Ag < m — 2A, and m is even. Then we just need
to show

/ ) J[DAu](t, x)dx

For n>3, m > [% + 3} and m even, we have, thanks to the Holder inequality,

< eCpmax(a, B)y/ Em [u](t)Sm[u](t). (43)

2

A 2 A 2
[ tuaD e <l o 1Dl

Noticing, that, thanks to Ref. [TI] Theorem 7.57 p. 228, for s > § there hold the continuous
embeddings H*(R") c C%(R") C L3(R") (where C% is the Banach space of bounded
continuous functions equal to zero at the infinity), we can write for m > [% + 3}

el gy < Clltell o gy < Clltellm-2any < O/ B [l (44)
In addition, with the help of the Gagliardo-Nirenberg-Sobolev inequality

< C[[Vollz2gn), (45)

ol g g <
we also have

||DAUt||L%(Rn) S CHVDAUtHLQ(Rn) S C||VDZ40+1U||H\A\—AO(R7L).
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With the hypothesis that |A] — Ag < m — 24, there hold 24; < m and
”vDiAOJ’»lu”H\A\fAO(Rn) S HVD?O+1U/”HWL—2AO(R71)

Therefore, all norms ||VD;**!

in Sz . Hence, we find

ul|? Hm—240 (&n) > for the chosen n, m and A, are present

/ |y (DA )?|da < CHUttHHm—Q(Rn)||VDAU¢||%2(R7L) < Cy/Ewnlu]Sn[u], (46)
and in the same way,
[ 18U uPlde <l g DY < Nl IV DA e

To calculate L,D“u we use expression (69) with multi-indexes A/! and A2 satis-
fying ([0). As in the proof of Proposition [I without loss of generality, we consider two
multi-indexes A' and A? with the same properties (T0). We perform two steps:

Step 1 we prove
/ |DA wy DY u, DAwy|dz < C B [u]Sm[u], (47)

Step 2 we prove

/ | DY 0, u DY 0, u DAuy|dz < C Em [u]Sm[u]. (48)
Rn

Step 1. Thanks to properties ({Q) of A; and A, and to the symmetry of the general
case

[ A DGk ) (D DU ) (D),
we divide our proof on three typical cases:

Case 1 |A1| — Ay >0, Ay >0, |A?| — A2 >0 and A2 >0, i.e. anon trivial presence
of D, A and D(Al’ ? ”) is imposed,

Case 2 |AY| — A} =0, A} > O \AQ\ — A? > 0 and A2 = 0, i.e. we consider the
integrals of the form [, [(D )(D(Al’ A% uy) (DAuy)|da,

Case 3 [AY| — Aj =0, A} > 0, |A2| — A3 =0 and A3 > 0, i.e. we consider only

.. . . . Al A2 A
non-trivial time derivatives [g, |(D; °u;)(D; u,)(D%4uy)|d.

Step 1, Case 1. By the generalized Holder inequality with 2 + 2 ;2 we have

/ |DA"w, DA%uy DAug|de <|| DA | oy || DA e | pageny | DA el oo, 2 @)
Rn
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By the Sobolev embeddings ([2) of H™ C L and H™ C LY with m;+my = 5 —1
and 0 <m; <4 —1, we find

1 2 1 2
|DA Ut DA Ut DAU/t|de' SCHDA utHHml(R")HDA UtHHmz(Rn)||VDAUt||L2(Rn),
R™

where we have also applied the Gagliardo-Nirenberg-Sobolev inequality (43]). Hence,

/ |DA1ut DAQUt DAut|d;1:

Ab A2 1
SCHat OutHHml""Al‘_A(l)(Rn) ||Vat 0ut||Hm2+‘A2‘_A(2)_1(Rn)S% [u] 2, (49)
Now we are looking for 0 < m; < % — 1, such that
my + |AY — AL < m — 24}, (50)
my + |A?| — A2 — 1 <m — 242,
in order to have
g < d |vo' <
|| t ut||Hm1+\Al\—A(1)(Rn) — E%[u] an ||v t utHHmQHAQ\—A%—l(Rn) — S% [U] (51)

Since my = 2 — 1 —my, and by ([), |A?| = |A|+ 1 — |A!| and A2 = Ay +1— A},

2
system (B0) is equivalent to

my + |AY + A) < m,
Dol—m+ A +1—- A+ A +1-Aj—1<m.

The last system, thanks to |A| + Ay < m, corresponding to the assumptions of the
Proposition, is satisfied if
<my + A + Ay < m.

|3

Using (7)), we find that
|AY 4+ Ay = |A] + Ao + 2 — (|A*| + A43).

Therefore, since for Case 1 |A?| > 2 and A > 1, recalling that (again by ([T0)) |A|+A4y <
m , we obtain
1< A+ A <m—1.

Thus, we distinguish three sub-cases:
For n >3, 2 <|A'Y+ A} <m—1 taking m; = 1, we obtain (&I

For n>5, 2 <|A'|4+ A} <2 as m > [2+ 3], it is sufficient to take my = 2 — (|4 +
Al).
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For n >3, |A'| + A} =1 instead of finding m; , we notice, that we have only two pos-
sibility: either DA = 8, and A% = A, which gives estimate (@gl), or DA = O,
with A2 = Ag+ 1 and |A?| — A2 = |A] — Ag — 1 > 0. For the last case, by the
generalized Holder inequality, we have

/ 10, D 1wy DAyl de < )| oy || DA 00| 2 gy || DA (52)

on
L7—Z (Rn)
For m > [% + 3] the first norm in Eq. (52) can be estimated using the continuous
embedding H*(R") C L"(R") holding for s > %:

Haxlut”[/n(]gn) S C”amiulg|’H[%+1](Rn) S CHut”H’”_l(R") S C E% [U]

With the help of the Gagliardo-Nirenberg-Sobolev inequality (45), we also estimate
the second norm in (52))

ID% ], an, ) S CIIVDAu| 2@ny < C/ S ul, (53)

(R

and for the last one we directly have
2 A A
||DA U/tHLQ(Rn) S ||V8t 0+2u||H\A\—AO—2(Rn) S ||Vat 0+2u||Hm72A072(Rn) S S% [’LL]
Thus we obtain as previously estimate (A7) of Step 1.

This permits to conclude Case 1 of Step 1.

Step 1, Case 2. We have |A'|—A} =0, A} >0, |A?|— A% > 0 and A3 = 0. Therefore,
by (), A} =1+ Ay, and, updating (@), we directly have

Al 1
/ DM, DAL A0, DAuy|da SO0 | s )| Vel oy 142 -1 oy S ]
with my+my =4 -1, 0 <my < §—1. Now we need to find m; , belonging to |0, 5 —1[,
such that

mo + |A%] =1 < m,

in order to have
1070 g || gpms ey < Eulu] and [Vl oy iazi-1gny < 4/ Sz [ul.
From 1+ |A| = |AY + |A?%|, by ([T0), with the relation |A'| = A} =1+ Ay it follows that
A% = |A| = Ap. (55)
Therefore, as my = § —my — 1, system (B4 is equivalent to

m1+2A0§m—2,
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By the assumption of the proposition
hence the last system is satisfied if we have m; such that

g—2§m1+2A0§m—2.
Knowing that |A%] > 0 (by the assumption of Case 2), Eq. (55) implies that |A|—Ag > 0.
Thus, relation (B6]) gives 24y < m — 1, or more precisely

2A0§m—2,

since m is even. So, a mp with 0 < m; < § — 1 exists if m — 24, > 2. Indeed, if

240 < 5 —2 we can take m; = § — 2 —2A4p, and if m —3 > 24, > 5 — 2 we can take

mlzl.

2
Let us now consider the limit case 24y = m — 2. Then we have |A'| = Aj = 2.

Moreover, from (B6) viewed, thanks to Eq. (B3), as |A?| + 24, < m, follows that 1 <
|A%| < 2. We apply the generalized Holder inequality and estimate ({45 to obtain

m 2 2 m 2 2
/ 10wy DY 4wy DAyl dae <|62 Ut||L2(Rn)||D§;A1""’A")Ut||L"(R")||DAUt||

L7 (R
<CND,2 wr 2@ [ DYE A0, || o ey S [u].

Moreover,
||8?ut||L2(Rn) S E% [U]

Using the continuity of the embedding H*(R") C L"(R") for s > %, we also find for
m > %+ 3]

2 2
1D ey <CID ] gy < Ol Vel s

(R™ (R™)

Hence, estimate (A1) of Step 1 is also proved for Case 2.

Step 1, Case 3. Let us notice that thanks to relations (70), from |A'| = A} and
|A%] = A2 it follows |A| = Ay. We start as usual with the generalized Holder inequality

Al A2 Al A2
[ 1D D Do <UDl e 1Dl e | D]
Rn

with % + % = "z—tf . Then we apply the Gagliardo-Nirenberg-Sobolev inequality (43]) and
its more general version, which can be viewed as the embedding of the Sobolev space
W, (R") in the Lebesgue space L¢(R") with % =+ —~Land 1< ¢ <n:

7

Al A2 Al A2
/ | D *wi Dy Py Dw|da <C|| Dy wyl| 1o @n) |V Dy P o oy |V D || 2y
Rn
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with % + q% = 2 We notice that if we want to use the Sobolev embeddings (72) to

2n
LP and to L9 , it is only possible if % and q% are smaller then %, or equivalently, if
i+q%:%l<1. Knowing that ”2—24<1 for n > 5, %1>1 for n =3 and %1:1
for n =4, we treat separately two cases: n>5 and n =3 or 4.
For n =3 or 4, we choose p =% and ¢ = %, implying ¢* = 2. Thus, for n =3

we use the continuous embedding H2(R3) ¢ Lz (R3) [] (since 2 > 2) and for n =4 we
use H*(R*) C L*(R*) to obtain

A A2 A A2
/ | D7 uy Dy Dy Oug|dar <|| D uel| g gy |V Dy “twel |12y [V D 0| 2semy
Al
SCHDt Out||H2(Rn)S% [U]
If m —2A} > 2, then we directly have

| DAy || g2y < || DMy Enu).

HijA(l)(R”) S 3
Recalling that m is even, and, by our assumption |A'| + A} < m, 2A} < m, there is
only one additional possibility: m — 245 =0, i.e. Aj=12.

For Aj = %, thanks to (Z0) and the assumption 24, < m, we necessary have

|A(2)| = 1, and consequently, by (53],

/ |8t7ut Ut 8t7ut‘d.§lf < CHuttHHQ(Rn)”at?utHiyf_fﬁ(Rn) < Q/E% [U]S% [U]

Thus for n =3 and n =4 we find estimate (7).

Now, for n > 5, when + + L =2 <1 we have
p q 2n

A} A3 A} A2
/ Dy uy D Puy Dy w|da <C|| D, ugl| ey |V Dy OutHLq*(R")HVD?OutHLQ(R")

A A3
SCND;  well zrms ey IV Dy e prma ey ) S [u]

with m; +mg = § —2 and 0 <m; < § —2 by the Sobolev embeddings ([2]) which give
us H™ C LP and H™ C L9 . We look for m; such that

my <m— 245, mg <m — 2A; (57)
in order to have
1D 5wl < (/B lu] and VD ]l pme < /S ]
As my=12—2—my and Af = Ag+1— Aj, system (ED) is equivalent to
{ml + 2A5 < m,
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As m —2Ay > 0, it is sufficient to have m; such that

<my+245 <m

o3

with 0 <m; < 4 —2 and 1§Aé§%. If2§Aé<% we can take mlzg—QA(l). And

if 2<Aj<Z—1 we can take m1=i-
If A} =1, then necessary A2 = Ay, and using estimates (@) and (G3) we directly

find
/ |utt (Dfout)2‘dl' SC”UttHL%(Rn)”D?OUtHQ2Tn N < CQ / E% [U/]S% [U]
Rn Ln=2(R")

If Aj =% we are in a symmetric case as Aj = 1. This conclude the proof of Case 3
and of Step 1, i.e. of estimate ([{AT]).
Step 2. Let us show estimate (48]). Thanks to properties (70) of A; and A, and to the

symmetry of the general case

/ (D0 DAy, ) (D] DAL 40y, ) (DAuy) | de,

we divide our proof on two typical cases:
Case 1 |AY—A; >0, A} >0, |A* — A3 >0 and A3 > 0, i.e. a non trivial presence
1 2
of DtA0 and DtA0 is imposed,

= |A%| — A2 > 0 and A2 > 0, i.e. we consider the

Case 2 |A'| — A} >0, Al =0,
1 1 2 2 2
integrals of the form [, \(Df1+"'+A”umi)(Df°Df1+"'+A"umi)(DAut)|dx with a non-

. A2
trivial D, ° .

Case 1. Using estimate |[D%4wuyl|r2 < y/Em=[u], we have

/ (D} DAy, ) (DS DAL Ay, ) (DA, |da

Al A2
< C|Vo, OUHHmmAl\—Aé(Rn)Hvat 0U||Hm2+\A2\—A3(Rn) Exn [u]
with m; +mp =14 and 0 <m; < 3.
Let us find m; with 0 <m; < % such that
my + |A?| — A3 < N —2(A2—1)

in order to have
Al A2
||V8t 0u||Hm1+\A1\—A(1)(Rn) S S% [u] and ||Vat Ou||Hm2+\A2\—A(2)(Rn) S S% [U]
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As my =2 —my, |[A'+|A? = |A]+1, and Aj+ A5 = Ag+1, system (BJ) is equivalent
to

my + |AY + AL <m + 2,

24]Al+ Ao +2<m+24+m + |AY + A

By our assumption |A|+ Ao < m, and hence the last system is satisfied if m; verifies
n
5 <my+ A+ Ay <m+2.

In our case Aj > 0, thus 2 < |A'| + A} < m, which implies the existence of a such
my with 0 < my < 2. Indeed, if m > [A'] + A} > 2 we can take my; = 1, else if
2 < |A' + Aj < 2 it is possible to take my = % — (JA'| + Aj) . This concludes Case 1 of

Step 2.

Case 2. Thanks to (70), the conditions |A'| > 0 with A} = 0 imply that |A| — A4y > 0.

Consequently, with m; +my = 5 and 0 <m; < & as in the previous case, we obtain

/ | DA 8, u DY 0, u DAuy|da
R’ﬂ

A2
SCHVUHHmHAH(Rn)Hvat "] pmp+142)-a

%(Rn)”vatAOutHH\A\*Aofl(Rn)
A2
SCHVU’”Hml-HAl‘(Rn)”vat OUHHW“A%*A%(R@ S% [u].

In the aim to have

AQ
HVU/”Hml_HAl‘(Rn)S Em[u] and HV@OUHHWHAQ‘,A% Sm [u],

<
(R™) —

we need to find m; with 0 <m; < 7, such that

my + |A] < m,
my + |A% — A2 <m —2(A4% - 1).

As my =2 —my, |[A?|=]A|+1—|A'] and Aj = A+ 1 it is equivalent to solve

{m1 + |AY] < m,

S—mi+ A+ 1[4+ 4 +1-2<m.

As m — |A| — Ay > 0, the last system is satisfied if m; verifies
gémlﬂAll < m.

By assumptions of this case it tolds 1 < |A1| < m, what guarantees the existence of such
my with 0 <my < 2. Indeed, if 1 <|A'| <2, then we can take my = % —|A'[, and if
5 < |AY < m — 1, then we can take m; =

D#* = 9, , we directly obtain

5. In the case |A'| = m, corresponding to

|DX 0, u 0y, uy D uy|dz < C|| DX 0,,u

Rn

|2 1 0e el o [| D |2

< OVl g | Vg || @) |V D ]| 2y < C\/ B [u] Sz [u].
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This completes the proof of Step 2 and hence the proof of estimate ([{S]).

Thus, estimates (1) and (8] imply
< Cmax(a, B/ Em[u]Sm

from where follows (43]). O

/ L,D*uD%u,dz
Rn

Thanks to Lemma [II, we have the following energy decreasing result:

Theorem 7 Let n >3, m € N be even and m > [2+3]. For ug € H™"'(R") and
u; € H™(R™), satisfying the smallness condition according to Point 1 of Theorem[2, there
exists a unique global solution

u € CHRT; H™ H(R™)) N C(R*; H™(R™))
of problem (1)-(2) and the energy Em[u](0) < oo is well-defined. Then

1. it holds the a priori estimate

d
GE® + VS u(0) (Var - Cumax(a, )VEWD) <0, (59)
where, denoting by V' the set of all multi-indezes A = (Ao, A1, ..., A,) with |A| —
Ay <m —2A,
-y / (1 — acu) (D)2 + A(VD)?)(t, 7) da.
Ay TR"
i - - - NS _
2. if in addition /Ew[u](0) < IO manond) O(\/¢), then
Vt € RY, Enlu](t) < (3+2c¢*)Exn[u](0) = O(1). (60)

Proof : We sum (4I)) on all A €V to obtain

th( t) + 2veSm[u] < Cp max(a, B)ey/ Em[u]Sm[u].

While ||ty (t)|| poo®ny < 5= it holds

and consequently,

d

—B(t) + 2veSy [u](t ul(t) < V2C, max(a, B)ev/E(t)S= [u
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Thus, if for all time /E(t) < nwx(‘(/x_% , and in particular,

v

cmm—</s>) (o1

E(0) < (g + 02) B [u](0) <2 (

then we have the decreasing of E in time:

d
ZE(t) <0 and E(t) < E(0).

Moreover, for all time ¢t > 0
e (t)]| Lo @) SCooy/ B [u](t) < CooV20/E(t) < CouV2/E(0)

2 .
e ax(a f) - 20z

To be able to write QCoom < 2o we recall that, using the physical values of
coefficients, ¢ < 1, ¢? O(é), o= B = 2, and consequently, as v = O(1), the
last inequality becomes

Coo 1

C—ml/ < 2#.[5’

which is obviously true in the case of ¢ < 1 (and, for instance, taking C,, = 2C ).
Hence, if Eq. (61) holds, then for all time [ju(t)[|~ < 7= and the well-posedness of the

Cauchy problem is ensured with the following energy estimate

Eun[u](t) < 2E(0) < (34 2¢%) Ex[u](0).

UJ
A Proof of Proposition [
Following [10], let us consider
L,v = vy — Av — aguvy — feVu YV, (62)

where u is a local solution on [0, 7] of problem (I)—(2]) with v = 0, satisfying (@) and (&)
for s =m. We multiply Eq. (62) by v; and integrate over R"

/ L,v vdx

—— (/ v? + (Vo) de) — ae/ uvgvpde — SBe VuVuude

d
[a ( Ut vfdx) — /n Ut vfdx]

Il
DO | —
Q.|Q‘
—
3

N@

+

Q

<

@

l\?

O,

3
N—

|
l\DIQ
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Hence, denoting by

I[v] = v} + A(Vv)? — asuy; 7, (63)
J[v] = 2L, vy — [aeuy + BeAu] (v;)?, (64)
we have the following equation
d
— | I](t,z)dz = / Jv|(t, x)dx. (65)
dt Jgn n

Let A = (Ag, Ay, ..., A,) be a multi-index, and D4y = 8;408;1...8;‘:. To prove esti-
mate 20), we study | [5. J[v](t, z)dz| for v = D% with |A| = A+ ...+ A, <m.

For m > [2+2] and a multi-index A with [A] < m we estimate, thanks to the
definition of E,,[u] by Eq. (@),

e (D ue)?|de <|[twgel| oo oy [| DAt |2 o
Rn

[SI[oY

Bolu] < C Enlul?, (66)

§C||utt||H[%+1](Rn)

with a constant C' > 0, depending only on n by the Sobolev embedding [I] Theo-
rem 7.57 p. 228

H¥(R™) < L®(R") br3>>g. (67)

In the same way, using the Sobolev embedding (7)), we obtain

)Em [u]

<C||Vul| g Bm[u] < C Eplu]?. (68)

[ (D < Aul o | D ey < Cll Ayt

To calculate L,D“u we apply the chain rule of differentiation to DAL,u = 0. As
L,u =0 we suppose |A| > 1. By developing DA(VuVu,) = Y7 | DA(0y,u0,,u;) with
DA(uy; uy) , we have

L,D% =« Z (CjaDAﬂut DA%, + Z EijﬁDAﬂain DAj26$iu> ; (69)

J i=1

where >, is a finite sum, with C; and Ej; depending only on |A| < m, and Al and
A% are multi-index such that
| AT +]A72| = |A] + 1,
(A=, AR =1, (70)
AN AP =Ag+1, AN AP = A for1 <i<n.

Let us show for m > [g + 2] the estimate

[S1[o%

/ L,D*u DM, dz| < Ce max(a, B) B,y [u] (71)
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Without loss of generality, we consider two multi-indexes A! and A? satisfying (70) and
divide the proof of (71) in two parts: we estimate fRn |DA1ut DA%y, DAy, |dz first, and
secondary [, |DA'0,,u DA’ 8,,u DAu;|dz. As the proof of each part is very similar, we
give the details only for the first one.

To estimate fRn |DA1ut DA%, DAu;|dz , we consider three cases:

Case 1 1< |A' <m and 1 < |A%| <m,
Case 2 |A')<m and A% =1,
Case 3 |A% <m and |A'|=1.

Let us detail Case 1 (other cases can be treated in a similar way).
For 2 <|A'l<m—1 and 2 < |A% <m —1, it holds

,/|DﬂwDﬂwlﬂ%M$SMﬂWMMWﬂDMwMMWMD%ﬂBm%

with % + % = 1 by the general Hélder inequality [4]. Hence, using the Sobolev embed-

ding [T] 1 1
. m n
Hm@wyeLmW)mmh5:§—7fmﬁo<nn<§, (72)

we find
1 2 1 2
/Rn | D4 g DYy Dhugldar < C||\ DY g e ey | DY Ut”H%—ml(Rn)HDAUtHL2(R")-

In what follows by C' > 0 is denoted an arbitrary constant depending only on m and on
n.
We have

1 Al
1D sy < 10500 100143 gy

2 A2
D%l sy < 103l

(R" §—m1+4%1-AF gny-

We need to find m for which there exists m; with 0 <m; < %, such that

{ my+ A = Ay <m+1—(45+1), (73)

B—my+|A - A <m+1-(AF+1),

or equivalently, by ([ZQ) |A?% = |A| + 1 — |Al],

my + |A] <'m,
2—my+|Al+1—]AY <m.

As m —|A| > 0 it is sufficient to find m; , such that
n 1
§+1§mrHA\§m

with 2 <|A' <m —1 and 0 <my < %. In particular, the last three inequalities imply
that m > [24 5] . For the existence of m; , we see that, for instance,
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if |A;| =2 we can take my :%_

I

=

if 2 <|A)| <5 +1 wecantake m; =5 +1—[A],

if 24+1<]A;<m—1 we can take m1:i-

Moreover,
1D% || paqny < 1105 wel| priai-ao ey < 187 well gm0 oy

Then, thanks to relations (73]), we conclude

1 2 Al A2
|D% wy DYy DM uylde <C||9; OutHHm—A(l)(Rn)Hat OUtHHm—Ag( HafoutHHm*AO(R”)

<C E,[ul>.

R™ R™)

[SIoY

Consequently, for m > [g + 2] ,and A' and A?, satisfying properties ([Z0), it holds

| DA wy DY uy DAwy|dz < C By [ul?. (74)
]Rn
By the same argument, for m > [% + 2] and A' and A? satisfying properties (70),
we control the terms of the form fR" |DA18xiu DAQGxiu DAy, |dz :

/ |DA 0, u DY 0, u DAu,|dz < C’Em[u]% (75)

Thus, considering @9), () and (75) for m > [2+2] and for a multi-index A with
|A] < m, we have estimate (71]).
Thanks to estimates (66), (G8) and (1)), we are able to control each term of J[D%u]

from Eq. (64):

W

< Cmax(«, B)eE,[ul(t) (76)

/ ) J[DA](t, x)dx

By the hypothesis that w is a local solution of the inviscid Kuznetsov equation, u satisfies

Eq. @), i.e. ||u(t)]|z~ < 5= on [0,T], which implies the equivalence of energies

2ae
1
/ a(DAut)2 + A(VD)dx < /

We integrate relation (GH) over [0,¢] with ¢ < T to obtain

I[DAu)dz < / g(DAut)2 + (VD) dz.

n n

1D (8) 2 ey + IV DA () 1 2 e
(3+¢)
~min(1/2, ¢?)

1 t
— dz dr.
* min(l/Q,CQ)/O /n J(7@)de dr
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Then, using estimate (7)), we find

1D e (£)]172 ey + IV DA () 1 2 e
(G+<)

~min(1/2, ¢?)
1

* min(1/2, ¢?)

(1D e O) 12y + VD (0) [ Z2(zn))

t
Cmax(a,ﬁ)e/ Em[u](T)%dT.

0
As we have this for all multi-index A with |A| < m, by summing, we obtain

(34 2¢?) Cmax(a,3) [* 3
E[u](t) < min(1/2.3) E,[u](0) + We/o E,[u](7)2dr

with a constant C' > 0, depending only of n and m. This gives estimate (20).

Remark 4 To prove estimate (21]) it is sufficient to show, using the proof of Proposi-
tion [, that for m > [g + 3] and all multi-index A with |A| <m

< Cen/ Epa[ul By lul,

/ D (s, 7)d

where J[DAu] is defined in Eq. (GJ).

B Illustration of the sharp behavior of Point 1 in The-
orem

Theorem 8 Let n > 3, m € N be even, m > [2 +3]. For ug € H™'(R") and
Uy € Hm(Rn) Zf

Vol grm ey +[[ua ] mrm g

< ! 2v° —o(em), ()

‘\/1 T+ BT (G 4 ) max(a?, 57)

then /Em[u](0) < \/%+626\’/jl:nax(a,ﬁ) = O(v/¢), so that by Theorem[q Point 2 there exists

a unique global solution u € CO(RT; H™H(R™))NCH(R*T; H™(R™)) of the Cauchy problem
associated to the Kuznetsov equation such that for all t € RT

NCATTOE \/ G+ (14 B ) 9 almiae + sl (79

Proof : We want to show (7). To do it, we perform the induction on i € {0;1;...; %

proving that the time derivatives of the solution of the Cauchy problem ([I)—([) u at

t = 0 satisfy for all ¢ € {0;1;...;%} and for k € N, 0 <k <7 the following estimate

1051 (0) || grm—2t gy < an (|| Vo] zrmmeny + [|w || zrm meny), (79)
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with ag =1, a; = 2¢> + 2 and

k
ak+1:ak+202ak1+2¥ai+1 forlgk;g%—l.

For ¢ = 0 the proof is direct. For ¢ =1 from the Kuznetsov equation we have

1

= ———(*Aug + veAu,y + BeVugVuy).
1 — acuy

u(0)

As for a small enough ¢ it holds Hﬁ”m < 2, taking the ||.||gm-2@n)—norm of the
last equality we obtain

||U/tt(0)||Hm—2(Rn) S 2(02||Au0||H7n—2(Rn) + I/EHAUlHHm—Q(Rn)
+ BEH VUOVu1 ”Hm—Q(]Rn)). (80)

Thanks to [I] we have for all € N and forall ke N, 0 <[ <m and 0 <k <m—1
the continuous embedding of the product

H™HR") x H*(R™) — H*(R™). (81)
Thus we can write for (80)

Hutt(O)HHm-z(Rn) S 2<CQHVUQHHm(Rn) + VEHulHHm(Rn)
+ Be K ||Vuo || -1z [| VU || rm—1ny ),

and by Young’s inequality we find
[ (0)] rm—2(ny < 2 [ | Vo] m(mny + vel|ua ] gmgn)
1
+§55K (HVUOH%{m(Rn) + ||U1||%{m(ﬂzan)) . (82)

Choosing ¢ small enough such that

I

/BgKHVU/OHHm(Rn) S 1, B€K||u1||Hm(Rn) S 1, ve S

N —

from (82) it follows

1 1 1
||Utt(0)||HM*2(]Rn) <9 [(CQ + 5) ||Vu0||Hm(Rn) + (5 + 5) ||u1||Hm(Rn)]
§(202 + 2)([[Vuo|| zrm@ny + ||ur]| zrm @n))-

Let define now the induction hypothesis: for i € {0;1;...;% — 1} for ke N, 0 <k <1

it holds estimate (79). Now we want to show it for i+ 1, by the induction hypothesis we
just need to show

”ati‘i’lut«))HHm—2(i+1)(Rn) S ai+1<”vu0”Hm(R") + H'U/l”Hm(Rn))
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Deriving 7-times on time the Kuznetsov equation, for ¢« > 1 we obtain

1

— Uy

i—1
(cQAﬁfu(O) + ve AU (0) + ae Z CFO 1, (0)0F 1y (0)
k=0

qutt (O) = 1

+8e> cfvag—’fu(owafut(())) .
k=0

We take the ||.||gm-2¢+1)—norm of this equation and in the same way as for i = 1 we
show that

(AT [P

< (202%'—1 tai+2) ap+ 1) (Vo mm®ny + [lwr || zm(ren))
k=0

<aiy1 (|| Vol zmwny + [ua |l mm@ny)-

This concludes the induction.
With the induction result we have for k € N, 0 <k < 3

108 e (Ol -t any < ([l s ey + et ),

where
ar < (202 + Q)k

Therefore we can write

I3

Exlu](0) < [ 1+ af | (IVuollmm@n) + sl mmeny)?
=0

Ay, @1

= (22 122 1

) (I a0l ey + [l ey

Hence, taking the initial data satisfying estimate ([]) we have the following estimate for
the initial energy

202
E% [u](O) < (% + CQ)CTQYL maX(QQ’BZ)'

Consequently, by Theorem [1 Point 2 for all ¢ € R we obtain estimate (8]). O
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