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Adrien Dekkers and Anna Rozanova-Pierrat∗
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Abstract

We consider the Cauchy problem for a model of non-linear acoustics, named the

Kuznetsov equation, describing sound propagation in thermo-viscous elastic media.

For the viscous case, it is a weakly quasi-linear strongly damped wave equation,

for which we prove the global existence in time of regular solutions for sufficiently

small initial data, the size of which is specified, and give the corresponding energy

estimates. In the non-viscous case, we update the known results of John for quasi-

linear wave equations, obtaining the well-posedness results for less regular initial

data. We obtain, using a priori estimates and a Klainerman inequality, the estima-

tions of the maximal existence time, depending on the space dimension, which are

optimal, thanks to the blow-up results of Alinhac. Alinhac’s blow-up results are also

confirmed by a L
2 -stability estimate, obtained between a regular and a less regular

solutions.

1 Introduction

The Kuznetsov equation [16] models a propagation of non-linear acoustical waves in
thermo-viscous elastic media. This equation describes the evolution of the velocity poten-
tial and can be derived, as in [18], from a compressible isentropic Navier-Stokes system,
for the viscous case, or the Euler system for the non-viscous case,using small perturba-
tions of the density and of the velocity characterized by a small dimensionless parameter
ε > 0 . The Cauchy problem for the Kuznetsov equation reads for α = γ−1

c2
, β = 2 and

ν = δ
ρ0

as

utt − c2∆u− νε∆ut = αεututt + βε∇u ∇ut, x ∈ Rn, (1)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Rn, (2)

where c , ρ0 , γ , δ are the velocity of the sound, the density, the ratio of the specific
heats and the viscosity of the medium respectively. In what follows, we can just suppose
that α and β are some positive constants. Eq. (1) is a weakly quasi-linear damped
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wave equation, that describes a propagation of a high amplitude wave in fluids. The
Kuznetsov equation is one of the models derived from the Navier-Stokes system, and it is
well suited for the plane, cylindrical and spherical waves in a fluid [7]. Most of the works
on the Kuznetsov equation (1) are treated in the one space dimension [11] or in a bounded
spatial domain of Rn [13, 12, 17]. For the viscous case Kaltenbacher and Lasiecka [13]
have considered the Dirichlet boundary valued problem and proved for sufficiently small
initial data the global well-posedness for n ≤ 3 . Meyer and Wilke [17] have proved it
for all n . In [12] it was proven a local well-posedness of the Neumann boundary valued
problem for n ≤ 3 .

In this article we study the well-posedness properties of the Cauchy problem (1)–(2).
In the non-viscous case for ν = 0 , the Cauchy problem for the Kuznetsov equation is a
particular case of a general quasi-linear hyperbolic system of the second order considered
by Hughes, Kato and Marsden [8] (see Theorem 1 Points 1 and 2 for the application of
their results to the Kuznetsov equation). The local well-posedness result, proved in [8],
does not use a priori estimate techniques and is based on the semi-group theory. Hence,
thanks to [8], we have the well-posedness of (1)–(2) in the Sobolev spaces Hs with a
real s > n

2
+ 1 . Therefore, actually, to extend the local well-posedness to a global one

(for n ≥ 4 ) and to estimate the maximal time interval on which there exists a regular
solution, John [10] has developed a priori estimates for the Cauchy problem for a general
quasi-linear wave equation. This time, due to the non-linearities ututt and ∇u ∇ut ,
including the time derivatives, to have an a priori estimate for the Kuznetsov equation
we need to work with Sobolev spaces with a natural s , thus denoted in what follows by
m . If we directly apply general results of Ref. [10] to our case of the Kuznetsov equation,
we obtain a well-posedness result with a high regularity of the initial data. We improve
it in Theorem 3 and show John’s results for the Kuznetsov equation with the minimal
regularity on the initial data corresponding to the regularity obtained by Hughes, Kato
and Marsden [8]. For instance, we prove the analogous energy estimates in Hm with
m ≥ [n

2
+ 2] instead of John’s m ≥ 3

2
n + 4 (see Eq. (20) in Proposition 1) and its slight

modified version in Hm with m ≥ [n
2
+ 3] instead of m ≥ 3

2
n + 7 (see Eq. (36) in

Proposition 2). The energy estimates allow us to evaluate the maximal existence time
interval (see Theorem 1 Point 5 and Theorem 4 for more details). In R2 and R3 the
optimality of obtained estimations for the maximal existence time is ensured by the results
of Alinhac [2]. In Ref. [2] a geometric blow-up for small data is proved for ∂2

t u and ∆u
at a finite time of the same order as predicted by our a priori estimates (see Theorem 1).
From the other hand, the blow-up of ∂2

t u and ∆u is also confirmed by the stability
estimate (8) in Theorem 1: if the maximal existence time interval is finite and limited by
T ∗ , by Eq. (8), we have the divergence

∫ T ∗

0

(

‖utt‖L∞(Rn) + ‖∆u‖L∞(Rn)

)

ds = +∞. (3)

For n ≥ 4 and ν = 0 , we also improve the results of John [10] and show the global
existence for sufficiently small initial data u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) with
m ≥ n+ 2 instead of m ≥ 3

2
n + 7 (see Proposition 4 and Theorem 4). The smallness of

the initial data here directly ensures the hyperbolicity of the Kuznetsov equation for all
time, i.e. it ensures that 1−αεut is strictly positive and bounded for all time. The proof
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uses the generalized derivatives for the wave type equations [10] and a priori estimate of
Klainerman [14, 15] (see Section 3.2).

Let us now formulate our main well-posedness result for the non-viscous case:

Theorem 1 (Non-viscous case) Let ν = 0 , n ∈ N∗ and s > n
2
+ 1 . For all u0 ∈

Hs+1(Rn) and u1 ∈ Hs(Rn) such that ‖u1‖L∞(Rn) <
1

2αε
, the following results hold:

1. There exists T > 0 such that there exists a unique solution u of (1)–(2) with the
following regularity

u ∈ Cr([0, T ];Hs+1−r(Rn)) for 0 ≤ r ≤ s, (4)

∀t ∈ [0, T ], ‖ut(t)‖L∞(Rn) <
1

2αε
. (5)

2. The map (u0, u1) 7→ (u(t, .), ∂tu(t, .)) is continuous in the topology of Hs+1 × Hs

uniformly in t ∈ [0, T ] .

3. Let T ∗ be the largest time on which such a solution is defined, and in addition
s ∈ N , i.e. s = m ≥ m0 = [n

2
+ 2] . With the notation

Em[u](t) = ‖∇u(t)‖2Hm +

m+1
∑

i=1

‖∂i
tu(t)‖2Hm+1−i, (6)

there exist constants C(n, c, α) > 0 and Ĉ(n, c, α, β) > 0 (see Theorem 3) such
that if the initial data satisfies

√

Em0 [u](0) ≤ 1
C(n,c,α)ε

, then

T ∗ ≥ 1

εĈ(n, c, α, β)
√

Em0 [u](0)
, such that it holds (3). (7)

4. For two solutions u and v of the Kuznetsov equation for ν = 0 defined on [0, T ∗[
assume that u be regular as in (4)–(5), i.e. u ∈ L∞([0, T ∗[;Hm+1(Rn)) , ut ∈
L∞([0, T ∗[;Hm(Rn)) ( s = m as in Point 3), and

v ∈ L∞([0, T ∗[;H1(Rn)), vt ∈ L∞([0, T ∗[;L2(Rn)) with ‖v‖L∞(Rn) <
1

2αε

and with a bounded ‖∇vt‖L∞(Rn) norm on [0, T ∗[ . Then it holds the following
stability uniqueness result: there exist constants C1 > 0 and C2 > 0 , independent
on time, such that

(‖(u−v)t‖2L2+‖∇(u−v)‖2L2)(t) ≤ C1 exp(C2ε

∫ t

0

sup(‖utt‖L∞(Rn), ‖∆u‖L∞(Rn))ds)

.(‖u1 − v1‖2L2 + ‖∇(u0 − v0)‖2L2). (8)

5. If s = m ≥ n + 2 , then for sufficiently small initial data (see Theorem 4 in Sec-
tion 3.2)
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(a) lim infε→0 ε
2T ∗ > 0 for n = 2,

(b) lim infε→0 εlog(T
∗) > 0 for n = 3,

(c) T ∗ = +∞ for n ≥ 4 .

Theorem 1 is principally based on the a priori estimates proved in Sections 3.1 (for Point 3)
and 3.2 (for Point 5) and on the local existence result updated from Ref. [8] (Points 1 and
2). Point 4 is proved in Section 3.3. Analyzing the structure of the Kuznetsov equation and
the difficulties involving by its non-linear terms, we start in Section 2 with preliminary
remarks on the L2 -energy properties for the Kuznetsov equation to compare with its
simplified versions. Developing the energy estimates in the Sobolev spaces, we however
recognize the structure of the L2 -energy of the wave equation which keeps unchanged.

In the presence of the term ∆ut for the viscous case ν > 0 , the regularity of the
higher order time derivatives of u is different (to compare to the non-viscous case), and
the way to control the non-linearities in the a priori estimates becomes different. As it
was shown in [19], this dissipative term changes a finite speed of propagation of the wave
equation to the infinite one. Indeed, the linear part of Eq. (1) can be viewed as two
compositions of the heat operator ∂t −∆ in the following way:

utt − c2∆u− νε∆ut = ∂t(∂tu− εν∆u)− c2∆u.

For the viscous case we prove the global in time well-posedness results in Rn (see
Section 4) for small enough initial data, the size of which we specify (see Point 1 of
Theorem 2 and Subsection 4.1 for its proof). In Subsection 4.2 for n ≥ 3 (see Point 2
of Theorem 2) we establish an a priori estimate which gives also a sufficient condition of
the existence of a global solution for a sufficiently small initial energy of the same order
on ε as in Point 1 of Theorem 2. The same results (see Point 3 of Theorem 2) hold in
(R/LZ)× Rn−1 for n ≥ 2 (with a periodicity and mean value zero on one variable).

Theorem 2 (Viscous case) Let ν > 0 , n ∈ N∗ , s > n
2

and R+
t = [0,+∞[ . Con-

sidering the Cauchy problem for the Kuznetsov equation (1)–(2), the following results
hold:

1. Let
X := H2(R+

t ;H
s(Rn)) ∩H1(R+

t ;H
s+2(Rn)),

the initial data
u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn),

r∗ = O(1) be the positive constant defined in Eq. (53) and C1 = O(1) be the mini-
mal constant such that the solution u∗ of the corresponding linear Cauchy problem
(50) satisfies

‖u∗‖X ≤ C1√
νε

(‖u0‖Hs+2 + ‖u1‖Hs+1).

Then for all r ∈ [0, r∗[ and all initial data satisfying

‖u0‖Hs+2 + ‖u1‖Hs+1 ≤
√
νε

C1
r, (9)
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there exists the unique solution u ∈ X of the Cauchy problem for the Kuznetsov
equation and ‖u‖X ≤ 2r .

2. Let n ≥ 3 , s = m ∈ N be even and m ≥ [n
2
+ 3] . With the notation

Em
2
[u](t) = ‖∇u(t)‖2Hm +

m
2
+1
∑

i=1

‖∂i
tu(t)‖2Hm−2(i−1) , (10)

there exists a constant ρ = O(1) > 0 (see Theorem 7 Point 2), independent on
time, such that for all initial data u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rm) satisfying

Em
2
[u](0) < ρε, (11)

there exists a unique u ∈ C0(R+
t ;H

m+1(Rn)) ∩ C i(R+
t ;H

m+2−2i(Rn)), for i =
1, .., m

2
+ 1 with the bounded energy

∀t ∈ R+, Em
2
[u](t) ≤ C(c) Em

2
[u](0) < +∞.

Here the constant C(c) > 0 is independent on time, on u and on m .

3. For n ∈ N∗ in Ω = (R/LZ)× Rn−1 with s = m ∈ N even and m ≥ [n
2
+ 3] there

hold Points 1 and 2 in the class of periodic in one direction functions with the mean
value zero

∫

R/LZ

u(t, x, y) dx = 0. (12)

Let us notice that the hyperbolicity condition (5) is also satisfied if we require condi-
tions (9) and (11). For ν > 0 Point 4 of Theorem 1 obviously holds for all n ∈ N∗ .
Point 1 of Theorem 2 is proved in Subsection 4.1 using a theorem of a non-linear anal-
ysis [20] (see Theorem 6) and regularity results for the strongly damped wave equation
following [6], which can also be used for Ω = (R/LZ) × Rn−1 in point 3. Point 2 of
Theorem 2 is proved in Subsection 4.2, using a priori estimates given in Proposition 1,
see also Theorem 7. The last point of Theorem 2 is a direct corollary of the Poincaré
inequality

‖u‖L2((R/LZ)×Rn−1) ≤ C‖∂xu‖L2((R/LZ)×Rn−1), (13)

which holds in the class of periodic functions with the mean value zero. Estimate (13)
allows to have the same estimate as in Proposition 1 (see Section 4) for n = 2 , which
fails in R2 . Thus, it also gives the global existence for rather small initial data detailed
in Point 2.

2 Preliminary remarks on L2 -energies

We can notice that Eq. (1) is a wave equation containing a dissipative term ∆ut and
two non-linear terms: ∇u∇ut describing local non-linear effects and ututt describing
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global or cumulative effects. Actually, the linear wave equation appears from Eq. (1) if
we consider only the terms of the zero order on ε :

utt − c2∆u = 0. (14)

The semi-group theory permits in the usual way to show that for u0 ∈ H1(Rn) and
u1 ∈ L2(Rn) there exists a unique solution of the Cauchy problem (14), (2)

u ∈ C0(R+
t ;H

1(Rn)) ∩ C1(R+
t ;L

2(Rn)).

So the energy of the wave equation (14)

E(t) =

∫

Rn

[(ut)
2 + c2(∇u)2](t, x)dx, (15)

is well defined and conserved
d

dt
E(t) = 0.

For ν > 0 and without non-linear terms, the Kuznetsov equation (1) becomes the
known strongly damped wave equation:

utt − c2∆u− ν

ρ0
ε∆ut = 0, (16)

which is well-posed [9]: for m ∈ N , u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) there exists a
unique solution of the Cauchy problem (16), (2)

u ∈ C0(R+
t ;H

m+1(Rn)) ∩ C1(R+
t ;H

m(Rn)).

Multiplying Eq. (16) by ut in L2(Rn) , we obtain for the energy of the wave equa-
tion (15)

d

dt
E(t) = −2

ν

ρ0
ε

∫

Rn

(∇ut)
2(t, s)ds ≤ 0,

what means that the energy E(t) decreases in time, thanks to the viscosity term with ν >
0 . The rate of the decreasing is found for more regular energies in [19] in accordance with
the regularity of the initial conditions. Without the term ∇u∇ut (local non-linear effects),
the Kuznetsov equation becomes similar to the Westervelt equation, initially derived by
Westervelt [21] before Kuznetsov. The Westervelt equation, historically derived [21] for
the acoustic pressure fluctuation, has the following form

ptt − c2∆p− ν

ρ0
ε∆pt =

γ + 1

c2
εptptt, (17)

and can also be seen as an approximation of an isentropic Navier-Stokes system.
In the sequel we conveniently denote p by u . We multiply Eq. (17) by ut and

integrate over Rn to obtain

1

2

d

dt

(
∫

Rn

[(ut)
2 + c2(∇u)2] dx

)

+
ν

ρ0
ε

∫

Rn

(∇ut)
2 dx =

1

3

γ + 1

c2
ε
d

dt

(
∫

Rn

(ut)
3 dx

)

.
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Then we have

1

2

d

dt

(
∫

Rn

[(

1− 2

3

γ + 1

c2
εut

)

(ut)
2 + c2(∇u)2

]

dx

)

+
ν

ρ0
ε

∫

Rn

(∇ut)
2 dx = 0.

For α = 2
3
γ+1
c2

we consider the energy

Ewest(t) =

∫

Rn

[

(1− αεut) (ut)
2 + c2(∇u)2

]

dx, (18)

which is monotonous decreasing for ν > 0 and is conserved for ν = 0 . Let us also notice
that, taking the same initial data for different values of ν , energy (18) is a decreasing
function of ν :

for all 0 < ν1 < ν2 and t > 0 Ewest(t, ν = 0) > Ewest(t, ν1) > Ewest(t, ν2) ≥ 0,

in the assumtion that 1− αεut ≥ 0 almost everywhere.
While 1

2
≤ 1−αεut ≤ 3

2
, that is to say ‖ut(t)‖L∞(Rn) remains small enough in time, then

we can compare Ewest to the energy of the wave equation

1

2
E(t) ≤ Ewest(t) ≤

3

2
E(t).

Then a sufficiently regular solution of the Cauchy problem for the Westervelt equation
has the energy E controlled by a decreasing in time function:

E(t) ≤ 3E(0)− 4
ν

ρ0
ε

∫ t

0

∫

Rn

(∇ut(s, x))
2dx ds.

Now, let us consider the Kuznetsov equation (1). We multiply it by ut and integrate
on Rn to obtain

1

2

d

dt
Enonl(t) +

ν

ρ0
ε

∫

Rn

(∇ut)
2 dx = 2ε

∫

Rn

∇u ∇ut ut dx,

where Enonl(t) is given by Eq. (18) with α = 2
3
γ−1
c2

. As

2ε

∫

Rn

∇u ∇ut ut dx = ε
d

dt

∫

Rn

ut(∇u)2 dx− ε

∫

Rn

utt(∇u)2 dx,

we find

1

2

d

dt

(
∫

Rn

[(

1− 2

3

γ − 1

c2
εut

)

(ut)
2 + (c2 − 2εut)(∇u)2

]

dx

+ 2ε

∫ t

0

∫

Rn

utt|∇u|2 dx ds

)

+
ν

ρ0
ε

∫

Rn

(∇ut)
2 dx = 0. (19)

Thus, for α = 2
3
γ−1
c2

, the function

Fν(t) =

∫

Rn

[

(1− αεut) (ut)
2 + (c2 − 2εut)(∇u)2

]

dx+ 2ε

∫ t

0

∫

Rn

utt|∇u|2 dx ds

7



is constant if ν = 0 and decreases if ν > 0 . Let us notice that while 1
2
≤ 1− αεut ≤ 3

2
,

the coefficient c2 − 2εut is always positive (since c is the sound speed in the chosen
medium, c2 ≫ 1 ), hence the first integral in Fν(t) is positive, but we a priori don’t know
the sign of the second integral, i.e. the sign of utt . However, for ν = 0 , Fν=0(t) is
positive, as soon as 0 ≤ 1− αεu1 :

Fν=0(t) = Fν=0(0) =

∫

Rn

[

(1− αεu1) (u1)
2 + (c2 − 2εu1)(∇u0)

2
]

dx ≥ 0,

and, if we take the same initial data for the Cauchy problems with ν = 0 and ν > 0 , for
all t > 0 (for all time where Fν=0 exists) it holds Fν=0(t) = Fν=0(0) > Fν>0(t) .

For n ≥ 3 , we can control the term 2ε
∫

Rn ∇u∇utut dx using the Hölder inequality
and the Sobolev embeddings (which fails in R2 ):

∣

∣

∣

∣

∫

Rn

∇u ∇ut ut dx

∣

∣

∣

∣

≤‖∇u‖Ln‖∇ut‖L2‖ut‖
L

2n
n−2

≤ C‖∇u‖Ln‖∇ut‖2L2 .

Then, instead of Eq. (19) for Fν , we have the relation for Enonl :

1

2

d

dt
Enonl(t) + (

ν

ρ0
ε− 2εC‖∇u‖Ln)

∫

Rn

(∇ut)
2 dx ≤ 0.

So, if a solution of the Kuznetsov equation u is such that ‖∇u(t)‖Ln and ‖ut(t)‖L∞

stay small enough for all time, then Enonl decreases and, as previously for the Westervelt
equation, thanks to 1

2
E(t) ≤ Enonl(t) ≤ 3

2
E(t) , the energy E has for upper bound a

decreasing function.
This fact leads us to look for global well-posedness results for the Cauchy problem for

the Kuznetsov equation in the viscous case.

3 Well-posedness for the non-viscous case

3.1 Proof of Point 3 of Theorem 1

Let us give an estimation of the maximum existence time for a solution of problem (1)–(2)
with ν = 0 . For this we are inspiring of the work of John [10] with the use of a priori
estimate. However we don’t directly apply the general results of John, but we improve
them for our specific problem as we can take less regular initial conditions in order to
have suitable a priori estimates.

Proposition 1 For a fixed m ∈ N with m ≥ m0 =
[

n
2
+ 2
]

, let u be a local solution
of problem (1)–(2) with ν = 0 on [0, T ] satisfying (4) and (5) for s = m .
For t ∈ [0, T ] we have for Em[u](t) , defined in Eq. (6),

Em[u](t) ≤ B Em[u](0) + Cmmax(α, β)ε

∫ t

0

Em[u](s)
3
2ds, (20)

with constants B = (3+2c2)
min(1/2,c2)

> 0 , depending only on c , and Cm > 0 , depending only

on m , on the dimension n and on c (only if min(1/2, c2) = c2 ).
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Proof : Following [10], let us consider

Luv = vtt − c2∆v − αεutvtt − βε∇u ∇vt, (21)

where u is a local solution on [0, T ] of the problem (1)–(2) with ν = 0 , satisfying (4)
and (5) for s = m . We multiply Eq. (21) by vt and integrate over Rn

∫

Rn

Luv vt =
1

2

d

dt

(
∫

Rn

v2t + c2(∇v)2dx

)

− αε

∫

Rn

utvttvtdx− βε

∫

Rn

∇u∇vtvtdx

=
1

2

d

dt

(
∫

Rn

v2t + c2(∇v)2dx

)

− α

2
ε

[

d

dt

(
∫

Rn

ut v
2
t dx

)

−
∫

Rn

utt v
2
t dx

]

− β

2
ε

∫

Rn

∇u ∇(vt)
2dx

=
1

2

d

dt

(
∫

Rn

v2t + c2(∇v)2dx

)

− α

2
ε

[

d

dt

(
∫

Rn

ut v
2
t dx

)

−
∫

Rn

utt v
2
t dx

]

+
β

2
ε

∫

Rn

∆u (vt)
2dx.

Hence, denoting by

I[v] = v2t + c2(∇v)2 − αεut v
2
t , (22)

J [v] = 2Luv vt − [αεutt + βε∆u] (vt)
2, (23)

we have the following equation

d

dt

∫

Rn

I[v](t, x)dx =

∫

Rn

J [v](t, x)dx. (24)

Let A = (A0, A1, ..., An) be a multi-index, and DAv = ∂A0
t ∂A1

x1
...∂An

xn
. To prove esti-

mate (20), we study |
∫

Rn J [v](t, x)dx| for v = DAu with |A| = A0 +A1 + ...+An ≤ m .
For m ≥

[

n
2
+ 2
]

and a multi-index A with |A| ≤ m we estimate, thanks to the
definition of Em[u] by Eq. (6),

∫

Rn

|utt(D
Aut)

2|dx ≤‖utt‖L∞‖DAut‖2L2 ≤ C‖utt‖H[n2 +1]Em[u] ≤ C Em[u]
3
2 , (25)

with a constant C > 0 , depending only of n by the Sobolev embedding [1] Theo-
rem 7.57 p. 228

Hs(Rn) →֒ L∞(Rn) for s >
n

2
. (26)

In the same way, using the Sobolev embedding (26), we obtain
∫

Rn

|∆u(DAut)
2|dx ≤‖∆u‖L∞‖DAut‖2L2 ≤ C‖∆u‖

H[n2 +1]Em[u]

≤C‖∇u‖HmEm[u] ≤ C Em[u]
3
2 . (27)
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To calculate LuD
Au we apply the chain rule of differentiation to DALuu = 0 .

As Luu = 0 we suppose |A| ≥ 1 . By developing DA(ut utt) and DA(∇u∇ut) =
∑n

i=1D
A(∂xi

u∂xi
ut) , we have

LuD
Au = ε

∑

j

(

CjαD
Aj1

ut D
Aj2

ut +

n
∑

i=1

EijβD
Aj1

∂xi
u DAj2

∂xi
u

)

, (28)

where
∑

j is a finite sum, with Cj and Eij depending only of |A| ≤ m , and Aj1 and
Aj2 are multi-index such that







|Aj1|+ |Aj2| = |A|+ 1,
|Aj1| ≥ 1, |Aj2| ≥ 1,

Aj1
0 + Aj2

0 = A0 + 1, Aj1
i + Aj2

i = Ai for 1 ≤ i ≤ n.
(29)

Let us show for m ≥
[

n
2
+ 2
]

the estimate

∣

∣

∣

∣

∫

Rn

LuD
Au DAut dx

∣

∣

∣

∣

≤ Cεmax(α, β)Em[u]
3
2 . (30)

Without loss of generality, we consider two multi-indexes A1 and A2 satisfying (29) and
divide the proof of (30) in two parts: firstly we estimate

∫

Rn |DA1
ut D

A2
ut D

Aut|dx , and
secondary

∫

Rn |DA1
∂xi

u DA2
∂xi

u DAut|dx . As the proof of each part is very similar, we
give the details only for the first one.

To estimate
∫

Rn |DA1
ut D

A2
ut D

Aut|dx , we consider three cases:

Case 1: 1 < |A1| < m and 1 < |A2| < m ,

Case 2: |A1| ≤ m and |A2| = 1 ,

Case 3: |A2| ≤ m and |A1| = 1 .

Case 1: For 2 ≤ |A1| ≤ m− 1 and 2 ≤ |A2| ≤ m− 1 , it holds
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤‖DA1

ut‖Lp‖DA2

ut‖Lq‖DAut‖L2,

with 1
p
+ 1

q
= 1

2
by the general Hölder inequality [4]. Hence, using the Sobolev embed-

ding [1]

Hm1(Rn) →֒ Lp(Rn) with
1

p
=

1

2
− m1

n
and 0 < m1 <

n

2
, (31)

we find
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ C‖DA1

ut‖Hm1‖DA2

ut‖H n
2 −m1‖DAut‖L2.

In what follows by C > 0 is denoted an arbitrary constant depending only on m and on
n .
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We have

‖DA1

ut‖Hm1 ≤ ‖∂A1
0

t ut‖Hm1+|A1|−A1
0
, ‖DA2

ut‖H n
2 −m1 ≤ ‖∂A2

0
t ut‖H n

2 −m1+|A2|−A2
0
.

We need to find m for which there exists m1 with 0 < m1 <
n
2

, such that
{

m1 + |A1| −A1
0 ≤ m+ 1− (A1

0 + 1),
n
2
−m1 + |A2| −A2

0 ≤ m+ 1− (A2
0 + 1),

(32)

or equivalently, by (29) |A2| = |A|+ 1− |A1| ,
{

m1 + |A1| ≤ m,
n
2
−m1 + |A|+ 1− |A1| ≤ m.

As m− |A| ≥ 0 it is sufficient to find m1 , such that

n

2
+ 1 ≤ m1 + |A1| ≤ m,

with 2 ≤ |A1| ≤ m− 1 and 0 < m1 <
n
2

. In particular, the last three inequalities imply
that m ≥ [2 + n

2
] . For the existence of m1 , we see that, for instance,

if |A1| = 2 : we can take m1 =
n
2
− 1

4
,

if 2 < |A1| < n
2
+ 1 : we can take m1 =

n
2
+ 1− |A1| ,

if n
2
+ 1 ≤ |A1| ≤ m− 1 : we can take m1 =

1
4
.

Moreover,
‖DAut‖L2 ≤ ‖∂A0

t ut‖H|A|−A0 ≤ ‖∂A0
t ut‖Hm−A0 .

Then, thanks to relations (32), we conclude
∫

Rn

|DA1

ut D
A2

ut D
Aut| ≤C‖∂A1

0
t ut‖Hm−A1

0
‖∂A2

0
t ut‖Hm−A2

0
‖∂A0

t ut‖Hm−A0

≤C Em[u]
3
2 .

Case 2: Now, if |A1| ≤ m and |A2| = 1 , it holds
∫

Rn

|DA1

ut D
A2

ut D
Aut| ≤ ‖DA1

ut‖L2‖DA2

ut‖L∞‖DAut‖L2 .

Since |A1| ≤ m and |A| ≤ m , we have

‖DA1

ut‖L2 ≤ ‖∂A1
0

t ut‖Hm−A1
0
≤
√

Em[u], ‖DAut‖L2 ≤ ‖∂A0
t ut‖Hm−A0 ≤

√

Em[u].

In addition, since m ≥
[

n
2
+ 2
]

and A2
0 ≤ 1 , by the Sobolev embeddings (26) it holds

‖DA2

ut‖L∞ ≤C‖DA2

ut‖H[n2 +1] ≤ C‖∂A2
0

t ut‖H[n2 +2]−A2
0
≤ C

√

Em[u].

Case 3: The case 3, i.e. when |A2| ≤ m and |A1| = 1 , is the same as Case 2.
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Consequently, for m ≥
[

n
2
+ 2
]

, and A1 and A2 , satisfying properties (29), it holds
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ C Em[u]

3
2 . (33)

By the same argument, for m ≥
[

n
2
+ 2
]

and A1 and A2 , satisfying properties (29),
we control the terms of the form

∫

Rn |DA1
∂xi

u DA2
∂xi

u DAut|dx :
∫

Rn

|DA1

∂xi
u DA2

∂xi
u DAut| ≤ CEm[u]

3
2 . (34)

Thus, considering (28), (33) and (34) for m ≥
[

n
2
+ 2
]

and for a multi-index A with
|A| ≤ m , we have estimate (30).

Thanks to estimations (25), (27) and (30), we are able to control each term of J [DAu]
from Eq. (23):

∣

∣

∣

∣

∫

Rn

J [DAu](t, x)dx

∣

∣

∣

∣

≤ Cmax(α, β)εEm[u](t)
3
2 . (35)

By the hypothesis that u is a local solution of the non-viscous Kuznetsov equation, u
satisfies Eq. (5), i.e. ‖ut(t)‖L∞ ≤ 1

2αε
on [0, T ] , which implies the equivalence of energies

∫

Rn

1

2
(DAut)

2 + c2(∇DAu)2dx ≤
∫

Rn

I[DAu](t, x)dx ≤
∫

Rn

3

2
(DAut)

2 + c2(∇DAu)2dx.

We integrate relation (24) over [0, t] with t ≤ T to obtain

‖DAut(t)‖2L2 + ‖∇DAu(t)‖2L2 ≤
(3
2
+ c2)

min(1/2, c2)
(‖DAut(0)‖2L2 + ‖∇DAu(0)‖2L2)

+
1

min(1/2, c2)

∫ t

0

∫

Rn

J(s, x)dx ds.

Then, using estimate (35), we find

‖DAut(t)‖2L2 + ‖∇DAu(t)‖2L2 ≤
(3
2
+ c2)

min(1/2, c2)
(‖DAut(0)‖2L2 + ‖∇DAu(0)‖2L2)

+
1

min(1/2, c2)
Cmax(α, β)ε

∫ t

0

Em[u](s)
3
2ds.

As we have this for all multi-index A with |A| ≤ m , by summing, we obtain

Em[u](t) ≤
(3 + 2c2)

min(1/2, c2)
Em[u](0) +

1

min(1/2, c2)
Cmax(α, β)ε

∫ t

0

Em[u](s)
3
2ds

with a constant C > 0 , depending only of n and m . This gives estimate (20).
�

Inequality (20), proved in Proposition 1, gives us an a priori estimate in order to have,
with the help of the Gronwall Lemma, an estimation of the maximum existence time T ∗ .
However, when m increases, Cm increases, and the maximum existence time, given by
estimate (20), decreases whereas the initial conditions become more regular. Therefore
we prove the second a priori estimate (see Eq. (36)), playing a key role in order to avoid
this problem:
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Proposition 2 Let conditions of Proposition 1 be satisfied. Then for t ∈ [0, T ] and
m ≥

[

n
2
+ 3
]

we have

Em[u](t) ≤ B Em[u](0) +Dmmax(α, β)ε

∫ t

0

Em−1[u](s)
1
2Em[u](s)ds, (36)

with a constant Dm > 0 , depending only on m , on n and on c and the same constant
B as in Proposition 1.

Proof :

Using the proof of Proposition 1 for A a multi-index with |A| ≤ m and J [DAu] from
Eq. (23), we just have to show that for m ≥

[

n
2
+ 3
]

∣

∣

∣

∣

∫

Rn

J [DAu](s, x)dx

∣

∣

∣

∣

≤ Cε
√

Em−1[u]Em[u].

Indeed, for m ≥
[

n
2
+ 3
]

and a multi-indexes A with |A| ≤ m we have
∫

Rn

|utt(D
Aut)

2|dx ≤‖utt‖L∞‖DAut‖2L2 ≤ C‖utt‖Hm−2Em[u] ≤ C
√

Em−1[u]Em[u],

and
∫

Rn

|∆u(DAut)
2|dx ≤‖∆u‖L∞‖DAut‖2L2 ≤ C‖∇u‖Hm−1Em[u] ≤ C

√

Em−1[u]Em[u].

Now we consider two multi-indexes A1 and A2 with properties (29). As previously, we
have to distinguish three cases:

Case 1: 1 < |A1| < m and 1 < |A2| < m ,

Case 2: |A1| ≤ m and |A2| = 1 ,

Case 3: |A2| ≤ m and |A1| = 1 .

First, if 1 < |A1| < m and 1 < |A2| < m , in Case 1 we have
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤C‖∂A1

0
t ut‖Hm1+|A1|−A1

0
‖∂A2

0
t ut‖H n

2 −m1+|A2|−A2
0
‖DAut‖L2

≤‖∂A1
0

t ut‖Hm1+|A1|−A1
0
‖∂A2

0
t ut‖H n

2 −m1+|A2|−A2
0

√

Em[u].

By symmetry of their roles we can take |A1| ≤
[

m+1
2

]

≤ |A2| . We look for m for which
there exists m1 , such that

{

m1 + |A1| −A1
0 ≤ m− (A1

0 + 1),
n
2
−m1 + |A2| −A2

0 ≤ m+ 1− (A2
0 + 1),

in order to have

‖∂A1
0

t ut‖Hm1+|A1|−A1
0
≤
√

Em−1[u] and ‖∂A2
0

t ut‖H n
2 −m1+|A2|−A2

0
≤
√

Em[u].
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As |A2| = |A|+ 1− |A1| and m ≥ |A| , it is sufficient to find m1 , such that

n

2
+ 1 ≤ m1 + |A1| ≤ m− 1,

with 2 ≤ |A1| ≤ m − 1 , |A1| ≤
[

m+1
2

]

and 0 < m1 < n
2

. This directly implies that
m ≥ [n

2
+3] . In addition, this also implies, except if m ≤ 3 , that |A1| ≤ m−2 . Thus the

existence of a required m1 is justified in Case 1 of the proof of estimate (20). If m ≤ 3 ,
as m ≥

[

n
2
+ 3
]

, we have only the case m = 3 , n = 1 and |A1| = |A2| = 2 , for which it
holds
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤‖DA1

ut‖L2‖DA2

ut‖L∞‖DAut‖L2

≤C‖DA1

ut‖L2‖DA2

ut‖H1‖DAut‖L2 ≤ C
√

Em−1[u]Em[u],

by the Sobolev embedding (26).
For |A1| ≤ m and |A2| = 1 , in Case 2, we find

∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ ‖DA1

ut‖L2‖DA2

ut‖L∞‖DAut‖L2 ,

where the two L2 -norms are controlled by
√

Em[u] :

‖DA1

ut‖L2 ≤ ‖∂A1
0

t ut‖Hm−A1
0
≤
√

Em[u], ‖DAut‖L2 ≤ ‖∂A0
t ut‖Hm−A0 ≤

√

Em[u].

As A2
0 ≤ 1 , for the L∞ -norm, for m ≥

[

n
2
+ 3
]

, we have

‖DA2

ut‖L∞ ≤C‖DA2

ut‖H[n2 +1] ≤ C‖∂A2
0

t ut‖H[n2 +2]−A2
0
≤ C

√

Em−1[u].

Case 3, i.e. for |A2| ≤ m and |A1| = 1 , can be treated in the same way.
So, if m ≥

[

n
2
+ 3
]

, and A1 and A2 satisfy properties (29), we obtain
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ C

√

Em−1[u]Em[u].

Using similar arguments, we can show with the same restrictions on m , A1 and A2 that
∫

Rn

|DA1

∂xi
u DA2

∂xi
u DAut|dx ≤ C

√

Em−1[u]Em[u].

Consequently,
∫

Rn

|LuD
Au DAut|dx ≤ Cmax(α, β)

√

Em−1[u]Em[u],

from where follows estimate (36). �

We are now going to give a first estimation of the lifespan T ∗ of a local solution of
problem (1)–(2) with ν = 0 .
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Theorem 3 Let m ≥ m0 =
[

n
2
+ 2
]

and let u be the unique solution on [0, T ∗[ of the
problem (1)–(2) with ν = 0 for

u0 ∈ Hm+1(Rn), u1 ∈ Hm(Rn) and ‖u1‖L∞ <
1

2αε
.

If
√

Em0 [u](0) ≤ 1
4
√
BC∞αε

, then

T ∗ > T0 =
1

Cm0 max(α, β)ε
√
BEm0 [u](0)

(37)

and
u ∈ Cr([0, T0];H

m+1−r) for 0 ≤ r ≤ m+ 1,

with
∀t ∈ [0, T0], Em[u](t) ≤ C < +∞.

Here B and Cm0 are the constants from estimate (20) and C∞ is the embedding constant
from the embedding of the Sobolev space H [n

2
+1](Rn) in L∞(Rn) .

Proof : Thanks to Point 1 of Theorem 1, for u0 ∈ Hm+1(Rn) , u1 ∈ Hm(Rn) and
‖u1‖L∞ < 1

2αε
there exists a unique solution u on an sufficiently small interval [0, T ] of

problem (1)–(2) with ν = 0 , satisfying (4) and (5) for s = m . Moreover it implies that
Em[u](0) is finite. Hence, we can add the hypothesis

√

Em0 [u](0) ≤
1

4
√
BC∞αε

without adding further conditions of regularity on u0 and u1 as it can be reduced on a
smallness condition on ‖u0‖Hm+1 + ‖u1‖Hm .

Let us take T0 , as defined in Eq. (37), and show by induction on j ∈ N with m0 ≤
j ≤ m that

∀j ∈ N, with m0 ≤ j ≤ m sup
t∈[0,T0]

Ej [u](t) < ∞.

For j = m0 , u0 ∈ Hm+1(Rn) ⊆ Hm0+1(Rn) and u1 ∈ Hm(Rn) ⊆ Hm0(Rn) , and
consequently

Em0 [u](0) ≤ Em[u](0) < ∞.

For t ≥ 0 , while ‖ut(t)‖L∞ ≤ 1
2αε

, it holds estimate (20) with m = m0 . According
to the Gronwall Lemma, applied to (20) with m = m0 , we have

Em0 [u](t) ≤ z(t),

where z(t) is the solution of the Cauchy problem for an ordinary differential equation

z(t) = z0 + Cm0 max(α, β)ε

∫ t

0

(z(s))3/2ds with z0 = B Em0 [u](0).

This problem can be solved explicitly:

z(t) =
z0

(1− 1
2
z
1/2
0 Cm0 max(α, β)εt)2

.
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We can see that, as long as 0 ≤ t ≤ T0, the function z(t) has the finite upper bound
z(t) ≤ 4z0. It implies the upper boundness of Em0 [u] :

Em0 [u](t) ≤ 4B Em0 [u](0). (38)

Moreover, thanks to our notations,

‖ut(t)‖L∞

C∞
≤ ‖ut(t)‖H[n2 +1] ≤

√

Em0 [u](t),

from where, using inequality (38), we find

‖ut(t)‖L∞ ≤ 2C∞
√

B Em0 [u](0) ≤
1

2αε
,

since
√

Em0 [u](0) ≤ 1
4
√
BC∞αε

. Thus Eq. (5) holds on all interval [0, T0] and supt∈[0,T0] Em0 [u](t)
is finite.

Let j ∈ N , m0 ≤ j ≤ m− 1 be such that supt∈[0,T0]Ej [u](t) < ∞ .
Since Eq. (5) holds on all interval [0, T0] , we can use the a priori estimate (36) and

write that for all t ∈ [0, T0]

Ej+1[u](t) ≤ B Ej+1[u](0) +Dj+1max(α, β)ε

∫ t

0

√

Ej [u](s)Ej+1[u](s)ds.

By the induction hypothesis supt∈[0,T0] Ej[u](t) is bounded by a constant, denoted here
by E2 , and hence on [0, T0] it holds

Ej+1[u](t) ≤ BEj+1[u](0) +Dj+1max(α, β) Eε

∫ t

0

Ej+1[u](s)ds.

Applying the Gronwall Lemma, we obtain for t ∈ [0, T0]

Ej+1[u](t) ≤ BEj+1[u](0)e
Dj+1 max(α,β) Eεt ≤ BEj+1[u](0)e

Dj+1 max(α,β) EεT0.

This means, as Ej+1[u](0) ≤ Em[u](0) < +∞ , that supt∈[0,T0] Ej+1[u](t) < ∞ and fin-
ishes the proof. �

Theorem 3 estimates the lifespan T ∗ as at least of the order 1
ε
, or more precisely,

implies that
lim inf
ε→0

εT ∗ > 0.

This result is independent of the dimension n . However, much better estimations for the
lifespan can be obtained, if we use an inequality that takes into account the time decay
of the solutions for n > 1 , what we do in the next Section.
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3.2 Proof of Point 5 of Theorem 1. Optimal estimations of the

existence time

In [10] John uses the group of linear transformations preserving the equation utt−∆u = 0 .
The generators of this group (the derivatives with respect to group parameters taken at
the identity), here called generalized derivatives, include in addition to the derivatives
∂t, ∂x1 , . . . , ∂xn certain first-order differential operators Lα with α = 0, . . . , n and Ωik

with 1 ≤ i < k ≤ n :

Definition 1 (Generalized derivatives [10]) The following operators

L0 = t∂t +
∑

i

xi∂xi
, Li = xi∂t + t∂xi

for i = 1, ..., n,

Ωik = xi∂xk
− xk∂xi

for 1 ≤ i < k ≤ n, and ∂t, ∂xi
for i = 1, ..., n

are called the generalized derivatives. The operators

L0, . . . , Ln,Ω12,Ω13, . . . ,Ωn−1n, ∂t, ∂x1 , . . . , ∂xn ,

(taken in this order) are denoted respectively by Γ0, . . . ,Γµ with µ = 1
2
(n2+3n+2) . For

a multi-index A = (A0, . . . , Aµ) we write in the usual way

|A| = A0 + . . .+ Aµ, ΓA = (Γ0)
A0(Γ1)

A1 . . . (Γµ)
Aµ .

Therefore, in the framework of the general derivatives, we define for m ∈ N

E∞,m[u](t) = sup
x

∣

∣

∣

∣

∣

sup
|A|≤m

[

(ΓA∂tu(t, x))
2 + (ΓA∇u(x, t))2

]

∣

∣

∣

∣

∣

, (39)

E1,m[u](t) =
∑

|A|≤m

(‖ΓA∂tu‖2L2 + ‖ΓA∇u‖2L2)(t). (40)

Let us give a remarkable estimation proved in Ref. [15] by Klainerman:

Proposition 3 (Klainerman 1987) For n∗ = [n
2
+1] , m ∈ N , and t > 0 , as soon as

u is such that E1,m+n∗ [u](t) is finite, it holds
√

E∞,m[u](t) ≤ Cn(1 + t)
1−n
2

√

E1,m+n∗ [u](t). (41)

Thanks to Proposition 3, we improve the results of John [10] for the case of the Kuznetsov
equation and state:

Proposition 4 For n and m in N∗ , m ≥ n+2 , let u be a local solution on an interval
[0, T ] of the problem (1)–(2) with ν = 0 , satisfying (4) and (5) with s = m . Then for
all t ∈ [0, T ] , it holds

E1,m[u](t) ≤ B E1,m[u](0) + Cmmax(α, β)ε

∫ t

0

(1 + s)(1−n)/2 E1,m[u](s)
3
2ds, (42)

with a positive constant B > 0 , depending only on c , on α and on β , and with a positive
constant Cm > 0 , depending only on m , on n and on c .

17



Proof : The proof follows identically the proof of Proposition 1 up to Eq. (28) replacing
everywhere DA by ΓA . This time Eq. (28) becomes

LuΓ
Au = ε

µ
∑

j=0

(

αCjΓ
Aj1

ut Γ
Aj2

ut +
n
∑

i=1

βEijΓ
Aj1

∂xi
u ΓAj2

∂xi
u

)

, (43)

where µ is defined in Definition 1, Cj and Eij depend only on |A| ≤ m , and Aj1 and
Aj2 are multi-indexes, such that

|Aj1|+ |Aj2| ≤ m+ 1.

It follows that |Aj1| ≤ [m+1
2

] or |Aj2| ≤ [m+1
2

] . Therefore, if we set m′ = [m+1
2

] , we
obtain

|J [ΓAu](s, x)| ≤Cmmax(α, β)ε
√

sup
|B|≤m′

(

(ΓB∂tu(t, x))2 + (ΓB∇u(x, t))2)
)

·

· sup
|B|≤m

(

(ΓB∂tu(t, x))
2 + (ΓB∇u(x, t))2)

)

≤Cmmax(α, β)ε
√

E∞,m′ [u](s)
∑

|B|≤m

(

(ΓB∂tu(t, x))
2 + (ΓB∇u(x, s))2)

)

,

and thus
∣

∣

∣

∣

∫

Rn

J [ΓAu](s, x)dx

∣

∣

∣

∣

≤ Cmmax(α, β)ε
√

E∞,m′ [u](s)E1,m[u](s).

By hypothesis on u ,

‖ut(t)‖L∞ ≤ 1

2αε
on [0, T ],

and then, by integrating of Eq. (24) on [0, t] with t ∈ [0, T ] , we have

1

2
‖∂tΓAu(t)‖2L2 + c2‖∇ΓAu(t)‖2L2 ≤3

2
‖∂tΓAu(0)‖2L2 + c2‖∇ΓAu(0)‖2L2

+ Cmmax(α, β)ε

∫ t

0

√

E∞,m′ [u](s)E1,m[u](s)ds.

By summing for |A| ≤ m , we obtain

E1,m[u](t) ≤ B E1,m[u](0) + Cmmax(α, β)ε

∫ t

0

√

E∞,m′[u](s)E1,m[u](s)ds.

Now we use the Klainerman inequality (41), noticing that, if we take m ≥ n+2 , we have

m′ + n∗ = [
m+ 1

2
] + [

n

2
+ 1] ≤ m.

This finishes the proof. �

We use the a priori estimate (42) to improve our estimation of the lifespan T ∗ as a
function of n .
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Theorem 4 Let m ≥ n+2 . For u0 ∈ Hm+1(Rn) and u1 ∈ Hm(Rn) with ‖u1‖L∞ ≤ 1
2αε

we consider the local solution u of problem (1)–(2) with ν = 0 on an interval [0, T ] ,
satisfying (4) and (5) for s = m as in Point 1 of Theorem 1. If

√

E1,m[u](0) ≤ 1
4
√
BC∞αε

,
then

E1,m[u](t) ≤ 4B E1,m[u](0),

as long as

t ≤
(

2Cmmax(α, β)ε
√

B E1,m[u](0)
)−2

when n = 2,

t ≤ 2exp
( 1

Cmmax(α, β)ε
√

B E1,m[u](0)

)

when n = 3,

1 ≤
(

2Cmmax(α, β)ε
√

B E1,m[u](0)
)−1

when n ≥ 4.

Consequently,
lim inf
ε→0

ε2T ∗ > 0 when n = 2,

lim inf
ε→0

εlog(T ∗) > 0 when n = 3,

and, for a small enough ε , T ∗ = +∞ when n ≥ 4 , i.e. the solution u is global.

Proof : This is a direct consequence of the Gronwall lemma, used with the a priori
estimate (42), as it is done by John in [10]. �

Remark 1 The estimations, given for T ∗ in the case n = 1, 2, 3 , are optimal as the
blow-up times, found by Alinhac in [2], have the same order.

3.3 Proof of Point 4 of Theorem 1. Stability and uniqueness

result

By definition of u and v we have

(u− v)tt − c2∆(u− v) = αε(ututt − vtvtt) + βε(∇u∇ut −∇v∇vt). (44)

We multiply this equation by (u− v)t and integrate on Rn . By integration by parts we
obtain

1

2

d

dt

(

‖(u− v)t‖2L2 +c2‖∇(u− v)‖2L2

)

= αε

∫

Rn

(ututt − vtvtt)(u− v)t dx

+ βε

∫

Rn

(∇u∇ut −∇v∇vt)(u− v)t dx. (45)
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For the first right hand side term in Eq. (45) we find
∫

Rn

(ututt − vtvtt)(u− v)t dx =

∫

Rn

utt(u− v)2t dx+

∫

Rn

vt(u− v)tt(u− v)t dx

=

∫

Rn

utt(u− v)2t dx+

∫

Rn

vt
1

2

d

dt

[

(u− v)2t
]

dx

=

∫

Rn

utt(u− v)2t dx+
1

2

d

dt

[
∫

Rn

vt(u− v)2t dx

]

− 1

2

∫

Rn

vtt(u− v)2t dx

=

∫

Rn

utt(u− v)2t dx+
1

2

d

dt

[
∫

Rn

vt(u− v)2t dx

]

+
1

2

∫

Rn

(utt − vtt)(u− v)2t dx− 1

2

∫

Rn

utt(u− v)2t dx

=
1

2

∫

Rn

utt(u− v)2t dx+
1

2

d

dt

[
∫

Rn

vt(u− v)2t dx

]

+
1

6

d

dt

[
∫

Rn

(u− v)3t dx

]

=
1

2

∫

Rn

utt(u− v)2t dx+
d

dt

[
∫

Rn

(
1

6
ut +

1

3
vt)(u− v)2t dx

]

.

On one hand,
∣

∣

∣

∣

∫

Rn

utt(u− v)2t dx

∣

∣

∣

∣

≤ ‖utt‖L∞‖(u− v)t‖2L2 ,

and on the other hand, we can put the term αε d
dt
[
∫

Rn(
1
6
ut +

1
3
vt)(u− v)2t dx] on the left

hand side of Eq. (44) and combine it with 1
2

d
dt
(‖(u− v)t‖2L2

) , so that we obtain the term

1

2

d

dt

∫

Rn

A(u− v)2t dx, with A = 1− αε

(

1

3
ut +

2

3
vt

)

.

We notice that with condition (5) on ut and vt (which keeps our model hyperbolic)
we have 1

2
≤ A(t) ≤ 3

2
for t < T ∗ . Therefore, for the second term at the right hand side

we find
∫

Rn

(∇u∇ut −∇v∇vt)(u− v)t dx =

∫

Rn

∇vt(∇u−∇v)(u− v)t dx

+

∫

Rn

∇u(∇u−∇v)t(u− v)t dx

=

∫

Rn

∇vt(∇u−∇v)(u− v)t dx− 1

2

∫

Rn

∆u(u− v)2t dx.

We estimate the obtained two terms:
∣

∣

∣

∣

∫

Rn

∇vt(∇u−∇v)(u− v)t dx

∣

∣

∣

∣

≤ C‖∇vt‖L∞(‖∇(u− v)‖2L2 + ‖(u− v)t‖2L2,

|
∫

Rn

∆u(u− v)2t dx| ≤ ‖∆u‖L∞‖(u− v)t‖2L2 .
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Thus, we find the following estimate

1

2

d

dt
(

∫

Rn

A(u− v)2t + c2‖∇(u− v)‖2L2 dx) ≤ Cε sup(‖utt‖L∞ , ‖∆u‖L∞ , ‖∇vt‖L∞)

(‖(u− v)t‖2L2 + ‖∇(u− v)‖2L2).

Applying the Gronwall Lemma, as 1
2
≤ A(t) ≤ 3

2
for t < T ∗ , from the last estimate we

have

(‖(u− v)t‖2L2 + ‖∇(u− v)‖2L2)(t) ≤ C1 exp(C2ε

∫ t

0

sup(‖utt‖L∞ , ‖∆u‖L∞, ‖∇vt‖L∞)ds)·

· (‖u1 − v1‖2L2 + ‖∇(u0 − v0)‖2L2).

With the hypothesis that ‖∇vt‖L∞ is bounded on [0, T ∗[ , we obtain the result of Point 4
in Theorem 1 for all t < T ∗ .

Remark 2 It is easy to verify that the same stability estimate also holds for ν > 0 : by
the adding of the term −ν∆(u−v)t to the equation, it gives a positive therm +ν

∫ t

0
|∇(u−

v)t|2dx in the right hand side of the estimate and can be simply omitted.

4 Well-posedness for the viscous case

4.1 Proof of Point 1 of Theorem 2

Let us show the global well-posedness, of the solution of the Cauchy problem (1)-(2). We
start with the study of the linear problem, associated to the Kuznetsov equation.

Theorem 5 Let s ≥ 0 and X be the space defined in Point 1 of Theorem 2. Then the
system

{

utt + c2∆u+ εν∆ut = f,

u(0) = u0, ut(0) = u1

(46)

has a unique solution u ∈ X , if and only if f ∈ L2(R+
t ;H

s), u0 ∈ Hs+2 and u1 ∈ Hs+1 .
Moreover it holds the following a priori estimate

‖u‖X ≤ C
(

‖f‖L2(R+
t ;Hs) + ‖u0‖Hs+2 + ‖u1‖Hs+1

)

(47)

with ‖u‖X := ‖u‖H2(R+
t ;Hs) + ‖u‖L2(R+

t ;Hs+2) + ‖ut‖L2(R+
t ;Hs+2) .

Proof : First we take f ∈ L2(R+
t ;H

s), u0 ∈ Hs+2 and u1 ∈ Hs+1 . We use the ideas
of [6] (see Eq. (4.26)). For the sake of clarity, let us take s = 0 . We take the inner
product in L2(Rn) of the equation with −∆ut and integrate by parts:

1

2

d

dt

(

‖∇ut‖2L2(Rn) + c2‖∆u‖2L2(Rn)

)

+ εν‖∆ut‖2L2(Rn) = −
∫

Rn

f∆utdx.
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Using the Young inequality and integrating over [0, t] , we find

1

2

(

‖∇ut‖2L2(Rn) + c2‖∆u‖2L2(Rn)

)

+
εν

2

∫ t

0

‖∆us‖2L2(Rn)ds

≤ 1

2
‖∇u1‖2L2(Rn) +

1

2
‖∆u0‖2L2(Rn) +

1

2εν

∫ t

0

∫

Rn

|f |2dxds. (48)

Since f ∈ L2(R+
t × Rn) and (u0, u1) ∈ H2(Rn)×H1(Rn) , the last estimate implies that

∫ +∞

0

∫

Rn

|∆us|2dxds < +∞.

Since the domain of −∆ is H2 , we obtain that

u, ut ∈ L2(R+
t ;H

2), and utt ∈ L2(R+
t × Rn),

and hence, u ∈ X for s = 0 . For s > 0 , as the equation is linear, we perform the same
proof, using the fact that, the operator Λ = (1 −∆)

1
2 , defined by its Fourier transform

by the formula (̂Λu)(ζ) = (1 + |ζ |2) 1
2 û(ζ), relies the norm of Hs with the L2 -norm:

Λs = (1−∆)
s
2 , ‖u‖Hs = ‖Λsu‖L2 . (49)

The unicity of u follows from the linearity of the operator and the unicity of the solution
of system (46) in the case f = 0 (see [9]).
Conversely, if u ∈ X solution of system (46), this implies that

u ∈ C(R+
t ;H

s+2(Rn)) and ut ∈ H1(R+
t ;H

s(Rn)) ∩ L2(R+
t ;H

s+2(Rn)).

Thanks to Theorem III.4.10.2 in [3], it follows that ut ∈ C(R+
t ;H

s+1(Rn)) . Then we have
u(0) ∈ Hs+2 , ut(0) ∈ Hs+1 . Moreover, it reads directly from the definition of X , that
f ∈ L2(R+

t ;H
s) for u ∈ X .

The a priori estimate follows from the closed graph theorem. �

Let us notice that Theorem 5 states that problem (46) has L2 -maximal regularity (see [5]
Definition 2.1) on R+

t . To prove the main result of the global well-posedness of the
Cauchy problem for the Kuznetsov equation we use the following theorem from [20]:

Theorem 6 Let X be a Banach space, let Y be a separable topological vector space,
let L : X → Y be a linear continuous operator, let U be the open unit ball in X , let
PLU : LX → [0,∞[ be the Minkowski functional of the set LU , and let Φ : X → LX be
a mapping satisfying the condition

PLU

(

Φ(x)− Φ(x̄)
)

≤ Θ(r) ‖x− x̄‖ for ‖x− x0‖ 6 r, ‖x̄− x0‖ ≤ r

for some x0 ∈ X, where Θ : [0,∞[→ [0,∞[ is a monotone non-decreasing function. Set
b(r) = max

(

1−Θ(r), 0
)

for r ≥ 0 .
Suppose that

w =

∞
∫

0

b(r) dr ∈]0,∞], r∗ = sup{r ≥ 0| b(r) > 0},
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w(r) =

r
∫

0

b(t)dt (r ≥ 0) and f(x) = Lx+ Φ(x) for x ∈ X.

Then for any r ∈ [0, r∗[ and y ∈ f(x0) +w(r)LU , there exists an x ∈ x0+ rU such that
f(x) = y .

Remark 3 If either L is injective or KerL has a topological complement E in X
such that L(E ∩ U) = LU , then the assertion of Theorem 6 follows from the contraction
mapping principle [20]. In particular, if L is injective, then the solution is unique.

Now, we have all elements to prove Point 1 of Theorem 2:
Proof :

For u0 ∈ Hs+2(Rn) and u1 ∈ Hs+1(Rn) let us denote by u∗ ∈ X the unique solution
of the linear problem

{

u∗
tt − c2∆u∗ − νε∆u∗

t = 0,

u∗(0) = u0 ∈ Hs+2(Rn), u∗
t (0) = u1 ∈ Hs+1(Rn).

(50)

In addition, according to Theorem 5, we take

X := H2(R+
t ;H

s(Rn)) ∩H1(R+
t ;H

s+2(Rn)),

this time for s > n
2

(we need it to control the non-linear terms), and introduce the Banach
spaces

X0 := {u ∈ X| u(0) = ut(0) = 0} (51)

and Y = L2(R+
t ;H

s(Rn)) . Then by Theorem 5, the linear operator

L : X0 → Y, u ∈ X0 7→ L(u) := utt − c2∆u− νε∆ut ∈ Y,

is a bi-continuous isomorphism.
Let us now notice that if v is the unique solution of the non-linear Cauchy problem
{

vtt − c2∆v − νε∆vt − αε(v + u∗)t(v + u∗)tt − βε∇(v + u∗).∇(v + u∗)t = 0,

v(0) = 0, vt(0) = 0,
(52)

then u = v + u∗ is the unique solution of the Cauchy problem for the Kuznetsov equa-
tion (1)–(2). Let us prove the existence of a such v , using Theorem 6.

We suppose that ‖u∗‖X ≤ r and define for v ∈ X0

Φ(v) := αε(v + u∗)t(v + u∗)tt + βε∇(v + u∗).∇(v + u∗)t.

For w and z in X0 such that ‖w‖X ≤ r and ‖z‖X ≤ r , we estimate

‖Φ(w)− Φ(z)‖Y = ‖αε(u∗
t (w − z)tt + (w − z)tu

∗
tt + wtwtt − ztztt)

+ βε(∇u∗∇(w − z)t +∇(w − z)∇u∗
t +∇w∇wt −∇z∇zt)‖Y

= ‖αε(u∗
t (w − z)tt + (w − z)tu

∗
tt + wt(w − z)tt + (w − z)tztt)

+ βε(∇u∗∇(w − z)t +∇(w − z)∇u∗
t +∇w∇(w − z)t +∇(w − z)∇zt)‖Y
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by applying the triangular inequality

‖Φ(w)− Φ(z)‖Y ≤ αε
(

‖u∗
t (w − z)tt‖Y + ‖(w − z)tu

∗
tt‖Y

+ ‖wt(w − z)tt‖Y + ‖(w − z)tztt‖Y
)

+ βε
(

‖∇u∗∇(w − z)t‖Y + ‖∇(w − z)∇u∗
t‖Y

+ ‖∇w∇(w − z)t‖Y + ‖∇(w − z)∇zt‖Y
)

.

Now, for all a and b in X with s ≥ s0 >
n
2

it holds

‖atbtt‖Y ≤‖at‖L∞(R+
t ×Rn)‖btt‖Y

≤CH1(R+
t ;Hs0)→L∞(R+

t ×Rn)‖at‖H1(0,+∞;Hs)‖b‖X
≤CH1(R+

t ;Hs0)→L∞(R+
t ×Rn)‖a‖X‖b‖X ,

where CH1(R+
t ;Hs0)→L∞(R+

t ×Rn) is the embedding constant of H1(R+
t ;H

s0) in L∞(R+
t ×

Rn) , independent on s , but depending only on the dimension n . In the same way, for
all a and b in X it holds

‖∇a∇bt‖Y ≤ CH1(R+
t ;Hs0 )→L∞(R+

t ×Rn)‖a‖X‖b‖X .

Taking a and b equal to u∗ , w , z or w− z , as ‖u∗‖X ≤ r , ‖w‖X ≤ r and ‖z‖X ≤ r ,
we obtain

‖Φ(w)− Φ(z)‖Y ≤ 4(α + β)CH1(R+
t ;Hs0 )→L∞(R+

t ×Rn)εr‖w − z‖X .

By the the fact that L is a bi-continuous isomorphism, there exists a minimal constant
Cε = O

(

1
εν

)

> 0 (coming from the inequality C0εν‖u‖2X ≤ ‖f‖Y ‖u‖X for u , a solution
of the linear problem (46) with homogeneous initial data [for a maximal constant C0 =
O(1) > 0 ]) such that

∀u ∈ X0 ‖u‖X ≤ Cε‖Lu‖Y .
Hence, for all f ∈ Y

PLUX0
(f) ≤ CεPUY

(f) = Cε‖f‖Y .
Then we find for w and z in X0 , such that ‖w‖X ≤ r , ‖z‖X ≤ r , and also with
‖u∗‖X ≤ r , that

PLUX0
(Φ(w)− Φ(z)) ≤ Θ(r)‖w − z‖X

with Θ(r) := 4Cε(α+β)CH1(R+
t ;Hs0)→L∞(R+

t ×Rn)εr . Thus we apply Theorem 6 with f(x) =

L(x) − Φ(x) and x0 = 0 . Therefore, knowing that Cε = C0

εν
, we have, that for all

r ∈ [0, r∗[ with

r∗ =
ν

4C0(α + β)CH1(R+
t ;Hs0 )→L∞(R+

t ×Rn)

= O(1), (53)

for all y ∈ Φ(0) + w(r)LUX0 ⊂ Y with

w(r) = r − 2
C0

ν
CH1(R+

t ;Hs0 )→L∞(R+
t ×Rn)(α + β)r2,
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there exists a unique v ∈ 0 + rUX0 such that L(v) − Φ(v) = y . But, if we want that
v be the solution of the non-linear Cauchy problem (52), then we need to impose y = 0
and thus, to ensure that 0 ∈ Φ(0)+w(r)LUX0 . Since − 1

w(r)
Φ(0) is an element of Y and

LX0 = Y , there exists a unique z ∈ X0 such that

Lz = − 1

w(r)
Φ(0). (54)

Let us show that ‖z‖X ≤ 1 , what will implies that 0 ∈ Φ(0) +w(r)LUX0 . Noticing that

‖Φ(0)‖Y ≤ αε‖vtvtt‖Y + βε‖∇v∇vt‖Y
≤ (α+ β)εCH1(R+

t ;Hs0 )→L∞(R+
t ×Rn)‖v‖2X

≤ (α+ β)εCH1(R+
t ;Hs0 )→L∞(R+

t ×Rn)r
2

and using (54), we find

‖z‖X ≤ Cε‖Lz‖Y = Cε
‖Φ(0)‖Y
w(r)

≤
CεCH1(R+

t ;Hs0)→L∞(R+
t ×Rn)(α + β)εr

(1− 2CεCH1(R+
t ;Hs0 )→L∞(R+

t ×Rn)(α + β)εr)
<

1

2
,

as soon as r < r∗ .
Consequently, z ∈ UX0 and Φ(0) + w(r)Lz = 0 .
Then we conclude that for all r ∈ [0, r∗[ , if ‖u∗‖X ≤ r , there exists a unique v ∈ rUX0

such that L(v) − Φ(v) = 0 , i.e. the solution of the non-linear Cauchy problem (52).
Thanks to the maximal regularity and a priori estimate following from inequality (48)
with f = 0 , there exists a constant C1 = O(ε0) > 0 , such that

‖u∗‖X ≤ C1√
νε

(‖u0‖Hs+2 + ‖u1‖Hs+1).

Thus, for all r ∈ [0, r∗[ and ‖u0‖Hs+2+‖u1‖Hs+1 ≤
√
νε

C1
r , the function u = u∗+v ∈ X

is the unique solution of the Cauchy problem for the Kuznetsov equation and ‖u‖X ≤ 2r .
�

4.2 Proof of Point 2 of Theorem 2: case n ≥ 3

Knowing the existence of a solution u of the Kuznetsov equation in

X = H2(R+
t ;H

s(Rn)) ∩H1(R+
t ;H

s+2(Rn)),

we notice that this directly implies that

u ∈ C(R+
t ;H

s+2(Rn)) and ut ∈ H1(R+
t ;H

s(Rn)) ∩ L2(R+
t ;H

s+2(Rn)).

By Theorem III.4.10.2 in [3], it implies that ut ∈ C(R+
t ;H

s+1(Rn)) , which gives that

u ∈ C1(R+
t ;H

s+1(Rn)) ∩ C(R+
t ;H

s+2(Rn))
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with, this time with the help of the Kuznetsov equation, utt ∈ C(R+
t ;H

s−1(Rn)) . Conse-
quently, in the viscous case the regularity of the time derivatives of the order greater than
two of the solutions differs from the regularity, obtained in Section 3 for the non-viscous
case. Thus we have to consider estimates with different energies: the energy Em

2
[u](t) ,

defined in Eq. (10), and the energy

Sm
2
[u](t) =

m
2
+1
∑

i=1

‖∇∂i
tu(t)‖2Hm−2(i−1) , (55)

defined, as Em
2
[u](t) , for m ∈ N and m even, which respect to the obtained regularity

of u and its derivatives.

Lemma 1 Let n ∈ N∗ , n ≥ 3 , m ∈ N , and u be the solution of problem (1)-(2). Then
for m ≥

[

n
2
+ 3
]

, m even, and all multi-index A = (A0, A1, ..., An) with |A| − A0 ≤
m− 2A0 it holds

d

dt

(

∫

Rn

((1− αεut)(D
Aut)

2 + c2(∇DAu)2))(s, x) dx
)

+ 2νε

∫

Rn

(∇DAut)
2(s, x) dx

≤ Cmmax(α, β)ε
√

Em
2
[u](s)Sm

2
[u](s)

(56)

with a constant Cm > 0 , depending only on m and on the dimension n .

Proof : Following notations of Proposition 1, we redefine

Luv := vtt − c2∆v − νε∆vt − αεut vtt − βε∇u ∇vt,

where u is the solution of problem (1). For this new Luv with the additional term
νε∆vt , we have a modified version of relation (24)

d

dt

∫

Rn

I[v](t, x)dx+ 2νε

∫

Rn

(∇vt)
2 =

∫

Rn

J [v](t, x)dx, (57)

where I[v] and J [v] are defined in Eqs. (22)–(23). We still take v = DAu with A =
(A0, A1, ..., An) , but this time |A| − A0 ≤ m − 2A0 and m is even. Then we just need
to show

∣

∣

∣

∣

∫

Rn

J [DAu](t, x)dx

∣

∣

∣

∣

≤ εCmmax(α, β)
√

Em
2
[u](t)Sm

2
[u](t). (58)

For n ≥ 3 , m ≥
[

n
2
+ 3
]

and m even, we have, thanks to the Hölder inequality,
∫

Rn

|utt(D
Aut)

2|dx ≤‖utt‖Ln
2
‖DAut‖2

L
2n
n−2

.

Noticing, that, thanks to Ref. [1] Theorem 7.57 p. 228, for s > n
2

there hold the continuous
embeddings Hs(Rn) ⊂ C0

B(R
n) ⊂ L

n
2 (Rn) (where C0

B is the Banach space of bounded
continuous functions equal to zero at the infinity), we can write for m ≥

[

n
2
+ 3
]

‖utt‖Ln
2 (Rn)

≤ C‖utt‖H[n2 +1](Rn)
≤ C‖utt‖Hm−2(Rn) ≤ C

√

Em
2
[u]. (59)
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In addition, with the help of the Gagliardo-Nirenberg-Sobolev inequality

‖v‖
L

2n
n−2 (Rn)

≤ C‖∇v‖L2(Rn), (60)

we also have
‖DAut‖

L
2n
n−2

≤ C‖∇DAut‖L2 ≤ C‖∇DA0+1
t u‖H|A|−A0 .

With the hypothesis that |A| − A0 ≤ m− 2A0 , there hold 2A0 ≤ m and

‖∇DA0+1
t u‖H|A|−A0 ≤ ‖∇DA0+1

t u‖Hm−2A0 .

Therefore, all norms ‖∇DA0+1
t u‖2

Hm−2A0
, for the chosen n, m and A0 , are present in

Sm
2

. Hence, we find

∫

Rn

|utt(D
Aut)

2|dx ≤ C‖utt‖Hm−2‖∇DAut‖2L2 ≤ C
√

Em
2
[u]Sm

2
[u], (61)

and in the same way,
∫

Rn

|∆u(DAut)
2|dx ≤‖∆u‖

L
n
2
‖DAut‖2

L
2n
n−2

≤ C‖∆u‖
H[n2 +1]‖∇DAut‖2L2

≤C
√

Em
2
[u]Sm

2
[u].

To calculate LuD
Au we use expression (28) with multi-indexes Aj1 and Aj2 satisfy-

ing (29). As in Proposition 1, without loss of generality, we consider two multi-indexes
A1 and A2 with the same properties (29). We perform two steps:

Step 1: we prove
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤ C

√

Em
2
[u]Sm

2
[u], (62)

Step 2: we prove
∫

Rn

|DA1

∂xi
u DA2

∂xi
u DAut|dx ≤ C

√

Em
2
[u]Sm

2
[u]. (63)

Step 1. Thanks to properties (29) of A1 and A2 and to the symmetry of the general
case

∫

Rn

|(DA1
0

t D(A1
1,...,A

1
n)

x ut)(D
A2

0
t D(A2

1,...,A
2
n)

x ut)(D
Aut)|dx,

we divide our proof on three typical cases:

Case 1: |A1| −A1
0 ≥ 0 , A1

0 ≥ 0 , |A2| −A2
0 > 0 and A2

0 > 0 , i.e. a non trivial presence

of D
A2

0
t and D

(A2
1,...,A

2
n)

x is imposed,

Case 2: |A1| − A1
0 = 0 , A1

0 > 0 , |A2| − A2
0 > 0 and A2

0 = 0 , i.e. we consider the

integrals of the form
∫

Rn |(DA1
0

t ut)(D
(A2

1,...,A
2
n)

x ut)(D
Aut)|dx,
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Case 3: |A1| − A1
0 = 0 , A1

0 > 0 , |A2| − A2
0 = 0 and A2

0 > 0 , i.e. we consider only

non-trivial time derivatives
∫

Rn |(DA1
0

t ut)(D
A2

0
t ut)(D

Aut)|dx.

Step 1, Case 1. By the generalized Hölder inequality with 1
p
+ 1

q
= n+2

2n
, we have

∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤‖DA1

ut‖Lp‖DA2

ut‖Lq‖DAut‖
L

2n
n−2

.

By the Sobolev embeddings (31) of Hm1 ⊂ Lp and Hm2 ⊂ Lq with m1 + m2 = n
2
− 1

and 0 < m1 <
n
2
− 1 , we find

∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤C‖DA1

ut‖Hm1‖DA2

ut‖Hm2‖∇DAut‖L2,

where we have also applied the Gagliardo-Nirenberg-Sobolev inequality (60). Hence,
∫

Rn

|DA1

ut D
A2

ut D
Aut|dx ≤C‖∂A1

0
t ut‖Hm1+|A1|−A1

0
‖∇∂

A2
0

t ut‖Hm2+|A2|−A2
0
−1Sm

2
[u]

1
2 . (64)

Now we are looking for 0 < m1 <
n
2
− 1 , such that

{

m1 + |A1| − A1
0 ≤ m− 2A1

0,

m2 + |A2| − A2
0 − 1 ≤ m− 2A2

0,
(65)

in order to have

‖∂A1
0

t ut‖Hm1+|A1|−A1
0
≤
√

Em
2
[u] and ‖∇∂

A2
0

t ut‖Hm2+|A2|−A2
0
−1 ≤

√

Sm
2
[u]. (66)

Since m2 = n
2
− 1 − m1 , and by (29), |A2| = |A| + 1 − |A1| and A2

0 = A0 + 1 − A1
0 ,

system (65) is equivalent to
{

m1 + |A1|+ A1
0 ≤ m,

n
2
− 1−m1 + |A|+ 1− |A1|+ A0 + 1−A1

0 − 1 ≤ m.

The last system, thanks to |A| + A0 ≤ m , corresponding to the assumptions of the
Proposition, is satisfied if

n

2
≤ m1 + |A1|+ A1

0 ≤ m.

Using (29), we find that

|A1|+ A1
0 = |A|+ A0 + 2− (|A2|+ A2

0).

Therefore, since for Case 1 |A2| ≥ 2 and A2
0 ≥ 1 , recalling that (again by (29)) |A|+A0 ≤

m , we obtain
1 ≤ |A1|+ A1

0 ≤ m− 1.

Thus, we distinguish three sub-cases:

For n ≥ 3 , n
2
≤ |A1|+ A1

0 ≤ m− 1 : taking m1 =
1
4
, we obtain (66).
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For n ≥ 5 , 2 ≤ |A1|+ A1
0 <

n
2
: as m ≥

[

n
2
+ 3
]

, it is sufficient to take m1 =
n
2
−(|A1|+

A1
0) .

For n ≥ 3 , |A1|+ A1
0 = 1 : instead of finding m1 , we notice, that we have only two

possibility: either DA1
= ∂t and A2 = A , which gives estimate (61), or DA1

= ∂xi

with A2
0 = A0 + 1 and |A2| − A2

0 = |A| − A0 − 1 > 0 . For the last case, by the
generalized Hölder inequality, we have

∫

Rn

|∂xi
ut D

A2

ut D
Aut|dx ≤ ‖∂xi

ut‖Ln‖DA2

ut‖L2‖DAut‖
L

2n
n−2

. (67)

For m ≥
[

n
2
+ 3
]

the first norm in Eq. (67) can be estimated using the continuous
embedding Hs(Rn) ⊂ Ln(Rn) holding for s > n

2
:

‖∂xi
ut‖Ln ≤ C‖∂xi

ut‖H[n2 +1] ≤ C‖ut‖Hm−1 ≤ C
√

Em
2
[u].

With the help of the Gagliardo-Nirenberg-Sobolev inequality (60), we also estimate
the second norm in (67)

‖DAut‖
L

2n
n−2

≤ C‖∇DAut‖L2 ≤ C
√

Sm
2
[u], (68)

and for the last one we directly have

‖DA2

ut‖L2 ≤ ‖∇∂A0+2
t u‖H|A|−A0−2 ≤ ‖∇∂A0+2

t u‖Hm−2A0−2 ≤
√

Sm
2
[u].

Thus we obtain as previously estimate (62) of Step 1.

This permits to conclude Case 1 of Step 1.
Step 1, Case 2. We have |A1|−A1

0 = 0 , A1
0 > 0 , |A2|−A2

0 > 0 and A2
0 = 0 . Therefore,

by (29), A1
0 = 1 + A0 , and, updating (64), we directly have

∫

Rn

|DA1
0

t ut D
(A2

1,...,A
2
n)

x ut D
Aut|dx ≤C‖∂A0+1

t ut‖Hm1‖∇ut‖Hm2+|A2|−1Sm
2
[u]

1
2

with m1+m2 =
n
2
−1 , 0 < m1 <

n
2
−1 . Now we need to find m1 , belonging to ]0, n

2
−1[ ,

such that
{

m1 ≤ m− 2(A0 + 1),

m2 + |A2| − 1 ≤ m,
(69)

in order to have

‖∂A0+1
t ut‖Hm1 ≤

√

Em
2
[u] and ‖∇ut‖Hm2+|A2|−1 ≤

√

Sm
2
[u].

From 1+ |A| = |A1|+ |A2| , by (29), with the relation |A1| = A1
0 = 1+A0 it follows that

|A2| = |A| − A0. (70)
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Therefore, as m2 =
n
2
−m1 − 1 , system (69) is equivalent to

{

m1 + 2A0 ≤ m− 2,
n
2
− 2 ≤ m1 +m− |A|+ A0.

By the assumption of the proposition

m− |A|+ A0 ≥ 2A0, (71)

hence the last system is satisfied if we have m1 such that

n

2
− 2 ≤ m1 + 2A0 ≤ m− 2.

Knowing that |A2| > 0 (by the assumption of Case 2), Eq. (70) implies that |A|−A0 > 0 .
Thus, relation (71) gives 2A0 ≤ m− 1 , or more precisely

2A0 ≤ m− 2,

since m is even. So, a m1 with 0 < m1 < n
2
− 1 exists if m − 2A0 > 2 . Indeed, if

2A0 <
n
2
− 2 we can take m1 =

n
2
− 2 − 2A0 , and if m − 3 ≥ 2A0 ≥ n

2
− 2 we can take

m1 =
1
2
.

Let us now consider the limit case 2A0 = m − 2 . Then we have |A1| = A1
0 = m

2
.

Moreover, from (71) viewed, thanks to Eq. (70), as |A2| + 2A0 ≤ m , follows that 1 ≤
|A2| ≤ 2 . We apply the generalized Hölder inequality and estimate (60) to obtain

∫

Rn

|∂
m
2
t ut D

(A2
1,...,A

2
n)

x ut D
Aut|dx ≤‖∂

m
2
t ut‖L2‖D(A2

1,...,A
2
n)

x ut‖Ln‖DAut‖
L

2n
n−2

≤C‖∂
m
2
t ut‖L2‖D(A2

1,...,A
2
n)

x ut‖Ln

√

Sm
2
[u].

Moreover,

‖∂
m
2
t ut‖L2 ≤

√

Em
2
[u].

Using the continuity of the embedding Hs(Rn) ⊂ Ln(Rn) for s > n
2

, we also find for
m ≥

[

n
2
+ 3
]

‖DA2

ut‖Ln ≤ C‖DA2

ut‖H[n2 +1] ≤ C‖∇ut‖H[n2 +2] ≤ C‖∇ut‖Hm ≤ C
√

Sm
2
[u].

Hence, estimate (62) of Step 1 is also proved for Case 2.
Step 1, Case 3. Let us notice that thanks to relations (29), from |A1| = A1

0 and
|A2| = A2

0 it follows |A| = A0 . We start as usual with the generalized Hölder inequality

∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤‖DA1

0
t ut‖Lp‖DA2

0
t ut‖Lq‖DA0

t ut‖
L

2n
n−2
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with 1
p
+ 1

q
= n+2

2n
. Then we apply the Gagliardo-Nirenberg-Sobolev inequality (60) and

its more general version, which can be viewed as the embedding of the Sobolev space
W 1

q∗(R
n) in the Lebesgue space Lq(Rn) with 1

q
= 1

q∗
− 1

n
and 1 ≤ q∗ < n :

∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤C‖DA1

0
t ut‖Lp‖∇D

A2
0

t ut‖Lq∗‖∇DA0
t ut‖L2

with 1
p
+ 1

q∗
= n+4

2n
. We notice that if we want to use the Sobolev embeddings (31) to

Lp and to Lq∗ , it is only possible if 1
p

and 1
q∗

are smaller then 1
2
, or equivalently, if

1
p
+ 1

q∗
= n+4

2n
< 1 . Knowing that n+4

2n
< 1 for n ≥ 5 , n+4

2n
> 1 for n = 3 and n+4

2n
= 1

for n = 4 , we treat separately two cases: n ≥ 5 and n = 3, 4 .
For n = 3 or 4 , we choose p = n

2
and q = 2n

n−2
, implying q∗ = 2 . Thus, for n = 3

we use the continuous embedding H2(R3) ⊂ L
3
2 (R3) [1] (since 2 > 3

2
) and for n = 4 we

use H2(R4) ⊂ L2(R4) to obtain
∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤‖DA1

0
t ut‖Ln

2
‖∇D

A2
0

t ut‖L2‖∇DA0
t ut‖L2

≤C‖DA1
0

t ut‖H2Sm
2
[u].

If m− 2A1
0 ≥ 2 , then we directly have

‖DA1
0ut‖H2 ≤ ‖DA1

0ut‖Hm−2A1
0
≤
√

Em
2
[u].

Recalling that m is even, and, by our assumption |A1| + A1
0 ≤ m , 2A1

0 ≤ m , there is
only one additional possibility: m− 2A1

0 = 0 , i.e. A1
0 =

m
2

.
For A1

0 = m
2

, thanks to (29) and the assumption 2A0 ≤ m , we necessary have
|A2

0| = 1 , and consequently, by (68),
∫

Rn

|∂
m
2
t ut utt ∂

m
2
t ut|dx ≤ C‖utt‖H2‖∂

m
2
t ut‖2

L
2n
n−2

≤
√

Em
2
[u]Sm

2
[u].

Thus for n = 3 and n = 4 we find estimate (62).
Now, for n ≥ 5 , when 1

p
+ 1

q∗
= n+4

2n
< 1 , we have

∫

Rn

|DA1
0

t ut D
A2

0
t ut D

A0
t ut|dx ≤C‖DA1

0
t ut‖Lp‖∇D

A2
0

t ut‖Lq∗‖∇DA0
t ut‖L2

≤C‖DA1
0

t ut‖Hm1‖∇D
A2

0
t ut‖Hm2

√

Sm
2
[u]

with m1 +m2 =
n
2
− 2 and 0 < m1 <

n
2
− 2 by the Sobolev embeddings (31) which give

us Hm1 ⊂ Lp and Hm2 ⊂ Lq∗ . We look for m1 such that

m1 ≤ m− 2A1
0, m2 ≤ m− 2A2

0 (72)

in order to have

‖DA1
0

t ut‖Hm1 ≤
√

Em
2
[u] and ‖∇D

A2
0

t ut‖Hm2 ≤
√

Sm
2
[u].
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As m2 =
n
2
− 2−m1 and A2

0 = A0 + 1− A1
0 , system (72) is equivalent to

{

m1 + 2A1
0 ≤ m,

n
2
− 2 ≤ m− 2A0 +m1 + 2A1

0 − 2.

As m− 2A0 ≥ 0 , it is sufficient to have m1 such that

n

2
≤ m1 + 2A1

0 ≤ m

with 0 < m1 <
n
2
− 2 and 1 ≤ A1

0 ≤ m
2

. If 2 ≤ A1
0 <

n
4

we can take m1 =
n
2
− 2A1

0 . And
if n

4
≤ A1

0 ≤ m
2
− 1 we can take m1 =

1
4
.

If A1
0 = 1 , then necessary A2

0 = A0 , and using estimates (59) and (68) we directly
find

∫

Rn

|utt (D
A0
t ut)

2|dx ≤C‖utt‖Ln
2
‖DA2

0
t ut‖2

L
2n
n−2

≤ C
√

Em
2
[u]Sm

2
[u].

If A1
0 =

m
2

we are in a symmetric case as A2
0 = 1 . This conclude the proof of Case 3

and of Step 1, i.e. of estimate (62).
Step 2. Let us show estimate (63). Thanks to properties (29) of A1 and A2 and to

the symmetry of the general case
∫

Rn

|(DA1
0

t D(A1
1,...,A

1
n)

x uxi
)(D

A2
0

t D(A2
1,...,A

2
n)

x uxi
)(DAut)|dx,

we divide our proof on two typical cases:

Case 1: |A1| −A1
0 ≥ 0 , A1

0 > 0 , |A2| −A2
0 ≥ 0 and A2

0 > 0 , i.e. a non trivial presence

of D
A1

0
t and D

A2
0

t is imposed,

Case 2: |A1| − A1
0 > 0 , A1

0 = 0 , |A2| − A2
0 ≥ 0 and A2

0 > 0 , i.e. we consider the

integrals of the form
∫

Rn |(DA1
1+...+A1

n
x uxi

)(D
A2

0
t D

A2
1+...+A2

n
x uxi

)(DAut)|dx with a non-

trivial D
A2

0
t .

Case 1. Using estimate ‖DAut‖L2 ≤
√

Em
2
[u] , we have

∫

Rn

|(DA1
0

t D(A1
1,...,A

1
n)

x uxi
)(D

A2
0

t D(A2
1,...,A

2
n)

x uxi
)(DAut)|dx

≤ C‖∇∂
A1

0
t u‖

Hm1+|A1|−A1
0
‖∇∂

A2
0

t u‖
Hm2+|A2|−A2

0

√

Em
2
[u]

with m1 +m2 =
n
2

and 0 < m1 <
n
2

.
Let us find m1 with 0 < m1 <

n
2

such that

{

m1 + |A1| −A1
0 ≤ m− 2(A1

0 − 1),

m2 + |A2| −A2
0 ≤ N − 2(A2

0 − 1)
(73)
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in order to have

‖∇∂
A1

0
t u‖

Hm1+|A1|−A1
0
≤
√

Sm
2
[u] and ‖∇∂

A2
0

t u‖
Hm2+|A2|−A2

0
≤
√

Sm
2
[u].

As m2 =
n
2
−m1 , |A1|+ |A2| = |A|+1 , and A1

0+A2
0 = A0+1 , system (73) is equivalent

to
{

m1 + |A1|+ A1
0 ≤ m+ 2,

n
2
+ |A|+ A0 + 2 ≤ m+ 2 +m1 + |A1|+ A1

0.

By our assumption |A|+ A0 ≤ m , and hence the last system is satisfied if m1 verifies

n

2
≤ m1 + |A1|+ A1

0 ≤ m+ 2.

In our case A1
0 > 0 , thus 2 ≤ |A1| + A1

0 ≤ m , which implies the existence of a such
m1 with 0 < m1 < n

2
. Indeed, if m ≥ |A1| + A1

0 ≥ n
2

we can take m1 = 1 , else if
2 ≤ |A1|+A1

0 <
n
2

it is possible to take m1 =
n
2
− (|A1|+A1

0) . This concludes Case 1 of
Step 2.

Case 2. Thanks to (29), the conditions |A1| > 0 with A1
0 = 0 imply that |A|−A0 >

0 . Consequently, with m1 +m2 =
n
2

and 0 < m1 <
n
2

as in the previous case, we obtain

∫

Rn

|DA1

x ∂xi
u DA2

∂xi
u DAut|dx ≤ C‖∇u‖

Hm1+|A1|‖∇∂
A2

0
t u‖

Hm2+|A2|−A2
0
·

· ‖∇∂A0
t ut‖H|A|−A0−1 ≤ C‖∇u‖

Hm1+|A1|‖∇∂
A2

0
t u‖

Hm2+|A2|−A2
0

√

Sm
2
[u].

In the aim to have

‖∇u‖
Hm1+|A1| ≤

√

Em
2
[u] and ‖∇∂

A2
0

t u‖
Hm2+|A2|−A2

0
≤
√

Sm
2
[u],

we need to find m1 with 0 < m1 <
n
2

, such that

{

m1 + |A1| ≤ m,

m2 + |A2| − A2
0 ≤ m− 2(A2

0 − 1).

As m2 =
n
2
−m1 , |A2| = |A|+ 1− |A1| and A2

0 = A0 + 1 it is equivalent to solve

{

m1 + |A1| ≤ m,
n
2
−m1 + |A|+ 1− |A1|+ A0 + 1− 2 ≤ m.

As m− |A| −A0 ≥ 0 , the last system is satisfied if m1 verifies

n

2
≤ m1 + |A1| ≤ m.

By assumptions of this case 1 ≤ |A1| ≤ m , what guarantees the existence of such m1

with 0 < m1 < n
2

. Indeed, if 1 ≤ |A1| < n
2

, then we can take m1 = n
2
− |A1| , and
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if |A1| ≤ m − 1 , then we can take m1 = 1
2
. In the case |A1| = m , corresponding to

DA2
= ∂t , we directly obtain

∫

Rn

|DA1

x ∂xi
u ∂xi

ut D
Aut|dx ≤ C‖DA1

x ∂xi
u‖L2‖∂xi

ut‖Ln‖DAut‖
L

2n
n−2

≤ C‖∇u‖Hm‖∇ut‖Hm‖∇DAut‖L2 ≤ C
√

Em
2
[u]Sm

2
[u].

This completes the proof of Step 2 and hence the proof of estimate (63).
Thus, estimates (62) and (63) imply

∣

∣

∣

∣

∫

Rn

LuD
AuDAutdx

∣

∣

∣

∣

≤ Cmax(α, β)ε
√

Em
2
[u]Sm

2
[u],

from where follows (58).
�

Thanks to Lemma 1, we have the following energy decreasing result:

Theorem 7 Let n ≥ 3 , m ∈ N be even and m ≥
[

n
2
+ 3
]

. For u0 ∈ Hm+1(Rn) and
u1 ∈ Hm(Rn) , satisfying the smallness condition according to Point 1 of Theorem 2, there
exists a unique global solution u ∈ C1(R+

t ;H
m−1(Rn))∩C(R+

t ;H
m(Rn)) of problem (1)–

(2) and the energy Em
2
[u](0) < ∞ is well-defined. Then

1. it holds the a priori estimate

d

dt
E(t) +

√
2εSm

2
[u](t)

(√
2ν − Cmmax(α, β)

√

E(t)
)

≤ 0, (74)

where, denoting by V the set of all multi-indexes A = (A0, A1, ..., An) with |A| −
A0 ≤ m− 2A0 ,

E(t) =
∑

A∈V

∫

Rn

(1− αεut)(D
Aut)

2 + c2(∇DAu)2)(t, x) dx.

2. if in addition
√

Em
2
[u](0) ≤

√
2ν√

3
2
+c2Cm max(α,β)

= O(
√
ε), then

∀t ∈ R+, Em
2
[u](t) ≤ (3 + 2c2)Em

2
[u](0) < +∞. (75)

Proof : We sum (56) on all A ∈ V to obtain

d

dt
E(t) + 2νεSm

2
[u] ≤ Cmmax(α, β)ε

√

Em
2
[u]Sm

2
[u].

While ‖ut(t)‖L∞ ≤ 1
2αε

it holds

1

2
Em

2
[u](t) ≤ E(t) ≤ (

3

2
+ c2)Em

2
[u](t),
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and consequently,

d

dt
E(t) + 2νεSm

2
[u](t) ≤

√
2Cmmax(α, β)ε

√

E(t)Sm
2
[u](t).

Thus, if for all time
√

E(t) <
√
2ν

max(α,β)Cm
, and in particular,

E(0) ≤ (
3

2
+ c2)Em

2
[u](0) < 2

(

ν

Cmmax(α, β)

)2

, (76)

then we have the decreasing of E in time:

d

dt
E(t) < 0 and E(t) ≤ E(0).

Moreover, for all time t ≥ 0

‖ut(t)‖L∞ ≤C∞

√

Em
2
[u](t) ≤ C∞

√
2
√

E(t) ≤ C∞
√
2
√

E(0)

<2C∞
ν

Cmmax(α, β)
<

1

2αε
.

To be able to write 2C∞
ν

Cm max(α,β)
< 1

2αε
, we recall that, using the physical values of

coefficients, ε ≪ 1 , c2 = O(1
ε
) , α = γ−1

c2
< β = 2 , and consequently, as ν = O(1) , the

last inequality becomes
C∞
Cm

ν <
1

2αε
,

which is obviously true in the case of ε ≪ 1 (and, for instance, taking Cm = 2C∞ ).
Hence, if Eq. (76) holds, then for all time ‖ut(t)‖L∞ < 1

2αε
and the well-posedness of the

Cauchy problem is ensured with the following energy estimate

Em
2
[u](t) ≤ 2E(0) ≤ (3 + 2c2)Em

2
[u](0).

�
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