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Cauchy Problem for the Kuznetsov Equation

ADRIEN DEKKERS∗and ANNA ROZANOVA-PIERRAT†

October 8, 2018

Abstract

We consider the Cauchy problem for a model of non-linear acoustic, named the

Kuznetsov equation, describing a sound propagation in thermo-viscous elastic me-

dia. For the viscous case, it is a weakly quasi-linear strongly damped wave equation,

for which we prove the global existence in time of regular solutions for sufficiently

small initial data, the size of which is specified, and give the corresponding energy

estimates. In the inviscid case, we update the known results of John for quasi-linear

wave equations, obtaining the well-posedness results for less regular initial data.

We obtain, using a priori estimates and a Klainerman inequality, the estimations

of the maximal existence time, depending on the space dimension, which are opti-

mal, thanks to the blow-up results of Alinhac. Alinhac’s blow-up results are also

confirmed by a L
2 -stability estimate, obtained between a regular and a less regular

solutions.

1 Introduction

The Kuznetsov equation [16] models a propagation of non-linear acoustic waves in thermo-
viscous elastic media. This equation describes the evolution of the velocity potential and
can be derived, as in [20], from a compressible isentropic Navier-Stokes system, for the
viscous case, or the Euler system for the inviscid case, using small perturbations of the
density and of the velocity characterized by a small dimensionless parameter ε > 0 . The
Cauchy problem for the Kuznetsov equation reads for α = γ−1

c2
, β = 2 and ν = δ

ρ0
as

utt − c2∆u− νε∆ut = αεututt + βε∇u ∇ut, x ∈ Rn, (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn, (2)

where c , ρ0 , γ , δ are the velocity of the sound, the density, the ratio of the specific
heats and the viscosity of the medium respectively. In what follows, we can just suppose
that α and β are some positive constants. Eq. (1) is a weakly quasi-linear damped
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wave equation, that describes a propagation of a high amplitude wave in fluids. The
Kuznetsov equation is one of the models derived from the Navier-Stokes system, and it is
well suited for the plane, cylindrical and spherical waves in a fluid [7]. Most of the works
on the Kuznetsov equation (1) are treated in the one space dimension [11] or in a bounded
spatial domain of Rn [12, 13, 17]. For the viscous case Kaltenbacher and Lasiecka [13]
have considered the Dirichlet boundary valued problem and proved for sufficiently small
initial data the global well-posedness for n ≤ 3 . Meyer and Wilke [17] have proved it
for all n . In [12] it was proven a local well-posedness of the Neumann boundary valued
problem for n ≤ 3 .

In this article we study the well-posedness properties of the Cauchy problem (1)–(2). In
the inviscid case for ν = 0 , the Cauchy problem for the Kuznetsov equation is a particular
case of a general quasi-linear hyperbolic system of the second order considered by Hughes,
Kato and Marsden [8] (see Theorem 1 Points 1 and 2 for the application of their results
to the Kuznetsov equation). The local well-posedness result, proved in [8], does not use
a priori estimate techniques and is based on the semi-group theory. Hence, thanks to [8],
we have the well-posedness of (1)–(2) in the Sobolev spaces Hs with a real s > n

2
+ 1 .

Therefore, actually, to extend the local well-posedness to a global one (for n ≥ 4 ) and
to estimate the maximal time interval on which there exists a regular solution, John [10]
has developed a priori estimates for the Cauchy problem for a general quasi-linear wave
equation. This time, due to the non-linearities ututt and ∇u ∇ut including the time
derivatives, to have an a priori estimate for the Kuznetsov equation we need to work with
Sobolev spaces with a natural s , thus denoted in what follows by m . If we directly
apply general results of Ref. [10] to our case of the Kuznetsov equation, we obtain a well-
posedness result with a high regularity of the initial data. We improve it in Theorem 3
and show John’s results for the Kuznetsov equation with the minimal regularity on the
initial data corresponding to the regularity obtained by Hughes, Kato and Marsden [8].
For instance, we prove the analogous energy estimates in Hm with m ≥ [n

2
+ 2] instead

of John’s m ≥ 3
2
n + 4 (see Eq. (20) in Proposition 1) and its slight modified version in

Hm with m ≥ [n
2
+3] instead of m ≥ 3

2
n+7 (see Eq. (21) in Proposition 2). The energy

estimates allow us to evaluate the maximal existence time interval (see Theorem 1 Point 5
and Theorem 4 for more details). In R2 and R3 the optimality of obtained estimations
for the maximal existence time is ensured by the results of Alinhac [2]. In Ref. [2] a
geometric blow-up for small data is proved for ∂2

t u and ∆u at a finite time of the same
order as predicted by our a priori estimates (see Theorem 1 Point 5, our estimates of
the minimum existence time correspond to Alinhac’s maximum existence time results).
From the other hand, the blow-up of ∂2

t u and ∆u is also confirmed by the stability
estimate (8) in Theorem 1: if the maximal existence time interval is finite and limited by
T ∗ , by Eq. (8), we have the divergence

∫ T ∗

0

(

‖utt‖L∞(Rn) + ‖∆u‖L∞(Rn)

)

dτ = +∞. (3)

For n ≥ 4 and ν = 0 , we also improve the results of John [10] and show the global
existence for sufficiently small initial data u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) with
m ≥ n+ 2 instead of m ≥ 3

2
n + 7 (see Proposition 4 and Theorem 4). The smallness of

the initial data here directly ensures the hyperbolicity of the Kuznetsov equation for all
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time, i.e. it ensures that 1−αεut is strictly positive and bounded for all time. The proof
uses the generalized derivatives for the wave type equations [10] and a priori estimate of
Klainerman [14, 15] (see Section 3.2).

Let us now formulate our main well-posedness result for the inviscid case:

Theorem 1 (Inviscid case) Let ν = 0 , n ∈ N∗ and s > n
2
+1 . For all u0 ∈ Hs+1(Rn)

and u1 ∈ Hs(Rn) such that ‖u1‖L∞(Rn) <
1

2αε
, ‖u0‖L∞(Rn) < M1 , ‖∇u0‖L∞(Rn) < M2 ,

with M1 and M2 in R∗
+ the following results hold:

1. For all T > 0 , there exists T ′ > 0 , T ′ ≤ T , such that there exists a unique solution
u of (1)–(2) with the following regularity

u ∈ Cr([0, T ′];Hs+1−r(Rn)) for 0 ≤ r ≤ s, (4)

∀t ∈ [0, T ′], ‖ut(t)‖L∞(Rn) <
1

2αε
, ‖u‖L∞(Rn) < M1, ‖∇u‖L∞(Rn) < M2. (5)

2. The map (u0, u1) 7→ (u(t, .), ∂tu(t, .)) is continuous in the topology of Hs+1 × Hs

uniformly in t ∈ [0, T ′] .

3. Let T ∗ be the largest time on which such a solution is defined, and in addition
s ∈ N , i.e. s = m ≥ m0 = [n

2
+ 2] . With the notation

Em[u](t) = ‖∇u(t)‖2Hm(Rn) +

m+1
∑

i=1

‖∂i
tu(t)‖2Hm+1−i(Rn), (6)

there exist constants C(n, c, α) > 0 and Ĉ(n, c, α, β) > 0 (see Theorem 3) such
that if the initial data satisfies

√

Em0 [u](0) ≤ 1
C(n,c,α)ε

, then

T ∗ ≥ 1

εĈ(n, c, α, β)
√

Em0 [u](0)
, such that it holds (3). (7)

4. For two solutions u and v of the Kuznetsov equation for ν = 0 defined on [0, T ∗[
assume that u be regular as in (4)–(5), i.e. u ∈ L∞([0, T ∗[;Hm+1(Rn)) , ut ∈
L∞([0, T ∗[;Hm(Rn)) ( s = m as in Point 3), and

v ∈ L∞([0, T ∗[;H1(Rn)), vt ∈ L∞([0, T ∗[;L2(Rn)) with ‖v‖L∞(Rn) <
1

2αε

and with a bounded ‖∇vt‖L∞(Rn) norm on [0, T ∗[ . Then it holds the following
stability uniqueness result: there exist constants C1 > 0 and C2 > 0 , independent
on time, such that

(‖(u−v)t‖2L2+‖∇(u−v)‖2L2)(t) ≤ C1 exp

(

C2ε

∫ t

0

sup(‖utt‖L∞(Rn), ‖∆u‖L∞(Rn))dτ

)

.(‖u1 − v1‖2L2 + ‖∇(u0 − v0)‖2L2). (8)

5. If s = m ≥ n + 2 , then for sufficiently small initial data (see Theorem 4 in Sec-
tion 3.2)
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(a) lim infε→0 ε
2T ∗ > 0 for n = 2,

(b) lim infε→0 ε log(T
∗) > 0 for n = 3,

(c) T ∗ = +∞ for n ≥ 4 .

Theorem 1 is principally based on the a priori estimates given in Sections 3.1 (for Point 3)
and 3.2 (for Point 5) and on the local existence result updated from Ref. [8] (Points 1
and 2). Point 4 uses the classical ideas of the weak-strong stability, for instance proved
in details for the KZK equation in [18] Theorem 1.1 Point 4 p. 785. Hence its proof is
omitted. Some technical details on the proof of the a priori estimates of Section 3.1 can
be found in Appendix A.

Analyzing the structure of the Kuznetsov equation and the difficulties involving by
its non-linear terms, we start in Section 2 with preliminary remarks on the L2 -energy
properties for the Kuznetsov equation to compare with its simplified versions. Developing
the energy estimates in the Sobolev spaces, we however recognize the structure of the
L2 -energy of the wave equation which keeps unchanged.

In the presence of the term ∆ut for the viscous case ν > 0 , the regularity of the higher
order time derivatives of u is different (to compare to the inviscid case), and the way to
control the non-linearities in the a priori estimates becomes different. As it was shown
in [21], this dissipative term changes a finite speed of propagation of the wave equation
to the infinite one. Indeed, the linear part of Eq. (1) can be viewed as two compositions
of the heat operator ∂t −∆ in the following way:

utt − c2∆u− νε∆ut = ∂t(∂tu− εν∆u)− c2∆u.

For the viscous case we prove the global in time well-posedness results in Rn (see
Section 4) for small enough initial data, the size of which we specify (see Point 1 of
Theorem 2 and Subsection 4.1 for its proof). In Subsection 4.2 for n ≥ 3 (see Point 2
of Theorem 2) we establish an a priori estimate which gives also a sufficient condition of
the existence of a global solution for a sufficiently small initial energy of the same order
on ε as in Point 1 of Theorem 2. The same results (see Point 3 of Theorem 2) hold in
(R/LZ)× Rn−1 for n ≥ 2 (with a periodicity and mean value zero on one variable).

Theorem 2 (Viscous case) Let ν > 0 , n ∈ N∗ , s > n
2

and R+ = [0,+∞[ . Con-
sidering the Cauchy problem for the Kuznetsov equation (1)–(2), the following results
hold:

1. Let
X := H2(R+;Hs(Rn)) ∩H1(R+;Hs+2(Rn)),

the initial data
u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn),

r∗ = O(1) be the positive constant defined in Eq. (38) and C1 = O(1) be the mini-
mal constant such that the solution u∗ of the corresponding linear Cauchy problem
(35) satisfies

‖u∗‖X ≤ C1√
νε

(‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn)).
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Then for all r ∈ [0, r∗[ and all initial data satisfying

‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn) ≤
√
νε

C1
r, (9)

there exists the unique solution u ∈ X of the Cauchy problem for the Kuznetsov
equation and ‖u‖X ≤ 2r .

2. Let n ≥ 3 , s = m ∈ N be even and m ≥ [n
2
+ 3] . With the notation

Em
2
[u](t) = ‖∇u(t)‖2Hm(Rn) +

m
2
+1
∑

i=1

‖∂i
tu(t)‖2Hm−2(i−1)(Rn), (10)

there exists a constant ρ = O(1) > 0 (see Theorem 7 Point 2), independent on
time, such that for all initial data u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rm) satisfying

Em
2
[u](0) < ρε, (11)

there exists a unique u ∈ C0(R+;Hm+1(Rn)) ∩ C i(R+;Hm+2−2i(Rn)), for i =
1, .., m

2
+ 1 with the bounded energy

∀t ∈ R+, Em
2
[u](t) ≤ O

(

1

ε

)

Em
2
[u](0) = O(1).

3. For n ∈ N∗ in Ω = (R/LZ)× Rn−1 with s = m ∈ N even and m ≥ [n
2
+ 3] there

hold Points 1 and 2 in the class of periodic in one direction functions with the mean
value zero

∫

R/LZ

u(t, x, y) dx = 0. (12)

Let us notice that the hyperbolicity condition (5) is also satisfied if we require condi-
tions (9) and (11). For ν > 0 Point 4 of Theorem 1 obviously holds for all n ∈ N∗ .
Point 1 of Theorem 2 is proved in Subsection 4.1 using a theorem of a non-linear anal-
ysis [22] (see Theorem 6) and regularity results for the strongly damped wave equation
following [6], which can also be used for Ω = (R/LZ) × Rn−1 in point 3. Point 2 of
Theorem 2 is proved in Subsection 4.2, using a priori estimates given in Proposition 1,
see also Theorem 7. The last point of Theorem 2 is a direct corollary of the Poincaré
inequality

‖u‖L2((R/LZ)×Rn−1) ≤ C‖∂xu‖L2((R/LZ)×Rn−1), (13)

which holds in the class of periodic functions with the mean value zero. Estimate (13)
allows to have the same estimate as in Lemma 1 (see Section 4) for n = 2 , which fails
in R2 . Thus, it also gives the global existence for rather small initial data detailed in
Point 2.
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2 Preliminary remarks on L2 -energies

We can notice that Eq. (1) is a wave equation containing a dissipative term ∆ut and
two non-linear terms: ∇u∇ut describing local non-linear effects and ututt describing
global or cumulative effects. Actually, the linear wave equation appears from Eq. (1) if
we consider only the terms of the zero order on ε :

utt − c2∆u = 0. (14)

The semi-group theory permits in the usual way to show that for u0 ∈ H1(Rn) and
u1 ∈ L2(Rn) there exists a unique solution of the Cauchy problem (14), (2)

u ∈ C0(R+;H1(Rn)) ∩ C1(R+;L2(Rn)).

So the energy of the wave equation (14)

E(t) =

∫

Rn

[(ut)
2 + c2(∇u)2](t, x)dx, (15)

is well defined and conserved
d

dt
E(t) = 0.

For ν > 0 and without non-linear terms, the Kuznetsov equation (1) becomes the
known strongly damped wave equation:

utt − c2∆u− νε∆ut = 0, (16)

which is well-posed [9]: for m ∈ N , u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) there exists a
unique solution of the Cauchy problem (16), (2)

u ∈ C0(R+;Hm+1(Rn)) ∩ C1(R+;Hm(Rn)).

Multiplying Eq. (16) by ut in L2(Rn) , we obtain for the energy of the wave equa-
tion (15)

d

dt
E(t) = −2νε

∫

Rn

(∇ut)
2(t, x)dx ≤ 0,

what means that the energy E(t) decreases in time, thanks to the viscosity term with
ν > 0 . The decrease rate is found for more regular energies in [21] in accordance with the
regularity of the initial conditions. Without the term ∇u∇ut (local non-linear effects),
the Kuznetsov equation becomes similar to the Westervelt equation, initially derived by
Westervelt [23] before Kuznetsov. The Westervelt equation, historically derived [23] for
the acoustic pressure fluctuation, has the following form

ptt − c2∆p− νε∆pt =
γ + 1

c2
εptptt, (17)

and can also be seen as an approximation of an isentropic Navier-Stokes system.
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In the sequel we conveniently denote p by u . We multiply Eq. (17) by ut and
integrate over Rn to obtain

1

2

d

dt

(
∫

Rn

[(ut)
2 + c2(∇u)2] dx

)

+ νε

∫

Rn

(∇ut)
2 dx =

1

3

γ + 1

c2
ε
d

dt

(
∫

Rn

(ut)
3 dx

)

.

Then we have

1

2

d

dt

(
∫

Rn

[(

1− 2

3

γ + 1

c2
εut

)

(ut)
2 + c2(∇u)2

]

dx

)

+ νε

∫

Rn

(∇ut)
2 dx = 0.

For α = 2
3
γ+1
c2

we consider the energy

Enonl(t) =

∫

Rn

[

(1− αεut) (ut)
2 + c2(∇u)2

]

dx, (18)

which is monotonous decreasing for ν > 0 and is conserved for ν = 0 . Let us also notice
that, taking the same initial data for ν = 0 and ν > 0 , we have:

for all ν > 0 and t > 0 Enonl(t, ν = 0) > Enonl(t, ν) ≥ 0,

in the assumption that 1− αεut ≥ 0 almost everywhere.
While 1

2
≤ 1− αεut ≤ 3

2
, that is to say ‖ut(t)‖L∞(Rn) remains small enough in time,

then we can compare Enonl to the energy of the wave equation

1

2
E(t) ≤ Enonl(t) ≤

3

2
E(t).

Then a sufficiently regular solution of the Cauchy problem for the Westervelt equation
has the energy E controlled by a decreasing in time function:

E(t) ≤ 3E(0)− 4νε

∫ t

0

∫

Rn

(∇ut(τ, x))
2dx dτ.

Now, let us consider the Kuznetsov equation (1). We multiply it by ut and integrate
on Rn to obtain

1

2

d

dt
Enonl(t) + νε

∫

Rn

(∇ut)
2 dx = 2ε

∫

Rn

∇u ∇ut ut dx,

where Enonl(t) is given by Eq. (18) with α = 2
3
γ−1
c2

. As

2ε

∫

Rn

∇u ∇ut ut dx = ε
d

dt

∫

Rn

ut(∇u)2 dx− ε

∫

Rn

utt(∇u)2 dx,

we find

1

2

d

dt

(
∫

Rn

[(

1− 2

3

γ − 1

c2
εut

)

(ut)
2 + (c2 − 2εut)(∇u)2

]

dx

+ 2ε

∫ t

0

∫

Rn

utt|∇u|2 dx dτ

)

+ νε

∫

Rn

(∇ut)
2 dx = 0. (19)
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Thus, for α = 2
3
γ−1
c2

, the function

Fν(t) =

∫

Rn

[

(1− αεut) (ut)
2 + (c2 − 2εut)(∇u)2

]

dx+ 2ε

∫ t

0

∫

Rn

utt|∇u|2 dx dτ

is constant if ν = 0 and decreases if ν > 0 . Let us notice that while 1
2
≤ 1− αεut ≤ 3

2
,

the coefficient c2 − 2εut is always positive (since c is the sound speed in the chosen
medium, c2 ≫ 1 ), hence the first integral in Fν(t) is positive, but we a priori don’t know
the sign of the second integral, i.e. the sign of utt . However, for ν = 0 , Fν=0(t) is
positive, as soon as 0 ≤ 1− αεu1 :

Fν=0(t) = Fν=0(0) =

∫

Rn

[

(1− αεu1) (u1)
2 + (c2 − 2εu1)(∇u0)

2
]

dx ≥ 0,

and, if we take the same initial data for the Cauchy problems with ν = 0 and ν > 0 , for
all t > 0 (for all time where Fν=0 exists) it holds Fν=0(t) = Fν=0(0) > Fν>0(t) .

For n ≥ 3 , we can control the term 2ε
∫

Rn ∇u∇utut dx using the Hölder inequality
and the Sobolev embeddings (which fails in R2 ):

∣

∣

∣

∣

∫

Rn

∇u ∇ut ut dx

∣

∣

∣

∣

≤‖∇u‖Ln‖∇ut‖L2‖ut‖
L

2n
n−2

≤ C‖∇u‖Ln‖∇ut‖2L2 .

Indeed, in R2 we don’t have any estimates of the form

‖u‖Lp(R2) ≤ ‖∇u‖L2(R2),

with p > 2 . But such an estimate is essential to control the nonlinear term. Then,
instead of Eq. (19) for Fν , we have the relation for Enonl :

1

2

d

dt
Enonl(t) + (νε− 2εC‖∇u‖Ln)

∫

Rn

(∇ut)
2 dx ≤ 0.

So, if a solution of the Kuznetsov equation u is such that ‖∇u(t)‖Ln and ‖ut(t)‖L∞

stay small enough for all time, then Enonl decreases in time and, as previously for the
Westervelt equation, thanks to 1

2
E(t) ≤ Enonl(t) ≤ 3

2
E(t) , the energy E has for upper

bound a decreasing function.
This fact leads us to look for global well-posedness results for the Cauchy problem for

the Kuznetsov equation in the viscous case.

3 Well-posedness for the inviscid case

3.1 Proof of Point 3 of Theorem 1

Let us give an estimation of the maximum existence time for a solution of problem (1)–(2)
with ν = 0 . For this we follow the work of John [10] with the use of a priori estimate.
However we don’t directly apply the general results of John, but we improve them for our
specific problem as we can take less regular initial conditions in order to have suitable a
priori estimates.
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Proposition 1 For a fixed m ∈ N with m ≥ m0 =
[

n
2
+ 2
]

, let u be a local solution
of problem (1)–(2) with ν = 0 on [0, T ] satisfying (4) and (5) for s = m .

For t ∈ [0, T ] we have for Em[u](t) , defined in Eq. (6),

Em[u](t) ≤ B Em[u](0) + Cmmax(α, β)ε

∫ t

0

Em[u](τ)
3
2dτ, (20)

with constants B = (3+2c2)
min(1/2,c2)

> 0 , depending only on c , and Cm > 0 , depending only

on m , on the dimension n and on c (only if min(1/2, c2) = c2 ).

Proof : The proof is given in Appendix A. �

Inequality (20), proved in Proposition 1, gives us an a priori estimate in order to have,
with the help of the Gronwall Lemma, an estimation of the maximum existence time T ∗ .
However, when m increases, Cm increases, and the maximum existence time, given by
estimate (20), decreases whereas the initial conditions become more regular. Therefore,
we prove the second a priori estimate (see Eq. (21)), playing a key role in order to avoid
this problem:

Proposition 2 Let conditions of Proposition 1 be satisfied. Then for t ∈ [0, T ] and
m ≥

[

n
2
+ 3
]

we have

Em[u](t) ≤ B Em[u](0) +Dmmax(α, β)ε

∫ t

0

Em−1[u](τ)
1
2Em[u](τ)dτ, (21)

with a constant Dm > 0 , depending only on m , on n and on c and the same constant
B as in Proposition 1.

The proof of Eq. (21) is very similar to the proof of Proposition 1 given in Appendix A
and hence omitted (see Remark 4 in Appendix A).

Now let us give a first estimation of the lifespan T ∗ of a local solution of problem (1)–
(2) with ν = 0 .

Theorem 3 Let m ≥ m0 =
[

n
2
+ 2
]

and let u be the unique solution on [0, T ∗[ of
problem (1)–(2) with ν = 0 for

u0 ∈ Hm+1(Rn), u1 ∈ Hm(Rn) and ‖u1‖L∞(Rn) <
1

2αε
.

If
√

Em0 [u](0) ≤ 1
4
√
BC∞αε

, then

T ∗ > T0 =
1

Cm0 max(α, β)ε
√
BEm0 [u](0)

(22)

and
u ∈ Cr([0, T0];H

m+1−r) for 0 ≤ r ≤ m+ 1,

with
∀t ∈ [0, T0], Em[u](t) ≤ C < +∞.

Here B and Cm0 are the constants from estimate (20) and C∞ is the embedding constant
from the embedding of the Sobolev space H [n

2
+1](Rn) in L∞(Rn) .
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Proof : Thanks to Point 1 of Theorem 1, for u0 ∈ Hm+1(Rn) , u1 ∈ Hm(Rn) and
‖u1‖L∞(Rn) <

1
2αε

there exists a unique solution u on an sufficiently small interval [0, T ]
of problem (1)–(2) with ν = 0 , satisfying (4) and (5) for s = m . Moreover it implies
that Em[u](0) is finite. Hence, we can add the hypothesis

√

Em0 [u](0) ≤
1

4
√
BC∞αε

without adding further conditions of regularity on u0 and u1 as it can be reduced on a
smallness condition on ‖u0‖Hm+1 + ‖u1‖Hm .

Let us take T0 , as defined in Eq. (22), and show by induction on j ∈ N with m0 ≤
j ≤ m that

∀j ∈ N, with m0 ≤ j ≤ m sup
t∈[0,T0]

Ej [u](t) < ∞.

For j = m0 , u0 ∈ Hm+1(Rn) ⊆ Hm0+1(Rn) and u1 ∈ Hm(Rn) ⊆ Hm0(Rn) , and
consequently

Em0 [u](0) ≤ Em[u](0) < ∞.

For t ≥ 0 , while ‖ut(t)‖L∞(Rn) ≤ 1
2αε

, it holds estimate (20) with m = m0 . According
to the Gronwall Lemma, applied to (20) with m = m0 , we have

Em0 [u](t) ≤ z(t),

where z(t) is the solution of the Cauchy problem for an ordinary differential equation

z(t) = z0 + Cm0 max(α, β)ε

∫ t

0

(z(τ))3/2dτ with z0 = B Em0 [u](0).

This problem can be solved explicitly:

z(t) =
z0

(1− 1
2
z
1/2
0 Cm0 max(α, β)εt)2

.

We can see that, as long as 0 ≤ t ≤ T0, the function z(t) has the finite upper bound
z(t) ≤ 4z0. It implies the upper boundness of Em0 [u] :

Em0 [u](t) ≤ 4B Em0 [u](0). (23)

Moreover, thanks to our notations,

‖ut(t)‖L∞(Rn)

C∞
≤ ‖ut(t)‖H[n2 +1] ≤

√

Em0 [u](t),

from where, using inequality (23), we find

‖ut(t)‖L∞(Rn) ≤ 2C∞
√

B Em0 [u](0) ≤
1

2αε
,

since
√

Em0 [u](0) ≤ 1
4
√
BC∞αε

. Thus Eq. (5) holds on all interval [0, T0] and supt∈[0,T0] Em0 [u](t)
is finite.
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Let j ∈ N , m0 ≤ j ≤ m− 1 be such that supt∈[0,T0]Ej [u](t) < ∞ .
Since Eq. (5) holds on all interval [0, T0] , we can use the a priori estimate (21) and

write that for all t ∈ [0, T0]

Ej+1[u](t) ≤ B Ej+1[u](0) +Dj+1max(α, β)ε

∫ t

0

√

Ej [u](τ)Ej+1[u](τ)dτ.

By the induction hypothesis supt∈[0,T0] Ej[u](t) is bounded by a constant, denoted here
by E2 , and hence on [0, T0] it holds

Ej+1[u](t) ≤ BEj+1[u](0) +Dj+1max(α, β) Eε

∫ t

0

Ej+1[u](τ)dτ.

Applying the Gronwall Lemma, we obtain for t ∈ [0, T0]

Ej+1[u](t) ≤ BEj+1[u](0)e
Dj+1 max(α,β) Eεt ≤ BEj+1[u](0)e

Dj+1 max(α,β) EεT0.

This means, as Ej+1[u](0) ≤ Em[u](0) < +∞ , that supt∈[0,T0] Ej+1[u](t) < ∞ and this
finishes the proof. �

Theorem 3 estimates the lifespan T ∗ as at least of the order 1
ε
, or more precisely,

implies that
lim inf
ε→0

εT ∗ > 0.

This result is independent on the dimension n . However, much better estimations for the
lifespan can be obtained, if we use an inequality that takes into account the time decay
of the solutions for n > 1 , what we do in the next section.

3.2 Proof of Point 5 of Theorem 1. Optimal estimations of the

existence time

In [10] John uses the group of linear transformations preserving the equation utt−∆u = 0 .
The generators of this group (the derivatives with respect to group parameters taken at
the identity), here called generalized derivatives, include in addition to the derivatives
∂t, ∂x1 , . . . , ∂xn , first-order differential operators Lα with α = 0, . . . , n and Ωik with
1 ≤ i < k ≤ n :

Definition 1 (Generalized derivatives [10]) The following operators

L0 = t∂t +
∑

i

xi∂xi
, Li = xi∂t + t∂xi

for i = 1, ..., n,

Ωik = xi∂xk
− xk∂xi

for 1 ≤ i < k ≤ n, and ∂t, ∂xi
for i = 1, ..., n

are called the generalized derivatives. The operators

L0, . . . , Ln,Ω12,Ω13, . . . ,Ωn−1n, ∂t, ∂x1 , . . . , ∂xn ,

(taken in this order) are denoted respectively by Γ0, . . . ,Γµ with µ = 1
2
(n2+3n+2) . For

a multi-index A = (A0, . . . , Aµ) we write in the usual way

|A| = A0 + . . .+ Aµ, ΓA = (Γ0)
A0(Γ1)

A1 . . . (Γµ)
Aµ .

11



Therefore, in the framework of the general derivatives, we define for m ∈ N

E∞,m[u](t) = sup
x

∣

∣

∣

∣

∣

sup
|A|≤m

[

(ΓA∂tu(t, x))
2 + (ΓA∇u(x, t))2

]

∣

∣

∣

∣

∣

, (24)

E1,m[u](t) =
∑

|A|≤m

(‖ΓA∂tu‖2L2(Rn) + ‖ΓA∇u‖2L2(Rn))(t). (25)

Let us give a remarkable estimate proved in Ref. [15] by Klainerman:

Proposition 3 (Klainerman 1987) For n∗ = [n
2
+1] , m ∈ N , and t > 0 , as soon as

u is such that E1,m+n∗ [u](t) is finite, it holds

√

E∞,m[u](t) ≤ Cn(1 + t)
1−n
2

√

E1,m+n∗ [u](t). (26)

Thanks to Proposition 3, we improve the results of John [10] for the case of the Kuznetsov
equation and state:

Proposition 4 For n and m in N∗ , m ≥ n+2 , let u be a local solution on an interval
[0, T ] of problem (1)–(2) with ν = 0 , satisfying (4) and (5) with s = m . Then for all
t ∈ [0, T ] , it holds

E1,m[u](t) ≤ B E1,m[u](0) + Cmmax(α, β)ε

∫ t

0

(1 + l)(1−n)/2 E1,m[u](τ)
3
2dτ, (27)

with a positive constant B > 0 , depending only on c , on α and on β , and with a positive
constant Cm > 0 , depending only on m , on n and on c .

Proof : The proof follows identically the proof of Proposition 1 up to Eq. (69) replacing
everywhere DA by ΓA . This time Eq. (69) becomes

LuΓ
Au = ε

µ
∑

j=0

(

αCjΓ
Aj1

ut Γ
Aj2

ut +

n
∑

i=1

βEijΓ
Aj1

∂xi
u ΓAj2

∂xi
u

)

, (28)

where µ is defined in Definition 1, Cj and Eij depend only on |A| ≤ m , and Aj1 and
Aj2 are multi-indexes, such that

|Aj1|+ |Aj2| ≤ m+ 1.

It follows that |Aj1| ≤ [m+1
2

] or |Aj2| ≤ [m+1
2

] . Therefore, if we set m′ =
[

m+1
2

]

, we
obtain

|J [ΓAu](τ, x)| ≤Cmmax(α, β)ε
√

sup
|B|≤m′

(

(ΓB∂tu(τ, x))2 + (ΓB∇u(τ, x))2)
)

·

· sup
|B|≤m

(

(ΓB∂tu(τ, x))
2 + (ΓB∇u(τ, x))2)

)

≤Cmmax(α, β)ε
√

E∞,m′ [u](τ)
∑

|B|≤m

(

(ΓB∂tu(τ, x))
2 + (ΓB∇u(τ, x))2)

)

,

12



and thus
∣

∣

∣

∣

∫

Rn

J [ΓAu](τ, x)dx

∣

∣

∣

∣

≤ Cmmax(α, β)ε
√

E∞,m′[u](τ)E1,m[u](τ).

By hypothesis on u ,

‖ut(t)‖L∞(Rn) ≤
1

2αε
on [0, T ],

and then, by integrating of Eq. (65) on [0, t] with t ∈ [0, T ] , we have

1

2
‖∂tΓAu(t)‖2L2(Rn) + c2‖∇ΓAu(t)‖2L2(Rn) ≤

3

2
‖∂tΓAu(0)‖2L2(Rn) + c2‖∇ΓAu(0)‖2L2(Rn)

+ Cmmax(α, β)ε

∫ t

0

√

E∞,m′[u](τ)E1,m[u](τ)dτ.

By summing for |A| ≤ m , we obtain

E1,m[u](t) ≤ B E1,m[u](0) + Cmmax(α, β)ε

∫ t

0

√

E∞,m′ [u](τ)E1,m[u](τ)dτ.

Now we use the Klainerman inequality (26), noticing that, if we take m ≥ n+2 , we have

m′ + n∗ =

[

m+ 1

2

]

+
[n

2
+ 1
]

≤ m.

This finishes the proof. �

We use the a priori estimate (27) to improve our estimation of the lifespan T ∗ as a
function of n .

Theorem 4 Let m ≥ n+2 . For u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) with ‖u1‖L∞(Rn) ≤
1

2αε
we consider the local solution u of problem (1)–(2) with ν = 0 on an interval [0, T ] ,

satisfying (4) and (5) for s = m as in Point 1 of Theorem 1. If
√

E1,m[u](0) ≤ 1
4
√
BC∞αε

,
then

E1,m[u](t) ≤ 4B E1,m[u](0),

as long as

t ≤
(

2Cmmax(α, β)ε
√

B E1,m[u](0)
)−2

for n = 2,

t ≤ 2 exp
( 1

Cmmax(α, β)ε
√

B E1,m[u](0)

)

for n = 3,

1 ≤
(

2Cmmax(α, β)ε
√

B E1,m[u](0)
)−1

for n ≥ 4.

Consequently,
lim inf
ε→0

ε2T ∗ > 0 for n = 2,

lim inf
ε→0

ε log(T ∗) > 0 for n = 3,

and, for a small enough ε , T ∗ = +∞ for n ≥ 4 , i.e. the solution u is global.
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Proof : This is a direct consequence of the Gronwall lemma, used with the a priori
estimate (27), as it is done by John in [10]. �

Remark 1 The estimations, given for T ∗ in the case n = 1, 2, 3 , are optimal, as soon
as, thanks to Alinhac [2], they give the existence time of a smooth solution of the same
order as Alinhac’s blow-up time, i.e. up to the time of a geometrical blow-up formation.

4 Well-posedness for the viscous case

4.1 Proof of Point 1 of Theorem 2

Let us show the global well-posedness, of the solution of the Cauchy problem (1)-(2). We
start with the study of the linear problem, associated to the Kuznetsov equation.

Theorem 5 Let s ≥ 0 and X be the space defined in Point 1 of Theorem 2. Then the
system

{

utt − c2∆u− νε∆ut = f,

u(0) = u0, ut(0) = u1

(29)

has a unique solution u ∈ X , if and only if f ∈ L2(R+;Hs(Rn)), u0 ∈ Hs+2(Rn) and
u1 ∈ Hs+1(Rn) . Moreover it holds the following a priori estimate

‖u‖X ≤ C
(

‖f‖L2(R+;Hs(Rn)) + ‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn)

)

(30)

with ‖u‖X := ‖u‖H2(R+;Hs) + ‖u‖L2(R+;Hs+2) + ‖ut‖L2(R+;Hs+2) .

Proof : First we take f ∈ L2(R+;Hs(Rn)), u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn) . We
use the ideas of [6] (see Eq. (4.26)). For the sake of clarity, let us take s = 0 . We take
the inner product in L2(Rn) of the equation with −∆ut and integrate by parts:

1

2

d

dt

(

‖∇ut‖2L2(Rn) + c2‖∆u‖2L2(Rn)

)

+ νε‖∆ut‖2L2(Rn) = −
∫

Rn

f∆utdx.

Using Young’s inequality and integrating over [0, t] , we find

1

2

(

‖∇ut‖2L2(Rn) + c2‖∆u‖2L2(Rn)

)

+
νε

2

∫ t

0

‖∆uτ‖2L2(Rn)dτ

≤ 1

2
‖∇u1‖2L2(Rn) +

1

2
‖∆u0‖2L2(Rn) +

1

2νε

∫ t

0

∫

Rn

|f |2dxdτ. (31)

Since f ∈ L2(R+ × Rn) and (u0, u1) ∈ H2(Rn)×H1(Rn) , the last estimate implies that
∫ +∞

0

∫

Rn

|∆uτ |2dxdτ < +∞.

Since the domain of −∆ is H2 , we obtain that

u, ut ∈ L2(R+;H2(Rn)), and utt ∈ L2(R+ × Rn),
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and hence, u ∈ X for s = 0 . For s > 0 , as the equation is linear, we perform the same
proof, using the fact that, the operator Λ = (1 −∆)

1
2 , defined by its Fourier transform

by the formula (̂Λu)(ζ) = (1 + |ζ |2) 1
2 û(ζ), relies the norm of Hs with the L2 -norm:

Λs = (1−∆)
s
2 , ‖u‖Hs(Rn) = ‖Λsu‖L2(Rn). (32)

The uniqueness of u follows from the linearity of the operator and the uniqueness of the
solution of system (29) in the case f = 0 [9].

Conversely, if u ∈ X solution of system (29), this implies that

u ∈ C(R+;Hs+2(Rn)) and ut ∈ H1(R+;Hs(Rn)) ∩ L2(R+;Hs+2(Rn)).

Thanks to Theorem III.4.10.2 in [3], it follows that ut ∈ C(R+;Hs+1(Rn)) . Then we have
u(0) ∈ Hs+2(Rn) and ut(0) ∈ Hs+1(Rn) . Moreover, it reads directly from the definition
of X , that f ∈ L2(R+;Hs(Rn)) for u ∈ X .

The a priori estimate follows from the closed graph theorem. �

Let us notice that Theorem 5 states that problem (29) has L2 -maximal regularity (see [5]
Definition 2.1) on R+ .

To be able to give a sharp estimate of the smallness of the initial data and in the
same time to estimate the bound of the corresponding solution of the Kuznetsov equation
(see Point 1 of Theorem 2), we use the following theorem from [22], which allows us
to establish our main result of the global well-posedness of the Cauchy problem for the
Kuznetsov equation:

Theorem 6 (Sukhinin) Let X be a Banach space, let Y be a separable topological vector
space, let L : X → Y be a linear continuous operator, let U be the open unit ball in X ,
let PLU : LX → [0,∞[ be the Minkowski functional of the set LU , and let Φ : X → LX
be a mapping satisfying the condition

PLU

(

Φ(x)− Φ(x̄)
)

≤ Θ(r) ‖x− x̄‖ for ‖x− x0‖ 6 r, ‖x̄− x0‖ ≤ r

for some x0 ∈ X, where Θ : [0,∞[→ [0,∞[ is a monotone non-decreasing function. Set
b(r) = max

(

1−Θ(r), 0
)

for r ≥ 0 .
Suppose that

w =

∞
∫

0

b(r) dr ∈]0,∞], r∗ = sup{r ≥ 0| b(r) > 0},

w(r) =

r
∫

0

b(t)dt (r ≥ 0) and f(x) = Lx+ Φ(x) for x ∈ X.

Then for any r ∈ [0, r∗[ and y ∈ f(x0) +w(r)LU , there exists an x ∈ x0+ rU such that
f(x) = y .

Remark 2 If either L is injective or KerL has a topological complement E in X
such that L(E ∩ U) = LU , then the assertion of Theorem 6 follows from the contraction
mapping principle [22]. In particular, if L is injective, then the solution is unique.
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Now, we have all elements to prove Point 1 of Theorem 2: for all r ∈ [0, r∗[ with
r∗ = O(ε0) = O(1) (to be defined), as soon as the initial data are small as

‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn) ≤ C
√
εr with C = O(1), (33)

then the unique solution u ∈ X satisfies ‖u‖X ≤ 2r ( r = O(1) ).

Remark 3 It is very important to notice that here all physical coefficients of the Cauchy
problem for the Kuznetsov equation are expressed to compare to the powers of ε ( ε is
the dimensionless parameter caracterising the medium perturbation as explained in [19]
and [20]). In particular, if we take into account in Point 3 of Theorem 1 that c2 =
O(1

ε
) , we obtain the same types of smallness of the initial energy for the inviscid case

as in Point 2 of Theorem 2:
√

Em0 [u](0) ≤ O(
√
ε) . But, if we want to understand

the smallness of the initial data by their norms without the calculus of the initial energy,
the results of Point 1 of Theorem 2 can be useful. The sharp character of Point 1 of
Theorem 2 can be illustrated by the following direct energy estimation approach, presented
in Appendix B.

Let suppose that Point 2 of Theorem 2 holds (see also Eq. (10)). Thus, for n ≥ 3 ,
m ≥

[

n
2
+ 3
]

if

√

Em
2
[u](0) =

√

√

√

√‖∇u(0)‖2Hm(Rn) +

m
2
+1
∑

i=1

‖∂i
tu(0)‖2Hm−2(i−1)(Rn)

≤ O(
√
ε),

then it follows in a sufficient way (see Appendix B for more details) that for u0 ∈
Hm+1(Rn) and for u1 ∈ Hm(Rn) it holds

‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn) ≤ O(
√
εm+1), (34)

which implies the existence of a unique global solution u ∈ C0(R+;Hm+1(Rn))∩C1(R+;Hm(Rn))
of problem (1)–(2) such that for all t ∈ R+

Em
2
[u](t) ≤ O

(

1

ε

)

Em
2
[u](0) = O(1).

Thus we see that by this approach the sufficient condition to have for all t ≥ 0 Em
2
[u](t)

bounded by a constant of order zero on ε is given by Eq. (34) and depends on the smooth
properties of the initial data (more they are regular, more they should be small). Hence,
it is much more restrictive to compare to (33).

Proof :

For u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn) let us denote by u∗ ∈ X the unique solution
of the linear problem

{

u∗
tt − c2∆u∗ − νε∆u∗

t = 0,

u∗(0) = u0 ∈ Hs+2(Rn), u∗
t (0) = u1 ∈ Hs+1(Rn).

(35)
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In addition, according to Theorem 5, we take

X := H2(R+;Hs(Rn)) ∩H1(R+;Hs+2(Rn)),

this time for s > n
2

(we need it to control the non-linear terms), and introduce the Banach
spaces

X0 := {u ∈ X| u(0) = ut(0) = 0} (36)

and Y = L2(R+;Hs(Rn)) . Then by Theorem 5, the linear operator

L : X0 → Y, u ∈ X0 7→ L(u) := utt − c2∆u− νε∆ut ∈ Y,

is a bi-continuous isomorphism.
Let us now notice that if v is the unique solution of the non-linear Cauchy problem
{

vtt − c2∆v − νε∆vt − αε(v + u∗)t(v + u∗)tt − βε∇(v + u∗).∇(v + u∗)t = 0,

v(0) = 0, vt(0) = 0,
(37)

then u = v + u∗ is the unique solution of the Cauchy problem for the Kuznetsov equa-
tion (1)–(2). Let us prove the existence of a such v , using Theorem 6.

We suppose that ‖u∗‖X ≤ r and define for v ∈ X0

Φ(v) := αε(v + u∗)t(v + u∗)tt + βε∇(v + u∗).∇(v + u∗)t.

For w and z in X0 such that ‖w‖X ≤ r and ‖z‖X ≤ r , we estimate

‖Φ(w)− Φ(z)‖Y = ‖αε(u∗
t (w − z)tt + (w − z)tu

∗
tt + wtwtt − ztztt)

+ βε(∇u∗∇(w − z)t +∇(w − z)∇u∗
t +∇w∇wt −∇z∇zt)‖Y

= ‖αε(u∗
t (w − z)tt + (w − z)tu

∗
tt + wt(w − z)tt + (w − z)tztt)

+ βε(∇u∗∇(w − z)t +∇(w − z)∇u∗
t +∇w∇(w − z)t +∇(w − z)∇zt)‖Y

by applying the triangular inequality

‖Φ(w)− Φ(z)‖Y ≤ αε
(

‖u∗
t (w − z)tt‖Y + ‖(w − z)tu

∗
tt‖Y

+ ‖wt(w − z)tt‖Y + ‖(w − z)tztt‖Y
)

+ βε
(

‖∇u∗∇(w − z)t‖Y + ‖∇(w − z)∇u∗
t‖Y

+ ‖∇w∇(w − z)t‖Y + ‖∇(w − z)∇zt‖Y
)

.

Now, for all a and b in X with s ≥ s0 >
n
2

it holds

‖atbtt‖Y ≤‖at‖L∞(R+×Rn)‖btt‖Y
≤CH1(R+;Hs0 )→L∞(R+×Rn)‖at‖H1(R+;Hs(Rn))‖b‖X
≤CH1(R+;Hs0 )→L∞(R+×Rn)‖a‖X‖b‖X ,
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where CH1(R+;Hs0 )→L∞(R+×Rn) is the embedding constant of H1(R+;Hs0) into the space
L∞(R+ × Rn) , independent on s , but depending only on the dimension n . In the same
way, for all a and b in X it holds

‖∇a∇bt‖Y ≤ CH1(R+;Hs0 )→L∞(R+×Rn)‖a‖X‖b‖X .

Taking a and b equal to u∗ , w , z or w− z , as ‖u∗‖X ≤ r , ‖w‖X ≤ r and ‖z‖X ≤ r ,
we obtain

‖Φ(w)− Φ(z)‖Y ≤ 4(α + β)CH1(R+;Hs0 )→L∞(R+×Rn)εr‖w − z‖X .

By the fact that L is a bi-continuous isomorphism, there exists a minimal constant
Cε = O

(

1
εν

)

> 0 (coming from the inequality C0εν‖u‖2X ≤ ‖f‖Y ‖u‖X for u , a solution
of the linear problem (29) with homogeneous initial data [for a constant C0 = O(1) > 0
maximal]) such that

∀u ∈ X0 ‖u‖X ≤ Cε‖Lu‖Y .
Hence, for all f ∈ Y

PLUX0
(f) ≤ CεPUY

(f) = Cε‖f‖Y .
Then we find for w and z in X0 , such that ‖w‖X ≤ r , ‖z‖X ≤ r , and also with
‖u∗‖X ≤ r , that

PLUX0
(Φ(w)− Φ(z)) ≤ Θ(r)‖w − z‖X ,

where Θ(r) := 4Cε(α + β)CH1(R+;Hs0 )→L∞(R+×Rn)εr . Thus we apply Theorem 6 for
f(x) = L(x) − Φ(x) and x0 = 0 . Therefore, knowing that Cε = C0

εν
, we have, that for

all r ∈ [0, r∗[ with

r∗ =
ν

4C0(α + β)CH1(R+;Hs0 )→L∞(R+×Rn)

= O(1), (38)

for all y ∈ Φ(0) + w(r)LUX0 ⊂ Y with

w(r) = r − 2
C0

ν
CH1(R+;Hs0 )→L∞(R+×Rn)(α + β)r2,

there exists a unique v ∈ 0 + rUX0 such that L(v) − Φ(v) = y . But, if we want that v
be the solution of the non-linear Cauchy problem (37), then we need to impose y = 0 ,
and thus to ensure that 0 ∈ Φ(0) +w(r)LUX0 . Since − 1

w(r)
Φ(0) is an element of Y and

LX0 = Y , there exists a unique z ∈ X0 such that

Lz = − 1

w(r)
Φ(0). (39)

Let us show that ‖z‖X ≤ 1 , what will implies that 0 ∈ Φ(0) +w(r)LUX0 . Noticing that

‖Φ(0)‖Y ≤ αε‖vtvtt‖Y + βε‖∇v∇vt‖Y
≤ (α+ β)εCH1(R+;Hs0 )→L∞(R+×Rn)‖v‖2X
≤ (α+ β)εCH1(R+;Hs0 )→L∞(R+×Rn)r

2
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and using (39), we find

‖z‖X ≤ Cε‖Lz‖Y = Cε
‖Φ(0)‖Y
w(r)

≤ CεCH1(R+;Hs0)→L∞(R+×Rn)(α + β)εr

(1− 2CεCH1(R+;Hs0 )→L∞(R+×Rn)(α + β)εr)
<

1

2
,

as soon as r < r∗ .
Consequently, z ∈ UX0 and Φ(0) + w(r)Lz = 0 .
Then we conclude that for all r ∈ [0, r∗[ , if ‖u∗‖X ≤ r , there exists a unique v ∈ rUX0

such that L(v) − Φ(v) = 0 , i.e. the solution of the non-linear Cauchy problem (37).
Thanks to the maximal regularity and a priori estimate following from inequality (31)
with f = 0 , there exists a constant C1 = O(ε0) > 0 , such that

‖u∗‖X ≤ C1√
νε

(‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn)).

Thus, for all r ∈ [0, r∗[ and ‖u0‖Hs+2(Rn) + ‖u1‖Hs+1(Rn) ≤
√
νε

C1
r , the function u =

u∗+ v ∈ X is the unique solution of the Cauchy problem for the Kuznetsov equation and
‖u‖X ≤ 2r . �

4.2 Proof of Point 2 of Theorem 2: Case n ≥ 3

Knowing the existence of a solution u of the Kuznetsov equation in

X = H2(R+;Hs(Rn)) ∩H1(R+;Hs+2(Rn)),

we notice that this directly implies that

u ∈ C(R+;Hs+2(Rn)) and ut ∈ H1(R+;Hs(Rn)) ∩ L2(R+;Hs+2(Rn)).

By Theorem III.4.10.2 in [3], it implies that ut ∈ C(R+;Hs+1(Rn)) , which gives that

u ∈ C1(R+;Hs+1(Rn)) ∩ C(R+;Hs+2(Rn))

and, this time with the help of the Kuznetsov equation, utt ∈ C(R+;Hs−1(Rn)) . Con-
sequently, in the viscous case the regularity of the time derivatives of the order greater
than two of the solutions differs from the regularity, obtained in Section 3 for the inviscid
case. Thus we have to consider estimates with different energies: the energy Em

2
[u](t) ,

defined in Eq. (10), and the energy

Sm
2
[u](t) =

m
2
+1
∑

i=1

‖∇∂i
tu(t)‖2Hm−2(i−1)(Rn), (40)

defined, as Em
2
[u](t) , for m ∈ N and m even, which respect to the obtained regularity

of u and its derivatives.
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Lemma 1 Let n ∈ N∗ , n ≥ 3 , m ∈ N , and u be the solution of problem (1)-(2). Then
for m ≥

[

n
2
+ 3
]

, m even, and all multi-index A = (A0, A1, ..., An) with |A| − A0 ≤
m− 2A0 it holds

d

dt

(

∫

Rn

((1− αεut)(D
Aut)

2 + c2(∇DAu)2))(τ, x) dx
)

+ 2νε

∫

Rn

(∇DAut)
2(τ, x) dx

≤ Cmmax(α, β)ε
√

Em
2
[u](τ)Sm

2
[u](τ)

(41)

with a constant Cm > 0 , depending only on m and on the dimension n .

Proof : Following notations of the proof of Proposition 1 in Annexe A, we redefine

Luv := vtt − c2∆v − νε∆vt − αεut vtt − βε∇u ∇vt,

where u is the solution of problem (1). For this new Luv with the additional term
νε∆vt , we have a modified version of relation (65)

d

dt

∫

Rn

I[v](t, x)dx+ 2νε

∫

Rn

(∇vt)
2dx =

∫

Rn

J [v](t, x)dx, (42)

where I[v] and J [v] are defined in Eqs. (63)–(64). We still take v = DAu with A =
(A0, A1, ..., An) , but this time |A| − A0 ≤ m − 2A0 and m is even. Then we just need
to show

∣

∣

∣

∣

∫

Rn

J [DAu](t, x)dx

∣

∣

∣

∣

≤ εCmmax(α, β)
√

Em
2
[u](t)Sm

2
[u](t). (43)

For n ≥ 3 , m ≥
[

n
2
+ 3
]

and m even, we have, thanks to the Hölder inequality,

∫

Rn

|utt(D
Aut)

2|dx ≤‖utt‖Ln
2 (Rn)

‖DAut‖2
L

2n
n−2 (Rn)

.

Noticing, that, thanks to Ref. [1] Theorem 7.57 p. 228, for s > n
2

there hold the continuous
embeddings Hs(Rn) ⊂ C0

B(R
n) ⊂ L

n
2 (Rn) (where C0

B is the Banach space of bounded
continuous functions equal to zero at the infinity), we can write for m ≥

[

n
2
+ 3
]

‖utt‖Ln
2 (Rn)

≤ C‖utt‖H[n2 +1](Rn)
≤ C‖utt‖Hm−2(Rn) ≤ C

√

Em
2
[u]. (44)

In addition, with the help of the Gagliardo-Nirenberg-Sobolev inequality

‖v‖
L

2n
n−2 (Rn)

≤ C‖∇v‖L2(Rn), (45)

we also have

‖DAut‖
L

2n
n−2 (Rn)

≤ C‖∇DAut‖L2(Rn) ≤ C‖∇DA0+1
t u‖H|A|−A0(Rn).
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With the hypothesis that |A| − A0 ≤ m− 2A0 , there hold 2A0 ≤ m and

‖∇DA0+1
t u‖H|A|−A0(Rn) ≤ ‖∇DA0+1

t u‖Hm−2A0 (Rn).

Therefore, all norms ‖∇DA0+1
t u‖2

Hm−2A0 (Rn)
, for the chosen n, m and A0 , are present

in Sm
2

. Hence, we find
∫

Rn

|utt(D
Aut)

2|dx ≤ C‖utt‖Hm−2(Rn)‖∇DAut‖2L2(Rn) ≤ C
√

Em
2
[u]Sm

2
[u], (46)

and in the same way,
∫

Rn

|∆u(DAut)
2|dx ≤‖∆u‖

L
n
2 (Rn)

‖DAut‖2
L

2n
n−2 (Rn)

≤ C‖∆u‖
H[n2 +1](Rn)

‖∇DAut‖2L2(Rn)

≤C
√

Em
2
[u]Sm

2
[u].

To calculate LuD
Au we use expression (69) with multi-indexes Aj1 and Aj2 satis-

fying (70). As in the proof of Proposition 1, without loss of generality, we consider two
multi-indexes A1 and A2 with the same properties (70). We perform two steps:

Step 1 we prove
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ C

√

Em
2
[u]Sm

2
[u], (47)

Step 2 we prove
∫

Rn

|DA1

∂xi
u DA2

∂xi
u DAut|dx ≤ C

√

Em
2
[u]Sm

2
[u]. (48)

Step 1. Thanks to properties (70) of A1 and A2 and to the symmetry of the general
case

∫

Rn

|(DA1
0

t D(A1
1,...,A

1
n)

x ut)(D
A2

0
t D(A2

1,...,A
2
n)

x ut)(D
Aut)|dx,

we divide our proof on three typical cases:

Case 1 |A1| −A1
0 ≥ 0 , A1

0 ≥ 0 , |A2| − A2
0 > 0 and A2

0 > 0 , i.e. a non trivial presence

of D
A2

0
t and D

(A2
1,...,A

2
n)

x is imposed,

Case 2 |A1| − A1
0 = 0 , A1

0 > 0 , |A2| − A2
0 > 0 and A2

0 = 0 , i.e. we consider the

integrals of the form
∫

Rn |(DA1
0

t ut)(D
(A2

1,...,A
2
n)

x ut)(D
Aut)|dx,

Case 3 |A1| − A1
0 = 0 , A1

0 > 0 , |A2| − A2
0 = 0 and A2

0 > 0 , i.e. we consider only

non-trivial time derivatives
∫

Rn |(DA1
0

t ut)(D
A2

0
t ut)(D

Aut)|dx.

Step 1, Case 1. By the generalized Hölder inequality with 1
p
+ 1

q
= n+2

2n
, we have

∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤‖DA1

ut‖Lp(Rn)‖DA2

ut‖Lq(Rn)‖DAut‖
L

2n
n−2 (Rn)

.
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By the Sobolev embeddings (72) of Hm1 ⊂ Lp and Hm2 ⊂ Lq with m1 + m2 = n
2
− 1

and 0 < m1 <
n
2
− 1 , we find

∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤C‖DA1

ut‖Hm1 (Rn)‖DA2

ut‖Hm2 (Rn)‖∇DAut‖L2(Rn),

where we have also applied the Gagliardo-Nirenberg-Sobolev inequality (45). Hence,
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx

≤C‖∂A1
0

t ut‖Hm1+|A1|−A1
0 (Rn)

‖∇∂
A2

0
t ut‖Hm2+|A2|−A2

0
−1(Rn)

Sm
2
[u]

1
2 . (49)

Now we are looking for 0 < m1 <
n
2
− 1 , such that

{

m1 + |A1| − A1
0 ≤ m− 2A1

0,

m2 + |A2| − A2
0 − 1 ≤ m− 2A2

0,
(50)

in order to have

‖∂A1
0

t ut‖Hm1+|A1|−A1
0(Rn)

≤
√

Em
2
[u] and ‖∇∂

A2
0

t ut‖Hm2+|A2|−A2
0
−1(Rn)

≤
√

Sm
2
[u]. (51)

Since m2 = n
2
− 1 − m1 , and by (70), |A2| = |A| + 1 − |A1| and A2

0 = A0 + 1 − A1
0 ,

system (50) is equivalent to
{

m1 + |A1|+ A1
0 ≤ m,

n
2
− 1−m1 + |A|+ 1− |A1|+ A0 + 1−A1

0 − 1 ≤ m.

The last system, thanks to |A| + A0 ≤ m , corresponding to the assumptions of the
Proposition, is satisfied if

n

2
≤ m1 + |A1|+ A1

0 ≤ m.

Using (70), we find that

|A1|+ A1
0 = |A|+ A0 + 2− (|A2|+ A2

0).

Therefore, since for Case 1 |A2| ≥ 2 and A2
0 ≥ 1 , recalling that (again by (70)) |A|+A0 ≤

m , we obtain
1 ≤ |A1|+ A1

0 ≤ m− 1.

Thus, we distinguish three sub-cases:

For n ≥ 3 , n
2
≤ |A1|+ A1

0 ≤ m− 1 taking m1 =
1
4
, we obtain (51).

For n ≥ 5 , 2 ≤ |A1|+ A1
0 <

n
2

as m ≥
[

n
2
+ 3
]

, it is sufficient to take m1 =
n
2
− (|A1|+

A1
0) .
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For n ≥ 3 , |A1|+ A1
0 = 1 instead of finding m1 , we notice, that we have only two pos-

sibility: either DA1
= ∂t and A2 = A , which gives estimate (46), or DA1

= ∂xi

with A2
0 = A0 + 1 and |A2| − A2

0 = |A| − A0 − 1 > 0 . For the last case, by the
generalized Hölder inequality, we have

∫

Rn

|∂xi
ut D

A2

ut D
Aut|dx ≤ ‖∂xi

ut‖Ln(Rn)‖DA2

ut‖L2(Rn)‖DAut‖
L

2n
n−2 (Rn)

. (52)

For m ≥
[

n
2
+ 3
]

the first norm in Eq. (52) can be estimated using the continuous
embedding Hs(Rn) ⊂ Ln(Rn) holding for s > n

2
:

‖∂xi
ut‖Ln(Rn) ≤ C‖∂xi

ut‖H[n2 +1](Rn)
≤ C‖ut‖Hm−1(Rn) ≤ C

√

Em
2
[u].

With the help of the Gagliardo-Nirenberg-Sobolev inequality (45), we also estimate
the second norm in (52)

‖DAut‖
L

2n
n−2 (Rn)

≤ C‖∇DAut‖L2(Rn) ≤ C
√

Sm
2
[u], (53)

and for the last one we directly have

‖DA2

ut‖L2(Rn) ≤ ‖∇∂A0+2
t u‖H|A|−A0−2(Rn) ≤ ‖∇∂A0+2

t u‖Hm−2A0−2(Rn) ≤
√

Sm
2
[u].

Thus we obtain as previously estimate (47) of Step 1.

This permits to conclude Case 1 of Step 1.

Step 1, Case 2. We have |A1|−A1
0 = 0 , A1

0 > 0 , |A2|−A2
0 > 0 and A2

0 = 0 . Therefore,
by (70), A1

0 = 1 + A0 , and, updating (49), we directly have
∫

Rn

|DA1
0

t ut D
(A2

1,...,A
2
n)

x ut D
Aut|dx ≤C‖∂A0+1

t ut‖Hm1 (Rn)‖∇ut‖Hm2+|A2|−1(Rn)
Sm

2
[u]

1
2

with m1+m2 =
n
2
−1 , 0 < m1 <

n
2
−1 . Now we need to find m1 , belonging to ]0, n

2
−1[ ,

such that
{

m1 ≤ m− 2(A0 + 1),

m2 + |A2| − 1 ≤ m,
(54)

in order to have

‖∂A0+1
t ut‖Hm1 (Rn) ≤

√

Em
2
[u] and ‖∇ut‖Hm2+|A2|−1(Rn)

≤
√

Sm
2
[u].

From 1+ |A| = |A1|+ |A2| , by (70), with the relation |A1| = A1
0 = 1+A0 it follows that

|A2| = |A| − A0. (55)

Therefore, as m2 =
n
2
−m1 − 1 , system (54) is equivalent to

{

m1 + 2A0 ≤ m− 2,
n
2
− 2 ≤ m1 +m− |A|+ A0.
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By the assumption of the proposition

m− |A|+ A0 ≥ 2A0, (56)

hence the last system is satisfied if we have m1 such that

n

2
− 2 ≤ m1 + 2A0 ≤ m− 2.

Knowing that |A2| > 0 (by the assumption of Case 2), Eq. (55) implies that |A|−A0 > 0 .
Thus, relation (56) gives 2A0 ≤ m− 1 , or more precisely

2A0 ≤ m− 2,

since m is even. So, a m1 with 0 < m1 < n
2
− 1 exists if m − 2A0 > 2 . Indeed, if

2A0 <
n
2
− 2 we can take m1 =

n
2
− 2 − 2A0 , and if m − 3 ≥ 2A0 ≥ n

2
− 2 we can take

m1 =
1
2
.

Let us now consider the limit case 2A0 = m − 2 . Then we have |A1| = A1
0 = m

2
.

Moreover, from (56) viewed, thanks to Eq. (55), as |A2| + 2A0 ≤ m , follows that 1 ≤
|A2| ≤ 2 . We apply the generalized Hölder inequality and estimate (45) to obtain
∫

Rn

|∂
m
2
t ut D

(A2
1,...,A

2
n)

x ut D
Aut|dx ≤‖∂

m
2
t ut‖L2(Rn)‖D(A2

1,...,A
2
n)

x ut‖Ln(Rn)‖DAut‖
L

2n
n−2 (Rn)

≤C‖∂
m
2
t ut‖L2(Rn)‖D(A2

1,...,A
2
n)

x ut‖Ln(Rn)

√

Sm
2
[u].

Moreover,

‖∂
m
2
t ut‖L2(Rn) ≤

√

Em
2
[u].

Using the continuity of the embedding Hs(Rn) ⊂ Ln(Rn) for s > n
2

, we also find for
m ≥

[

n
2
+ 3
]

‖DA2

ut‖Ln(Rn) ≤C‖DA2

ut‖H[n2 +1](Rn)
≤ C‖∇ut‖H[n2 +2](Rn)

≤C‖∇ut‖Hm(Rn) ≤ C
√

Sm
2
[u].

Hence, estimate (47) of Step 1 is also proved for Case 2.

Step 1, Case 3. Let us notice that thanks to relations (70), from |A1| = A1
0 and

|A2| = A2
0 it follows |A| = A0 . We start as usual with the generalized Hölder inequality
∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤‖DA1

0
t ut‖Lp(Rn)‖DA2

0
t ut‖Lq(Rn)‖DA0

t ut‖
L

2n
n−2 (Rn)

with 1
p
+ 1

q
= n+2

2n
. Then we apply the Gagliardo-Nirenberg-Sobolev inequality (45) and

its more general version, which can be viewed as the embedding of the Sobolev space
W 1

q∗(R
n) in the Lebesgue space Lq(Rn) with 1

q
= 1

q∗
− 1

n
and 1 ≤ q∗ < n :

∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤C‖DA1

0
t ut‖Lp(Rn)‖∇D

A2
0

t ut‖Lq∗(Rn)‖∇DA0
t ut‖L2(Rn)
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with 1
p
+ 1

q∗
= n+4

2n
. We notice that if we want to use the Sobolev embeddings (72) to

Lp and to Lq∗ , it is only possible if 1
p

and 1
q∗

are smaller then 1
2
, or equivalently, if

1
p
+ 1

q∗
= n+4

2n
< 1 . Knowing that n+4

2n
< 1 for n ≥ 5 , n+4

2n
> 1 for n = 3 and n+4

2n
= 1

for n = 4 , we treat separately two cases: n ≥ 5 and n = 3 or 4 .
For n = 3 or 4 , we choose p = n

2
and q = 2n

n−2
, implying q∗ = 2 . Thus, for n = 3

we use the continuous embedding H2(R3) ⊂ L
3
2 (R3) [1] (since 2 > 3

2
) and for n = 4 we

use H2(R4) ⊂ L2(R4) to obtain
∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤‖DA1

0
t ut‖Ln

2 (Rn)
‖∇D

A2
0

t ut‖L2(Rn)‖∇DA0
t ut‖L2(Rn)

≤C‖DA1
0

t ut‖H2(Rn)Sm
2
[u].

If m− 2A1
0 ≥ 2 , then we directly have

‖DA1
0ut‖H2(Rn) ≤ ‖DA1

0ut‖Hm−2A1
0 (Rn)

≤
√

Em
2
[u].

Recalling that m is even, and, by our assumption |A1| + A1
0 ≤ m , 2A1

0 ≤ m , there is
only one additional possibility: m− 2A1

0 = 0 , i.e. A1
0 =

m
2

.
For A1

0 = m
2

, thanks to (70) and the assumption 2A0 ≤ m , we necessary have
|A2

0| = 1 , and consequently, by (53),
∫

Rn

|∂
m
2
t ut utt ∂

m
2
t ut|dx ≤ C‖utt‖H2(Rn)‖∂

m
2
t ut‖2

L
2n
n−2 (Rn)

≤
√

Em
2
[u]Sm

2
[u].

Thus for n = 3 and n = 4 we find estimate (47).
Now, for n ≥ 5 , when 1

p
+ 1

q∗
= n+4

2n
< 1 , we have

∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤C‖DA1

0
t ut‖Lp(Rn)‖∇D

A2
0

t ut‖Lq∗(Rn)‖∇DA0
t ut‖L2(Rn)

≤C‖DA1
0

t ut‖Hm1 (Rn)‖∇D
A2

0
t ut‖Hm2 (Rn)

√

Sm
2
[u]

with m1 +m2 =
n
2
− 2 and 0 < m1 <

n
2
− 2 by the Sobolev embeddings (72) which give

us Hm1 ⊂ Lp and Hm2 ⊂ Lq∗ . We look for m1 such that

m1 ≤ m− 2A1
0, m2 ≤ m− 2A2

0 (57)

in order to have

‖DA1
0

t ut‖Hm1 ≤
√

Em
2
[u] and ‖∇D

A2
0

t ut‖Hm2 ≤
√

Sm
2
[u].

As m2 =
n
2
− 2−m1 and A2

0 = A0 + 1− A1
0 , system (57) is equivalent to

{

m1 + 2A1
0 ≤ m,

n
2
− 2 ≤ m− 2A0 +m1 + 2A1

0 − 2.
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As m− 2A0 ≥ 0 , it is sufficient to have m1 such that

n

2
≤ m1 + 2A1

0 ≤ m

with 0 < m1 <
n
2
− 2 and 1 ≤ A1

0 ≤ m
2

. If 2 ≤ A1
0 <

n
4

we can take m1 =
n
2
− 2A1

0 . And
if n

4
≤ A1

0 ≤ m
2
− 1 we can take m1 =

1
4
.

If A1
0 = 1 , then necessary A2

0 = A0 , and using estimates (44) and (53) we directly
find

∫

Rn

|utt (D
A0
t ut)

2|dx ≤C‖utt‖Ln
2 (Rn)

‖DA2
0

t ut‖2
L

2n
n−2 (Rn)

≤ C
√

Em
2
[u]Sm

2
[u].

If A1
0 =

m
2

we are in a symmetric case as A2
0 = 1 . This conclude the proof of Case 3

and of Step 1, i.e. of estimate (47).

Step 2. Let us show estimate (48). Thanks to properties (70) of A1 and A2 and to the
symmetry of the general case

∫

Rn

|(DA1
0

t D(A1
1,...,A

1
n)

x uxi
)(D

A2
0

t D(A2
1,...,A

2
n)

x uxi
)(DAut)|dx,

we divide our proof on two typical cases:

Case 1 |A1| −A1
0 ≥ 0 , A1

0 > 0 , |A2| − A2
0 ≥ 0 and A2

0 > 0 , i.e. a non trivial presence

of D
A1

0
t and D

A2
0

t is imposed,

Case 2 |A1| − A1
0 > 0 , A1

0 = 0 , |A2| − A2
0 ≥ 0 and A2

0 > 0 , i.e. we consider the

integrals of the form
∫

Rn |(DA1
1+...+A1

n
x uxi

)(D
A2

0
t D

A2
1+...+A2

n
x uxi

)(DAut)|dx with a non-

trivial D
A2

0
t .

Case 1. Using estimate ‖DAut‖L2 ≤
√

Em
2
[u] , we have

∫

Rn

|(DA1
0

t D(A1
1,...,A

1
n)

x uxi
)(D

A2
0

t D(A2
1,...,A

2
n)

x uxi
)(DAut)|dx

≤ C‖∇∂
A1

0
t u‖

Hm1+|A1|−A1
0(Rn)

‖∇∂
A2

0
t u‖

Hm2+|A2|−A2
0(Rn)

√

Em
2
[u]

with m1 +m2 =
n
2

and 0 < m1 <
n
2

.
Let us find m1 with 0 < m1 <

n
2

such that

{

m1 + |A1| −A1
0 ≤ m− 2(A1

0 − 1),

m2 + |A2| −A2
0 ≤ N − 2(A2

0 − 1)
(58)

in order to have

‖∇∂
A1

0
t u‖

Hm1+|A1|−A1
0 (Rn)

≤
√

Sm
2
[u] and ‖∇∂

A2
0

t u‖
Hm2+|A2|−A2

0 (Rn)
≤
√

Sm
2
[u].
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As m2 =
n
2
−m1 , |A1|+ |A2| = |A|+1 , and A1

0+A2
0 = A0+1 , system (58) is equivalent

to
{

m1 + |A1|+ A1
0 ≤ m+ 2,

n
2
+ |A|+ A0 + 2 ≤ m+ 2 +m1 + |A1|+ A1

0.

By our assumption |A|+ A0 ≤ m , and hence the last system is satisfied if m1 verifies

n

2
≤ m1 + |A1|+ A1

0 ≤ m+ 2.

In our case A1
0 > 0 , thus 2 ≤ |A1| + A1

0 ≤ m , which implies the existence of a such
m1 with 0 < m1 < n

2
. Indeed, if m ≥ |A1| + A1

0 ≥ n
2

we can take m1 = 1 , else if
2 ≤ |A1|+A1

0 <
n
2

it is possible to take m1 =
n
2
− (|A1|+A1

0) . This concludes Case 1 of
Step 2.

Case 2. Thanks to (70), the conditions |A1| > 0 with A1
0 = 0 imply that |A| −A0 > 0 .

Consequently, with m1 +m2 =
n
2

and 0 < m1 <
n
2

as in the previous case, we obtain
∫

Rn

|DA1

x ∂xi
u DA2

∂xi
u DAut|dx

≤C‖∇u‖
Hm1+|A1|(Rn)

‖∇∂
A2

0
t u‖

Hm2+|A2|−A2
0 (Rn)

‖∇∂A0
t ut‖H|A|−A0−1(Rn)

≤C‖∇u‖
Hm1+|A1|(Rn)

‖∇∂
A2

0
t u‖

Hm2+|A2|−A2
0 (Rn)

√

Sm
2
[u].

In the aim to have

‖∇u‖
Hm1+|A1|(Rn)

≤
√

Em
2
[u] and ‖∇∂

A2
0

t u‖
Hm2+|A2|−A2

0 (Rn)
≤
√

Sm
2
[u],

we need to find m1 with 0 < m1 <
n
2

, such that
{

m1 + |A1| ≤ m,

m2 + |A2| − A2
0 ≤ m− 2(A2

0 − 1).

As m2 =
n
2
−m1 , |A2| = |A|+ 1− |A1| and A2

0 = A0 + 1 it is equivalent to solve
{

m1 + |A1| ≤ m,
n
2
−m1 + |A|+ 1− |A1|+ A0 + 1− 2 ≤ m.

As m− |A| −A0 ≥ 0 , the last system is satisfied if m1 verifies

n

2
≤ m1 + |A1| ≤ m.

By assumptions of this case it tolds 1 ≤ |A1| ≤ m , what guarantees the existence of such
m1 with 0 < m1 <

n
2

. Indeed, if 1 ≤ |A1| < n
2

, then we can take m1 =
n
2
− |A1| , and if

n
2
≤ |A1| ≤ m − 1 , then we can take m1 = 1

2
. In the case |A1| = m , corresponding to

DA2
= ∂t , we directly obtain
∫

Rn

|DA1

x ∂xi
u ∂xi

ut D
Aut|dx ≤ C‖DA1

x ∂xi
u‖L2(Rn)‖∂xi

ut‖Ln(Rn)‖DAut‖
L

2n
n−2 (Rn)

≤ C‖∇u‖Hm‖∇ut‖Hm(Rn)‖∇DAut‖L2(Rn) ≤ C
√

Em
2
[u]Sm

2
[u].
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This completes the proof of Step 2 and hence the proof of estimate (48).
Thus, estimates (47) and (48) imply

∣

∣

∣

∣

∫

Rn

LuD
AuDAutdx

∣

∣

∣

∣

≤ Cmax(α, β)ε
√

Em
2
[u]Sm

2
[u],

from where follows (43). �

Thanks to Lemma 1, we have the following energy decreasing result:

Theorem 7 Let n ≥ 3 , m ∈ N be even and m ≥
[

n
2
+ 3
]

. For u0 ∈ Hm+1(Rn) and
u1 ∈ Hm(Rn) , satisfying the smallness condition according to Point 1 of Theorem 2, there
exists a unique global solution

u ∈ C1(R+;Hm−1(Rn)) ∩ C(R+;Hm(Rn))

of problem (1)–(2) and the energy Em
2
[u](0) < ∞ is well-defined. Then

1. it holds the a priori estimate

d

dt
E(t) +

√
2εSm

2
[u](t)

(√
2ν − Cmmax(α, β)

√

E(t)
)

≤ 0, (59)

where, denoting by V the set of all multi-indexes A = (A0, A1, ..., An) with |A| −
A0 ≤ m− 2A0 ,

E(t) =
∑

A∈V

∫

Rn

(1− αεut)(D
Aut)

2 + c2(∇DAu)2)(t, x) dx.

2. if in addition
√

Em
2
[u](0) ≤

√
2ν√

3
2
+c2Cm max(α,β)

= O(
√
ε), then

∀t ∈ R+, Em
2
[u](t) ≤ (3 + 2c2)Em

2
[u](0) = O(1). (60)

Proof : We sum (41) on all A ∈ V to obtain

d

dt
E(t) + 2νεSm

2
[u] ≤ Cmmax(α, β)ε

√

Em
2
[u]Sm

2
[u].

While ‖ut(t)‖L∞(Rn) ≤ 1
2αε

it holds

1

2
Em

2
[u](t) ≤ E(t) ≤ (

3

2
+ c2)Em

2
[u](t),

and consequently,

d

dt
E(t) + 2νεSm

2
[u](t) ≤

√
2Cmmax(α, β)ε

√

E(t)Sm
2
[u](t).

28



Thus, if for all time
√

E(t) <
√
2ν

max(α,β)Cm
, and in particular,

E(0) ≤
(

3

2
+ c2

)

Em
2
[u](0) < 2

(

ν

Cmmax(α, β)

)2

, (61)

then we have the decreasing of E in time:

d

dt
E(t) < 0 and E(t) ≤ E(0).

Moreover, for all time t ≥ 0

‖ut(t)‖L∞(Rn) ≤C∞

√

Em
2
[u](t) ≤ C∞

√
2
√

E(t) ≤ C∞
√
2
√

E(0)

<2C∞
ν

Cmmax(α, β)
<

1

2αε
.

To be able to write 2C∞
ν

Cm max(α,β)
< 1

2αε
, we recall that, using the physical values of

coefficients, ε ≪ 1 , c2 = O(1
ε
) , α = γ−1

c2
< β = 2 , and consequently, as ν = O(1) , the

last inequality becomes
C∞
Cm

ν <
1

2αε
,

which is obviously true in the case of ε ≪ 1 (and, for instance, taking Cm = 2C∞ ).
Hence, if Eq. (61) holds, then for all time ‖ut(t)‖L∞ < 1

2αε
and the well-posedness of the

Cauchy problem is ensured with the following energy estimate

Em
2
[u](t) ≤ 2E(0) ≤ (3 + 2c2)Em

2
[u](0).

�

A Proof of Proposition 1

Following [10], let us consider

Luv = vtt − c2∆v − αεutvtt − βε∇u ∇vt, (62)

where u is a local solution on [0, T ] of problem (1)–(2) with ν = 0 , satisfying (4) and (5)
for s = m . We multiply Eq. (62) by vt and integrate over Rn

∫

Rn

Luv vtdx

=
1

2

d

dt

(
∫

Rn

v2t + c2(∇v)2dx

)

− αε

∫

Rn

utvttvtdx− βε

∫

Rn

∇u∇vtvtdx

=
1

2

d

dt

(
∫

Rn

v2t + c2(∇v)2dx

)

− α

2
ε

[

d

dt

(
∫

Rn

ut v
2
t dx

)

−
∫

Rn

utt v
2
t dx

]

+
β

2
ε

∫

Rn

∆u (vt)
2dx.
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Hence, denoting by

I[v] = v2t + c2(∇v)2 − αεut v
2
t , (63)

J [v] = 2Luv vt − [αεutt + βε∆u] (vt)
2, (64)

we have the following equation

d

dt

∫

Rn

I[v](t, x)dx =

∫

Rn

J [v](t, x)dx. (65)

Let A = (A0, A1, ..., An) be a multi-index, and DAv = ∂A0
t ∂A1

x1
...∂An

xn
. To prove esti-

mate (20), we study |
∫

Rn J [v](t, x)dx| for v = DAu with |A| = A0 + ... + An ≤ m .
For m ≥

[

n
2
+ 2
]

and a multi-index A with |A| ≤ m we estimate, thanks to the
definition of Em[u] by Eq. (6),

∫

Rn

|utt(D
Aut)

2|dx ≤‖utt‖L∞(Rn)‖DAut‖2L2(Rn)

≤C‖utt‖H[n2 +1](Rn)
Em[u] ≤ C Em[u]

3
2 , (66)

with a constant C > 0 , depending only on n by the Sobolev embedding [1] Theo-
rem 7.57 p. 228

Hs(Rn) →֒ L∞(Rn) for s >
n

2
. (67)

In the same way, using the Sobolev embedding (67), we obtain
∫

Rn

|∆u(DAut)
2|dx ≤‖∆u‖L∞(Rn)‖DAut‖2L2(Rn) ≤ C‖∆u‖

H[n2 +1](Rn)
Em[u]

≤C‖∇u‖Hm(Rn)Em[u] ≤ C Em[u]
3
2 . (68)

To calculate LuD
Au we apply the chain rule of differentiation to DALuu = 0 . As

Luu = 0 we suppose |A| ≥ 1 . By developing DA(∇u∇ut) =
∑n

i=1D
A(∂xi

u∂xi
ut) with

DA(ut utt) , we have

LuD
Au = ε

∑

j

(

CjαD
Aj1

ut D
Aj2

ut +

n
∑

i=1

EijβD
Aj1

∂xi
u DAj2

∂xi
u

)

, (69)

where
∑

j is a finite sum, with Cj and Eij depending only on |A| ≤ m , and Aj1 and
Aj2 are multi-index such that







|Aj1|+ |Aj2| = |A|+ 1,
|Aj1| ≥ 1, |Aj2| ≥ 1,

Aj1
0 + Aj2

0 = A0 + 1, Aj1
i + Aj2

i = Ai for 1 ≤ i ≤ n.
(70)

Let us show for m ≥
[

n
2
+ 2
]

the estimate
∣

∣

∣

∣

∫

Rn

LuD
Au DAut dx

∣

∣

∣

∣

≤ Cεmax(α, β)Em[u]
3
2 . (71)
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Without loss of generality, we consider two multi-indexes A1 and A2 satisfying (70) and
divide the proof of (71) in two parts: we estimate

∫

Rn |DA1
ut D

A2
ut D

Aut|dx first, and
secondary

∫

Rn |DA1
∂xi

u DA2
∂xi

u DAut|dx . As the proof of each part is very similar, we
give the details only for the first one.

To estimate
∫

Rn |DA1
ut D

A2
ut D

Aut|dx , we consider three cases:

Case 1 1 < |A1| < m and 1 < |A2| < m ,

Case 2 |A1| ≤ m and |A2| = 1 ,

Case 3 |A2| ≤ m and |A1| = 1 .

Let us detail Case 1 (other cases can be treated in a similar way).
For 2 ≤ |A1| ≤ m− 1 and 2 ≤ |A2| ≤ m− 1 , it holds

∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤‖DA1

ut‖Lp(Rn)‖DA2

ut‖Lq(Rn)‖DAut‖L2(Rn),

with 1
p
+ 1

q
= 1

2
by the general Hölder inequality [4]. Hence, using the Sobolev embed-

ding [1]

Hm1(Rn) →֒ Lp(Rn) with
1

p
=

1

2
− m1

n
and 0 < m1 <

n

2
, (72)

we find
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ C‖DA1

ut‖Hm1 (Rn)‖DA2

ut‖H n
2 −m1 (Rn)

‖DAut‖L2(Rn).

In what follows by C > 0 is denoted an arbitrary constant depending only on m and on
n .

We have
‖DA1

ut‖Hm1 (Rn) ≤ ‖∂A1
0

t ut‖Hm1+|A1|−A1
0 (Rn)

,

‖DA2

ut‖H n
2 −m1 (Rn)

≤ ‖∂A2
0

t ut‖H n
2 −m1+|A2|−A2

0 (Rn)
.

We need to find m for which there exists m1 with 0 < m1 <
n
2

, such that
{

m1 + |A1| −A1
0 ≤ m+ 1− (A1

0 + 1),
n
2
−m1 + |A2| −A2

0 ≤ m+ 1− (A2
0 + 1),

(73)

or equivalently, by (70) |A2| = |A|+ 1− |A1| ,
{

m1 + |A1| ≤ m,
n
2
−m1 + |A|+ 1− |A1| ≤ m.

As m− |A| ≥ 0 it is sufficient to find m1 , such that

n

2
+ 1 ≤ m1 + |A1| ≤ m

with 2 ≤ |A1| ≤ m− 1 and 0 < m1 <
n
2

. In particular, the last three inequalities imply
that m ≥ [2 + n

2
] . For the existence of m1 , we see that, for instance,
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if |A1| = 2 we can take m1 =
n
2
− 1

4
,

if 2 < |A1| < n
2
+ 1 we can take m1 =

n
2
+ 1− |A1| ,

if n
2
+ 1 ≤ |A1| ≤ m− 1 we can take m1 =

1
4
.

Moreover,

‖DAut‖L2(Rn) ≤ ‖∂A0
t ut‖H|A|−A0(Rn) ≤ ‖∂A0

t ut‖Hm−A0 (Rn).

Then, thanks to relations (73), we conclude
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤C‖∂A1

0
t ut‖Hm−A1

0 (Rn)
‖∂A2

0
t ut‖Hm−A2

0 (Rn)
‖∂A0

t ut‖Hm−A0 (Rn)

≤C Em[u]
3
2 .

Consequently, for m ≥
[

n
2
+ 2
]

, and A1 and A2 , satisfying properties (70), it holds

∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ C Em[u]

3
2 . (74)

By the same argument, for m ≥
[

n
2
+ 2
]

and A1 and A2 , satisfying properties (70),
we control the terms of the form

∫

Rn |DA1
∂xi

u DA2
∂xi

u DAut|dx :

∫

Rn

|DA1

∂xi
u DA2

∂xi
u DAut|dx ≤ CEm[u]

3
2 . (75)

Thus, considering (69), (74) and (75) for m ≥
[

n
2
+ 2
]

and for a multi-index A with
|A| ≤ m , we have estimate (71).

Thanks to estimates (66), (68) and (71), we are able to control each term of J [DAu]
from Eq. (64):

∣

∣

∣

∣

∫

Rn

J [DAu](t, x)dx

∣

∣

∣

∣

≤ Cmax(α, β)εEm[u](t)
3
2 . (76)

By the hypothesis that u is a local solution of the inviscid Kuznetsov equation, u satisfies
Eq. (5), i.e. ‖ut(t)‖L∞ ≤ 1

2αε
on [0, T ] , which implies the equivalence of energies

∫

Rn

1

2
(DAut)

2 + c2(∇DAu)2dx ≤
∫

Rn

I[DAu]dx ≤
∫

Rn

3

2
(DAut)

2 + c2(∇DAu)2dx.

We integrate relation (65) over [0, t] with t ≤ T to obtain

‖DAut(t)‖2L2(Rn)+‖∇DAu(t)‖2L2(Rn)

≤ (3
2
+ c2)

min(1/2, c2)
(‖DAut(0)‖2L2(Rn) + ‖∇DAu(0)‖2L2(Rn)v)

+
1

min(1/2, c2)

∫ t

0

∫

Rn

J(τ, x)dx dτ.
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Then, using estimate (76), we find

‖DAut(t)‖2L2(Rn)+‖∇DAu(t)‖2L2(Rn)

≤ (3
2
+ c2)

min(1/2, c2)
(‖DAut(0)‖2L2(Rn) + ‖∇DAu(0)‖2L2(Rn))

+
1

min(1/2, c2)
Cmax(α, β)ε

∫ t

0

Em[u](τ)
3
2dτ.

As we have this for all multi-index A with |A| ≤ m , by summing, we obtain

Em[u](t) ≤
(3 + 2c2)

min(1/2, c2)
Em[u](0) +

Cmax(α, β)

min(1/2, c2)
ε

∫ t

0

Em[u](τ)
3
2dτ

with a constant C > 0 , depending only of n and m . This gives estimate (20).

Remark 4 To prove estimate (21) it is sufficient to show, using the proof of Proposi-
tion 1, that for m ≥

[

n
2
+ 3
]

and all multi-index A with |A| ≤ m

∣

∣

∣

∣

∫

Rn

J [DAu](s, x)dx

∣

∣

∣

∣

≤ Cε
√

Em−1[u]Em[u],

where J [DAu] is defined in Eq. (64).

B Illustration of the sharp behavior of Point 1 in The-

orem 2

Theorem 8 Let n ≥ 3 , m ∈ N be even, m ≥ [n
2
+ 3] . For u0 ∈ Hm+1(Rn) and

u1 ∈ Hm(Rn) if

‖∇u0‖Hm(Rn)+‖u1‖Hm(Rn)

≤
√

1

1 + (2c2+2)m+2−1
(2c2+2)2−1

2ν2

(3
2
+ c2)C2

mmax(α2, β2)
= O(

√
εm+1), (77)

then
√

Em
2
[u](0) ≤

√
2ν√

3
2
+c2Cm max(α,β)

= O(
√
ε), so that by Theorem 7 Point 2 there exists

a unique global solution u ∈ C0(R+;Hm+1(Rn))∩C1(R+;Hm(Rn)) of the Cauchy problem
associated to the Kuznetsov equation such that for all t ∈ R+

√

Em
2
[u](t) ≤

√

(
3

2
+ c2)

(

1 +
(2c2 + 2)m+2 − 1

(2c2 + 2)2 − 1

)

(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn)). (78)

Proof : We want to show (77). To do it, we perform the induction on i ∈ {0; 1; ...; m
2
}

proving that the time derivatives of the solution of the Cauchy problem (1)–(2) u at
t = 0 satisfy for all i ∈ {0; 1; ...; m

2
} and for k ∈ N , 0 ≤ k ≤ i the following estimate

‖∂k
t ut(0)‖Hm−2k(Rn) ≤ ak(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn)), (79)
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with a0 = 1 , a1 = 2c2 + 2 and

ak+1 = ak + 2c2ak−1 + 2
k
∑

i=0

ai + 1 for 1 ≤ k ≤ m

2
− 1.

For i = 0 the proof is direct. For i = 1 from the Kuznetsov equation we have

utt(0) =
1

1− αεu1
(c2∆u0 + νε∆u1 + βε∇u0∇u1).

As for a small enough ε it holds ‖ 1
1−αεu1

‖∞ ≤ 2 , taking the ‖.‖Hm−2(Rn)− norm of the
last equality we obtain

‖utt(0)‖Hm−2(Rn) ≤ 2(c2‖∆u0‖Hm−2(Rn) + νε‖∆u1‖Hm−2(Rn)

+ βε‖∇u0∇u1‖Hm−2(Rn)). (80)

Thanks to [1] we have for all l ∈ N and for all k ∈ N , 0 ≤ l ≤ m and 0 ≤ k ≤ m − l
the continuous embedding of the product

Hm−l(Rn)×Hk+l(Rn) →֒ Hk(Rn). (81)

Thus we can write for (80)

‖utt(0)‖Hm−2(Rn) ≤ 2(c2‖∇u0‖Hm(Rn) + νε‖u1‖Hm(Rn)

+ βεK‖∇u0‖Hm−1(Rn)‖∇u1‖Hm−1(Rn)),

and by Young’s inequality we find

‖utt(0)‖Hm−2(Rn) ≤ 2
[

c2‖∇u0‖Hm(Rn) + νε‖u1‖Hm(Rn)

+
1

2
βεK

(

‖∇u0‖2Hm(Rn) + ‖u1‖2Hm(Rn)

)

]

. (82)

Choosing ε small enough such that

βεK‖∇u0‖Hm(Rn) ≤ 1, βεK‖u1‖Hm(Rn) ≤ 1, νε ≤ 1

2
,

from (82) it follows

‖utt(0)‖Hm−2(Rn) ≤2

[(

c2 +
1

2

)

‖∇u0‖Hm(Rn) +

(

1

2
+

1

2

)

‖u1‖Hm(Rn)

]

≤(2c2 + 2)(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn)).

Let define now the induction hypothesis: for i ∈ {0; 1; ...; m
2
− 1} for k ∈ N , 0 ≤ k ≤ i

it holds estimate (79). Now we want to show it for i+1 , by the induction hypothesis we
just need to show

‖∂i+1
t ut(0)‖Hm−2(i+1)(Rn) ≤ ai+1(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn)).
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Deriving i -times on time the Kuznetsov equation, for i ≥ 1 we obtain

∂i
tutt(0) =

1

1− αu1

(

c2∆∂i
tu(0) + νε∆∂i

tut(0) + αε
i−1
∑

k=0

Ck
i ∂

i−k
t ut(0)∂

k
t utt(0)

+ βε
i
∑

k=0

Ck
i ∇∂i−k

t u(0)∇∂k
t ut(0)

)

.

We take the ‖.‖Hm−2(i+1)− norm of this equation and in the same way as for i = 1 we
show that

‖∂i+1
t ut(0)‖Hm−2(i+1)(Rn)

≤
(

2c2ai−1 + ai + 2

i
∑

k=0

ak + 1

)

(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn))

≤ai+1(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn)).

This concludes the induction.
With the induction result we have for k ∈ N , 0 ≤ k ≤ m

2

‖∂k
t ut(0)‖Hm−2k(Rn) ≤ ak(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn)),

where
ak ≤ (2c2 + 2)k.

Therefore we can write

Em
2
[u](0) ≤



1 +

m
2
∑

i=0

a2i



 (‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn))
2

≤
(

1 +
(2c2 + 2)m+2 − 1

(2c2 + 2)2 − 1

)

(‖∇u0‖Hm(Rn) + ‖u1‖Hm(Rn))
2.

Hence, taking the initial data satisfying estimate (77) we have the following estimate for
the initial energy

Em
2
[u](0) ≤ 2ν2

(3
2
+ c2)C2

mmax(α2, β2)
.

Consequently, by Theorem 7 Point 2 for all t ∈ R+ we obtain estimate (78). �
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