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Proper Generalized Decomposition for

Multiscale and Multiphysics Problems

David Néron, Pierre Ladevèze

Abstract This paper is a review of the developments of
the Proper Generalized Decomposition (PGD) method for
the resolution, using the multiscale/multiphysics LATIN
method, of the nonlinear, time-dependent problems
((visco)plasticity, damage, . . . ) encountered in computa-
tional mechanics. PGD leads to considerable savings in
terms of computing time and storage, and makes engineer-
ing problems which would otherwise be completely out of
range of industrial codes accessible.

1 Introduction

Numerical simulation is playing an increasingly important
role in disciplines related to science and engineering, and
one can observe a growing interest in methods which en-
able an accurate prediction of the behavior of a system or
structure. One of the most visible signs is the willingness of
the world’s main industrial actors to turn to “Virtual Test-
ing”. The objective of simulation is not to replace experi-
mental tests altogether, but to reduce their extent by choos-
ing them more appropriately and preparing them better. In
order to increase one’s confidence in numerical results, it is
often necessary to take into account as many of the inter-
acting physical systems as possible and describe them on
scales which can be very refined. Thus, one must be capa-
ble of dealing with problems in which several very different
scales can be identified and in which different physics can
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be coupled. These are referred to as “multiscale” and “mul-
tiphysics” problems.

The use of standard resolution techniques based on the
finite element method can be considered in order to solve
such problems provided that today’s computational means,
particularly parallel computing, are used to their fullest ex-
tent. Unfortunately, in some cases, the number of degrees
of freedom leads to systems so large that direct techniques
are inapplicable and it is necessary to introduce new meth-
ods. The method which will be described in detail here is the
LArge Time INcrement (LATIN) strategy [51]), with partic-
ular emphasis on the use of what is now called Proper Gen-
eralized Decomposition (PGD) to reduce computation costs.
The LATIN technique, which was originally introduced un-
der the name “Radial Approximation” in [47] in the context
of evolution problems, consists in seeking an approximate
solution f (t,M) of a problem defined over a time-space do-
main using a “finite sum decomposition”:

f (t,M) ≈ f̌p(t,M) =

p∑

i=1

λi(t)�i(M) (1)

then constructing the best decomposition of the previous
form automatically. More recently, PGD was extended to
other contexts, such as the resolution of what one calls “mul-
tidimensional” problems, in which a very large number of
variables can interact [2, 3, 12], or the resolution of sto-
chastic problems (in which case one talks about “General-
ized Spectral Decomposition”) [70, 71]. Within the frame-
work of the LATIN method, the PGD technique has given
rise to a large number of works since its introduction. Those
which have been included in this review paper are the works,
now considered to be mature, which concern the treatment
of multiscale problems in space and time and the treatment
of multiphysics problems.
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Generally speaking, representations of the “finite sum de-
composition” type are clearly related to the definition of the
Proper Orthogonal Decomposition (POD: see, e.g., [11]) of
function f by saying that f̌p minimizes the distance to f in
the sense of a certain norm. The POD technique, also known
as Karhunen-Loève decomposition [43], Singular Value De-
composition [32] (in the discrete case) or Principal Compo-
nent Decomposition [42], was the source of a great many
model reduction techniques, known as a posteriori tech-
niques, particularly for the resolution of problems defined
over a very large time interval or for series of “similar” prob-
lems (see, e.g., [38, 45, 60, 61]). These techniques are based
on the resolution, in what is called a “learning” phase, of a
related problem which is less costly than the original prob-
lem, whose solution is decomposed using POD. Then, the
initial model is reduced through its projection over the re-
sulting basis, leading to an inexpensive resolution. Thus, the
quality of the solution obtained is highly dependent on the
proper choice of the related problem, which is one of the
main drawbacks of these methods, even though techniques
have been proposed to enrich the basis automatically if it is
found to be insufficient to represent the solution [75, 76].
Conversely, PGD is an a priori model reduction technique
because it consists in generating, directly and automatically,
the best decomposition of type (1) for the problem one seeks
to solve without relying on particular bases of functions of
time or functions of space and without attempting to orthog-
onalize it.

In this paper, we synthesize the works presented in [52,
55, 56, 72] in order to deal with multiscale problems. These
works consist in partitioning the space-time domain: the
structure is defined as an assembly of substructures and in-
terfaces, each with its own variables and its own equations.
The time interval is divided into subintervals, using the dis-
continuous Galerkin method to handle possible discontinu-
ities. Two scales (the microscale and the macroscale) are in-
troduced in order to define the interface variables. The con-
nection between the macroscale and the microscale takes
place only at the interfaces. Each quantity of interest is
considered to be the sum of a macro quantity and a micro
quantity, the macro quantities being viewed as “mean val-
ues” in time and in space while the associated micro quanti-
ties are the complementary parts. Then, the LATIN method
is used to solve the problem incrementally. At each itera-
tion, one must solve a macro problem, defined over the en-
tire structure and the entire time interval, along with a fam-
ily of independent linear problems, each concerning a par-
ticular substructure and its boundary. The latter problems
are called “micro” problems in contrast with the “macro”
problem which corresponds to the entire structure homoge-
nized in both time and space. In these works, the PGD tech-
nique was used to drastically reduce the cost of the resolu-
tion of the numerous micro problems (whose sizes can be

very large) within the cells or substructures. As the itera-
tive process goes on, the functions of the space variables
constructed with the PGD technique form a consistent basis
which can be reused for successive iterations.

Concerning multiphysics problems, the works described
here come from [20, 68]. In these papers, the feasibility of
the method was tested through the simulation of the transient
saturated poroelastic evolution of a medium whose physics
involves the fluid phase in connected cavities and the solid
phase as the skeleton of the porous medium; both entities
were homogenized, leading to a highly coupled multifield
problem. In such a problem, the unknowns associated with
each physics are assumed to be defined over the whole time-
space domain and the coupling is defined through the con-
stitutive relations, which implies that the coupled problem
to be solved is defined over the whole time-space domain.
The strategy which was used consists in generalizing the
concept of a geometric interface between substructures to
that of an interface among physics [20]. This interface is
defined over the whole time-space domain and its behavior
consists in the verification of the constitutive relations which
couple the physics. Then, the remaining compatibility and
equilibrium equations are global equations defined over the
whole time-space domain, but they are uncoupled with re-
spect to the physics. The LATIN method is used to generate
iteratively a solution which verifies both the global, single-
physics equations and the local, coupled equations which
constitute the interfaces among the physics. The number of
fields involved and, therefore, the number of single-physics
global problems to be solved over the whole time interval
can be very large. Again, the PGD technique was used to
achieve a drastic reduction in the cost of constructing and
storing these fields.

The paper is structured as follows: in Sect. 2, we present
an overview of Proper Generalized Decomposition, with
particular emphasis on how a problem defined over the
space-time domain can be rewritten in the form of a mini-
mization problem and how this minimization problem can
be handled; in Sect. 3, we introduce the LATIN method as
a solver for a nonlinear evolution problem; in Sect. 4, we
show how PGD enables a reduction in computation cost; in
Sect. 5, we illustrate the use of that method for the resolution
of a viscoelastic problem involving contact surfaces with
friction; finally, in Sect. 6, we present the LATIN method
for multiphysics problems in the particular case of a porous
medium.

2 The Proper Generalized Decomposition Technique

2.1 Justification for Using Separated Time and Space
Representations

In this section, we follow [51] and consider a time-space
domain I × � where I = [0, T ] and � ⊂ R

d . With f being
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a known scalar function defined over I × �, let us study the
“best” pth-order time-space approximation of function f :

f̌p(t,M) =

p∑

i=1

λi(t)�i(M) (2)

λi and �i constitute reduced bases of the spaces of the time
and space functions respectively. The idea of Proper Orthog-
onal Decomposition (POD), also known as Principal Com-
ponent Decomposition [42] or, in the finite-dimensional
case, Singular Value Decomposition [32], is to define the ap-
proximation f̌p as that which minimizes the distance to the
initial function f with respect to a particular norm ‖ · ‖I×�:

f̌p =

p∑

i=1

λi�i = arg min
λi ,�i

∥∥∥∥∥f −

p∑

i=1

λi�i

∥∥∥∥∥

2

I×�

(3)

Classically, the norm chosen is that which is associated
with the scalar product:

〈f,g〉I×� =

∫

I×�

fg d�dt (4)

Then, if one introduces the following scalar products:

〈f,g〉I =

∫

I

fg dt and 〈f,g〉� =

∫

�

fg d� (5)

one can prove that (3) is an eigenvalue problem whose
eigenfunctions are the time functions λi . This problem can
be rewritten as the stationarity of the Rayleigh quotient:

R(λ) =
‖〈f,λ〉I‖

2
�

‖λ‖2
I

(6)

Under classical regularity assumptions on f , the eigen-
value problem has a countable sequence of eigensolutions
(α−1

i , λi), with the eigenvalues α−1
i being positive and the

eigenfunctions λi orthogonal.
Once the time functions λi have been determined, the

corresponding space functions �i are:

�i =
〈f,λi〉I

‖λi‖
2
I

(7)

The following convergence property is verified:

‖f − f̌p‖I×� −→
p→+∞

0 (8)

and a simple measure of the relative error is:

ηp =
‖f − f̌p‖I×�

‖ 1
2 (f + f̌p)‖I×�

(9)

To illustrate the relevance of separated time and space
representations, let us consider the case of a randomly-
obtained irregular function f defined over a time-space do-
main I ×[0,L] in which space is one-dimensional. Figure 1

shows function f along with its first-, second- and third-
order approximations. The relative error achieved with only
3 radial functions was less than 1%, which gives an idea of
the remarkable accuracy achievable with the proposed time-
space approximation.

2.2 A Posteriori and A Priori Model Reduction

The previous decomposition can be performed when func-
tion f is known. This type of technique is commonly used
in the context of data analysis when the objective is a low-
dimensional approximate description of a high-dimensional
process (see [11] for a discussion of some applications in the
context of dynamic systems), as well as in image processing
applications when the objective is to extract the most rele-
vant part of an image in order to compress the data.

When function f is unknown (because it is the solution
of a complex problem which must be solved), the sepa-
rated representation technique can also be used to reduce
the computational cost of the simulation. The most popular
technique, known as the a posteriori reduction method (see,
e.g., [38, 45, 60, 61]), is based on the principle of solving
a related problem which is much simpler than the original
problem (typically, the same as the original problem, but
over a very short time interval or, conversely, the problem
defined over the whole time interval, but with a very coarse
time discretization or the resolution for a given set of para-
meters if the objective is to carry out a sensitivity analysis).
Then, the solution obtained in this “learning” phase (called
a “snapshot”) is decomposed through POD, and the result-
ing reduced basis (e.g. the truncated basis of the space func-
tions) is used to project the equations of the initial prob-
lem. The resolution of the problem thus reduced is much less
costly than that of the initial problem and the quality of the
result can be evaluated a posteriori, for example by measur-
ing a residual error. Of course, the quality of that solution is
highly dependent on the choice of the related problem used
in the learning phase. Indeed, the basis resulting from the
decomposition of the snapshot can be insufficient to pro-
vide a refined representation of the still unknown solution
of the initial problem, and it is necessary to reach a compro-
mise between that and a learning phase which would bring
in a wealth of information, but would be costly in comput-
ing time. Strategies were proposed in [75, 76] to overcome
this difficulty by controlling the error in the solution and en-
riching the initial basis in the process. However, difficulties
have been observed in some cases (including particularly the
wave equation) where the enrichment, based on the use of
Krylov subspaces, was not optimal.

Directly opposed to these a posteriori techniques are a

priori model reduction techniques, whose objective is to
generate the best approximation of the solution of the prob-
lem in separated form directly. These methods, based on
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Fig. 1 Time-space
approximations of an irregular
function f

what was recently named Proper Generalized Decomposi-
tion (PGD), require the implementation of algorithms which
are quite unlike the usual incremental techniques. Among
the works dealing with PGD, one can mention the resolu-
tion of what one calls multidimensional problems, in which
a very large number of variables can interact [3, 12], or the
resolution of stochastic problems [70, 71] (in which case
one uses the term “Generalized Spectral Decomposition”).
In the following sections, we will study the use of the LATIN
method for the resolution of a nonlinear evolution problem
and we will show how PGD can lead to a reduction in the
computation cost.

3 The LATIN Method as a Nonlinear Solver

3.1 The Reference Problem

In order to illustrate the method, let us consider the case
of the quasi-static, isothermal evolution of a structure de-
fined over the time-space domain I × �, where I = [0, T ]

and � ⊂ R
d . Under the assumption of small perturbations,

the state of the structure is defined by: εp, the inelastic part
of the strain field ε corresponding to the displacement field
U , which uncouples into an elastic part εe and an inelas-
tic part εp = ε − εe; X, the remaining internal variables; σ ,
the Cauchy stress field; and Y, the set of variables conjugate

of X. All these quantities are defined over the time-space
domain I × � and are assumed to be sufficiently regular.
Introducing the following notations for the primal and dual
fields:

u =

[
U

0

]
, ep =

[
εp

−X

]
, e =

[
ε

0

]
, ee =

[
εe

X

]
,

so that ep = e − ee and f =

[
σ

Y

]
(10)

the mechanical dissipation rate for the entire structure � is:
∫

�

(ε̇p : σ − Ẋ · Y)d� =

∫

�

(ėp ◦ f)d� (11)

where · denotes the contraction associated with the tensorial
nature of X and Y, and ◦ denotes the corresponding operator.
Let us introduce the bilinear “dissipation” form:

〈s, s′〉 =

∫

I×�

(
1 −

t

T

)
(ėp ◦ f′ + ė′

p ◦ f) d�dt (12)

along with E and F, the spaces of the fields ėp and f which
are compatible with (12) (using �̇ to designate the time
derivative). These spaces enable us to define S = E × F, the
space in which the state s = (ėp, f) of the structure is being
sought.

A normal formulation with internal state variables is used
to represent the behavior of the material. The state law is
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Fig. 2 The reference problem
and boundary conditions

assumed to lead to:

f = Aee with A =

[
K 0
0 �

]
(13)

where Hooke’s tensor K and the constant, symmetric and
positive definite tensor � are characteristics of the material
and, therefore, operator A is constant, symmetric and posi-
tive definite. The evolution law, which can be nonlinear, is
assumed to be given by the positive differential operator B

such that:

ėp = B(f) (14)

Let us note that such a behavior formulation is available
for most material models. For a detailed description of op-
erators A and B in the cases of viscoelastic or viscoplastic
materials, the reader can refer to [51].

In this reference problem, the structure is subjected to
prescribed body forces f

d
, traction forces F d over a part

∂2� of the boundary, and displacements Ud over the com-
plementary part ∂1� (see Fig. 2). For the sake of simplic-
ity, the displacement U alone is assumed to have a nonzero
initial value denoted U0. In order to formulate the reference
problem, let us introduce the following functional subspaces
of S (where �

⋆ denotes vector spaces associated with affine
spaces):

• the space U of the kinematically admissible fields u

whose displacement U is equal to the prescribed displace-
ment Ud over ∂1� and verifies the initial conditions U0:
U |∂1�

= Ud and U |t=0 = U0.
• the space F of the statically admissible fields f whose

stress field σ is in equilibrium with the prescribed exter-
nal forces F d over ∂2� and verifies the momentum con-
servation equation:

∀u⋆ ∈ U
⋆, −

∫

I×�

f ◦ e(U̇
⋆
) d�dt +

∫

I×�

f
d

· U̇
⋆
d�dt

+

∫

I×∂2�

F d · U̇
⋆
dSdt = 0 (15)

• the space E of the kinematically admissible fields ė

whose strain field ε derives from a displacement field U

belonging to U :

∀f⋆ ∈ F
⋆, −

∫

I×�

f⋆◦ ėd�dt +

∫

I×∂1�

σ
⋆n ·U̇d dSdt = 0

(16)

• the space Ad of the admissible fields s in which f is sta-
tically admissible, f and ėp verify the state law (13), and
the corresponding ė is kinematically admissible:

f ∈ F , (A−1ḟ + ėp) ∈ E (17)

• the space Ŵ of the fields s in which f and ėp verify the
evolution law (14):

ėp = B(f) (18)

Obviously, the solution sref of the problem over the time-
space domain I ×� can be viewed as the intersection of Ad

and Ŵ. Then, the reference problem becomes:

Find sref ∈ Ad ∩ Ŵ (19)

It is important to note that Ad is a set of solutions of global
linear equations, while Ŵ is a set of solutions of (possibly)
nonlinear equations which are local in time and in space.

Nearly all the methods available in mechanics for the res-
olution of nonlinear evolution problems such as (19) are in-
cremental methods. The time interval I = [0, T ] being con-
sidered is decomposed into a series of small intervals. As-
suming that the history of the different quantities until the
current time t is known, the objective is to study the new in-
terval [t, t + 	t], where 	t denotes the increment. For ex-
ample, the assumption that the evolution over [t, t + 	t] is
linear, i.e. that the history depends only on the values at time
t + 	t , leads to a nonlinear problem which does not involve
time and which can be solved by a Newton-type method.
Roughly speaking, this type of method requires the reso-
lution of about nI × nN spatial problems for the Newton
scheme to converge (nI being the number of time intervals
in I and nN the number of subiterations, which is assumed
to be constant).

The LATIN method, which will be described next, relies
on a different scheme which takes advantage of the favorable
properties of the equations (linearity of Ad and locality of Ŵ)
while avoiding the simultaneous treatment of their difficult
aspects (the globality of Ad and the nonlinearity of Ŵ).

3.2 The LATIN Method as a Solver

Let us apply the LATIN method to the formulation of the
problem to be solved presented previously (19). The LATIN
method is a general, mechanics-based computational strat-
egy for the resolution of time-dependent nonlinear problems
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Fig. 3 The local stage and the
linear stage of the LATIN
method at iteration n + 1

which operates over the entire time-space domain [48, 51].
The solution of the problem is obtained through an iterative
scheme. An iteration consists of two stages, called the “lo-
cal stage” and the “linear stage”. As shown in Fig. 3, these
stages consist in building fields of Ŵ and Ad alternatively.
Under conditions which will described later, this iterative
process converges toward the solution sref of the problem.
The two stages of the method will be described in detail in
the following sections.

It is important to note that at any given iteration n + 1
of the method two approximate solutions (ŝn+1/2 ∈ Ŵ and
sn+1 ∈ Ad) are known over the entire time-space domain
I × �. In that sense, the LATIN method is considered to
be “nonincremental”, contrary to incremental methods, in
which an approximate solution is achieved only once the al-
gorithm has been carried out through the entire time interval.
Figure 4 illustrates the LATIN algorithm by showing, in the
space S = E × F in which the solution is sought, the linear
space Ad and the nonlinear space Ŵ along with the solution
sref. It is clear that in order to complete our coverage of the
problem we also need to introduce what we call the “search
directions” E+ and E−. This will be done later.

3.3 The Local Stage at Iteration n + 1

This stage consists, given sn ∈ Ad, in building ŝn+1/2 ∈ Ŵ,
then using an “ascent” search direction E+ followed by
ŝn+1/2 − sn = δs (see Fig. 4). This search direction is de-
fined by:

E+ = {δs = (δėp, δf) | δėp + H+δf = 0} (20)

where H+ is a symmetric, positive definite operator which is
a parameter of the method. One can easily show that seeking
ŝn+1/2 = ( ˆ̇ep, f̂) common to Ŵ and E+ leads to the resolution
of a set of nonlinear problems:

B(f̂) + H+f̂ = an (21)

whose right-hand sides an = ėpn + H+fn are known at this
stage, and which are local in the space variable. There-
fore, these problems lend themselves to the highest degree of
parallelism. This property justifies the term “local” used to
designate this stage. Once problems (21) have been solved,
one determines ˆ̇ep using search direction E+, i.e. by setting
ˆ̇ep = an − H+f.

3.4 The Linear Stage at Iteration n + 1

This stage consists, given ŝn+1/2 ∈ Ŵ, in building sn+1 ∈ Ad,
then using a “descent” search direction E− followed by

Fig. 4 An iteration of the LATIN method

sn+1 − ŝn+1/2 = δs (see Fig. 4). This search direction is de-
fined by:

E− = {δs = (δėp, δf) | δėp − H−δf = 0} (22)

where H− is a symmetric, positive definite operator which
is a parameter of the method. One can show that seeking
sn+1 = (ėp, f) common to Ad and E− leads to the resolution
of a global problem in space:

∀f⋆ ∈ F
⋆,

∫

I×�

f⋆ ◦ (A−1ḟ + H−f) d�dt

=

∫

I×�

f⋆ ◦ âd�dt +

∫

I×∂1�

σ
⋆n · U̇d dSdt = 0 (23)

whose right-hand side â = ˆ̇ep − H− f̂ is known at this stage
and where Ud is a prescribed boundary condition. This
problem is linear (and, therefore, this stage is called the
“linear” stage), but it depends on time. Its treatment will be
discussed in Sect. 4. Once problem (23) has been solved,
one determines ėp using search direction E−, i.e. by setting
ėp = â − H−f.

3.5 Convergence Properties and Criterion

If B is monotonic, using the fact that A is symmetric
and positive definite, one can derive the following anti-
monotony and monotony properties:

∀(s, s′) ∈ A2
d, 〈s − s′, s − s′〉 ≤ 0

∀(s, s′) ∈ Ŵ
2, 〈s − s′, s − s′〉 ≥ 0

(24)

The choice of parameters H+ and H− influences only the
convergence of the algorithm, but does not affect the solu-
tion. In practice, these parameters are chosen as H+ = H− =

H, where H is a symmetric, positive definite operator which
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can vary during the iterative process. In that case, follow-
ing the proof given in [51] based on the anti-monotony and
monotony properties (24), one can prove that the quantity
1
2 (sn+1 + sn) converges toward sref, the solution of Prob-
lem (19). If the behavior is linear, one can choose, for exam-
ple, H = B. Other possible choices, especially in the nonlin-
ear case, are discussed in [51].

In order to ensure the convergence of sn and, more gen-
erally, to ensure convergence for many types of material
behavior, a relaxation technique may be required. Renam-
ing the quantity previously denoted sn+1 as s̄n+1, we rede-
fine the approximate solution sn+1 generated by linear stage
n + 1 as:

sn+1 = μs̄n+1 + (1 − μ)sn (25)

where μ is a relaxation parameter usually chosen to be equal
to 0.8.

Since the reference solution sref is the intersection of Ŵ

and Ad, the distance between ŝn+1/2 and sn is a good er-
ror indicator for assessing the convergence of the algorithm.
The simplest measure of that distance is:

η =
‖ŝn+1/2 − sn‖

1
2‖ŝn+1/2 + sn‖

(26)

with:

‖s‖2 =
1

2

∫

I×�

(ėp ◦ H−1ėp + f ◦ Hf) d�dt (27)

4 The LATIN Method and Proper Generalized

Decomposition

4.1 Using Proper Generalized Decomposition

Problem (23) is solved using the Proper Generalized De-
composition method, which was first introduced in [47] un-
der the name “radial approximation” (see also [49, 51]). In
order to do that, the linear stage at Iteration n+1 is rewritten
as a corrective increment 	s to the previous approximation
sn, so that the quantity being sought is no longer sn+1 ∈ Ad,
but 	s such that sn+1 = (ėp, f) = sn + 	s.

If the initial solution s0 (e.g. the solution of a linear elas-
tic calculation) belongs to Ad, all the corrective increments
	s = (	ėp,	f) are sought in A⋆

d, the space which corre-
sponds to Ad with homogeneous conditions. With the choice
H− = H mentioned previously, where H is a symmetric,
positive definite operator, the search direction E− defined
by (22) becomes:

	ėp − H	f − 	â = 0 (28)

where 	â = ( ˆ̇ep − ėpn) − H(f̂ − fn), which is known at this
stage, is rewritten as the minimization of a global constitu-
tive relation error in A⋆

d:

	s = Arg min
	s∈A⋆

d

e2
CR(	s) = ‖	ėp − H	f − 	â‖2

M (29)

This expression introduces the norm:

‖�‖2
M =

∫

I×�

� ◦ M�d�dt (30)

where M a symmetric, positive definite operator usually
chosen to be equal to M = (1 − t

T
)H. The new formula-

tion (29) is equivalent to the initial problem (23) provided
no approximation is introduced in seeking the corrective in-
crement 	s = (	ėp,	f).

Now, we propose to approximate the corrective incre-
ment 	s using a separated representation 	š. The fields are
approximated by:

	ėp(t,M) ≈ 	 ˇ̇ep(t,M) = ȧ(t)Ep(M)

	f(t,M) ≈ 	f̌(t,M) = b(t)F(M)

	ė(t,M) ≈ 	 ˇ̇e(t,M) = ċ(t)E(M)

(31)

where, in order to simplify the presentation, only one pair is
used for each field. (The use of more than one pair would
not introduce any difficulty.)

These three corrective increments are not independent of
one another because 	š is sought in A⋆

d, which expresses

the fact that 	f̌ ∈ F and 	 ˇ̇e = A−1	ˇ̇f + 	 ˇ̇ep ∈ E . These
two conditions lead to:

∀ė⋆ ∈ E
⋆,

∫

I×�

ė⋆ ◦ A	 ˇ̇ed�dt =

∫

I×�

ė⋆ ◦ A	 ˇ̇ep d�dt

(32)

which shows that if a and Ep are known one has c = a and
then E is obtained by solving the following problem:

∀E⋆ ∈ E
⋆,

∫

�

E⋆ ◦ A(E − Ep)d� = 0 (33)

This is a classical time-independent global problem
which consists in finding E = [ε(	U) 0]T given 	U ∈ U

⋆

such that:

∀U ⋆ ∈ U
⋆,

∫

�

ε(U ⋆) : K(ε(	U) − εp)d� = 0 (34)

Next, if the corrective increments 	 ˇ̇ep and 	ě are known,

the corrective increment 	f̌ is obtained by b = a and F =

A(E − Ep). Finally, we saw that 	š is defined entirely by
one’s knowledge of the time function a(t) and the space
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function Ep(M). Problem (29) can then be rewritten in terms
of these unknowns:

	š = Arg min
	š∈A⋆

d

e2
CR(	š) = ‖ȧEp − aHF − 	â‖2

M (35)

which is solved using the technique described below.

4.2 Generation of the PGD Corrective Terms at Iteration
n + 1

In order to solve (35), one seeks minima with respect to
time (leading to a system of differential equations) and
space (leading to a spatial problem) alternatively using Al-
gorithm 1. Let us focus on Iteration n + 1 and assume that
we have at our disposal a reduced basis (ai,Epi

)ni=0 such
that ėpn = ȧ0Ep0 +

∑n
i=1 ȧiEpi

, which enables us to define

fn = b0F0 +
∑n

i=1 aiFi . The initial pair (ȧ0Ep0, b0F0) be-
longs to Ad while each of the n following pairs (ȧiEpi

, aiFi)

belongs to A⋆
d. The objective is to generate a new corrective

term ȧEp for the primal field and derive the correction aF

for the dual field. The two main steps of the algorithm are:

input: the previous approximation
epn

= a0Ep0 +
∑n

i=1 aiEpi
and the known

quantities 	â

Step 1: use of the reduced basis

keeping the space functions (Epi
)ni=1 fixed, one seeks

the (ai)
n
i=1 which minimize e2

CR ;

Step 2: addition of new functions

initialization: a0(t) (for example, f (t) = αt);
for k = 1 to kmax do

spatial problem: given the time function ak(t),
one seeks the Ek

p which minimize e2
CR ;

time problem: given the space functions Ek
p, one

seeks ak(t) which minimizes e2
CR ;

orthonormalization of the space functions with
respect to the previous spatial basis;

end

Algorithm 1: Iterative generation of the PGD corrective
terms at Iteration n + 1

Step 1: use of the reduced basis. This phase consists in for-
mulating an inexpensive prediction thanks to one’s knowl-
edge of the solutions from previous iterations. This approx-
imate solution is introduced into the constitutive relation er-
ror (35), but in this case the only unknowns are the time
functions. In other words, one seeks the optimum combi-
nation of the reduced basis of space functions which mini-
mizes the constitutive relation error e2

CR . These time func-
tions verify a system of linear differential equations in time

with conditions at t = 0 and t = T , whose solution is ob-
tained classically. This is usually a relatively small system.

Step 2: addition of new functions. With the predicted so-
lution obtained previously, one seeks a new approximate so-
lution. The minimization with respect to the space variables
leads to the resolution of a time-independent spatial problem
defined over �. The minimization with respect to the time
variable leads to a scalar differential equation defined over I ,
whose resolution is quite inexpensive. Once these new space
and time functions have been calculated, the space functions
are orthogonalized and added to the reduced basis.

Since the construction of the space functions is by far the
most expensive part of the process, it is advisable to store
and reuse these functions. Thus, the space functions con-
structed up to Iteration n can be reused at Iteration n + 1
and Step 1 is executed systematically only to update the cor-
responding time functions. Conversely, Step 2, which gen-
erates new time and space functions, can be skipped if the
correction from Step 1 is sufficient. (This technique requires
an ad hoc criterion to be set up.)

4.3 Discussion of the Computational Cost

The resolution of Problem (23) using a standard incremental
technique would have required the resolution of nI spatial
problems at each iteration of the LATIN algorithm, nI being
the number of time intervals in I . Then, the generation of the
final approximation of the solution sref would have required
the resolution of nI × niter spatial problems, niter being the
number of iterations of the LATIN method necessary for a
given accuracy assessed by the convergence of indicator η.
The latter would have been by far the costliest part of the
algorithm. In that form, the LATIN method could be viewed
as a Newton-type algorithm except for an inversion of the
order in which the iterations corresponding to the treatment
of the nonlinearity and those corresponding to the treatment
of the time evolution are performed, which would result in
no decrease in computation costs.

When the PGD technique is used, as can be seen in our
examples, Algorithm 1 converges very quickly. Therefore,
in practice, kmax is set to be equal to only 2 or 3. Then, the
generation of the final approximation of the solution sref re-
quires the resolution of kmax × niter spatial problems, and
niter (the number of iterations of the LATIN method neces-
sary for a given accuracy assessed by the convergence of in-
dicator η) is nearly the same as in the case of an incremental
strategy. Thus, the decrease in computation cost compared
to a Newton-type algorithm is obvious.

4.4 Practical Implementation in Order to Reduce Storage
Requirements

Working with the PGD description alone constitutes a very
convenient framework in which the storage requirement is
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Fig. 5 The reference times in I

Fig. 6 The reference points
in �

drastically reduced. Following [50], we are going to show
the potential advantages of this framework.

Let us divide the time interval I being studied into m

subintervals {Ii}i=1,...,m of lengths {	ti}i=1,...,m as shown in
Fig. 5. Introducing the centers {ti}i=1,...,m of these subinter-
vals, called “reference times”, one has Ii = [ti − 	ti/2, ti +

	ti/2].
In the space domain, let us also introduce m′ points

{Mj }j=1,...,m′ and partition � into {�j }j=1,...,m′ as shown
in Fig. 6. These points are called “reference points” and
the measures of the subdomains are denoted {ωj }i=j,...,m′ .
In practice, there would usually be a few dozen reference
points.

The choice of these reference times and reference points
is unrelated to the classical discretizations of the time in-
terval I and space domain �. Refined time and space dis-
cretizations should still be used for the calculation of the
various quantities. Here, our purpose is to describe a field f

over the time-space domain I × � through:

â
j

i (t) =

{
f (t,Mj ) if t ∈ Ii

0 otherwise
and

b̂
j

i (M) =

{
f (ti,M) if M ∈ �j

0 otherwise

(36)

with i = 1, . . . ,m and j = 1, . . . ,m′.

The sets {(â
j

i , b̂
j

i )}
j=1,...,m′

i=1,...,m are the generalized compo-
nents of f . One should note that these quantities verify
the following compatibility conditions: for i = 1, . . . ,m and
j = 1, . . . ,m′,

â
j
i (ti) = b̂

j
i (Mj ) (37)

Then, the main question is: how can one build or rebuild
a field from its components? We choose to define function f

from its components using only one product per time-space
subdomain Ii × �j :

f (t,M) : a
j
i (t)b

j
i (M) ∀(t,M) ∈ Ii × �j (38)

where the sets {(a
j

i , b
j

i )}
j=1,...,m′

i=1,...,m should be defined from

the sets {(â
j
i , b̂

j
i )}

j=1,...,m′

i=1,...,m . However, in this case, we let the
time domain play a special role because there are many more
spatial degrees of freedom than there are time degrees of
freedom. Thus, function f is defined by:

f (t,M) : ai(t)bi(M) ∀(t,M) ∈ Ii × � (39)

Let us introduce the following scalar products:

〈f,g〉Ii
=

∫

Ii

fg dt and 〈f,g〉�j
=

∫

�j

fg d� (40)

In order to obtain the sets {(ai, bi)}i=1,...,m, we minimize:

J (ai, bi) =

m′∑

j=1

[
ωj‖â

j

i (t) − ai(t)bi(Mj )‖
2
Ii

+ 	ti ‖b̂
j

i (M) − ai(ti)bi(M)‖2
�j

]
(41)

which leads to:

ai(t) =

∑m′

j=1 ωj â
j

i (t)bi(Mj )∑m′

j=1 ωjb
2
i (Mj )

and

bi(M) =

∑m′

j=1 b̂
j

i (M)

m′ai(ti)

(42)

Consequently, ∀(t,M) ∈ Ii × �j , we obtain:

f (t,M) : ai(t)bi(M) =

∑m′

k=1 ωk â
k
i (t)b̂

k
i (Mk)∑m′

k=1 ωk b̂
k
i (Mk)b̂

k
i (Mk)

b̂
j
i (M)

(43)

Then, using the compatibility conditions (37), we get:

f (t,M) : ai(t)bi(M) =

∑m′

k=1 ωk â
k
i (t)â

k
i (ti)∑m′

k=1 ωk â
k
i (ti)â

k
i (ti)

b̂
j

i (M) (44)

4.5 Engineering Applications

The LATIN method described in Sect. 3 associated, at least
partially, with the PGD method developed in Sect. 4 has en-
abled us to solve a number of industrial problems which
would otherwise have been inaccessible with standard com-
putation means. In [9], it was used in the context of assem-
bly problems involving a large number of contacts. In [37],
it was used as the basis of a local/global strategy for the
simulation of crack propagation. In [10], it was used for the
parametric analysis of bolted joints designed for aerospace
applications. In [17], the method was used to develop a lo-
cal/global strategy in order to solve buckling problems. In
[8], a virtual testing tool was introduced in order to predict
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damping in the joints of the Ariane 5 launcher. Finally, in
[82], the method enabled the simulation of composite mate-
rials whose behavior was described on a microscale.

5 A Computational Strategy for Time-Space Multiscale

Problems

5.1 Justification

In this section, we review how Proper Generalized Decom-
position within the LATIN framework was used in [52, 56,
72] to analyze problems involving two or more very dif-
ferent scales. This is typically the case when domain � in
Fig. 2 is highly heterogeneous and the local solution in-
volves short-wavelength phenomena in both space and time.
Attempting to solve such problems with classical finite ele-
ment codes leads to systems with very large numbers of de-
grees of freedom, and the associated computation costs are
generally prohibitive. Therefore, one of today’s main chal-
lenges is to derive computational strategies capable of solv-
ing such engineering problems through true interaction be-
tween the microscale and the macroscale in both space and
time.

The key issue is the transfer of information from one
scale to the other. A very efficient strategy for linear peri-
odic media consists in applying the homogenization theory
introduced by Sanchez-Palencia [77, 78], for which addi-
tional developments and related computational approaches
can be found in [18, 29, 31, 57, 73, 84]. First, the resolution
of the macro problem leads to effective values of the un-
knowns; then, the micro solution is calculated locally based
on the macro solution. The fundamental assumption, besides
periodicity, is that the ratio of the characteristic length of
the microscale to that of the macroscale is small. Boundary
zones, in which the material cannot be homogenized, require
special treatment. Moreover, this theory cannot be applied
directly to time-dependent nonlinear problems. Other com-
putational strategies using homogenization techniques based
on the Hill-Mandel conditions [40] have also been proposed
[44, 83], but have similar limitations. Other paradigms for
building multiscale computational strategies can be found
in [41, 53]. All these approaches introduce different scales
in space alone.

Comparatively fewer works have been devoted to multi-
time-scale computational strategies. What one calls multi-
time-step methods [14, 25, 34, 35] and time-decomposed
parallel time integrators [5, 22] deal with different time
discretizations and integration schemes. Local enrichment
functions were introduced in [7]. In multiphysics problems,
a coupling among time grids may be envisaged. This type
of problem was solved in [20] by introducing “micro/macro
projectors” among grids. Some works have been devoted to

the treatment of periodic loading histories [1, 13, 15, 30, 36,
46, 49].

Regarding the LATIN method, a micro/macro computa-
tional strategy involving space homogenization alone was
introduced in [53]. This technique was later expanded in
[52] to include time as well as space. The advantages of
using PGD in this context were described in [72], and a
more efficient and robust version of that strategy in the case
of material models with internal variables was introduced
in [56]. The following presentation covers only the main
points. A comparison with other multiscale strategies can
be found in [54].

5.2 Substructuring of the Problem

In order to take advantage of parallel computing and derive
a multiscale strategy in time, the time domain I is divided
into a small number of coarse subintervals IC

i = [tCi , tCi+1]

(see Fig. 7). In the space domain, we follow the classical
framework of domain decomposition methods and decom-
pose the structure � into an assembly of substructures �E

1

and interfaces �EE′
2 as shown on Fig. 7.

The state of a substructure �E is defined entirely by
ėpE and fE , the restriction of fields ėp and f to �E . The
state of an interface �EE′ is defined by its own variables—
the velocity distributions (ẆE, ẆE′) and force distribu-
tions (FE,FE′) on both sides of the interface—and its own
behavior. This behavior consists of the equilibrium condi-
tion (the action-reaction principle) plus a constitutive rela-
tion, defined by operator bEE′ , which characterizes the be-
havior of the interface. In other words, the pairs of fields
(ẆE, ẆE′) and (FE,FE′) must verify:

FE + FE′ = 0

bEE′(ẆE, ẆE′ ,FE,FE′) = 0
(45)

In the case of a perfect connection, (45) is very simple
and can be expressed as follows:

FE + FE′ = 0

ẆE − ẆE′ = 0
(46)

In the case of unilateral contact with or without friction, the
reader can refer to [19] for a detailed expression of opera-
tor bEE′ . The interface concept can also be extended to the
boundary of � over which a surface displacement distribu-
tion or a surface force distribution is prescribed. In order to

1The notation �E designates the restriction of a quantity � to sub-
structure �.
2�EE′ designates the interface between two substructures �E and
�E′ .
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Fig. 7 Decomposition of � into
substructures �E and interfaces
�EE′ , and decomposition of I

into subintervals IC
i

Fig. 8 The linear macro basis
in space for a square interface
�EE′ in the 3D case, and the
quadratic macro basis in time
over IC

i

do that, one simply takes WE = Ud for a displacement pre-
scribed over �E1 = ∂�E ∩ ∂1�, and FE = F d for a force
prescribed over �E2 = ∂�E ∩ ∂2�.

Let sE = (ėpE, ẆE, fE,FE) denote the set of the fields
which describe the state of substructure �E and its boundary
∂�E , and let EE , WE , FE and FE denote the correspond-
ing spaces. The problem consists in finding s = (sE)�E⊂�.

5.3 A Two-Scale Description of the Unknowns

Two scales, denoted the “macro” scale (�M ) and the “mi-
cro” scale (�m) are introduced in order to describe the inter-
face unknowns. This approach is physically consistent: the
macro quantities are mean values over space and time, and
due to Saint Venant’s principle the effects of the micro com-
plements are localized in space. ∀FM⋆ ∈ F

M
E , the macro

part Ẇ
M

E and the micro complement Ẇ
m

E of ẆE ∈ WE are
defined by:
∫

IC
i ×∂�E

(Ẇ
M

E − ẆE) · FM⋆ dSdt = 0 and

Ẇ
m

E = ẆE − Ẇ
M

E

(47)

where the spaces F
M
E and W

M
E can be chosen arbitrarily. In

practice, these spaces are defined by the linear part in space
and the quadratic part in time of the forces and displace-
ments (see Fig. 8 for the shape of the corresponding basis
functions).

An important point of the strategy which leads to its mul-
tiscale character is the choice of the admissibility condi-
tions for the macro quantities. The set of the macro forces
(FM

E )�E⊂� is required to verify a priori the transmission
conditions, including the boundary conditions, systemati-
cally:

FM
E + FM

E′ = 0 over �EE′

FM
E − FM

d = 0 over �E2 = ∂E� ∩ ∂2�
(48)

The corresponding subspace of F
M =

⊗
F

M
E is des-

ignated by F
M
ad . We use the same definition for W

M and
W

M
ad .

5.4 Reformulation of the Reference Problem in the
Decomposed Framework

Now let us extend the definition of the spaces U , F , E and
Ad introduced in Sect. 3 in order to reformulate the problem
in the decomposed framework. In order to do that, we intro-
duce the following new functional subspaces (whose defini-
tions are obvious):

• the space UE of the kinematically admissible fields

(uE ,WE), whose displacements WE over ∂�E are equal
to field UE and which verify the initial conditions UE0:
UE|∂�E

= WE and UE|t=0 = UE0

11



• the space FE of the statically admissible fields (fE,FE),
whose stress fields σE are in equilibrium with the inter-
face forces FE over ∂�E and which verify the momen-
tum conservation equation:

∀(u⋆
E,W ⋆

E) ∈ U
⋆
E,

−

∫

IC
i ×�E

fE ◦ e(U̇
⋆

E) d�dt +

∫

IC
i ×�E

f
d

· U̇
⋆

E d�dt

+

∫

IC
i ×∂�E

FE · Ẇ
⋆

E dSdt = 0 (49)

• the space EE of the kinematically admissible fields

(ėE ,ẆE), whose strain fields εE derive from displace-
ment fields (UE,WE) belonging to UE :

∀(f⋆E,F ⋆
E) ∈ F

⋆,

−

∫

IC
i ×�E

f⋆E ◦ ėE d�dt

+

∫

IC
i ×∂1�E

F ⋆
E · ẆE dSdt = 0 (50)

• the space AdE of the E-admissible fields sE in which
(fE,FE) is statically admissible, fE and ėpE verify the
state law (13), and the corresponding (ėE, ẆE) is kine-
matically admissible:

(fE,FE) ∈ FE, (A−1ḟE + ėpE, ẆE) ∈ EE (51)

Then, we also redefine:

• the space Ad of the admissible fields s = (sE)�E⊂� in
which each sE is E-admissible and the macro forces ver-
ify the transmission conditions (48):

∀�E ⊂ �, sE ∈ AdE and (FM
E )�E⊂� ∈ F

M
ad (52)

• the space Ŵ of the fields s = (sE)�E⊂� in which fE and
ėpE verify the evolution law (14) and (FE,FE′ , ẆE, ẆE′)

verify the interface behavior (45):

∀�E ⊂ �, ėpE = B(fE) and

∀�EE′ ,

{
FE + FE′ = 0

bEE′(ẆE, ẆE′ ,FE,FE′) = 0

(53)

Obviously, the solution sref of the problem over the time-
space domain I × � is the intersection of Ad and Ŵ. Thus,
the reference problem becomes:

Find sref ∈ Ad ∩ Ŵ (54)

5.5 The LATIN Method as a Solver

The previous problem is solved using the LATIN method as
described in Sect. 3. In order to do that, one must introduce

in the search directions E+ and E− some additional terms
corresponding to the boundary fields:

E+ =

{
δs = (δsE)�E⊂�

∣∣∣∣∣
δėpE + H+δfE = 0

δẆE − h+δFE = 0

}
(55)

and

E− =

{
δs = (δsE)�E⊂�

∣∣∣∣∣
δėpE − H−δfE = 0

δẆE + h−δFE = 0

}
(56)

where h+ and h− are symmetric, positive definite operators
which are parameters of the method and which are usually
set to be equal to h+ = h− = h. In the case of linear behav-
ior, one can choose h = L

ET
I, where E is the Young’s mod-

ulus of the material, LE a characteristic length of the inter-
faces, T the duration of the phenomenon being studied and
I the identity operator. Other possible choices, especially in
the nonlinear case, are discussed in [51].

Then, the local stage becomes very similar to that de-
scribed in Sect. 3, but the linear stage requires special treat-
ment. The admissibility of the macro forces (FM

E )�E⊂� ∈

F
M
ad (and, consequently, the verification of the transmission

conditions (48)) is obtained by introducing a Lagrange mul-

tiplier ˙̃WM = ( ˙̃WM
E )�E⊂� ∈ W

M⋆
ad . This Lagrange multi-

plier is obtained by solving a homogenized linear time-space
“macro” problem defined over the whole set of interfaces
and the entire coarse subinterval IC

i . Once this macro field
is known, the complete solution s = (sE)�E⊂� is obtained
by solving a set of “micro” problems defined over each time-
space domain IC

i × �E . The detailed treatment of the linear
stage using the PGD framework can be found in [56].

5.6 An Illustrative Example

The following example, taken from [55], illustrates the dif-
ferent steps of the LATIN multiscale strategy and the effec-
tiveness and efficiency of the PGD technique in the resolu-
tion of the micro problems introduced previously.

5.6.1 Illustration of the LATIN Multiscale Strategy

Let us consider the 3D problem of a composite structure
with cracks (see Fig. 9(a)). This structure is fixed at the base
and subjected to forces F 1, F 3 and F 3 (see Fig. 9(b)). The
overall dimensions are 120 × 120 × 20 mm, and the time
interval being studied is T = 10 s. The cracks are described
using unilateral contact with Coulomb friction characterized
by parameter f = 0.3.

The structure consists of two types of cells: Type-I cells,
which are homogeneous and made of a material denoted
Type-1, and Type-II cells composed of a matrix of Type-1
material with inclusions of a material denoted Type-2. Both
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Fig. 9 Description of the
problem

Fig. 10 Decomposition into
substructures and interfaces and
spatial discretization on the
microscale

Table 1 Material properties

Material Type-1 Type-2

Young’s modulus E1 = 50 GPa E2 = 250 GPa

Poisson’s ratio ν1 = 0.3 ν2 = 0.2

Viscosity parameter η1 = 10 s η2 = 1,000 s

materials are viscoelastic and their properties are given in
Table 1. The corresponding constitutive relations are ε̇p =

Biσ = 1
ηi

K−1
i σ .

As shown in Fig. 10, the problem was divided into 351
substructures (each substructure corresponding to one cell)
and 1,296 interfaces. On the micro level, Type-I and Type-II
substructures and their interfaces were meshed with 847,
717 and 144 degrees of freedom (DOFs) respectively. In the
space domain, the macro part consisted of a single linear el-
ement per interface with only 9 DOFs. With respect to time,
the micro level was associated with a refined discretization
into 60 intervals using a zero-order discontinuous Galerkin
scheme, and the macrolevel was associated with a coarse
discretization into 3 macro intervals using a second-order
discontinuous Galerkin scheme. Because of the linearity of
the constitutive relation, the search direction chosen for the
substructures was H = B. With the characteristic length of
the interfaces being LE = 4 mm, we chose the search direc-

Fig. 11 Convergence of the method

tion h = hI for all the interfaces, h = LE

E1ν1
being a constant

scalar.
Figure 11 shows the evolution of the error indicator η

with the number of iterations. One can observe that the al-
gorithm converges rapidly toward an accurate solution (1%
error after 12 iterations). Figure 12 shows the approximate
Von Mises stress fields over the structure at the final time
T = 10 s (with a zoom near one of the cracks) at Iterations
1, 5 and 20 and after convergence (the reference solution)
and also shows the evolution over time of the displacement
field W at point P2. One can observe that even after the first
iteration, thanks to the resolution of the macro problem, the
method yields a relatively good approximate solution of the
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Fig. 12 Approximate solutions
after various numbers of
iterations

problem in both the space domain and the time domain. Af-
ter a few iterations, the solution becomes even more accu-
rate and the stress and displacement discrepancies tend to-
ward zero. After 20 iterations, the difference between the
approximate solution and the reference solution is no longer
visible.

5.6.2 Illustration of the Use of the PGD Technique

In order to illustrate how the PGD technique was used in
the multiscale strategy, let us examine the treatment of one
of the micro problems in detail. The micro problem being
considered is defined over IC

i ×�E , where �E corresponds
to one of the Type-II substructures of Fig. 10. The loading
is represented by the distribution of the Lagrange multiplier

W̃
M

E alone. For the sake of simplicity, we assume that this
loading consists of only a normal force distribution f (t)

over the upper surface of the substructure (see Fig. 13).
Figure 14 shows the evolution of the constitutive rela-

tion error e2
CR associated with the search direction versus the

Fig. 13 Description of a micro problem corresponding to a Type-II
substructure and its loading

number of functions, obtained using two techniques: in the
first technique, new pairs of time/space functions were built
systematically; the second technique consisted, as described
in Algorithm 1, in first reusing the reduced basis of space
functions calculated previously to update the time functions
alone, and only after that seeking a new pair of time/space
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functions. One can see that the accuracy of the approxima-
tion is very good because with only 4 radial functions the
error was less than 1%. However, one can observe that the
convergence rate was higher with the second technique than
with the first. For example, in order to get less than 0.1%
error, 15 functions needed to be calculated without updat-
ing the time functions, as opposed to only 8 functions using
the updating procedure. Since the computation cost associ-
ated with reusing the reduced basis is much less than the
cost associated with an additional space function, it is very
important to update the time functions systematically.

Figure 15, shows the first four pairs consisting of a space
function and a time function. Since the space functions are
normalized, one can observe a decrease in the level of the
corresponding time functions. Figure 16 shows a compari-
son of the Von Mises stress distributions over the space and
time domains obtained with the radial time-space approxi-
mation and the classical incremental technique.

A very important point is that although the basis of the
space functions is a priori specific to the problem and the
loading for which it was defined, it can be reused to solve
another problem with comparable accuracy. For example,
we solved the previous micro problem with 6 functions and
reused these functions for all the loading cases of Fig. 17. In

Fig. 14 Convergence of the PGD approximation

order to do that, we carried out a single updating stage and
evaluated the corresponding error.

Table 18 shows that by updating the time functions alone
using the same space functions as for a previous problem
f (t) one obtains an approximate solution of the new prob-
lem fi(t) with an accuracy comparable to that of the first
problem. The robustness of the PGD approximation makes
it well-adapted to multiresolution and, thus, this approxima-
tion technique is quite suitable for the multiscale strategy,
which involves the resolution of a set of micro problems at
each iteration of the LATIN method. We can reuse the same
basis at every iteration of these micro problems, and even
consider using a common basis for the whole set of sub-
structures.

6 A Computational Strategy for Multiphysics Problems

6.1 Justification

In this section, we review how Proper Generalized Decom-
position within the LATIN framework was used in [20, 21,
68] to deal with multiphysics problems. This is typically the
case when domain � of Fig. 2 is made of a porous ma-
terial whose physics involve the fluid phase in connected
porosities and the solid phase as the skeleton of the porous
medium.

Partitioning approaches, which consist basically in sepa-
rating the physics in order to avoid the simultaneous treat-
ment of the different fields, are usually preferred to the direct
monolithic analysis [6, 33, 65] because they offer several
interesting features including: (i) the ability to use differ-
ent discretizations for each physics; (ii) a simplification in
software development efforts; (iii) the preservation of soft-
ware modularity. These advantages have been reported in
relation to a broad range of coupled multiphysics problems,
such as fluid/structure interactions in [23, 26, 27, 58, 59, 66,
74] and others. In particular, the issue of the exchange of

Fig. 15 The first four radial
time-space functions for the
problem

15



Fig. 16 Quality of the
approximations with 1, 2, 3 and
4 pairs

Fig. 17 The different loading
cases for the micro problem

Fig. 18 Reutilization of a space
function with the PGD
approximation
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data between two different physics was studied using sev-
eral different approaches in [23, 74], and the possibility of
using different treatments (computer programs, integration
schemes. . . ) for the different physics involved was high-
lighted in [4, 24, 28, 62, 64, 74, 85].

The feasibility of using the LATIN method to derive a
partitioning approach to deal with multiphysics problems
was presented in [21] for the case of a two-physics problem
(the transient saturated poroelastic evolution of a medium).
The treatment of nonlinear behavior was presented in [69].
For the same problem, the possibility of coupling differ-
ent time discretizations using a fixed-point method between
the two physics was described in [20]. However, such a
procedure requires numerous field transfer operations be-
tween the physics, which can lead to expensive computa-
tions. This was the motivation behind the attempt to extend
the approach by introducing the concept of interface among
physics, which was applied to different time discretizations
in [67]. The extension to a three-physics problem (nonlin-
ear thermo-poroelasticity) along with the introduction of dif-
ferent discretizations in both time and space was presented
in [68]. In all these works, the use of PGD enabled a reduc-
tion not only in computation cost, but also in the amount of
data which must be transferred from one physics to another.
The following presentation is limited to a review of the main
points in the case of a two-physics problem.

6.2 The Reference Problem

Let us consider the example case of the coupled two-physics
problem of the quasi-static poroelastic evolution of a satu-
rated porous medium in the time-space domain I × �. Un-
der the assumption of small perturbations, the state of the
structure is defined, for the solid part, by the strain field ε

corresponding to the displacement field U and associated
with the stress field σ , and, for the fluid part, by the pore
pressure field p associated with the fluid accumulation field
v in the representative volume element and Darcy’s veloc-
ity w.

The homogenized poroelastic behavior of the material is
described in [16, 58]. The state laws are:

σ = Kε − bpI

v =
1

Q
p + b Trε

(57)

However, we prefer to use the rate of fluid accumulation q =

v̇ instead of the fluid accumulation itself, i.e.:

q =
1

Q
ṗ + b Tr ε̇ (58)

We also introduce Z = gradp, the gradient of the pore pres-
sure p, and W = −w, the opposite of Darcy’s velocity w, so

the evolution law becomes:

W = HZ (59)

The coefficients of the material behavior model are: the
Hooke’s operator K of the drained skeleton, which, in the
case of isotropic behavior, depends on only two coefficients
(e.g. the Young’s modulus E and Poisson’s ratio ν); the
bulk modulus Kb = 1

3E/(1 − 2ν) of the drained skeleton;
Biot’s coefficient b = 1 − Kb/Ks , where Ks is the bulk
modulus of the solid phase (solid grains); Biot’s modu-
lus Q = ((b − n)/Kb + n/KF )−1 taking into account com-
pressibility (n being the porosity and KF the compressibil-
ity of the fluid phase); the permeability H = K/μF of the
porous media; the intrinsic permeability K of the skeleton;
and the dynamic viscosity μF of the fluid phase.

In this reference problem, the loading consists of pre-
scribed body forces within domain �, which we will assume
to be zero for the sake of simplicity in our presentation; pre-
scribed displacements Ud on a part ∂1� of the boundary
∂� and traction forces F d on the complementary part ∂2�

of ∂�; and, finally, a prescribed pore pressure pd on another
part ∂3� of the boundary and a fluid flux wd on the comple-
mentary part ∂4� of ∂�. In order to determine the state of
the structure s = (sS, sF ) (where sS = (ε̇,σ ) are the fields
corresponding to the solid and sF = (p,Z,q,W) the fields
corresponding to the fluid), which is sought in SS × SF , one
must establish the conservation principles: momentum con-
servation for the solid part and mass conservation for the
fluid part.

6.3 Partitioning of the Problem

In order to formulate the reference problem, let us introduce
the following functional subspaces, using �

⋆ to denote vec-
tor spaces associated with affine spaces:

• the space U of the kinematically admissible fields U

which are equal to the prescribed displacements Ud over
∂1�: U |∂1�

= Ud

• the space F of the statically admissible fields σ which
verify the momentum conservation equation and are in
equilibrium with the external prescribed forces F d over
the complementary part ∂2� of the boundary (for the sake
of simplicity, we assume that there are no body forces):

∀U ⋆ ∈ U
⋆,

−

∫

I×�

σ : ε(U̇
⋆
) d�dt +

∫

I×∂2�

F d · U̇
⋆
dSdt = 0

(60)

• the space E of the kinematically admissible fields ε̇ which
derive from a displacement field U belonging to U :

∀σ
⋆ ∈ F

⋆,
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−

∫

I×�

σ
⋆ : ε̇ d�dt +

∫

I×∂1�

σ
⋆n · U̇d dSdt = 0 (61)

• the space AdS of the S-admissible fields sS in which σ is
statically admissible and ε̇ is kinematically admissible:

σ ∈ F and ε̇ ∈ E (62)

• the space P of the kinematically admissible fields p

which are equal to the prescribed pressure pd over ∂3� :

p|∂3� = pd .
• the space W of the statically admissible fields (q,W)

which verify the mass conservation equation and balance
the external prescribed flux wd over ∂4�:

∀p⋆ ∈ P
⋆,

−

∫

I×�

(qp⋆ + W · gradp⋆) d�dt

+

∫

I×∂4�

wdp⋆ dSdt = 0 (63)

• the space Z of the kinematically admissible fields (p,Z)

where Z derives from the pressure field p belonging to P :

∀(q⋆,W ⋆) ∈ W
⋆,

−

∫

I×�

(q⋆p + W ⋆ · Z)d�dt

+

∫

I×∂3�

W ⋆ · npd dSdt = 0 (64)

• the space AdF of the F -admissible fields sF in which
(q,W) is statically admissible and (p,Z) is kinematically
admissible:

(q,W) ∈ W and (p,Z) ∈ Z (65)

Let us also define:

• the space Ad of the admissible fields s = (sS, sF ) where
each sS is S-admissible and sF is F -admissible:

sS ∈ AdS and sF ∈ AdF (66)

• the space Ŵ of the fields s = (sS, sF ) which verify the state
and evolution laws:

σ = Kε − bpI, q =
1

Q
ṗ + b Tr ε̇ and W = HZ

(67)

Clearly, the solution sref of the problem over the time-
space domain I × � is the intersection of Ad and Ŵ. Thus,
the reference problem becomes:

Find sref ∈ Ad ∩ Ŵ (68)

It is important to note that Ad is a set of solutions of
global linear equations in which the physics are uncoupled,
whereas Ŵ is a set of solutions of coupled equations which
are local in the space variable.

6.4 The LATIN Method as a Solver

The previous problem is solved using the LATIN method as
described in Sect. 3. In order to do that, one must introduce
specific search directions:

E+ =

⎧
⎪⎪⎨
⎪⎪⎩

δs = (δsS, δsF )

∣∣∣∣∣∣∣∣

δε̇ + Lδσ = 0

δp + rδq = 0

δZ − MδW = 0

⎫
⎪⎪⎬
⎪⎪⎭

(69)

and

E− =

⎧
⎪⎪⎨
⎪⎪⎩

δs = (δsS, δsF )

∣∣∣∣∣∣∣∣

δε̇ − Lδσ = 0

δp − rδq = 0

δZ − MδW = 0

⎫
⎪⎪⎬
⎪⎪⎭

(70)

where L, r and M are symmetric, positive definite operators
which are parameters of the method. Since the behavior is
linear, following [21], one can choose L = 1/tSK, r = tF Q

and M = H−1, where tS and tF are parameters whose choice
is discussed in [67]. For the nonlinear case, one can refer
to [68, 69].

This partitioning of the equations can be viewed as an
extension of the concept of geometric interface used in do-
main decomposition methods to that of an “interface among
physics” (see Fig. 19). This interface is defined in the time-
space domain II ×�I (TI is a possible time discretization of
this interface and �I is the corresponding space discretiza-
tion). The behavior of the interface consists in the verifica-
tion of the constitutive relations which couple the physics,
i.e. the group of equations Ŵ. The solid and fluid time-space
discretizations IS × �S and IF × �F , which involve only
parts sS and sF of the unknowns, are also defined. Their be-
havior consists in letting these unknowns verify the compati-
bility conditions and the conservation laws, i.e. the groups of
equations AdS and AdF . This enables one to choose differ-
ent time and space discretizations of the unknowns for each
physics and for the interface. This modularity is especially
interesting when different simulation codes and solvers are
used for the different physics.

The use of such an interface gives modularity properties
to both the modeling of the coupled phenomena and the res-
olution process. For example, if a physical model changes or
if a third physics is added, a corresponding time-space do-
main can be added and the new coupling properties enrich
the interface behavior (see Fig. 20).
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Fig. 19 An interface among
physics defined over the whole
domain

The advantage of using different time-space discretiza-
tions for the different physics is obvious. In [20] for ex-
ample, it was shown that due to the different characteris-
tic times of the phenomena it was unnecessary to perform
all the calculations using the same time mesh in order to
achieve the same accuracy in the solutions for the solid and
for the fluid. A coarser discretization for the solid part was
sufficient to achieve similar-quality results. A technical pro-
cedure for transferring fields from one discretization to an-
other, especially when the meshes do not match, is described
in [67, 68].

6.5 An Illustrative Example

The following example, taken from [20], illustrates the dif-
ferent steps of the LATIN strategy for multiphysics prob-
lems and the performance of the PGD approximation in the
resolution of the uncoupled problems.

6.5.1 Illustration of the LATIN Multiscale Strategy

The proposed test case concerns the consolidation of a Berea
sandstone soil (see Fig. 21). The material characteristics are
presented in Table 2. The time interval is T = 36 s, with t1 =

T/10; the pressures are p1 = 1.54 GPa and p0 = 380 MPa;
the initial condition is p(t = 0) = p0.

The space discretization was performed using P2 ele-
ments (6-node triangles) for the displacements and P1 linear
interpolation (also continuous across element boundaries)
for the pore pressure. The θ -method with linear evolution
of the variables with time was used for the time integra-
tion. [39, 81] propose the accuracy condition 	t

	ℓ2 ≥ 1
6θc

,
where 	t is the length of a time step, 	ℓ the size of a spa-
tial element, and c = E K

μw

3−2ν
3(1+ν)(1−2ν)

. Here, since θ = 1

everywhere, this condition leads to 	t

	ℓ2 ≥ 0.048 sm−2. The
mesh used is shown in Fig. 21. The accuracy criterion was
( 	t

	ℓ2 )min = 0.075 sm−2 > 0.048 sm−2, which verifies the
previous condition.

Fig. 20 Modification of the transfer operations with the addition of a
new physics “T ” (left: with no interface, right: with a dedicated inter-
face)

Our objective is to compare the LATIN approach with
the Iterative Standard Parallel Procedure (ISPP [63]), which
is one of the standard partitioning schemes. In order to com-
pare the results in terms of computation cost, let us introduce
the following notations: as before, nI is the number of time
steps in the interval I being studied; nS and nF are the num-
bers of global uncoupled resolutions (i.e. the expensive parts
of the algorithms) for the solid and for the fluid respectively.
Convergence is considered to be reached when an error η

has become sufficiently small (less than 1%). This error was
evaluated by comparison with a reference solution sref ob-
tained with the direct monolithic approach, see [21]. This
reference solution was calculated using the same space and
time discretizations as for the LATIN and ISPP methods:
therefore, both algorithms converge toward this solution and
the error η tends toward zero as the number of iterations in-
creases. The evolution of the pore pressure in the domain as
a function of time is shown in Fig. 22.

6.5.2 Illustration of the Use of the PGD Technique

Contrary to the case of weak fluid-structure coupling [27],
classical staggered schemes, when applied to highly cou-
pled problems such as fluid transfer in porous media, lack
consistency [58, 79, 80]. The ISPP approach regains consis-
tency thanks to the introduction of nsub subcycles between
the solid and the fluid solvers at each time step. Then, the
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Fig. 21 Consolidation of a soil
(left: prescribed solid quantities;
middle: prescribed fluid
quantities; right: time evolution
of the loading)

Table 2 Poro-elastic material
characteristics of a
water-saturated Berea sandstone

Porosity n = 0.19 Biot’s modulus Q = 13.5 GPa

Young’s modulus E = 14.4 GPa Biot’s coefficient b = 0.78

Poisson’s ratio ν = 0.2 Permeability K
μw

= 2 10−10 m3 s kg−1

number of global resolutions for each of the solid and the
fluid solvers is nS = nF = nsub × nI .

In the LATIN method without the PGD technique, two
uncoupled problems are solved at each iteration and at each
time step. If niter is the number of iterations required to reach
convergence, the number of global resolutions is nS = nF =

niter × nI for each solver. With PGD, as shown in Algo-
rithm 1, only few global resolutions (kmax) are necessary in
each of the two physics to achieve the approximate solution
at each iteration. In the case reported here, a criterion was
set up in order to avoid generating new pairs when the use
of the reduced basis was sufficient to improve the quality of
the solution. This explains why the numbers of global reso-
lutions nS and nF for the two physics can be different and
can be less than the number of iterations niter of the method.

Table 3 summarizes the results obtained and shows that
using the PGD technique to approximate the unknowns
makes the LATIN method particularly advantageous in
terms of computational efficiency because the number of
global resolutions is drastically reduced.

7 Conclusion

In this paper, we presented a review of the use of Proper
Generalized Decomposition in the framework of the LATIN
method. The LATIN method was first described in detail
in the case of a nonlinear evolution problem. Then, it was
extended to the case of domain decomposition in order to
deal with multiscale problems which can involve very dif-
ferent wavelengths, both in space and in time. Finally, we
presented the use of the LATIN method for the resolution
of multiphysics problems, where it enables one to avoid the
simultaneous treatment of the different coupled phenomena.
In all the cases studied, the advantage of using PGD com-
pared to the incremental treatment of an evolution equa-
tion was underlined. PGD enables very significant gains in

Fig. 22 Evolution of the pore pressure p as a function of time

Table 3 Number of global resolutions for the consolidation problem
with nI = 120

ISPP nS + nF 1,080 + 1,080

nsub 9

LATIN without PGD nS + nF 2,160 + 2,160

niter 18

LATIN with PGD nS + nF 8 + 16

niter 27

terms of computation cost and storage, which makes it a
very promising tool for future calculation strategies. A first
improvement, currently in progress, will be the introduc-
tion of a new algebra, i.e. a general mathematical frame-
work, in which all functions are described using the radial
time-space approximation. The final development, also ded-
icated to quasi-static problems, will deal with the extension
to large-displacement problems following the mathematical
framework already proposed in [51].
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