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Introduction

Diagnosability analysis and on-line diagnosis are two crucial issues in safety-critical systems. Most of these systems can be modeled as discrete event systems (DESs) [START_REF] Cassandras | Introduction to discrete event systems[END_REF] at a high level of abstraction. For technical and/or economic reasons, it is generally inconceivable to sense all the behavioral variations in a complex dynamic system. Thereby, very often, monitoring activities in such systems have to be carried out under partial observability. In particular, DES diagnosis is often explained as the task to deduce and identify the occurrence of unobservable fault, based on the followed observed events. Diagnosability refers to the ability to diagnose any fault in a finite delay after its occurrence.

Most pioneering studies on fault diagnosis adopted finite state automata as analysis models [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF][START_REF] Jiang | A polynomial algorithm for testing diagnosability of discrete-event systems[END_REF][START_REF] Yoo | Polynomial-time verification of diagnosability of partially observed discrete-event systems[END_REF][START_REF] Hashtrudi Zad | Fault diagnosis in discrete-event systems: framework and model reduction[END_REF]. Afterwards, fault diagnosis has also been dealt with in the Petri net (PN) framework [START_REF] Ushio | Fault detection based on Petri net models with faulty behaviors[END_REF][START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF][START_REF] Basile | Diagnosability of labeled Petri nets via integer linear programming[END_REF][START_REF] Lefebvre | Diagnosability of Petri nets with observation graphs[END_REF]. For details, the reader can refer to the studies listed in [START_REF] Basile | Overview of fault diagnosis methods based on Petri net models[END_REF].

This paper evaluates three diagnoser-based approaches for fault diagnosis of DESs modeled by PNs. The case study using the railway level crossing (LC) benchmark is carried out to compare the features of three approaches, namely (i) the modified basis reachability graph (MBRG)/basis reachability diagnoser (BRD) technique [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF], (ii) the fault marking graph (FMG)/fault marking set graph (FMSG) technique [START_REF] Liu | On-the-fly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF] and the so-called semi-symbolic diagnoser (SSD) technique [START_REF] Boussif | Combining enumerative and symbolic techniques for diagnosis of discrete-event systems[END_REF][START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF].

In the following section, we briefly introduce some notations pertaining to PNs and fault diagnosis.

In Section 3, an overview of the three considered approaches is given. In Section 4, a comparative discussion on the main features of these approaches is provided. In Section 5, a series of benchmark-based experiments are performed to assess the approaches. Finally, some concluding remarks are given in Section 6.

Preliminaries

Labeled Petri Net Modeling

A Petri net (PN) is a structure N = (P, T, P re, P ost), where P is a finite set of places; T is a finite set of transitions; P re and P ost are the pre-and post-incidence mappings, respectively. C = P ost -P re is the incidence matrix. A marking is a vector m ∈ N |P | that assigns a non-negative integer to each place. We denote by m(p) the marking of a place p. A marked PN (N, m 0 ) is a PN N with a given initial marking m 0 .

A transition t i is enabled at marking m, denoted by m[ t i >, if (∀p ∈ P )[m(p) ≥ P re(p, t i )]. A transition t i enabled at m can fire, yielding to a marking m = m + C • t i , where t i ∈ {0, 1} |T | is a vector in which only the entry associated with transition t i is equal to 1. Then, m is said to be reachable from m by firing t i , denoted by m [ t i > m . Moreover, a sequence of transitions s

= t 1 t 2 • • • t k brings m to marking m , denoted by m [ s > m , if (∃m 1 , m 2 , • • • , m k-1 )(m [ t 1 > m 1 [ t 2 > • • • m k-1 [ t k > m
). m can be computed by m = m + C • π(s) and denoted by m [ s > m , where π(s) = k i=1 t i is called the firing vector relative to s. A marking m is reachable in (N, m 0 ) iff there exists a firing sequence s such that m 0 [s > m. The set of all markings reachable from m 0 defines the reachability set of (N, m 0 ) and is denoted by R(N, m 0 ).

A PN (N, m 0 ) is bounded if (∃ b ∈ N)(∀m ∈ R(N, m 0 ))(∀p ∈ P )(m(p) ≤ b). A PN is live if, (∀m ∈ R(N, m 0 ))(∀t ∈ T )(∃s ∈ T * )(m [ st >).
A labeled Petri net (LPN) is a tuple N L = (N, m 0 , Σ, ϕ), where (N, m 0 ) is a marked PN, Σ is a finite set of labels (or events) and ϕ : T → Σ is the transition labeling function. ϕ is also extended to sequences of transitions, ϕ :

T * → Σ * . The language generated by N L is L(N L ) = {ϕ(s) ∈ Σ * | s ∈ T * , m 0 [ s >}.
For short, we write L instead of L(N L ). In addition, various transitions can be associated with the same label. We denote by T σ the set of transitions associated with label σ, i.e., T σ = {t ∈ T | ϕ(t) = σ}.

Diagnosability of LPNs

With respect to the partial observability characterizing transitions, the set of transitions can be partitioned as T = T o T u , where T o is the set of observable transitions and T u the set of unobservable transitions. T u is also partitioned into two subsets T u = T f T reg , where T f is the set of faulty transitions and T reg the set of regular (nonfaulty) transitions. As we deal with LPNs, the event set Σ can also be partitioned into two disjoint sets, Σ = Σ o Σ u , where Σ o is the set of observable events and Σ u the set of unobservable events. Fault events denoted by set Σ f are unobservable, thus Σ f ⊆ Σ u . Moreover, Σ u can be partitioned into two disjoint sets, Σ u = Σ f Σ reg , where Σ reg = Σ u \Σ f is the set of regular (non-faulty) events. In addition, Σ f can be further partitioned into various fault classes, i.e., Σ f = m i=1 Σ fi , where Σ fi (i ∈ {1, 2, . . . , m}) denotes the i th class of faults.

Let P o : Σ * → Σ * o be the projection which erases all unobservable events in an event sequence u ∈ Σ * . Given a live and prefix-closed language L ⊆ Σ * , the inverse projection is defined as

P -1 L (v) = {u ∈ L | P o (u) = v} for v ∈ Σ * o .
For an event sequence u ∈ L, the post-language of L upon u denoted by L/u = {v ∈ Σ * | uv ∈ L}. We denote by |u| the length of event sequence u, and u i the i th event of u. Also, for a ∈ Σ and u ∈ Σ * , we write a ∈ u if

(∃ i ∈ N)(u i = a). By abuse of notation, we note Σ fi ∈ u to indicate that (∃j ∈ N)(u j ∈ Σ fi ).
Without loss of generality, we will consider one single fault class Σ f in the sequel.

Definition 1. (Diagnosability of LPNs [2])

A given LPN N L is diagnosable with regard to (w.r.t.) fault class Σ f and projection P o if:

(∃ n ∈ N) (∀u ∈ L, u |u| ∈ Σ f ) (∀v ∈ L/u): |P o (v)| ≥ n ⇒ [∀ω ∈ P -1 L (P o (uv)) : Σ f ∈ ω]
In other terms, an LPN is diagnosable, if for every trace u ending with a fault event belonging to Σ f and for any sufficiently long continuation v of u, each trace ω having the same observation as uv contains a fault event.

In the current study, we consider the following assumptions:

• The LPN is deadlock-free and bounded.

• The LPN has no executable cycle of unobservable transitions and the faults are permanent.

Railway Level Crossing Benchmark

The considered benchmark is designed to mimic a railway level crossing (LC) system, which is an intersection where a railway line intersects with a road or path at the same level. An LC consists of three main subsystems: 1) sensors to detect trains' position relative to the LC along each track; 2) barriers to stop road traffic; and 3) a local control system to activate/deactivate the barriers, flashing lights and sound alarm.

The LC benchmark was developed to analyze various diagnosis issues [START_REF] Ghazel | A customizable railway benchmark to deal with fault diagnosis issues in DES[END_REF]. The associated LPN model is live and bounded. Moreover, while the size of the model grows linearly, its state-space grows exponentially, which is suitable for evaluating the efficiency of an approach.

The operational logic of a multi-track LC considers the railway traffic on each track: 1) the LC is closed to road traffic when at least one train is in the crossing zone; 2) the LC is reopened to road traffic only if no train is in the crossing zone.

For diagnosis purposes, a series of LC benchmarks with two classes of faults are considered. The benchmark consists of n (the number of tracks) railway traffic blocks, an LC controller block and a barrier block (see Figure 1).

The two fault classes which may occur are denoted by red colored transitions in the LPN model (Figure 1). The first one, named T f1 , related to a train-sensing defect is modeled by unobservable transition (t i,4 , ig) and indicates that the train may enter the LC zone before the barriers are lowered. The second failure, named T f2 , modeled by unobservable transition (t 6 , bf ) indicates a defect of the barriers that results in a premature rising. Either of these two faults can induce incorrect operation of the LC control and possibly train-car collisions. Three approaches of diagnosis of PN models are considered in the current study. Namely, the MBRG/BRD technique [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF], the FMG/FMSG technique [START_REF] Liu | On-the-fly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF] and the SSD technique [START_REF] Boussif | Combining enumerative and symbolic techniques for diagnosis of discrete-event systems[END_REF][START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF]. The first one is the MBRG/BRD approach developed in [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF]. Although it is based on the seminal diagnoser-based approach [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], it develops the concept of basis marking to perform both diagnosability analysis and on-line diagnosis, using a subset of reachable markings. More recently, Liu et al. developed the FMG/FMSG technique based on on-the-fly analysis of diagnosability with the simultaneously (partial) building of the diagnoser state-space [START_REF] Liu | On-the-fly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF]. In general, it allows performing diagnosability analysis and on-line diagnosis without building the whole state-space of the diagnoser. Nevertheless, the theoretical complexity is at the same level of the seminal diagnoser-based approach. However, in practice, it shows a good efficiency particularly for nondiagnosable models [START_REF] Liu | Model-based diagnosis of multi-track level crossing plants[END_REF]. In [START_REF] Boussif | Combining enumerative and symbolic techniques for diagnosis of discrete-event systems[END_REF][START_REF] Boussif | Contributions to fault diagnosis of discrete-event systems[END_REF], the on-the-fly analysis is adopted while considering a new variant of the diagnoser with a semi-symbolic representation of its state-space using binary decision diagrams (BDDs). The structure of this diagnoser variant shows some interesting features that allow for improving the diagnosability analysis. Moreover, using BDDs to encode the diagnoser nodes brings a considerable gain in terms of memory space and allows for employing efficient operations to handle the diagnoser nodes.

The three techniques show some common features, namely:

• Diagnoser-like structures are built to perform both diagnosability analysis and on-line diagnosis;

• The theoretical complexity is in exponential order of the state-space size of the model;

• They aim to avoid enumerating the whole state-space of the PN to tackle the state explosion problem;

• They have been implemented in dedicated tools, which allow us to make some experimental comparison.

Moreover, some other similarities can be pointed out:

• Both the MBRG/BRD and the FMG/FMSG techniques are based on building intermediate models (MBRG and FMG) as in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF];

• The FMG/FMSG and the SSD approaches analyze diagnosability on the basis of on-the-fly built statespace;

• The MBRG/BRD and the SSD approaches propose compact representation of diagnoser nodes (using basis markings and semi-symbolic representation, respectively).

MBRG/BRD Approach

The MBRG/BRD approach [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF] is a diagnoser-based approach for fault diagnosis of bounded LPNs. It consists in analyzing diagnosability on the basis of two compact models: the so-called MBRG and the BRD. The main idea behind the MBRG/BRD approach is the use of minimal explanations and basis markings [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF].

The introduction of minimal explanation aims to only generate necessary markings instead of the whole reachability state-space. Hence, the exhaustive enumeration of the state-space is not required. In order to recall the basic concept of this notion, let us note T r = T o ∪ T f and T a = T u \T f . Definition 2. Given a marking m and a transition t ∈ T r , we define Σ(m, t) = {σ ∈ T * a |m[σ > m , m ≥ P re(•, t)} as the set of explanations of t at m, and Y (m, t) = π(Σ(m, t)) the corresponding set of e-vectors (or explanation vectors), i.e., the firing vectors associated with the explanations.

Thus, Σ(m, t) is the set of unobservable no-faulty sequences whose firing at m enables t. Among the above sequences, we want to select those whose firing vectors are minimal.

Definition 3. Given a marking m and a transition t ∈ T r , we define Σ min (m, t) = {σ ∈ Σ(m, t)| σ 1 ∈ Σ(m, t) : π(σ 1 ) π(σ)} as the set of minimal explanations of t at m, and Y min (m, t) = π(Σ min (m, t)) the corresponding set of minimal e-vectors.

Modified basis reachability graph (MBRG)

Hereafter, we give the definitions of the basis marking and the MBRG as an automaton. Definition 4. (Basis marking [START_REF] Hosseini | A survey on efficient diagnosability tests for automata and bounded Petri nets[END_REF]) The initial marking of an LPN is also the initial basis marking X 0 b = m 0 . Starting from X 0 b , the reset of basis markings are generated iteratively (until

X i+1 b = X i b ) as follow: X i+1 b = X i b ∪ {m |m ∈ X i b ∧ t ∈ T r ∧ σ ∈ Σ min (m, t) ∧ m[σt > m }.
The set of basis markings for the MBRG is Q = X i b . Definition 5. (MBRG automaton [START_REF] Hosseini | A survey on efficient diagnosability tests for automata and bounded Petri nets[END_REF]) The MBRG is an automaton G = Q, E, δ G , q 0 , where 

q 0 = x 0 b , Q ⊂ R(N, m 0 ), E = T r × Y min (m,

Basis reachability diagnoser (BRD)

The diagnosability analysis using the MBRG/BRD approach is also based on the construction of a graph called BRD, which is a deterministic automaton that, is used in addition whith the MBRG, serves to check the necessary and sufficient condition for diagnosability.

In fact, the BRD is a deterministic graph where each node contains:

• a set of triples (q, v, h), where q is a basis marking, v ∈ {0, 1} is a boolean variable indicating the feasible faulty sequences, h ∈ {N, F } indicates if marking q is reachable with a fault transition has occurred or not;

• the diagnosis state of the node represented by .

• the arcs are labeled with observable events from Σ o .

Diagnosability analysis using the MBRG/BRD technique is based on the necessary and sufficient condition developed in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. This conditions is verified using the BRD in conjunction with the MBRG. In particular, one has to check if the BRD contains an uncertain cycle, namely a potential indeterminate cycle, and then using the MBRG to verify if that cycle is indeterminate or not.

FMG/FMSG Approach Fault marking graph (FMG)

In order to obtain a finite representation suitable for diagnosability analysis, the FMG is defined to record certain specific markings with their respective fault occurrence information. Definition 6. A fault marking (FM) upon a sequence σ ∈ T * is a vector x ∈ N |P |+1 :

x = mark(x) tag(x)
where M 0 [ σ > mark(x), and tag(x

) = 1 if (∃ j ∈ N)(σ j ∈ T f ), otherwise tag(x) = 0.
For two FMs x and x , we note x [ σ > x iff 1) mark(x) [ σ > mark(x ), and 2) tag(x

) = 1 if (∃j ∈ N)(σ j ∈ T f ), otherwise tag(x ) = tag(x).
Definition 7. The fault marking graph (FMG) w.r.t. a given fault class is a 4-tuple (N g , A g , delay, x 0 ), where:

• x 0 = [M τ 0 , 0] τ is the initial node 1 ; • N g is the set of FMG nodes; • A g ⊆ N g × Σ o × N g is the set of directed and labeled arcs. (x, e, x ) ∈ A g if (∃σ ∈ T * u T o )((x [ σ > x ) ∧ (P o (ϕ(σ)) = e));
• delay : N g → N ∪ {+∞} is the delay function:

-delay(x) = 0 if tag(x) = 0; -otherwise, * delay(x) = +∞ if (∃e 1 , • • • , e k ∈ Σ o )(∃x 1 , • • • , x k , x k+1 ∈ N g )[((x i , e i , x i+1 ) ∈ A g ) ∧ (x k+1 = x 1 = x)]; * otherwise, delay(x) = max( (xj ,ej ,x)∈Ag {delay(x j )}) + 1.
In simple terms, an FMG is a directed non-deterministic graph. Each node indicates an FM and each arc indicates an observable event. Actually, an FMG can be treated as a specific -reduced observer automaton with tags indicating fault occurrence. Here, delay function is used to determine the maximum number of possible successive fault nodes, which will be used to calculate the Delay value in the FMSG. delay(x) = +∞ implies that x is in a cycle of faulty FMs where the occurrence of a fault can be propagated infinitely.

Fault marking set graph (FMSG)

Based on the FMG, FMSG can be generated for both diagnosability analysis and on-line diagnosis.

A fault marking set (FMS) is a maximal finite set of FMs that are reachable from the initial FMG node by the same observation. Formally, it can be written by: {x

∈ N g | ∃ σ ∈ T * T o , σ ∈ L, P o (ϕ(σ)) = s, x 0 [ σ > x}.
Definition 8. A fault marking set graph (FMSG) is a 5-tuple (N G , A G , T ag, Delay, Y 0 ), where

• Y 0 = {x 0 } is the initial node; • N G is the set of FMS nodes of FMSG; • A G ⊆ N G ×Σ o ×N G is the set of directed and labeled arcs. (Y, e, Y ) ∈ A G if ∀x ∈ Y , ∃x ∈ Y such that (x, e, x ) ∈ A g ; • tag is the tagging mapping tag : N G → {N, F, U }: tag(Y ) =    N if ∀ x ∈ Y, tag(x) = 0 F if ∀ x ∈ Y, tag(x) = 1 U otherwise • Delay : N G → N ∪ {+∞} is the delay function: -Delay(Y ) = 0 if tag(Y ) ∈ {N, F }, otherwise -Delay(Y ) = max( x∈Y {delay(x)}).
An FMS Y is normal (resp. F -certain, F -uncertain) if tag(Y ) = N (resp. F , U ). Delay(Y ) denotes the maximum number of successive F -uncertain FMSs from the first possibly occurred fault until Y . In particular, Delay(Y ) = +∞ implies that Y is in an indeterminate cycle and the net is not diagnosable.

The FMSG is a deterministic diagnoser-like graph structure for both diagnosability analysis and on-line 1 A τ denotes the transpose of matrix A.

diagnosis. For a bounded LPN, both the FMG and the FMSG are finite. In order to perform diagnosability analysis efficiently, one does not necessarily build the whole FMG and FMSG in this approach.

SSD Approach

Since the SSD approach is relatively recent, we dedicate a larger space in this section to go through its main features. As mentioned earlier in the paper, the technique is based on the a semi-symbolic diagnoser (SSD) computed on the fly, the nodes of which are encoded using binary decision diagrams (BDDs) while the transitions linking the nodes are represented explicitly. In order to define the SSD more formally, we introduce the following notations:

• Given a subset of transitions T ⊆ T , we define Enable T (m) = {t ∈ T | m [ t >}, as the set of transitions in T that are enabled at marking m. The extension to a subset of markings

M ⊆ R(N, m 0 ), is Enable T (M ) = m∈M Enable T (m).
• Given a subset of markings M ⊆ R(N, m 0 ) and a transition t ∈ T , we define

Img(M, t) = {m ∈ R(N, m 0 ) | ∃m ∈ M : m [ t > m }
as the set of markings reachable from the markings in M by firing transition t. The generalization to a subset of transitions T ⊆ T is Img(M , T ) = t∈T Img(M , t). 1. the set of normal markings (denoted by M N ), which is the subset of markings in the node that are reachable by firing faulty-free sequences. 2. the set of faulty markings (denoted by M F ), which is the subset of markings in the node that are reachable by firing faulty sequences. There may exist some faulty transitions that link some markings in M N to some others in M F within the same node. The existence of such transitions is also encoded within each node using a boolean variable.Actually, such a node structure can be advantageously explored for rendering diagnosability analysis more efficiently than using the classic structure of diagnosers [START_REF] Cabasino | Diagnosability of bounded Petri nets[END_REF][START_REF] Liu | Toward an efficient approach for diagnosability analysis of DES modeled by labeled Petri nets[END_REF].

Three types of diagnoser nodes can be distinguished:

• N-certain diagnoser node: is a diagnoser node whose the set of faulty markings is empty (M F = ∅); • F-certain diagnoser node: is a diagnoser node whose the set of normal marking is empty (M N = ∅); • F-uncertain diagnoser node: is a diagnoser node of which neither the normal set, nor the faulty set of markings, is empty, i.e., M N = ∅ and M F = ∅. To simplify the notation, we use a.M N (resp. a.M F ) to indicate the set of normal markings M N (resp. set of faulty markings M F ) of a given diagnoser node a. The SSD associated with an LPN N L is a directed deterministic graph D = Γ, Σ o , δ D , Γ 0 , where:

1. Γ is a finite set of diagnoser nodes; 2. Σ o is a finite set of events associated with a finite set of observable transitions T o ;

3. Γ 0 is the initial diagnoser node with:

a) Γ 0 .M N = Reach Treg (m 0 ); b) Γ 0 .M F = Reach Tu (Img(Γ 0 .M N , T f )). 4. δ D : Γ × Σ o → Γ is the transition relation, defined as follows: ∀a, a ∈ Γ, σ ∈ Σ o : a = δ D (a, σ) ⇔ a .M N = Reach Treg (Img(a.M N , T σ )) ∧ a .MF = ReachT u (Img(a .MN , T f ) ∪ Img(a.MF , Tσ))
In summary, the SSD D is constructed as follows: let the current node be a and let σ be an observable event, such that

∃ t ∈ T σ ; ∃ m ∈ M N ∪ M F : m [ t >.
Then, the target diagnoser node a reachable from a by occurrence of σ is computed following the rules below:

1. If Enable T (a.M N ) ∩ Enable T (a.M F ) ∩ T σ = ∅, then • a .M N = Reach Treg (Img(a.M N , T σ )) • a .M F = Reach Tu (Img(a .M N , T f ) ∪ Img(a.M F , T σ )) 2. If Enable T (a.M N )\Enable T (a.M F )∩T σ = ∅, then • a .M N = Reach Treg (Img(a.M N , T σ )) • a .M F = Reach Tu (Img(a .M N , T f )) 3. If Enable T (a.M F )\Enable T (a.M N )∩T σ = ∅, then • a .M N = ∅ • a .M F = Reach Tu (Img(a.M F , T σ ))
Since all the successors of an F -certain node are also F -certain, it is unnecessary to build them (i.e., the subsequent F -certain nodes) because they do not bring new information from the diagnosis point of view. Indeed, as regards diagnosability analysis, and given the necessary and sufficient condition of diagnosability established in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF], only the analysis of F -uncertain cycles is necessary. Thus, as faults are permanent, one can be certain that no such cycles can exist subsequently to an F -certain node.

Diagnosability Analysis

For the SSD approach, a necessary and sufficient condition for diagnosability is formulated on the basis of the SSD structure and a systematic procedure for checking such a condition on the fly and directly upon the diagnoser, without needing any intermediate model, is developed.

Proposition 1. Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i ) = a (i+1)modn for 1 ≤ i ≤ n.
Then, there exists at least one fault-free cycle in LPN N L that shares the same observation (σ 1 , σ 2 , . . . , σ n ) * . This result is interesting for checking F -indeterminate cycles, using both the classic diagnoser-based approaches and the SSD. It is, in fact, sufficient to check that an Funcertain cycle in the diagnoser corresponds to a faulty cycle in the original model (or the intermediate model), without checking the existence of the faulty-free cycle (since this is plain henceforth).

Necessary and Sufficient Condition

In the SSD approach, the necessary and sufficient condition for diagnosability is established on the basis of the notion of 'indicating sequence', which is associated with the Funcertain cycles.

Definition 10. (c -indicating sequence)

Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D (the starting node a 1 can be arbitrarily chosen in the cycle), with δ D (a i , σ i ) = a (i+1)modn for 1 ≤ i ≤ n. c -indicating sequence ρ c = S 1 , S 2 , . . . , is an infinite sequence of sets of markings, such that:

-S 1 = a 1 .M F ; -∀ i > 1 : S i = Reach Tu (Img(S i-1 , T σ (i-1) modn ));
In fact, the c -indicating sequence tracks the subsets of faulty markings in each node of c without considering the faulty markings generated through the occurrence of some faulty transitions outgoing from the normal set of markings in the traversed nodes (except for S 1 which holds all the faulty states of a 1 .M F , i.e., S 1 = a 1 .M F ). Actually, the c -indicating sequence is introduced with the aim of tracking the actual faulty cycles corresponding to a given F -uncertain cycle, if such cycles exist in the original model. Proposition 2. Let c = a 1 , a 2 , . . . , a n be an F -uncertain cycle in D, with δ D (a i , σ i ) = a (i+1)modn for 1 ≤ i ≤ n, and let ρ c = S 1 , S 2 , . . . be the c -indicating sequence associated with c . Therefore, the following property holds true:

∃ k ∈ N : ∀ i ∈ N : S (1+(k+i)n) = S 1+(kn) .
Proposition 2, establishes the fact that there exists an index i from which c -indicating sequence ρ c shows a repetitive bloc of length n: [S (i+1) , S (i+2) , . . . , S (i-1+n) S (i+n) ] with S (1+i+n) = S i (i.e., a cycle). Phrased differently, ρ c always takes one of these two forms:

1. A prime sequence: a non-cyclic elementary sequence (possibly empty) S 1 , S 2 , . . . , S i , connected to an elementary cycle (S (i+1) , S (i+2) , . . . , S (i-1+n) , S (i+n) ) * , with S (i+1+n) = S i+1 ; 2. A finite sequence of non-empty elements followed by an infinite number of empty elements: S 1 , S 2 , . . . , S i for i ∈ N * , with S (i+k) = ∅, ∀k ∈ N * .

In fact, the first case, i.e., a prime sequence, reveals the presence of at least one faulty cycle in the LPN model, that corresponds to the F -uncertain cycle c . This is depicted in the c -indicating sequence by the presence of the elementary cycle. In the second case, the F -uncertain cycle in the SSD does not correspond to an actual faulty cycle in the model. On the basis of Proposition 2, one can check whether an F -uncertain cycle is an F -indeterminate one or not.

Theorem 1. For an F -uncertain cycle c = a 1 , a 2 , . . . , a n in D, and ρ c = S 1 , S 2 , . . . its corresponding c -indicating sequence. Then, c is an F -indeterminate cycle if and only if: ∀i ∈ N * : S i = ∅.

Actually, Theorem 1 states that an F -uncertain cycle is an F -indeterminate one if the c -indicating sequence does not reach an empty fixed-point. In other words, it takes the form of a prime sequence.

For the actual verification of diagnosability, a systematic procedure is derived directly from Theorem 1 and can be performed as follows:

When an F -uncertain cycle c is found in SSD D, then:

1. generate the successive elements of c -indicating sequence ρ c (starting from S 1 ), and for each element S i check the following conditions:

(a) if S i = ∅, then cycle c is not an F -indeterminate cycle and therefore the procedure is stopped; (b) else, if S i = ∅ and ∃k ∈ N : i = 1 + kn (with n = |c |), then: i. if S i = S (i-n) , then cycle c is an Findeterminate cycle and stop the procedure; ii. else continue. This procedure is repeated on each F -uncertain cycle generated on the fly in D. It is worth underlining that, on the basis of Proposition 2, one can be certain that the above procedure terminates since a fixed-point will ultimately be reached (within a finite delay).

Discussion

Features of Approaches Considered

The main feature of the MBRG/BRD approach is the use of minimal explanations and basis markings, which allow to represent the reachability state-space in a compact manner. However, the MBRG is generally, but not necessarily, smaller than the reachability graph.

The FMG/FMSG approach solves four problems (Kdiagnosability, diagnosability, the minimum value K min ensuring K-diagnosability and on-line diagnosis) using the same structures, i.e., the FMG and the FMSG. The idea behind is to solve these diagnostic problems on generating necessary state-space in an incremental way.

The SSD approach, combining the advantages of the former two approaches, uses a compact representation of the diagnoser state-space based on the semi-symbolic representation.

It represents the diagnoser nodes symbolically, while the arcs remain in an explicit manner.

Moreover, constructing the diagnoser and checking diagnosability are simultaneously performed on the fly. Generally, this avoids building the whole diagnoser. In addition, unlike in other approaches, the structure of the diagnoser in this approach provides some interesting features that allow for checking the necessary and sufficient condition for diagnosability without building any intermediate model. Some main features of these approaches are summarized in Table 1.

Tools Implementing the Approaches

The MBRG/BRD approach is implemented in a MATLAB Toolbox called PN_Diag [START_REF] Pocci | A toolbox for diagnosability of Petri nets[END_REF][START_REF] Cabasino | A comparison among tools for the diagnosability of discrete event systems[END_REF]. The tool takes PN models in mathematical representation (i.e., matrix form) as input (a MATLAB file). Firstly, it generates the MBRG (on the based of the BRG), and then generates the BRD (on the based of the BRG as well), and finally, checks the diagnosability. In the case of non-diagnosable models, PN_Diag outputs all the event-traces corresponding to Findeterminate cycles in the BRD.

The FMG/FMSG approach is implemented in OF-PENDA tool [START_REF] Liu | OF-PENDA: A software tool for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF], which is a software tool developed in C++ programming language. OF-PENDA takes the mathematical model of an LPN as input.The tool is based on the on-the-fly and incremental analysis of Kdiagnosability. Therefore, the generated model for the K th step is used for (K + 1) th step. If the system is diagnosable, the minimum value K min ensuring K-diagnosability is given, and the online diagnoser is generated.

The SSD approach is implemented in DPN-SOG tool, which is a command-line software tool developed in C++ programming language. DPN-SOG takes as inputs: (i) the LPN models in prod format [START_REF] Varpaaniemi | Prod 3.2 an advanced tool for efficient reachability analysis[END_REF], (ii) the bound k of the net as an integer and (iii) a text file which specifies the sets of observable, non-observable and faulty transitions. Using these ingredients, DPN-SOG builds on the fly the SSD and simultaneously analyzes the diagnosability. When the LPN model is non-diagnosable, DPN-SOG outputs the generated part of the diagnoser as well as a witnessed diagnoser event-trace that violated the diagnosability property (the first encountered event-trace). When the LPN model is stated to be diagnosable, DPN-SOG generates the part of the diagnoser that is sufficient to perform the online diagnosis. Further complementary information that helps the evaluation of the approach can be output, namely, the required CPU time, the size of the diagnoser, the number of used BDD nodes and memory size of the diagnoser (in terms of kilobytes).

Experimentations

The three techniques are applied to analyze the diagnosability of the LC benchmark, respectively. The experiments are performed on a 64-bit PC (CPU: Intel Core i5, 2.5 GHz; RAM: 6 GB), and the results are summarized in Table 2. Regarding the obtained results, the following remarks can be underlined:

1. In non-diagnosable cases, one can observe that the SSD and the FMG/FMSG approaches efficiently analyze the diagnosability by only constructing the relevant part of the diagnosers, which reduces the memory/time consumption. Actually, while the PN_Diag tool blocks from n = 4, both OF-PENDA and DPN-SOG tools provide the diagnosability verdict in a few seconds even for large values of n. This is due to the on-the-fly analysis which allows for performing the diagnosability analysis based on a partial building of the diagnoser. In other terms, the state-space generation as well as the analysis is stopped as soon as an indeterminate cycle is found. This is an interesting feature especially when we deal with large models. 2. In the case of diagnosable cases, i.e., when the barriers failure (T F2 ) is considered, the two approaches implementing an on-the-fly procedure potentially have to construct a larger part of the diagnoser state-space. Consequently, the verification process checks all the F-uncertain cycles of the diagnosers to analyze the diagnosability of the models. In this case, the obtained results clearly reflect the exponential feature of the diagnoser-based approaches. Actually, this is unavoidable when working with diagnoser-based approaches, since it is due to the deterministic nature of the diagnoser. 3. Compared with the other tools, the DPN-SOG tool provides better results on the cases considered. In particular, the DPN-SOG tool successes to analyze the diagnosability of all the models considered, while the other tools fail as early as from 5 tracks. This can be explained through two main points: (a) The SSD approach only constructs one graph since diagnosability analysis is performed directly on the diagnoser; (b) The systematic procedure for checking the necessary and sufficient condition based on the SSD allows for reducing the verification time; (c) Besides the gain in terms of memory, the use of BDDs for representing the diagnoser nodes allows for using efficient techniques to generate the diagnoser nodes and perform the verification.

Combining the Three Approaches

As a conclusion, it may be interesting to develop an approach to incorporate the main features of the three approaches. The minimal explanation in the MBRG/BRD approach can be used to generate the reachability statespace in a compact manner. Then, diagnoser nodes can be composed of only basis markings. In addition, each diagnoser node can be split into two sets of basis markings: the set of normal basis markings and the set of faulty basis markings. Both sets are encoded in a symbolic manner using BDDs, as in the SSD approach. The diagnoser construction and the diagnosability analysis will be simultaneously performed with an on-the-fly depth-first search procedure, as in the FMG/FMSG approach. Such a combination may improve the efficiency of diagnosability analysis and further reduce the time/memory consumption.

Conclusion

This paper compares three diagnoser-based techniques for diagnosability analysis of LPNs, namely the MBRG/BRD approach, the FMG/FMSG approach and the SSD approach.

A railway level crossing benchmark, which shows both diagnosable and non-diagnosable faults, is chosen as an experimental benchmark. Three software tools associated with the considered approaches are used for the analysis. The approaches are evaluated particularly in terms of the generated state-space of advanced models and the time required for constructing such models and analyzing diagnosability.

In the future, we intend to develop an approach that combines the main features of three approaches.

Figure 1 :

 1 Figure 1: The multi-track level crossing benchmark

•

  Given a marking m ∈ R(N, m 0 ) and a subset of transition T ⊆ T , we define Reach T (m) = {m} ∪ {m ∈ R(N, m 0 )|(∃s ∈ T * ) : m [ s > m } as the set of markings reached by firing a sequence of transitions in T from marking m. The generalization to a subset of markings M⊆ R(N, m 0 ) is Reach T (M ) = m∈M Reach T (m).The Structure of the diagnoser node Each node in the (SSD) is partitioned into two distinct subsets of markings, each of them is encoded using a BDD.
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Table 1 :

 1 Features of the approaches considered

	Features	MBRG/BRD	FMG/FMSG	SSD
	Representation	basis markings fault markings symbolic markings
	The generator	MBRG	FMG	no generator
	Double-check	yes	yes	no
	On-the-fly analysis	no	yes	yes

Table 2 :

 2 Comparative experimental results | |BRD T | BRD e (s) |F M SG S | |F M SG T | F M SG e (s) |SSD S | |SSD T | SSD e (s) n: the number of tracks; • |P | and |T |: the number of places and transitions in the PN models, respectively; • |AR| and |NR|: the number of nodes and arcs in the reachability graph, respectively; • BRDS| and |BDRT |: the numbers of nodes and arcs in the BRD, respectively; • |F M SGS| and |F M SGT |: the numbers of nodes and arcs in the FMSG, respectively; • |SSDS| and |SSDT |: the numbers of nodes and arcs in the SSD, respectively; • BRDe, F M SGe and SSDe: the time required to generated the models and checking diagnosability, respectively; • 'Diag.': the diagnosability verdict.

	n |A| |BRD S 1 12 10 Petri net features |P | |T | |N | 20 43 21	BRD 31	0.1	12	FMSG 22	≤ 0.1	10	SSD 14	Diag. T Fi ≤ 0.1 yes
	2 15 14	142	500	168	454	1.3	25	27	≤ 0.1	9	8	≤ 0.1 no	
	3 18 18	832	4085	967	3845	46.0	32	34	≤ 0.1	10	9	≤ 0.1 no	
	4 21 22	4314	27142	4869	25740	1477.0	39	41	≤ 0.1	11		≤ 0.1 no	T F1
	5 24 26 20556	157551	*	*	o.t.	46	48	≤ 0.1	12	11	≤ 0.1 no	
	6 27 30 92070	831384	*	*	o.t.	53	55	≤ 0.1	13	12	≤ 0.1 no	
	7 30 34 393336	4086585	*	*	o.t.	60	62	≤ 0.1	14	13	≤ 0.1 no	
	1 12 10	20	43	21	31	0.1	17	39	≤ 0.1	10	14	≤ 0.1 yes	
	2 15 14	142	500	167	454	1.2	176	661	≤ 0.1	83	205	≤ 0.1 yes	
	3 18 18	832	4085	967	3845	38.5	1192	6436	0.6	483	1745	≤ 0.2 yes	
	4 21 22	4314	27142	4896	25740	1099.5	8192	58574	47.1	2434	11774	0.7 yes	T F2
	5 24 26 20556	157551	*	*	o.t.	*	*	o.t.	11304	69112	12.4 yes	
	6 27 30 92070	831384	*	*	o.t.	*	*	o.t.	56136 414299	236 yes	
	7 30 34 393336	4086585	*	*	o.t.	*	*	o.t. 261262 2282890	5822 yes	
	*: No result obtained in 4 hours.	o.t.: Out of time (simulation time ≥ 4 hours).					
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