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Abstract

This paper deals with a benchmark-based
experimental comparison of three diagnoser-
based approaches for fault diagnosis of discrete
event systems modeled by Petri nets: the
MBRG/BRD approach, the FMG/FMSG
approach and the SSD approach. The experiments
are performed on a level crossing benchmark,
using the respective software tools integrating the
three approaches. Different features are shown
in terms of state-space building (exhaustive or
partial), procedure for analyzing diagnosability
(based on complete or on-the-fly built state-
space) and state-space representation (concrete or
symbolic). Based on the obtained experimental
results, a comparative discussion is provided
particularly regarding memory and time
consumption for analyzing diagnosability of
the three techniques.

1 Introduction
Diagnosability analysis and on-line diagnosis are two
crucial issues in safety-critical systems. Most of these
systems can be modeled as discrete event systems
(DESs) [1] at a high level of abstraction. For technical
and/or economic reasons, it is generally inconceivable to
sense all the behavioral variations in a complex dynamic
system. Thereby, very often, monitoring activities in such
systems have to be carried out under partial observability.
In particular, DES diagnosis is often explained as the task
to deduce and identify the occurrence of unobservable fault,
based on the followed observed events. Diagnosability
refers to the ability to diagnose any fault in a finite delay
after its occurrence.

Most pioneering studies on fault diagnosis adopted finite
state automata as analysis models [2–5]. Afterwards, fault
diagnosis has also been dealt with in the Petri net (PN)
framework [6–9]. For details, the reader can refer to the
studies listed in [10].

This paper evaluates three diagnoser-based approaches
for fault diagnosis of DESs modeled by PNs. The case study
using the railway level crossing (LC) benchmark is carried
out to compare the features of three approaches, namely
(i) the modified basis reachability graph (MBRG)/basis
reachability diagnoser (BRD) technique [7], (ii) the fault
marking graph (FMG)/fault marking set graph (FMSG)

technique [11] and the so-called semi-symbolic diagnoser
(SSD) technique [12, 13].

In the following section, we briefly introduce some
notations pertaining to PNs and fault diagnosis. In
Section 3, an overview of the three considered approaches
is given. In Section 4, a comparative discussion on the main
features of these approaches is provided. In Section 5, a
series of benchmark-based experiments are performed to
assess the approaches. Finally, some concluding remarks
are given in Section 6.

2 Preliminaries
2.1 Labeled Petri Net Modeling
A Petri net (PN) is a structure N = (P, T, Pre, Post),
where P is a finite set of places; T is a finite set of
transitions; Pre and Post are the pre- and post-incidence
mappings, respectively. C = Post − Pre is the incidence
matrix. A marking is a vector m ∈ N|P | that assigns a
non-negative integer to each place. We denote by m(p) the
marking of a place p. A marked PN (N,m0) is a PNN with
a given initial marking m0.

A transition ti is enabled at marking m, denoted by
m[ ti >, if (∀p ∈ P )[m(p) ≥ Pre(p, ti)]. A transition
ti enabled at m can fire, yielding to a marking m′ =
m + C · ~ti, where ~ti ∈ {0, 1}|T | is a vector in which
only the entry associated with transition ti is equal to
1. Then, m′ is said to be reachable from m by firing
ti, denoted by m [ ti > m′. Moreover, a sequence of
transitions s = t1t2 · · · tk brings m to marking m′′, denoted
by m [ s > m′′, if (∃m1,m2, · · · ,mk−1)(m [ t1 >
m1 [ t2 > · · · mk−1 [ tk > m′′). m′′ can be computed
by m′′ = m+ C · π(s) and denoted by m [ s > m′′, where
π(s) =

∑k
i=1

~ti is called the firing vector relative to s. A
marking m is reachable in (N,m0) iff there exists a firing
sequence s such that m0 [s > m. The set of all markings
reachable from m0 defines the reachability set of (N,m0)
and is denoted by R(N,m0).

A PN (N,m0) is bounded if (∃ b ∈ N)(∀m ∈
R(N,m0))(∀p ∈ P )(m(p) ≤ b). A PN is live if,
(∀m ∈ R(N,m0))(∀t ∈ T )(∃s ∈ T ∗)(m [ st >).

A labeled Petri net (LPN) is a tupleNL = (N,m0,Σ, ϕ),
where (N,m0) is a marked PN, Σ is a finite set of labels (or
events) and ϕ : T → Σ is the transition labeling function.
ϕ is also extended to sequences of transitions, ϕ : T ∗ →
Σ∗. The language generated by NL is L(NL) = {ϕ(s) ∈
Σ∗ | s ∈ T ∗, m0 [ s >}. For short, we write L instead
of L(NL). In addition, various transitions can be associated



with the same label. We denote by Tσ the set of transitions
associated with label σ, i.e., Tσ = {t ∈ T | ϕ(t) = σ}.

2.2 Diagnosability of LPNs
With respect to the partial observability characterizing
transitions, the set of transitions can be partitioned as
T = To ] Tu, where To is the set of observable transitions
and Tu the set of unobservable transitions. Tu is also
partitioned into two subsets Tu = Tf ] Treg, where Tf is
the set of faulty transitions and Treg the set of regular (non-
faulty) transitions. As we deal with LPNs, the event set Σ
can also be partitioned into two disjoint sets, Σ = Σo ]Σu,
where Σo is the set of observable events and Σu the set
of unobservable events. Fault events denoted by set Σf
are unobservable, thus Σf ⊆ Σu. Moreover, Σu can be
partitioned into two disjoint sets, Σu = Σf ] Σreg , where
Σreg = Σu\Σf is the set of regular (non-faulty) events. In
addition, Σf can be further partitioned into various fault
classes, i.e., Σf =

⊎m
i=1 Σfi , where Σfi(i ∈ {1, 2, . . . ,m})

denotes the ith class of faults.
Let Po : Σ∗ → Σ∗o be the projection which erases all

unobservable events in an event sequence u ∈ Σ∗. Given
a live and prefix-closed language L ⊆ Σ∗, the inverse
projection is defined as P−1L (v) = {u ∈ L | Po(u) = v} for
v ∈ Σ∗o. For an event sequence u ∈ L, the post-language
of L upon u denoted by L/u = {v ∈ Σ∗| uv ∈ L}. We
denote by |u| the length of event sequence u, and ui the ith
event of u. Also, for a ∈ Σ and u ∈ Σ∗, we write a ∈ u if
(∃ i ∈ N)(ui = a). By abuse of notation, we note Σfi ∈ u
to indicate that (∃j ∈ N)(uj ∈ Σfi).

Without loss of generality, we will consider one single
fault class Σf in the sequel.

Definition 1. (Diagnosability of LPNs [2])
A given LPN NL is diagnosable with regard to (w.r.t.)

fault class Σf and projection Po if:
(∃ n ∈ N) (∀u ∈ L, u|u| ∈ Σf ) (∀v ∈ L/u):

|Po(v)| ≥ n⇒ [∀ω ∈ P−1L (Po(uv)) : Σf ∈ ω] �
In other terms, an LPN is diagnosable, if for every trace

u ending with a fault event belonging to Σf and for any
sufficiently long continuation v of u, each trace ω having
the same observation as uv contains a fault event.

In the current study, we consider the following
assumptions:

• The LPN is deadlock-free and bounded.

• The LPN has no executable cycle of unobservable
transitions and the faults are permanent.

2.3 Railway Level Crossing Benchmark
The considered benchmark is designed to mimic a railway
level crossing (LC) system, which is an intersection where a
railway line intersects with a road or path at the same level.
An LC consists of three main subsystems: 1) sensors to
detect trains’ position relative to the LC along each track;
2) barriers to stop road traffic; and 3) a local control system
to activate/deactivate the barriers, flashing lights and sound
alarm.

The LC benchmark was developed to analyze various
diagnosis issues [14]. The associated LPN model is live
and bounded. Moreover, while the size of the model
grows linearly, its state-space grows exponentially, which
is suitable for evaluating the efficiency of an approach.

The operational logic of a multi-track LC considers the
railway traffic on each track: 1) the LC is closed to road
traffic when at least one train is in the crossing zone; 2)
the LC is reopened to road traffic only if no train is in the
crossing zone.

For diagnosis purposes, a series of LC benchmarks with
two classes of faults are considered. The benchmark
consists of n (the number of tracks) railway traffic blocks,
an LC controller block and a barrier block (see Figure 1).

The two fault classes which may occur are denoted by
red colored transitions in the LPN model (Figure 1). The
first one, named Tf1 , related to a train-sensing defect is
modeled by unobservable transition (ti,4, ig) and indicates
that the train may enter the LC zone before the barriers
are lowered. The second failure, named Tf2 , modeled by
unobservable transition (t6, bf) indicates a defect of the
barriers that results in a premature rising. Either of these
two faults can induce incorrect operation of the LC control
and possibly train-car collisions.
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Figure 1: The multi-track level crossing benchmark

3 Approaches Considered for PN Diagnosis
Three approaches of diagnosis of PN models are
considered in the current study. Namely, the MBRG/BRD
technique [7], the FMG/FMSG technique [11] and the
SSD technique [12, 13]. The first one is the MBRG/BRD
approach developed in [7]. Although it is based on the
seminal diagnoser-based approach [2], it develops the
concept of basis marking to perform both diagnosability
analysis and on-line diagnosis, using a subset of reachable
markings. More recently, Liu et al. developed the
FMG/FMSG technique based on on-the-fly analysis of
diagnosability with the simultaneously (partial) building
of the diagnoser state-space [11]. In general, it allows



performing diagnosability analysis and on-line diagnosis
without building the whole state-space of the diagnoser.
Nevertheless, the theoretical complexity is at the same level
of the seminal diagnoser-based approach. However, in
practice, it shows a good efficiency particularly for non-
diagnosable models [15]. In [12, 13], the on-the-fly analysis
is adopted while considering a new variant of the diagnoser
with a semi-symbolic representation of its state-space using
binary decision diagrams (BDDs). The structure of this
diagnoser variant shows some interesting features that allow
for improving the diagnosability analysis. Moreover, using
BDDs to encode the diagnoser nodes brings a considerable
gain in terms of memory space and allows for employing
efficient operations to handle the diagnoser nodes.

The three techniques show some common features,
namely:

• Diagnoser-like structures are built to perform both
diagnosability analysis and on-line diagnosis;

• The theoretical complexity is in exponential order of
the state-space size of the model;

• They aim to avoid enumerating the whole state-space
of the PN to tackle the state explosion problem;

• They have been implemented in dedicated tools, which
allow us to make some experimental comparison.

Moreover, some other similarities can be pointed out:

• Both the MBRG/BRD and the FMG/FMSG techniques
are based on building intermediate models (MBRG and
FMG) as in [2];

• The FMG/FMSG and the SSD approaches analyze
diagnosability on the basis of on-the-fly built state-
space;

• The MBRG/BRD and the SSD approaches propose
compact representation of diagnoser nodes (using
basis markings and semi-symbolic representation,
respectively).

3.1 MBRG/BRD Approach
The MBRG/BRD approach [7] is a diagnoser-based
approach for fault diagnosis of bounded LPNs. It consists
in analyzing diagnosability on the basis of two compact
models: the so-called MBRG and the BRD. The main idea
behind the MBRG/BRD approach is the use of minimal
explanations and basis markings [7].

The introduction of minimal explanation aims to
only generate necessary markings instead of the whole
reachability state-space. Hence, the exhaustive enumeration
of the state-space is not required. In order to recall the
basic concept of this notion, let us note Tr = To ∪ Tf and
Ta = Tu\Tf .

Definition 2. Given a marking m and a transition
t ∈ Tr, we define Σ(m, t) = {σ ∈ T ∗a |m[σ > m′,m′ ≥
Pre(·, t)} as the set of explanations of t at m, and
Y (m, t) = π(Σ(m, t)) the corresponding set of e-vectors
(or explanation vectors), i.e., the firing vectors associated
with the explanations. �

Thus, Σ(m, t) is the set of unobservable no-faulty
sequences whose firing at m enables t. Among the above
sequences, we want to select those whose firing vectors are
minimal.

Definition 3. Given a marking m and a transition t ∈ Tr,
we define Σmin(m, t) = {σ ∈ Σ(m, t)|@σ1 ∈ Σ(m, t) :
π(σ1) � π(σ)} as the set of minimal explanations of t atm,
and Ymin(m, t) = π(Σmin(m, t)) the corresponding set of
minimal e-vectors. �

Modified basis reachability graph (MBRG)
Hereafter, we give the definitions of the basis marking

and the MBRG as an automaton.

Definition 4. (Basis marking [16])
The initial marking of an LPN is also the initial basis
marking X0

b = m0. Starting from X0
b , the reset of basis

markings are generated iteratively (until Xi+1
b = Xi

b) as
follow: Xi+1

b = Xi
b ∪ {m′|m ∈ Xi

b ∧ t ∈ Tr ∧ σ ∈
Σmin(m, t) ∧m[σt > m′}. �

The set of basis markings for the MBRG is Q = Xi
b.

Definition 5. (MBRG automaton [16])
The MBRG is an automaton G = 〈Q,E, δG , q0〉, where q0 =
x0b , Q ⊂ R(N,m0), E = Tr × Ymin(m, t), and δG ⊂
Q×E×Q denotes the transition relation wherem[σt > m′,
and σ ∈ Σmin(m, t) means that δG(m, (t, e)) = m′. �

Basis reachability diagnoser (BRD)
The diagnosability analysis using the MBRG/BRD

approach is also based on the construction of a graph called
BRD, which is a deterministic automaton that, is used in
addition whith the MBRG, serves to check the necessary
and sufficient condition for diagnosability.

In fact, the BRD is a deterministic graph where each node
contains:

• a set of triples (q, v, h), where q is a basis marking,
v ∈ {0, 1} is a boolean variable indicating the feasible
faulty sequences, h ∈ {N,F} indicates if marking q is
reachable with a fault transition has occurred or not;

• the diagnosis state of the node represented by4.

• the arcs are labeled with observable events from Σo.

Diagnosability analysis using the MBRG/BRD technique
is based on the necessary and sufficient condition developed
in [2]. This conditions is verified using the BRD in
conjunction with the MBRG. In particular, one has to check
if the BRD contains an uncertain cycle, namely a potential
indeterminate cycle, and then using the MBRG to verify if
that cycle is indeterminate or not.

3.2 FMG/FMSG Approach
Fault marking graph (FMG)
In order to obtain a finite representation suitable for
diagnosability analysis, the FMG is defined to record
certain specific markings with their respective fault
occurrence information.

Definition 6. A fault marking (FM) upon a sequence σ ∈
T ∗ is a vector x ∈ N|P |+1:

x =

[
mark(x)
tag(x)

]
where M0[ σ > mark(x), and tag(x) = 1 if (∃ j ∈
N)(σj ∈ Tf ), otherwise tag(x) = 0. �

For two FMs x and x′, we note x [ σ > x′ iff 1)
mark(x) [ σ > mark(x′), and 2) tag(x′) = 1 if (∃j ∈
N)(σj ∈ Tf ), otherwise tag(x′) = tag(x).



Definition 7. The fault marking graph (FMG) w.r.t. a given
fault class is a 4-tuple (Ng,Ag, delay, x0), where:

• x0 = [Mτ
0 , 0]τ is the initial node1;

• Ng is the set of FMG nodes;
• Ag ⊆ Ng ×Σo ×Ng is the set of directed and labeled

arcs. (x, e, x′) ∈ Ag if (∃σ ∈ T ∗uTo)((x [ σ > x′) ∧
(Po(ϕ(σ)) = e));

• delay : Ng → N ∪ {+∞} is the delay function:

– delay(x) = 0 if tag(x) = 0;
– otherwise,
∗ delay(x) = +∞ if (∃e1, · · · , ek ∈

Σo)(∃x1, · · · , xk,
xk+1 ∈ Ng)[((xi, ei, xi+1) ∈ Ag) ∧
(xk+1 = x1 = x)];
∗ otherwise,
delay(x) = max(

⋃
(xj ,ej ,x)∈Ag

{delay(xj)}) + 1. �
In simple terms, an FMG is a directed non-deterministic

graph. Each node indicates an FM and each arc indicates
an observable event. Actually, an FMG can be treated as a
specific ε-reduced observer automaton with tags indicating
fault occurrence. Here, delay function is used to determine
the maximum number of possible successive fault nodes,
which will be used to calculate the Delay value in the
FMSG. delay(x) = +∞ implies that x is in a cycle
of faulty FMs where the occurrence of a fault can be
propagated infinitely.

Fault marking set graph (FMSG)
Based on the FMG, FMSG can be generated for both
diagnosability analysis and on-line diagnosis.

A fault marking set (FMS) is a maximal finite set of FMs
that are reachable from the initial FMG node by the same
observation. Formally, it can be written by: {x ∈ Ng | ∃ σ ∈
T ∗To, σ ∈ L, Po(ϕ(σ)) = s, x0 [ σ > x}.
Definition 8. A fault marking set graph (FMSG) is a 5-tuple
(NG,AG, Tag,Delay, Y0), where

• Y0 = {x0} is the initial node;
• NG is the set of FMS nodes of FMSG;
• AG ⊆ NG×Σo×NG is the set of directed and labeled

arcs. (Y, e, Y ′) ∈ AG if ∀x′ ∈ Y ′, ∃x ∈ Y such that
(x, e, x′) ∈ Ag;
• tag is the tagging mapping tag : NG → {N,F,U}:

tag(Y ) =


N if ∀ x ∈ Y, tag(x) = 0

F if ∀ x ∈ Y, tag(x) = 1

U otherwise

• Delay : NG → N ∪ {+∞} is the delay function:

– Delay(Y ) = 0 if tag(Y ) ∈ {N,F}, otherwise
– Delay(Y ) = max(

⋃
x∈Y {delay(x)}). �

An FMS Y is normal (resp. F -certain, F -uncertain)
if tag(Y ) = N (resp. F , U ). Delay(Y ) denotes the
maximum number of successive F -uncertain FMSs from
the first possibly occurred fault until Y . In particular,
Delay(Y ) = +∞ implies that Y is in an indeterminate
cycle and the net is not diagnosable.

The FMSG is a deterministic diagnoser-like graph
structure for both diagnosability analysis and on-line

1Aτ denotes the transpose of matrix A.

diagnosis. For a bounded LPN, both the FMG and the
FMSG are finite. In order to perform diagnosability analysis
efficiently, one does not necessarily build the whole FMG
and FMSG in this approach.

3.3 SSD Approach
Since the SSD approach is relatively recent, we dedicate a
larger space in this section to go through its main features.
As mentioned earlier in the paper, the technique is based
on the a semi-symbolic diagnoser (SSD) computed on the
fly, the nodes of which are encoded using binary decision
diagrams (BDDs) while the transitions linking the nodes
are represented explicitly. In order to define the SSD more
formally, we introduce the following notations:
• Given a subset of transitions T ′ ⊆ T , we define
EnableT ′(m) = {t ∈ T ′ | m [ t >}, as the set of
transitions in T ′ that are enabled at marking m. The
extension to a subset of markings M ′ ⊆ R(N,m0), is
EnableT ′(M

′) =
⋃
m∈M ′EnableT ′(m).

• Given a subset of markings M ⊆ R(N,m0)
and a transition t ∈ T , we define Img(M, t) =
{m′ ∈ R(N,m0) | ∃m ∈ M : m [ t > m′}
as the set of markings reachable from the
markings in M by firing transition t. The
generalization to a subset of transitions T ′ ⊆ T
is Img(M ′, T ′) =

⋃
t∈T ′ Img(M ′, t).

• Given a marking m ∈ R(N,m0) and a subset of
transition T ′ ⊆ T , we define ReachT ′(m) = {m} ∪
{m′ ∈ R(N,m0)|(∃s ∈ T ′∗) : m [ s > m′} as the set
of markings reached by firing a sequence of transitions
in T ′ from marking m. The generalization to a subset
of markings M ⊆ R(N,m0) is ReachT ′(M) =⋃
m∈M ReachT ′(m).

The Structure of the diagnoser node
Each node in the (SSD) is partitioned into two distinct
subsets of markings, each of them is encoded using a BDD.

1. the set of normal markings (denoted by MN ), which
is the subset of markings in the node that are reachable
by firing faulty-free sequences.

2. the set of faulty markings (denoted byMF ), which is
the subset of markings in the node that are reachable
by firing faulty sequences.

There may exist some faulty transitions that link some
markings in MN to some others in MF within the same
node. The existence of such transitions is also encoded
within each node using a boolean variable.Actually, such
a node structure can be advantageously explored for
rendering diagnosability analysis more efficiently than
using the classic structure of diagnosers [7, 17].

Three types of diagnoser nodes can be distinguished:
• N-certain diagnoser node: is a diagnoser node whose

the set of faulty markings is empty (MF = ∅);
• F-certain diagnoser node: is a diagnoser node whose

the set of normal marking is empty (MN = ∅);
• F-uncertain diagnoser node: is a diagnoser node of

which neither the normal set, nor the faulty set of
markings, is empty, i.e.,MN 6= ∅ andMF 6= ∅.

To simplify the notation, we use a.MN (resp. a.MF ) to
indicate the set of normal markingsMN (resp. set of faulty
markingsMF ) of a given diagnoser node a.



Definition 9. (Semi-Symbolic Diagnoser (SSD))
The SSD associated with an LPN NL is a directed

deterministic graph D = 〈Γ,Σo, δD,Γ0〉, where:

1. Γ is a finite set of diagnoser nodes;

2. Σo is a finite set of events associated with a finite set of
observable transitions To;

3. Γ0 is the initial diagnoser node with:

a) Γ0.MN = ReachTreg (m0);
b) Γ0.MF = ReachTu(Img(Γ0.MN , Tf )).

4. δD : Γ × Σo → Γ is the transition relation, defined as
follows: ∀a, a′ ∈ Γ, σ ∈ Σo: a′ = δD(a, σ)⇔
a′.MN = ReachTreg

(Img(a.MN , Tσ)) ∧
a′.MF = ReachTu(Img(a′.MN , Tf ) ∪ Img(a.MF , Tσ))

In summary, the SSD D is constructed as follows: let the
current node be a and let σ be an observable event, such that
∃ t ∈ Tσ;∃m ∈ MN ∪MF : m [ t >. Then, the target
diagnoser node a′ reachable from a by occurrence of σ is
computed following the rules below:

1. If EnableT (a.MN ) ∩ EnableT (a.MF ) ∩ Tσ 6= ∅,
then

• a′.MN = ReachTreg
(Img(a.MN , Tσ))

• a′.MF = ReachTu
(Img(a′.MN , Tf ) ∪

Img(a.MF , Tσ))

2. IfEnableT (a.MN )\EnableT (a.MF )∩Tσ 6= ∅, then

• a′.MN = ReachTreg (Img(a.MN , Tσ))

• a′.MF = ReachTu
(Img(a′.MN , Tf ))

3. IfEnableT (a.MF )\EnableT (a.MN )∩Tσ 6= ∅, then

• a′.MN = ∅
• a′.MF = ReachTu(Img(a.MF , Tσ))

Since all the successors of an F -certain node are
also F -certain, it is unnecessary to build them (i.e., the
subsequent F -certain nodes) because they do not bring
new information from the diagnosis point of view. Indeed,
as regards diagnosability analysis, and given the necessary
and sufficient condition of diagnosability established in [2],
only the analysis of F -uncertain cycles is necessary. Thus,
as faults are permanent, one can be certain that no such
cycles can exist subsequently to an F -certain node.

Diagnosability Analysis
For the SSD approach, a necessary and sufficient condition
for diagnosability is formulated on the basis of the SSD
structure and a systematic procedure for checking such a
condition on the fly and directly upon the diagnoser, without
needing any intermediate model, is developed.

Proposition 1. Let c` = a1, a2, . . . , an be an F -uncertain
cycle in D, with δD(ai, σi) = a(i+1)modn for 1 ≤ i ≤ n.
Then, there exists at least one fault-free cycle in LPN NL
that shares the same observation (σ1, σ2, . . . , σn)∗. �

This result is interesting for checking F -indeterminate
cycles, using both the classic diagnoser-based approaches
and the SSD. It is, in fact, sufficient to check that an F -
uncertain cycle in the diagnoser corresponds to a faulty
cycle in the original model (or the intermediate model),
without checking the existence of the faulty-free cycle
(since this is plain henceforth).

Necessary and Sufficient Condition
In the SSD approach, the necessary and sufficient condition
for diagnosability is established on the basis of the notion
of ‘indicating sequence’, which is associated with the F -
uncertain cycles.

Definition 10. (c`-indicating sequence)
Let c` = a1, a2, . . . , an be an F -uncertain cycle in D

(the starting node a1 can be arbitrarily chosen in the cycle),
with δD(ai, σi) = a(i+1)modn for 1 ≤ i ≤ n. c`-indicating
sequence ρc` = S1,S2, . . . , is an infinite sequence of sets of
markings, such that:
− S1 = a1.MF ;
− ∀ i > 1 : Si = ReachTu(Img(Si−1, Tσ(i−1)modn

)); �

In fact, the c`-indicating sequence tracks the subsets of
faulty markings in each node of c` without considering the
faulty markings generated through the occurrence of some
faulty transitions outgoing from the normal set of markings
in the traversed nodes (except for S1 which holds all the
faulty states of a1.MF , i.e., S1 = a1.MF ). Actually,
the c`-indicating sequence is introduced with the aim of
tracking the actual faulty cycles corresponding to a given
F -uncertain cycle, if such cycles exist in the original model.

Proposition 2. Let c` = a1, a2, . . . , an be an F -uncertain
cycle in D, with δD(ai, σi) = a(i+1)modn for 1 ≤ i ≤ n,
and let ρc` = S1,S2, . . . be the c`-indicating sequence
associated with c`. Therefore, the following property holds
true: ∃ k ∈ N : ∀ i ∈ N : S(1+(k+i)n) = S1+(kn).

Proposition 2, establishes the fact that there
exists an index i from which c`-indicating
sequence ρc` shows a repetitive bloc of length n:
[S(i+1),S(i+2), . . . ,S(i−1+n)S(i+n)] with S(1+i+n) = Si
(i.e., a cycle). Phrased differently, ρc` always takes one of
these two forms:

1. A prime sequence: a non-cyclic elementary
sequence (possibly empty) S1,S2, . . . ,Si, connected to an
elementary cycle (S(i+1),S(i+2), . . . ,S(i−1+n),S(i+n))∗,
with S(i+1+n) = Si+1;

2. A finite sequence of non-empty elements followed by
an infinite number of empty elements: S1, S2, . . . ,Si for
i ∈ N∗, with S(i+k) = ∅, ∀k ∈ N∗.

In fact, the first case, i.e., a prime sequence, reveals the
presence of at least one faulty cycle in the LPN model, that
corresponds to the F -uncertain cycle c`. This is depicted in
the c`-indicating sequence by the presence of the elementary
cycle. In the second case, the F -uncertain cycle in the SSD
does not correspond to an actual faulty cycle in the model.
On the basis of Proposition 2, one can check whether an
F -uncertain cycle is an F -indeterminate one or not.

Theorem 1. For an F -uncertain cycle c` = a1, a2, . . . , an
in D, and ρc` = S1,S2, . . . its corresponding c`-indicating
sequence. Then, c` is an F -indeterminate cycle if and only
if: ∀i ∈ N∗ : Si 6= ∅. �

Actually, Theorem 1 states that an F -uncertain cycle is
an F -indeterminate one if the c`-indicating sequence does
not reach an empty fixed-point. In other words, it takes the
form of a prime sequence.

For the actual verification of diagnosability, a systematic
procedure is derived directly from Theorem 1 and can be
performed as follows:

When an F -uncertain cycle c` is found in SSD D, then:



1. generate the successive elements of c`-indicating
sequence ρc` (starting from S1), and for each element
Si check the following conditions:
(a) if Si = ∅, then cycle c` is not an F -indeterminate

cycle and therefore the procedure is stopped;
(b) else, if Si 6= ∅ and ∃k ∈ N : i = 1 + kn (with

n = |c`|), then:
i. if Si = S(i−n), then cycle c` is an F -

indeterminate cycle and stop the procedure;
ii. else continue.

This procedure is repeated on each F -uncertain cycle
generated on the fly in D. It is worth underlining that, on
the basis of Proposition 2, one can be certain that the above
procedure terminates since a fixed-point will ultimately be
reached (within a finite delay).

4 Discussion
4.1 Features of Approaches Considered
The main feature of the MBRG/BRD approach is the use
of minimal explanations and basis markings, which allow to
represent the reachability state-space in a compact manner.
However, the MBRG is generally, but not necessarily,
smaller than the reachability graph.

The FMG/FMSG approach solves four problems (K-
diagnosability, diagnosability, the minimum value Kmin

ensuring K-diagnosability and on-line diagnosis) using the
same structures, i.e., the FMG and the FMSG. The idea
behind is to solve these diagnostic problems on generating
necessary state-space in an incremental way.

The SSD approach, combining the advantages of the
former two approaches, uses a compact representation of
the diagnoser state-space based on the semi-symbolic
representation. It represents the diagnoser nodes
symbolically, while the arcs remain in an explicit
manner. Moreover, constructing the diagnoser and
checking diagnosability are simultaneously performed
on the fly. Generally, this avoids building the whole
diagnoser. In addition, unlike in other approaches, the
structure of the diagnoser in this approach provides some
interesting features that allow for checking the necessary
and sufficient condition for diagnosability without building
any intermediate model. Some main features of these
approaches are summarized in Table 1.

4.2 Tools Implementing the Approaches
The MBRG/BRD approach is implemented in a MATLAB
Toolbox called PN_Diag [18, 19]. The tool takes PN
models in mathematical representation (i.e., matrix form)
as input (a MATLAB file). Firstly, it generates the MBRG
(on the based of the BRG), and then generates the BRD
(on the based of the BRG as well), and finally, checks
the diagnosability. In the case of non-diagnosable models,

PN_Diag outputs all the event-traces corresponding to F -
indeterminate cycles in the BRD.

The FMG/FMSG approach is implemented in OF-
PENDA tool [20], which is a software tool developed
in C++ programming language. OF-PENDA takes the
mathematical model of an LPN as input.The tool is
based on the on-the-fly and incremental analysis of K-
diagnosability. Therefore, the generated model for the Kth

step is used for (K+1)th step. If the system is diagnosable,
the minimum value Kmin ensuring K-diagnosability is
given, and the online diagnoser is generated.

The SSD approach is implemented in DPN-SOG tool,
which is a command-line software tool developed in C++
programming language. DPN-SOG takes as inputs: (i) the
LPN models in prod format [21], (ii) the bound k of the
net as an integer and (iii) a text file which specifies the sets
of observable, non-observable and faulty transitions. Using
these ingredients, DPN-SOG builds on the fly the SSD and
simultaneously analyzes the diagnosability. When the LPN
model is non-diagnosable, DPN-SOG outputs the generated
part of the diagnoser as well as a witnessed diagnoser
event-trace that violated the diagnosability property (the
first encountered event-trace). When the LPN model is
stated to be diagnosable, DPN-SOG generates the part
of the diagnoser that is sufficient to perform the online
diagnosis. Further complementary information that helps
the evaluation of the approach can be output, namely, the
required CPU time, the size of the diagnoser, the number
of used BDD nodes and memory size of the diagnoser (in
terms of kilobytes).

5 Experimentations
The three techniques are applied to analyze the
diagnosability of the LC benchmark, respectively.
The experiments are performed on a 64-bit PC (CPU:
Intel Core i5, 2.5 GHz; RAM: 6 GB), and the results are
summarized in Table 2. Regarding the obtained results, the
following remarks can be underlined:

1. In non-diagnosable cases, one can observe that the
SSD and the FMG/FMSG approaches efficiently
analyze the diagnosability by only constructing the
relevant part of the diagnosers, which reduces the
memory/time consumption. Actually, while the
PN_Diag tool blocks from n = 4, both OF-PENDA
and DPN-SOG tools provide the diagnosability verdict
in a few seconds even for large values of n. This is due
to the on-the-fly analysis which allows for performing
the diagnosability analysis based on a partial building
of the diagnoser. In other terms, the state-space
generation as well as the analysis is stopped as soon as
an indeterminate cycle is found. This is an interesting
feature especially when we deal with large models.

2. In the case of diagnosable cases, i.e., when the barriers
failure (TF2

) is considered, the two approaches

Table 1: Features of the approaches considered

Features MBRG/BRD FMG/FMSG SSD
Representation basis markings fault markings symbolic markings
The generator MBRG FMG no generator
Double-check yes yes no
On-the-fly analysis no yes yes



Table 2: Comparative experimental results

n
Petri net features BRD FMSG SSD Diag. TFi|P | |T | |N | |A| |BRDS | |BRDT | BRDe (s) |FMSGS | |FMSGT | FMSGe (s) |SSDS | |SSDT | SSDe (s)

1 12 10 20 43 21 31 0.1 12 22 ≤ 0.1 10 14 ≤ 0.1 yes

TF1

2 15 14 142 500 168 454 1.3 25 27 ≤ 0.1 9 8 ≤ 0.1 no
3 18 18 832 4085 967 3845 46.0 32 34 ≤ 0.1 10 9 ≤ 0.1 no
4 21 22 4314 27142 4869 25740 1477.0 39 41 ≤ 0.1 11 10 ≤ 0.1 no
5 24 26 20556 157551 * * o.t. 46 48 ≤ 0.1 12 11 ≤ 0.1 no
6 27 30 92070 831384 * * o.t. 53 55 ≤ 0.1 13 12 ≤ 0.1 no
7 30 34 393336 4086585 * * o.t. 60 62 ≤ 0.1 14 13 ≤ 0.1 no
1 12 10 20 43 21 31 0.1 17 39 ≤ 0.1 10 14 ≤ 0.1 yes

TF2

2 15 14 142 500 167 454 1.2 176 661 ≤ 0.1 83 205 ≤ 0.1 yes
3 18 18 832 4085 967 3845 38.5 1192 6436 0.6 483 1745 ≤ 0.2 yes
4 21 22 4314 27142 4896 25740 1099.5 8192 58574 47.1 2434 11774 0.7 yes
5 24 26 20556 157551 * * o.t. * * o.t. 11304 69112 12.4 yes
6 27 30 92070 831384 * * o.t. * * o.t. 56136 414299 236 yes
7 30 34 393336 4086585 * * o.t. * * o.t. 261262 2282890 5822 yes

*: No result obtained in 4 hours. o.t.: Out of time (simulation time ≥ 4 hours).

• n: the number of tracks;
• |P | and |T |: the number of places and transitions in the PN models, respectively;
• |AR| and |NR|: the number of nodes and arcs in the reachability graph, respectively;
• BRDS | and |BDRT |: the numbers of nodes and arcs in the BRD, respectively;
• |FMSGS | and |FMSGT |: the numbers of nodes and arcs in the FMSG, respectively;
• |SSDS | and |SSDT |: the numbers of nodes and arcs in the SSD, respectively;
• BRDe, FMSGe and SSDe: the time required to generated the models and checking diagnosability, respectively;
• ‘Diag.’: the diagnosability verdict.

implementing an on-the-fly procedure potentially have
to construct a larger part of the diagnoser state-space.
Consequently, the verification process checks all
the F-uncertain cycles of the diagnosers to analyze
the diagnosability of the models. In this case, the
obtained results clearly reflect the exponential feature
of the diagnoser-based approaches. Actually, this
is unavoidable when working with diagnoser-based
approaches, since it is due to the deterministic nature
of the diagnoser.

3. Compared with the other tools, the DPN-SOG tool
provides better results on the cases considered. In
particular, the DPN-SOG tool successes to analyze the
diagnosability of all the models considered, while the
other tools fail as early as from 5 tracks. This can be
explained through two main points:
(a) The SSD approach only constructs one graph

since diagnosability analysis is performed directly
on the diagnoser;

(b) The systematic procedure for checking the
necessary and sufficient condition based on the
SSD allows for reducing the verification time;

(c) Besides the gain in terms of memory, the use
of BDDs for representing the diagnoser nodes
allows for using efficient techniques to generate
the diagnoser nodes and perform the verification.

5.1 Combining the Three Approaches
As a conclusion, it may be interesting to develop an
approach to incorporate the main features of the three
approaches. The minimal explanation in the MBRG/BRD
approach can be used to generate the reachability state-
space in a compact manner. Then, diagnoser nodes
can be composed of only basis markings. In addition,
each diagnoser node can be split into two sets of basis
markings: the set of normal basis markings and the set
of faulty basis markings. Both sets are encoded in a

symbolic manner using BDDs, as in the SSD approach. The
diagnoser construction and the diagnosability analysis will
be simultaneously performed with an on-the-fly depth-first
search procedure, as in the FMG/FMSG approach. Such a
combination may improve the efficiency of diagnosability
analysis and further reduce the time/memory consumption.

6 Conclusion
This paper compares three diagnoser-based techniques for
diagnosability analysis of LPNs, namely the MBRG/BRD
approach, the FMG/FMSG approach and the SSD approach.
A railway level crossing benchmark, which shows both
diagnosable and non-diagnosable faults, is chosen as an
experimental benchmark. Three software tools associated
with the considered approaches are used for the analysis.
The approaches are evaluated particularly in terms of
the generated state-space of advanced models and the
time required for constructing such models and analyzing
diagnosability. In the future, we intend to develop
an approach that combines the main features of three
approaches.
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