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ABSTRACT
Objectives Basic calcium phosphate (BCP) crystal and
interleukin 6 (IL-6) have been implicated in osteoarthritis
(OA). We hypothesise that these two factors may be
linked in a reciprocal amplification loop which leads to
OA.
Methods Primary murine chondrocytes and human
cartilage explants were incubated with hydroxyapatite
(HA) crystals, a form of BCP, and the modulation of
cytokines and matrix-degrading enzymes assayed. The
ability of IL-6 to stimulate chondrocyte calcification was
assessed in vitro. The mechanisms underlying the effects
of HA on chondrocytes were investigated using chemical
inhibitors, and the pathways mediating IL-6-induced
calcification characterised by quantifying the expression
of genes involved in chondrocyte mineralisation. The role
of calcification in vivo was studied in the meniscectomy
model of murine OA (MNX), and the link between IL-6
and cartilage degradation investigated by histology.
Results In chondrocytes, BCP crystals stimulated IL-6
secretion, further amplified in an autocrine loop, through
signalling pathways involving Syk and PI3 kinases, Jak2
and Stat3 molecules. Exogenous IL-6 promoted calcium-
containing crystal formation and upregulation of genes
involved in calcification: the pyrophosphate channel Ank,
the calcium channel Annexin5 and the sodium/
phosphate cotransporter Pit-1. Treatment of
chondrocytes with IL-6 inhibitors significantly inhibited
IL-6-induced crystal formation. In meniscectomised mice,
increasing deposits of BCP crystals were observed around
the joint and correlated with cartilage degradation and
IL-6 expression. Finally, BCP crystals induced
proteoglycan loss and IL-6 expression in human cartilage
explants, which were reduced by an IL-6 inhibitor.
Conclusions BCP crystals and IL-6 form a positive
feedback loop leading to OA. Targeting calcium-
containing crystal formation and/or IL-6 are promising
therapeutic strategies in OA.

INTRODUCTION
Osteoarthritis (OA) is the most common form of
chronic arthropathy and a leading cause of pain
and disability. Biomechanical factors, joint trauma,
age, gender and obesity have been identified as risk
factors for OA development. OA is characterised by
cartilage degradation, subchondral bone changes
and mild synovitis. Although OA is not considered
an inflammatory disease, several cytokines have
catabolic effects on cartilage matrix.1 However, it
remains unclear if there is a common link that
unites mechanical and inflammatory mechanisms in
OA pathogenesis.

A common denominator that potentially inte-
grates these mechanisms could be articular calcium-
containing crystals. Crystal deposits were identified
in 50% of synovial fluids2 and in 100% of cartilage
obtained during joint replacement3 and correlated
with the severity of radiographic and histological
OA.4 Calcium crystals were also found in some
normal joints5 6 suggesting that calcifications are
present before cartilage breakdown. Pathogenic
crystals encompass calcium pyrophosphate dihy-
drate (CPPD) and basic calcium phosphate (BCP)
crystals, (the latter including octacalcium phosphate
(OCP), carbonated-apatite (CA) and hydroxyapatite
(HA) crystals),7 and are generated by mineralising-
competent cells and their cell membrane-derived
matrix vesicles. In particular, high extracellular
inorganic pyrophosphate (PPi) and inorganic phos-
phate (Pi) lead to CPPD and BCP crystal formation,
respectively.8 The pathways which regulate this
balance involve multiple ectoenzymes (Pc-1 that
cleaves ATP in AMP and PPi, and Tnap that
hydrolyses PPi in Pi) and transporters such as the
PPi transporter Ank and the Pi transporters Pit-1
and Pit-2, and the Ca2+ transporter AnnexinV.9

Loss of function mutations in Pc-1 or Ank led to
HA crystal deposition, calcifications and to OA-like
changes in murine joints,10–12 and cartilage of
patients with OA showed increased expression of
Pc-1 and Ank.8 13 We demonstrated that
intra-articular injection of BCP crystals in mice led
to low grade inflammation and cartilage degrad-
ation.14 It has been reported that CPPD and BCP
crystals can activate cells via different signalling
pathways.15–21 In chondrocytes, it has been
reported that BCP crystals induce inducible nitric
oxide (iNOS) expression, nitric oxide (NO) pro-
duction 20 and Mmp-13 production,22 but whether
crystals induce additional inflammatory and cata-
bolic response in this cell type, and the possible
underlying signalling pathways, remains to be
explored.
IL-6 is a pleiotropic cytokine increased in syn-

ovial fluids and sera of patients with OA, and
increased IL-6 serum level correlates with radio-
graphic knee OA.23 IL-6 induced Mmp-1, Mmp-3
and Mmp-13 production by chondrocytes and
synoviocytes.24 25 The catabolic effects of injury
together with tumour necrosis factor-alpha
(TNF-α) on cartilage were mediated by endogenous
IL-6.26 Using in vitro and in vivo approaches, Ryu
et al27 demonstrated that IL-6 was a crucial medi-
ator of hypoxia inducible factor-2-alpha
(HIF-2α)-induced cartilage destruction via upregu-
lation of Mmp-3 and Mmp-13 and found that IL-6
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deficient mice were protected against OA. Although these
studies support a key role of IL-6 in OA, further investigations
are needed to clarify the triggers of IL-6 within the joint and
IL-6 effects on chondrocytes.

In the present study we evaluated the effects of BCP crystals
in primary murine chondrocytes, in the meniscectomy model of
murine OA and in human cartilage explants. We demonstrated
that BCP crystals trigger IL-6 secretion and IL-6-mediated cartil-
age degradation. Furthermore, we investigated the possible sig-
nalling pathway involved in BCP-induced IL-6 secretion in
chondrocytes. Finally, we studied the mechanism by which IL-6
could be of a key importance in chondrocyte mineralisation.
Our experimental data provide: (1) novel insights in the
mechanisms of OA, suggesting interplay between BCP crystals
and IL-6 and (2) novel therapeutic targets for this frequent and
as yet poorly treated chronic condition.

METHODS
Mice and induction of experimental OA
Female C57BL/6 mice (8–10 weeks old) were purchased from
Charles River. Mice were anaesthetised and knee joint instability
was induced surgically by partial medial meniscectomy (MNX)
of the right knee, whereas the contralateral knee was
sham-operated as control.28 Experiments were performed in
accordance with the Swiss Federal Regulations. The protocol
was approved by the “Service de la consommation et des affaires
vétérinaires du Canton de Vaud”, Switzerland.

MicroCT scan
MicroCT scans were performed with a SkyScan 1076 X-ray
mCT scanning system (SkyScan, Belgium) using the following
parameters: 18 μm resolution, 60 kV, 167 μA, 0.4° rotation step
over 360°, 0.5 mm aluminum filter, 1180 ms exposure time. In
vivo or ex vivo acquisitions were made using anaesthetised mice
or formol-fixed knees, respectively. Images were reconstructed
using NRecon V.1.6.6.0 (Skyscan, Belgium) considering the fol-
lowing parameters: grey values=0.0000–0.105867, ring artefact
reduction=3, beam hardening correction=40%. Quantitative
analyses (bone mineral density (g/cm3), new formation volume
(mm3) and new formation crystal content (mg)) were performed
using CTAnalyzer V.1.10 (SkyScan, Belgium) for different
volumes of interest.

Mouse knee histology and immunohistochemistry
Knee joints were processed and histological analysis performed
as described.29 Immunohistochemical analysis of collagen 2,
Mmp-induced neoepitope VDIPEN and IL-6 was performed
using an anticollagen 2 biotinylated monoclonal antibody (MD
Bioproduct), an affinity-purified anti-Val-Asp-Iso-Pro-Glu-Asn
metalloproteinase generated neoepitope (VDIPEN) antibody30

and an anti IL-6 antibody (Abcam), respectively. IL-6 scoring
was performed in the anteromedial part of the knee joint (fol-
lowing the same method as for Safranin-O score).

Calcium phosphate crystals
BCP and CPPD crystals were synthesised as previously pub-
lished.31 BCP crystals were sterilised by γ-radiation and assessed
as pyrogen-free. Prior to experimentation, crystals were resus-
pended in sterile phosphate buffered saline (PBS) and sonicated
for 5 min.

Articular chondrocyte preparation
Chondrocytes were generated from C57BL/6J mice as described
previously.32 Cells (3.5×104 cells/cm2) were cultured for 7 days

in complete Dulbecco’s modified Eagle Medium (DMEM) (10%
fetal bovine serum (FBS)). Chondrocyte stimulations with crystals
were performed in serum-free DMEM. For chondrocyte mineral-
isation analysis, cells were cultured for 3 days in complete Fitton-
Jackson Modified (BJGb) medium (Gibco) (10% FBS, 50 mg/mL
ascorbic acid, 20 mM β-glycerol phosphate), stimulated or not
with 10 ng/mL of IL-6 (Gibco PMC0064) and treated or not
with different inhibitors: Syk kinase inhibitor piceatannol
(100 mM, Calbiochem 527948), PI3 kinase inhibitor
Wortmannin (20 mM, Sigma W1628), anti-IL-6 receptor (8 mg/
mL, R&D System AF1830) or Jak2 inhibitor AG490 (50 mM,
Calbiochem 658401). Medium was changed for the last 4 days.

Fourier transform infrared spectroscopy analysis
Fourier transform infrared spectroscopy (FTIR) was used for in
vitro (chondrocytes) and in vivo (dissected ectopic calcifications
in knee joints) analyses. The mineral phase was evaluated by
FTIR Bruker Vector 22 (BruckerSpectrospin, Wissembourg), as
previously described.33 34

Crystal detection from chondrocyte cultures
Articular chondrocytes cultured for 7 days were washed in PBS
and crystal deposition analysed as previously described.35

Calcium phosphate crystal stimulation
Chondrocytes were primed overnight with100 ng/mL Pam3Cys,
where indicated, and stimulated with BCP or CPPD crystals or

Table 1 qRT-PCR analysis

Gene Forward primer (50→30) Reverse primer (50→30)

Adamts-4 GCC CGA GTC CCA TTT CCC GC GCC ATA ACC GTC AGC AGG
TAG CG

Adamts-5 GAC AGA CCT ACG ATG CCA CCC
AGC

ATG AGC GAG AAC ACT GAC
CCC AGG

Ank TGT CAA CCT CTT CGT GTC CC GAC AAA ACA GAG CGT CAG CG

Coll2 ACA CTT TCC AAC CGC AGT CA GGG AGG ACG GTT GGG TAT CA

Coll10 AAA CGC CCA CAG GCA TAA AG CAA CCC TGG CTC TCC TTG G

Anx5 CCT CAC GAC TCT ACG ATG CC AGC CTG GAA CAA TGC CTG AG

Gapdh CTC ATG ACC ACA GTC CAT GC CAC ATT GGG GGT AGG AAC AC

Il-1a AAA CAC TAT CTC AGC ACC ACT
TG

GGT CGG TCT CAC TAC CTG TG

Il-1b CCA CCA ACA AGT GAT ATT CTC
CAT G

GTG CGG TCT TTC ATT ACA CAG

Il-6 TCC AGT TGC CTT CTT GGG AC GTG TAA TTA AGC CTC CGA CT

Tnf-a CAT CTT CTC AAA ATT CGA GTG
ACA A

TGG GAG TAG ACA AGG TAC
AAC CC

Mmp-3 ATA CGA GGG CAC GAG GAG AGA AGT AGA GAA ACC CAA
ATG CT

Mmp-13 GCA GTT CCA AAG GCT ACA AC GTC GGG TCA CAC TTC TCT G

Pc-1 CTG GTT TTG TCA GTA TGT GTG
CT

CTC ACC GCA CCT GAA TTT GTT

Pit-1 CTC TCC GCT GCT TTC TGG TA AGA GGT TGA TTC CGA TTG TGC

Pit-2 AAA CGC TAA TGG CTG GGG AA AAC CAG GAG GCG ACA ATC TT

Runx2 GGG AAC CAA GAA GGC ACA
GA

TGG AGT GGA TGG ATG GGG AT

Sox9 AAG ACT CTG GGC AAG CTC
TGG A

TTG TCC GTT CTT CAC CGA CTT
CCT

Tbp CTT GAA ATC ATC CCT GCG AG CGC TTT CAT TAA ATT CTT GAT
GGT C

Tnap TTG TGC CAG AGA AAG AGA
GAG

GTT TCA GGG CAT TTT TCA AGG
T



with 10 ng/mL IL-6. In some experiments, cells were treated
with: piceatannol (100 mM), Wortmannin (20 mM), anti-IL-6
receptor (8 mg/mL), AG490 (50 mM) or cucurbitacin (10 mM,
Calbiochem 238590). Supernatants were collected for cytokine
ELISAs, and cells placed in TRIZOL for qRT-PCR analysis.

RNA was extracted and qRT-PCR with gene specific primers
(table 1) was performed as previously described.14

Human cartilage explants experiments
Macroscopically intact knee cartilage from four patients with
OA (Kellgren-Lawrence score of 4, mean age 73±10 years) was
obtained from the Orthopedics Department (CHUV, Lausanne,
Switzerland) at the time of joint replacement, with the approval
of the hospital ethical committee and patients’ written informed
consent. Cartilage disks 6 mm diameter (9–20 disks/patient)

were divided in halves, and each half was stimulated for 24 h in
DMEM supplemented with 20 mg/mL ascorbic acid. Explants
were stimulated with 500 mg/mL HA crystals in presence or
absence of 5 mg/mL Actemra (tocilizumab, Roche) or Ilaris
(canakinumab, Novartis). Supernatants were collected for
ELISAs. Proteoglycans were examined by histology in formol-
fixed Safranin-O-stained cartilage sections (0=normal to
4=completely degraded cartilage). IL-6 analysis (% of IL-6 posi-
tive cells out of three independent fields) was performed by
immunohistochemistry using an anti-IL-6 antibody (US
Biological Life Sciences).

Cytokine quantification
Supernatants were assayed using murine or human IL-6, TNF-α,
IL-1β and monocyte chemoattractant protein-1 (MCP-1) ELISA

Figure 1 Basic calcium phosphate (BCP) crystals trigger proinflammatory and catabolic responses in murine chondrocytes. (A–C) IL-6 secretion by
primed murine chondrocytes stimulated or not (A) with calcium pyrophosphate dihydrate and different BCP crystals for 6 h or (B) with different
doses of hydroxyapatite (HA) crystals for 6 h or (C) with HA crystals at different time points. Values represent means±SD of triplicates from one
representative experiment (D–F) qRT-PCR analysis of the indicated genes in not primed murine chondrocytes stimulated (black bars) with HA crystals
or not (white bars) for 4 h (D), different time points (E) or 30 min (F). Results are expressed as the fold increase of gene expression in HA crystals
treated over unstimulated chondrocytes, using the mean±SD of triplicate samples. (G) IL-6 secretion by primed murine articular chondrocytes
stimulated (black bars) or not (white bars) with HA crystals and treated or not with piceatannol (100 mM), Wortmannin (20 mM), anti-IL6R (8 mg/mL),
AG490 (50 mM) and cucurbitacin (10 mM) for 6 h. Values represent means±SD of triplicates from one representative experiment. *p<0.05, **p<0.01,
***p<0.001, ****p<0.0001.



kits (eBioscience) following the manufacturer’s protocol. Results
were read at 450 nm using the Spectrax M5e (Molecular
devices).

Statistical analysis
All experiments were performed with triplicates and reproduced
independently at least twice. Statistical analysis was performed
using the Student’s t test, one-way or two-way analysis of vari-
ance (ANOVA) test corrected with post hoc tests for multiple
comparisons, or linear regression, where appropriate. Data was
analysed with GraphPad Prism software (GraphPad, San Diego,
California, USA).

RESULTS
BCP crystals induce IL-6 secretion by primary murine
chondrocytes through Syk kinase, PI3 kinase, Jak2 and Stat3
signalling
Murine chondrocytes exposed to CPPD crystals and BCP crys-
tals (CA, HA and OCP) secreted high amounts of IL-6
(figure 1A), while IL-1β and TNF-α remained undetectable.
HA-induced IL-6 secretion was dose-dependent (figure 1B) and
time-dependent (figure 1C). In line with the ELISA results,

qRT-PCR analysis revealed significantly increased IL-6 gene
expression (6× compared with control) in HA-stimulated chon-
drocytes, whereas IL-1α, IL-1β and TNF-α expression was not
modulated (figure 1D). IL-6 gene expression was modulated in
a time-dependent manner (figure 1E). Additionally, the expres-
sion of the catabolic genes Mmp-13 and Mmp-3 and of
Adamts-4 and Adamts-5 was strongly upregulated upon HA
stimulation (figure 1F). Finally, HA-induced IL-6 secretion was
abrogated by piceatannol and Wortmannin (figure 1G), both
having no cytotoxic effects (results not shown). In addition,
HA-induced IL-6 secretion was significantly diminished by a
blocking IL-6 receptor antibody (anti-IL-6R) but not by an
isotype matched control antibody (figure 1G and result not
shown). Consistent with this latter result, AG490 and cucurbita-
cin also inhibited HA-induced IL-6 secretion (figure 1G).

HA crystals induce matrix degradation in human cartilage
explants by IL-6 dependent mechanisms
Since BCP crystals led to massive secretion of IL-6 by murine
articular chondrocytes and enhanced IL-6 expression in the
meniscectomy model (see online supplementary figure S2), we
investigated the role of HA-induced IL-6 in human cartilage

Figure 2 Hydroxyapatite (HA) crystals induce proteoglycan loss and IL-6 production in human cartilage explants. (A and B) Safranin-O staining
(A) and IL-6 immunohistochemistry (B) of human cartilage explants stimulated 24 h with HA crystals (HA) or not (Unstim) and treated or not with
tocilizumab (tcz) or canakinumab (ckm). Scale bars (50 mm). (C and D) Human cartilage explants Safranin-O loss score (C) and IL-6 positive cells
(D) in three independent fields. Matched halves of cartilage tissues are connected by a line (Explants number: 4–8 for each condition). *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. (E) Correlation graph between IL-6 positive cells and Safranin-O loss in human cartilage explants.



catabolism. Explants were cultured in the presence or absence
of HA crystals for 24 h. We observed loss of Safranin-O staining
in HA-stimulated explants compared with unstimulated ones
(figure 2A, left), confirmed by Safranin-O scoring (figure 2C,
left). We next studied the role of IL-6 in HA crystal-induced
matrix degradation by adding an IL-6 receptor inhibitor (tocili-
zumab) to the culture and we observed a significant protection
against cartilage degradation as well as matrix degeneration
(figure 2A, middle). As a control, we incubated HA-stimulated
explants with an anti-IL-1β antibody (canakinumab). This
isotype-matched control antibody had no effect on proteoglycan
depletion (figure 2A, right). Safranin-O scoring confirmed the
protective effect of IL-6 blockade and no effect of IL-1β inhib-
ition (figure 2C middle and right). These results strongly sug-
gested that IL-6 is involved in cartilage degradation.

We also checked if HA crystals induced IL-6 in explants. HA
crystals increased chondrocyte IL-6 staining in the transitional
zone of cartilage, where pictures were taken (figure 2B, D left).
This was inhibited by tocilizumab, but not by canakinumab
(figure 2B, D middle and right). Finally, as in the murine model,
we found a positive correlation between Safranin-O loss and

IL-6 expression (figure 2E). The importance of IL-6 in cartilage
matrix degradation is further strengthened by the finding that
when HA crystals were added to cartilage explants, we failed to
detect any secreted IL-1β or TNF-α but just IL-6, as we previ-
ously found in murine chondrocytes. Second, HA-mediated
IL-6 release was reduced in explants exposed to IL-6 pathway
blockade but not by IL-1β inhibition (results not shown). Taken
together, these findings strongly suggest that HA-induced cartil-
age degradation is IL-6 dependent.

IL-6 increases BCP formation by chondrocytes
As cartilage IL-6 secretion correlated with matrix degradation,
and was induced by BCP crystals, we investigated if IL-6, in
turn, could induce calcium-containing crystal formation in
chondrocyte cultures. After 7 days of culture, Alizarin red stain-
ing (figure 3A, black arrows) in IL-6-stimulated chondrocytes
was significantly increased compared with unstimulated cells.
This was confirmed by spectrophotometric quantification of
Alizarin red, after acidic extraction of crystals from the entire
cell monolayer (figure 3B). Interestingly, IL-6-induced crystal
formation was abrogated by the addition of piceatannol,

Figure 3 IL-6 induces crystal deposits and MCP-1 secretion in chondrocytes, both blocked by IL-6 inhibitors. (A) Alizarin red staining, (B) Alizarin
red absorbance at 405 nm, (C) LDH release and (D) MCP-1 secretion of murine chondrocytes stimulated or not with IL-6 and treated or not with
piceatannol (100 mM), Wortmannin (20 mM), anti-IL6R (8 mg/mL) and AG490 (50 mM) for 7 days. Pictures are representative of triplicates of one
representative experiment. Values represent means±SD of triplicates from one representative experiment. (E) qRT-PCR of the indicated genes in
murine chondrocytes treated or not with IL-6 for 4 h. Values represent means±SD of triplicate samples from one representative experiment. *p<0.05,
**p<0.01, ***p<0.001, ****p<0.0001. (F) Biochemical composition of calcium-containing crystals in IL-6 stimulated chondrocytes was assessed by
fourier-transform infrared spectroscopy, displaying a characteristic spectrum of octacalcium phosphate crystals (as shown by the phosphate bands at
1112/cm and 1030/cm and phosphate deformation at 600/cm and 560/cm).



Wortmannin, an anti-IL-6R antibody and AG490 (figure 3A, B),
the same inhibitors that were able to decrease BCP crystal-
induced IL-6 secretion. These inhibitory effects could not be
attributed to cytotoxic effects as lactate dehydrogenase (LDH)
activity was similar or lower to controls for all the tested inhibi-
tors (figure 3C).

FTIR analysis of the calcium-containing crystals produced by
IL-6-stimulated chondrocytes showed the presence of BCP crys-
tals, specifically OCP crystals (phosphate bands at 1112/cm and
1030/cm and phosphate deformation at 600/cm and 560/cm)
(figure 3F). In addition to Alizarin red staining, as a control of
IL-6 biological activity, we measured MCP-1 secretion, known
to be induced by IL-6. Its secretion was increased by IL-6 and
significantly decreased by the different inhibitors (figure 3D).

Finally, we investigated the underlying mechanism by which
IL-6 promotes calcium-containing crystal formation in chondro-
cytes by qRT-PCR (figure 3E). IL-6 was able to upregulate the
expression of three genes involved in the calcification process
(Ank, Anx5 and Pit-1). No modulation was detected for genes
codifying for other proteins involved in crystal formation (Pit-2,
Pc-1 and Tnap). Furthermore, IL-6 increased Coll10 and
Runx2, markers of hypertrophic chondrocytes, and Sox9,
marker of early chondrocytic differentiation. Therefore, IL-6

effect on mineralisation cannot simply be explained in terms of
impact on the global chondrocytic differentiation.

DISCUSSION
What links biomechanical stress and inflammatory responses to
cartilage breakdown in OA is not clearly understood, but there
is persuasive evidence that calcification of joint structures could
be involved. We demonstrated that in the murine meniscectomy
model of OA, calcium-containing crystal deposits were formed
in the articular space prior to cartilage degradation (see online
supplementary figure S1). These crystal deposits were previously
identified as hypertrophic calcification,36 ectopic bone,37 miner-
alised area38 and heterotopic cartilage,39 but their chemical
characterisation and their role in OA had never been deter-
mined. Starting from 1 month after OA induction,
microCT-scan revealed multiple deposits within the joint,
detached from bone, so that they could not be considered as
osteophytes. These structures were composed of bone-like and
cartilage-like tissues, showed catabolic and anabolic features
typical of OA cartilage40 and contained CA crystals (see online
supplementary figure S2). These structures resembled human
synovial osteochondromatosis, a condition associated with
OA,41–43 characterised by chondroid metaplasia and

Figure 4 Proposed mechanism based on the obtained results. In osteoarthritis (OA) joints, there is increased basic calcium phosphate (BCP) crystal
deposition. These crystals stimulate IL-6 synthesis by articular chondrocytes. IL-6 in turn stimulates IL-6 production in an autocrine way and crystal
deposition by inducing genes for calcification: Ank, Anx5 and Pit1. This would lead to sustain BCP crystal-induced IL-6 production. IL-6 and BCP
crystals induce cartilage matrix-degrading enzymes (such as Mmp-3 and Mmp-13 and Adamts-4 and Adamts-5) in chondrocytes, and subsequent
cartilage degradation. This vicious circle suggests that OA can be classified as an autoinflammatory disease. Blocking this circle by an inhibitor of
IL-6 will hence reduce IL-6 secretion, chondrocyte crystal formation and cartilage damage.



osteocartilaginous mineralised bodies in the capsule. A process
similar to chondroid metaplasia may be involved, whereby fibro-
blasts undergo metaplastic transformation to chondrocytes,
which then calcify.

Calcium phosphate crystals can have multiple effects on chon-
drocytes, including iNOS gene expression, NO production,20

Mmp-13 induction,22 intracellular calcium oscillations44 and
apoptosis.45 We show here that BCP crystals (in the form of HA)
additionally induced Mmp-3, Adamts-4 and Adamts-5 expression
in chondrocytes. Moreover, these microcrystals strongly upregu-
lated IL-6 at the transcriptional and translational levels, while
IL-1α, IL-1β and TNF-α cytokines remained undetectable.

We suggest that IL-6 secretion upon crystal stimulation is a
result of IL-6 directly induced by BCP (direct pathway) plus
IL-6 induced via ligation to its IL-6R, expressed on chondro-
cytes27 46 (autocrine pathway). We further found that pharma-
cological inhibition of the kinases Syk and PI3 and of the
signalling molecules Jak2 and Stat3 completely abrogated
BCP-induced IL-6 secretion, suggesting that these molecules are
implicated in the IL-6 direct and in the IL-6 autocrine pathways.
Interestingly, in the presence of saturating concentrations of the
neutralising anti-IL-6R antibody, we observed only partial inhib-
ition of crystal-induced IL-6, whereas complete inhibition
occurred with Jak and Stat inhibitors. This latter result suggests
that IL6-independent, but Jak, Stat-dependent pathways induced
by other gp130 signalling cytokines such as Oncostatin M could
be involved.47 We then analysed the consequences of IL-6 block-
ade in human cartilage explants. HA crystal-stimulated explants
showed increased proteoglycan loss and IL-6 expression.
Treatment of HA crystal-stimulated explants with an IL-6 inhibi-
tor led to restoration of proteoglycan synthesis and IL-6 expres-
sion. These findings suggest that chondrocytes secrete IL-6 that,
in turn, binds to its receptor resulting in an autocrine loop. In
contrast, addition of an isotype matched IL-1β inhibitor block-
ing antibody did not exert any protective role with respect to
HA crystal-induced proteoglycan loss and IL-6 expression.

IL-1β and TNF-α cytokines, as in BCP-stimulated chondro-
cytes, remained undetectable. Although IL-1 has been proposed
to be a key catabolic cytokine in OA,48 we were unable to
confirm its importance in our previous and current studies.
Mice deficient for IL-1α, IL-1β and the adaptor molecule
MyD88 were not protected from experimental OA (Nasi et al29

in preparation). These experiments suggest that IL-1β might not
be involved in OA pathogenesis whereas IL-6 could be a key
cytokine in cartilage degradation induced by crystal stress.

To further support a key role of IL-6 in OA pathogenesis, we
have shown here that IL-6 is able to enhance in vitro BCP
crystal formation by primary murine chondrocytes and that,
indeed, IL-6 inhibitors block in vitro crystal generation. It is
interesting to note that OCP crystals, considered a precursor
phase of apatite crystals and representing a recent mineralisation
process, were the only crystals detected in our chondrocytes
after 1 week cell culture. Later on, OCP crystals are normally
converted to apatite (CA) crystals, which are indeed the crystals
we found in our crystal deposits 2 months after meniscectomy
in the in vivo experiments The promineralisation effect of IL-6
cannot simply result from IL-6-effects on chondrocyte differen-
tiation as IL-6 increased Coll10 and Runx2, two markers of
hypertrophic chondrocytes, and Sox9, an early chondrocytic dif-
ferentiation marker. We next hypothesise IL-6 may directly
modulate one or several of the crucial proteins involved in
chondrocyte mineralisation. Indeed, IL-6 was able to upregulate
Ank, Anx5 and Pit-1 gene expression. Ank increases ePPi (that
can be hydrolysed in Pi by Tnap) whereas Anx5 and Pit1

concentrate Ca2+ and Pi, respectively, into matrix vesicles and
overexpression of Ank, or Anx5, or Pit1 was shown to induce
BCP crystal formation.49–51 Therefore IL-6 upregulation of
Ank, or Anx5, or Pit1 genes could act in concert to promote
BCP crystal formation in chondrocytes. Whether IL-6 inhibitors
block calcification through direct modulation of these genes
involved in calcification remains to be clarified.

In conclusion, our results strongly suggest that BCP crystal-
induced stress and IL-6 production are interlinked key factors in
OA pathogenesis (figure 4). Therefore, inhibition of calcification
or of IL-6 signalling pathway represents possible therapeutic
approaches for OA treatment.
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