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1. Introduction

Today more than ever, modeling and simulation are central to
any mechanical engineering activity. A constant concern, both in
industry and research, has always been the verification of models
which, today, can attain very high levels of complexity. The novelty
of the situation is that over the last twenty-five years truly quanti-
tative tools for assessing the quality of a FE model have been put
together into a branch of computational mechanics known as
‘‘model verification’’. Of course, the original continuum mechanics
model remains the reference (Fig. 1). The state of the art on this to-
pic is reviewed in [1–5].

Until 1990, only global error estimators, divided into three fam-
ilies introduced respectively by [30–32]were available. Since 1990,
the evaluation of the quality of outputs of interest resulting from
finite element analyses has become a key issue. This objective
was beyond the reach of the early error estimators, which provided
only global information that was totally insufficient for dimension-
ing purposes in mechanical design (where the dimensioning crite-
ria involve local values of the stresses, displacements, stress
intensity factors etc.). Among numerous relevant works concerning
linear problems, the earliest were those of Peraire-Patera, Rann-
acher et al., Strouboulis-Babuška, Oden-Prudhomme, Ladevèze
et al.; additional references can be found in [2–5]. The main idea
which emerged then was that an output of interest can be
chan/CNRS/UPMC/UniverSud
chan, France.
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expressed globally, enabling one to continue to use global error
estimators, but an accurate error estimation is required for the
finite element solution of the what is called the ‘‘adjoint problem’’.
Extensions to the nonlinear case appeared in the early 90’s with
[6–8]; these approaches consisted in using linearization to revert
back to the linear case during each time step.

Unfortunately, most of the estimates thus produced are not
guaranteed to be upper or lower bounds, which is a very serious
drawback as far as robust design is concerned. Consequently, the
derivation of upper error bounds for the calculated values of out-
puts of interest has become one of today’s pressing research chal-
lenges. Relatively few works have proposed answers, even in the
linear case: [9–12,2,4,13,14].

Recent papers [15,16] have introduced a general method for
deriving an upper bound of the error in a calculated output of
interest for both linear and nonlinear time-dependent (quasi-static
or dynamic) problems. This is probably the first published method
leading to guaranteed upper error bounds for nonlinear problems
and dynamic problems. Among the first developments, one can
mention the error in pointwise quantities [17], the error in nonlin-
ear goal-oriented quantities [18,19], and the error in outputs of
interest in dynamics [20]. These methods are based on the concept
of dissipation-type constitutive relation error (CRE) and on quasi-
explicit techniques for the construction of the associated admissi-
ble FE solutions.

This paper introduces what is, to our knowledge, the first com-
putable guaranteed error bounds ever published for goal-oriented
quantities in plasticity. It is organized as follows. After this



Fig. 1. Schematic representation of the environment (i.e. the prescribed conditions).
introduction, Section 2 presents the classical framework for plas-
ticity problems and defines the concept of output of interest.

Section 3 discusses a version of the constitutive relation error
which was already used in [11,21] and which involves admissible
fields. This has the advantage of leading to a computable bound
of the global discretization error. This is the first key point of our
approach.

Section 4 introduces the second key point, which is the mirror
problem and the associated basic identity which provides the dif-
ference between the exact value and the calculated value of the
quantity of interest.

Section 5 presents the last key point (i.e. the bounding tech-
nique which combines the previous two points) and defines what
we call the ‘‘central problem’’, for which an inexpensive calculation
method is proposed in Section 5.

Finally, Section 6 presents a detailed example of the method.

2. The reference problem and its outputs of interest

2.1. The conceptual structural model

2.1.1. Standard formulation
Initially, the structure being studied occupies a domain X

bounded by @X. Let us assume small displacements, quasi-static
loading and isothermal conditions, and let ½0; T� be the time inter-
val of interest. At any time t in ½0; T�, the structure is placed in a gi-
ven ‘‘environment’’ characterized by a displacement Ud on a part
@uX of @X, a traction force density Fd on @f X (the part of @X which
is complementary to @uX), and a body force density f d within X.
The structure and its loading are illustrated in Fig. 1.

The problem which describes the evolution of the structure over
[0;T] is:

Find the displacement field UðM; tÞ and the stress field rðM; tÞ,
with t 2 ½0; T� and M 2 X, which verify:

� the kinematic constraints:
U 2 U½0;T�; Uj@uX ¼ Ud over �0; T½; ð1Þ
� the equilibrium equations (principle of virtual work):
r 2 S½0;T�; 8t 2�0; T½ 8U� 2 Uad;0 �
Z

X
Tr r�ðU�Þ½ �f gdX

þ
Z

X
f d � U�
n o

dXþ
Z
@f X

Fd � U�f gdS ¼ 0 ð2Þ
� and the constitutive relation:
8t 2 ½0; T� 8M 2 X rjt ¼ A �ð _UjsÞ; s 6 t
� �

: ð3Þ
�ðUÞ denotes the strain associated with the displacement

�ðUÞij ¼ 1
2 ðUi;j þ Uj;iÞ

� �
;U½0;T� is the space containing the displace-
2

ment field U defined over X��0; T½;S½0;T� is the space containing
the stresses, also defined over X��0; T½; and Uad;0 is the vector space
of the prescribed virtual velocities. Operator A, which is considered
to be known and generally single-valued, characterizes the
mechanical behavior of the material.

Let U½0;T�
ad denote the space of the displacement fields which ver-

ify the kinematic constraints (1).

2.1.2. Formulation in the thermodynamics framework
Using some global notations, the reference problem (1)–(3) can

be rewritten in the framework of classical thermodynamics with
internal variables. Let us introduce the generalized quantities, cor-
responding to three sets of variables:

s ¼ r; yf g _ep ¼ _�p;� _x
� �

_ee ¼ _�e; _xf g; ð4Þ

where �p and �e denote the inelastic strain and the elastic strain
respectively; x is a vector of additional internal variables (e.g. hard-
ening variables) and y the associated force vector (with x and y hav-
ing the same dimension). One has � ¼ �e þ �p, and the dissipation
bilinear form is:

d : e½0;T� � s½0;T� ! R;

ð _ep; sÞ !
Z T

0
s � _ep
� �

dt ¼
Z T

0
Tr r _�p
� �

� y � _x
� �

dt ð5Þ
� Admissibility conditions
Let us introduce the classical kinematic and static admissibility
conditions (K-admissibility and S-admissibility):
– _e is said to be a K-admissible solution if it exists U such
that

_e ¼ _�ðUÞ; of g; where U 2 U½0;T�; Uj@uX ¼ Ud on�0; T½;
ð6Þ

– s is said to be an S-admissible solution if

r2S½0;T�;8t2�0;T½8U� 2Uad;0

�
R

X Tr r�ðU�Þ½ �f gdXþ
R

X f d �U�
n o

dXþ
R
@f X

Fd �U�f gdS¼0

8><
>:

ð7Þ

� Constitutive relations
The constitutive relations are divided into two parts:
– the state equations: ee ¼ KðsÞ;
– the state evolution equations: _ep ¼ BðsÞ,

where K and B denote material operators.
K is assumed to be linear, symmetric and positive: this is the
case for most elastic-(visco) plastic materials, generally after a
change of internal variables (see [21]). This is called the ‘‘nor-
mal’’ material description. Let us observe that what we are
doing here could be easily extended to the case where K derives
from a convex potential.
B can be nonlinear and multivalued, as in plasticity.
However, we assume that we are dealing with a usual plastic
models (where H-assumption holds). Thus, we have the follow-
ing properties:

�B is a monotonous mutlivalued operator
� the state equations are separated;with

r¼K�e and y¼Hx
where K and H are positive definite material operators:

9>>>=
>>>;H�assumption:

An important special case is the family of standard materials whose
state evolution laws can be expressed using two potentials u and
u� which are dual convex functions such that, for
ðt;MÞ 2 ½0; T� �X. One can obtain:



Fig. 2
8ð _ep; sÞ 2 S½0;T� u�ðsÞ þuð _epÞ � s � _ep P 0;
u�ðsÞ þuð _epÞ � s � _ep ¼ 0() _ep ¼ BðsÞ; ð8Þ
and BðsÞ ¼ @su�:
� The reference problem
Using the generalized quantities, the reference problem
becomes
Find ð _ep; sÞ 2 S½0;T� such that
. D
� _e ¼ _ee þ _ep K-admissible;
� ð _e; sÞ S-admissible;
� ee ¼ KðsÞ ðstate equationsÞ;
� _ep ¼ BðsÞ ðstate evolution lawsÞ;
� s ¼ 0; e ¼ 0;U ¼ 0; _U ¼ 0 at t ¼ 0 ðinitial conditionsÞ:

ð9Þ
This is a rewritten form of Eqs. (1)–(3), where e and ee are auxiliary
variables defined as functions of ep and s.
� Example: plasticity with isotropic hardening

In plasticity with isotropic hardening, the additional internal
variable is the accumulated plastic strain p (a scalar quantity,
here p ¼ x). The associated force is the threshold R (also a scalar
quantity, here R ¼ y). Then, the state equations are:
R ¼ k � pþ R0 with k P 0 and R0 P 0;

r ¼ K�e
and the evolution law B is multivalued and can be written as:
_�p;� _p
� �

¼ _p rD
R ; �1

� �
with _p P 0;

f ðr;RÞ ¼ krDk � R 6 0 and _p � f ðr;RÞ ¼ 0: ð10Þ
This is a standard model whose corresponding potentials u and u�

can be found in [4]:
uð _epÞ ¼ R0 _pþ w;

u�ðsÞ ¼ w�;
where w is the indicator function associated with the convex do-
main f _ep 2 e½0;T� such that Tr �p

� �
¼ 0 and k�pk 6 _pg, and w� is the

indicator function associated with the convex domain
fs 2 s½0;T� such that krDk 6 Rg.

2.2. The output of interest

The output of interest a is a goal-oriented quantity, such as a
mean stress value, or any internal variable component defined over
(a) (b)
escription of the reference problem (b), its geometry (a), its loading history (
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an element or a set of elements and over a time interval. True local
quantities in both time and space could also be considered. Such an
output of interest can be expressed globally as

aex ¼
Z

X

Z T

0
Tr rexd _~�R

h i
þ Tr _�exd~rR½ �

n o
dtdX; ð11Þ

whose extractors are ðd _~�R; d~rRÞ over ½0; T� �X and where ‘‘ex’’ de-
notes the exact solution of the conceptual structural model of (9).
Here, for the sake of simplicity, nonlinear functions of the exact
solution are not considered, but the corresponding extensions
would involve no serious difficulty as long as the output of interest
is local in space (see [17]).

Using generalized quantities, aex is equal to

aex ¼
Z

X

Z T

0
sex:d _~eR þ _eex � d~sR

n o
dtdX with

d _~eR ¼ d _~�R; o
� �

and d~sR ¼ d~rR; of g: ð12Þ

The notation d indicates that the extractors must be interpreted
as finite but small quantities relative to the solution of the concep-
tual structural problem. However, no linearization is involved.

Let us note that (11) can lead to outputs of interest which are
related to the inelastic strain. For example, one has:

aex ¼
Z

X

Z T

0
Tr �p;exd ~AR
� �� �

dtdX;

with d _~�R ¼ �Kd ~AR; d~rR ¼
R T

t d ~AR
� �

ds.

Example. The following example is adopted in the remainder of
the paper to illustrate the proposed error bounding method. As an
illustration let us consider, under the plane stress assumption, the
two-dimensional structure of Fig. 2 fixed along its lower left edge
and subjected to a loading Fd(t) along its upper right edge. We used
the following characteristics for the problem:

L ¼ 100 mm; T ¼ 1 s; F0 ¼ 0;15 N mm�2;

with the material parameters:

R0 ¼ 1 MPa; k ¼ 8:16 MPa; E ¼ 244:95 MPa; m ¼ 0:3:

The calculation was carried out with a spatial mesh composed of
8;035 linear quadrilateral elements. The time interval ½0; T� was di-
vided into 20 steps. Fig. 2(d) shows the resulting approximate accu-
mulated plastic strain at time T obtained with the FEM and a
backward Euler scheme.

The output of interest was defined as the mean plastic strain
over domain x in the ey � ey direction between times t1 and t2. x
was localized in the lower left corner, and t1 and t2 were chosen at
the end of ½0; T� (t1 ¼ 0:85:T and t2 ¼ T) as shown in Fig. 3.

This output of interest can be expressed as
(c) (d)
c), and the approximate finite element accumulated plastic strain ph at t ¼ T (d).



Fig. 3. Definition of the zone of interest in space and in time. x is an l� l square, with l ¼ L=5 (left); the associated extractors are shown on the right.
aex ¼
1

mesðxÞðt2 � t1Þ

Z
x

Z t2

t1

�p;ex;yy
� �

dtdX where x 	 X and

0 6 t1 < t2 6 T:

Considering its support, the output of interest can also be written as

aex ¼
Z

X

Z T

0
Tr �p;exd ~AR
� �� �

dtdX with

d ~AR ¼
ey�ey

mesðxÞðt2�t1Þ
; for 8ðM; tÞ 2 x� ½t1; t2�

O otherwise

(
ð13Þ
Remark 1. Any output of interest can be associated with an
extractor.
Remark 2. If necessary in order to get a relatively small extractor,
one introduces a sizing coefficient k; then, the goal-oriented quan-
tity becomes:

kaex ¼
Z

X

Z T

0
Tr rexk � d _~�R

h i
þ Tr _�exk � d~rR½ �dtdX

n o
: ð14Þ
3. The dissipation constitutive relation error and its upper error
bounds

After reviewing the dissipation constitutive relation error, let us
now derive upper bounds of the discretization error. This is the
first of the three key points leading to guaranteed bounds for plas-
ticity problems.

3.1. The admissible solution associated with the calculated solution of
the reference problem

In this section, our objective is to associate an admissible solu-
tion with the calculated solution and with the data. In the dissipa-
tion error framework, ‘‘admissible’’ means that ð _̂ep;h; ŝhÞ is such
that:

� êh: K-admissible, with êh ¼ êe;h þ êp;h;
� ŝh: S-admissible;
� ŝh ¼ Kêe;h.

The approach used is well known and the construction is only
outlined here; further details can be found in [4].

Having defined an admissible solution as one that verifies all
the equations except the evolution laws, let us assume that the cal-
culated solution was obtained using the FEM. Thus, at discrete
times tm belonging to ½0; T�, one knows
4

½ _eh; sh�t; t 2 ½0; t1; . . . ; tn ¼ T�:

One assumes that ð _eh; shÞ verifies the kinematic constraints and the
equilibrium equations at t 2 ½0; t1; . . . ; tn ¼ T� in the FE sense. Con-
sidering that the behavior of the data during each time step is lin-
ear, one can extend this FE solution, originally defined at discrete
times, across the whole time–space domain. This leads to
ð _eh; shÞ 2 S½0;T� which verifies the kinematic constraints and the equi-
librium equations in the FE sense at any time t 2 ½0; T�.

In order to get an associated admissible solution, let us begin
with the same technique as that used in elasticity to define a dis-
placement-stress pair ðÛh; r̂hÞ which verifies a set of kinematic
constraints, equilibrium equations and initial conditions over
½0; T� �X. (Let us note that in the case of elastic-(visco) plastic
behavior, with the constraint Tr _�p

� �
¼ 0, the previous displace-

ment must be modified so that Tr _̂�p

h i
¼ 0; for additional informa-

tion on the application to the 3D case, see [22].) The additional
internal variables ðx̂h; ŷhÞ, which must verify the state equations,
can be obtained easily through the resolution of local problems
which are related to the minimization of the dissipation-type con-
stitutive relation error. Finally, one obtains an admissible solution
ð _̂ep; ŝÞ 2 S½0;T� of the reference model. Further details can be found in
[4,11]. Let us note that similar admissible solutions could also be
derived using recent techniques such as [23–26].

3.2. The dissipation error

Compared to [15], we introduce a different version of the dissi-
pation constitutive relation error in order to minimize the impor-
tance of the additional internal variables.

Definition 1. The local (in terms of space) dissipation CRE ET
CRE is

ET
CREð _ep; s;MÞ ¼ max

ð _e�p ;s�Þ2C
½0;T�
�
Z T

0

Z t

0
Tr ðrðt;MÞ � r�ðt;MÞÞ½f

�

�ð _�pðt;MÞ � _��pðt;MÞÞ
iodsdt

T

	
;

where C½0;T� is the set of the pairs ð _e�p; s�Þ 2 S
½0;T� which verify the ini-

tial condition as well as the behavior.

ð _e�p;s�Þ2C½0;T�()

ð _e�p;s�Þ2S
½0;T�;

the evolution law _e�p¼Bðs�Þ;
the state law ee¼KðsÞ;
the initial conditions e�p¼0 and s� ¼0 at t¼0:

8>>>><
>>>>:
Definition 2. The global dissipation error ET;X
CRE is



ET;X
CREð _ep; sÞ ¼

Z
X

ET
CREð _ep; s;MÞ

n o
dX:
Property 1. For ð _ep; sÞ 2 S½0;T�, one has:

ðiÞ ET
CREð _ep; sÞP 0;

ðiiÞ Under the H� assumption; ET
CREð _ep; sÞ ¼ 0 if ð _ep; sÞ 2 C½0;T�:
Fig. 4. The dissipation relation error � associated with the approximate solution:
map (left) and time evolution (right).
Proof. (i) is straightforward.

For (ii), let ð _ep; sÞ and ð _e�p; s�Þ be two elements of C½0;T�; since B is
monotonous, one has:
q ¼
Z T

0

Z t

0
ð _e�p � _epÞðs� � sÞ
n odsdt

T
P 0

¼
Z T

0

Z t

0
Tr ð _��p � _�pÞðr� � rÞ
h i

� ð _x� � _xÞðy� � yÞ
n odsdt

T
P 0:

ð15Þ

Then:

�
Z T

0

Z t

0
Tr ð _��p � _�pÞðr� � rÞ
h in odsdt

T

6 �1
2

Z T

0
ðx� � xÞðy� � yÞf gdt

T
6 0: ð16Þ

Hence:

ET
CREð _ep; sÞ ¼ 0: �
3.3. An upper error bound

The following theorem leads to an upper bound of global quan-
tities involving the exact solution. This is the first key point of our
approach.

Theorem 1. One has:

ðiÞ �
Z

X

Z T

0

Z t

0
Tr rex � r̂hð Þ _�p;ex � _̂�p;h

� �h in odsdtdX
T

¼ 1
2

Z
X

Z T

0
Tr rex � r̂hð ÞK�1ðrex � r̂hÞ
h in odtdX

T

ðiiÞ �
Z

X

Z T

0

Z t

0
Tr rex � r̂hð Þ _�p;ex � _̂�p;h

� �h in odsdtdX
T

6 ET;X
CREð _̂ep;h; ŝhÞ
Find the solution ðd _~ep; d~sÞ 2 S½0;T� such that

d _~e ¼ d _~ee þ d _~ep; ðd _~e� d _~eR

ðd~s� d~sRÞ S-admissible
d~ee ¼ Kðd~sÞ ðstate equa

d~e
j

p ¼ ~Bðd~sÞ ðevolution

d ¼ 0; d~s ¼ 0; d~U ¼ 0 ðin

8>>>>>>><
>>>>>>>:

5

Proof.

(i) follows from the admissibility of ð _̂ep;h; ŝhÞ and ð _̂ep;ex; ŝexÞ;
(ii) is a consequence of Definition 2. h
3.4. Example: plasticity with isotropic hardening

C½0;T� ¼

_e�p¼ _��p;� _p�
� �

; s� ¼ r�;R�f g ð _e�p;s�Þ 2S
½0;T�;

_��p ¼ _p
r�D
kr�Dk

; _p�60;kr�Dk�R�60 and _p�ðkr�Dk�R�Þ¼0

R� ¼ k:p� þR0;

with the initial conditions p� ¼0 and r� ¼O at t¼0:

8>>>>><
>>>>>:

ð17Þ

Fig. 4 shows the dissipation relation error of the approximate
solution of the previous example. One can observe that the error
is localized mainly in the vicinity of the geometric singularity
and that its time evolution is quite homogeneous.

4. The basics of upper error bounds for goal-oriented
verification

In this section, we derive the method which enables the calcu-
lation of strict upper bounds for goal-oriented verification in (vis-
co) plastic problems. This development follows [15] with slight
modifications associated with our choice of the dissipation error.
The method is based on Theorem 1, the mirror problem and a dual-
ity property.

4.1. The reference mirror problem and the associated identity

The mirror problem, introduced in [15], is associated with the
extractor and replaces the adjoint problem, with which it coincides
in the linear case. Its main feature, inherited from the adjoint prob-
lem, is that it enables one to build an identity which gives the error
in the quantity of interest, i.e. the difference between its exact value
and its calculated value. The mirror problem is similar to the initial
reference problem, except that time goes backward (s ¼ T � t) and
modified evolution laws apply. This mirror problem can be ex-
pressed in terms of d-quantities as:
Þ K-admissible to zero
to zero

tionsÞ

lawsÞ
itial conditions at s ¼ 0Þ

ð18Þ



Fig. 5. The approximate finite element solution of the mirror problem in terms of the accumulated plastic strain (dph): solution map at time t ¼ 0 (left) and time evolution at a
Gauss point located in the lower left corner (right).
From operator B of the conceptual model, ~B can be taken as:

d~e
j

p ¼ ~Bðd~sÞ 
 Bðsh þ d~sÞ � BðshÞ; ð19Þ

where ‘‘j’’ denotes the reverse-time derivative (f
j

¼ @f
@s) and shðsÞ is

the calculated solution of the reference problem. With this defini-
tion of the central problem, the extractors are defined taking into
account the retrograde aspect, i.e. d _~eR and d~sR are functions of
s ¼ ðT � tÞ.

The mirror problem can be solved using the same technique and
the same discretization as for the initial problem. However, for
extractors which are localized in space or in time, it may be pref-
erable to use a discretization which is more refined locally. Let

(d~e
j

p;h; d~sh) be the calculated solution of the mirror problem and

(d~̂e
j

p;h; d~̂sh) the associated admissible solution.
Fig. 5 shows some properties of the calculated solution of the

output of interest considered.
The interest of the mirror problem resides in the following iden-

tity, which was proven in [16], in which the mirror problem is
interpreted as a perturbation problem.

ðah � aexÞ ¼
Z

X

Z T

0
ð _ep;ex � _̂ep;hÞ � d~̂sh � ðsex � shÞd~̂e

j

p;h

( )
dtdX;

ð20Þ
where

� ð _ep;ex; sexÞ is the exact solution of the reference problem;
� ð _̂ep;hŝhÞ is an admissible solution of the reference problem;

� ðd~̂e
j

p;h; d~̂shÞ is an admissible solution of the mirror problem.

All the quantities on the right-hand side of (20) are known, except
for the exact solution ( _ep;ex; sex) of the initial reference problem. In
this case, one uses the identity given by Property 2, which is a direct
consequence of (20). This Property 2 and the mirror problem are
the second keypoint of our approach to get guaranteed error bounds.

Property 2.

ðah �aexÞ ¼
Z

X

Z T

0
Tr ð _�p;ex � _̂�p;hÞ � d ~̂rh � ðrex �rhÞd~̂�

j

p;h

" #( )
dtdX:
Proof. The difference between two expressions of aex � ah is

z 

Z

X

Z T

0
�ð _xex � _̂xhÞ � d~̂yh þ ðyex � yhÞd~̂x

j

h

( )
dtdX

¼
Z

X
� ðxex � x̂hÞ � d~̂yh

h iT

0

� 	
dX ¼ 0 as d~̂yjt¼T

¼ 0 and xex � x̂hð Þjt¼0 ¼ 0: �
6

4.2. The upper error bound

This is the third and last keypoint of our approach. We describe
here the method to get error upper bound for an output of interest
aex. Using Theorem 1, let us introduce:

cð _ep;ex; sexÞ ¼ �
Z t

o
Tr ðrex � r̂hÞð _�p;ex � _�p;hÞ
� �� �ds

T
: ð21Þ

One also has:

0 6
Z

X

Z T

0
cð _ep;ex; sexÞ
� �

þ ET;X
CRE: ð22Þ

In order to get an upper bound, one begins by multiplying the pre-
vious expression of the error by a positive factor g 2 Rþ, and then
by adding the inequality (22):

aex � ah 6
1
g

Z
X

g
Z T

0
Tr ð _�p;ex � _̂�p;hÞ � d ~̂rh � ðrex � rhÞd~̂�

j

p;h

" #(("

�cð _ep;ex; sexÞ
)

dt

)
dXþ ET;X

CRE

#
: ð23Þ

Then, the computable bound is

aex � ah 6min
gP0

1
jgj

Z
X

ghðgÞf gdXþ ET;X
CRE


 �� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�hðgÞ

¼ �þh ; ð24Þ

where

8M 2 X; ghðgÞ ¼ max
ð _e�p ;s�Þ2C

½0;T�
g
Z T

0
Tr

"
ð _�p;ex � _̂�p;hÞ:d ~̂rh

((

�ðrex � rhÞd~̂�
j

p;h

#)
dt �

Z T

0
cð _e�p; s�Þ
n o

dt

)
: ð25Þ

Taking �g 2 Rþ, one obtains a lower bound. Finally:

jaex � ah � ahhj 6 1
2 ð�

þ
h þ ��h Þ; ð26Þ

where

��h ¼min
gP0

1
g

Z
X

ghð�gÞf gdXþ ET;X
CRE


 �� 	

ahh ¼
1
2
ð�þh � ��h Þ:

In order to get an upper bound, one must solve a temporal prob-
lem at every point of the domain. An important contribution of this
paper is that it proposes an inexpensive technique for the resolu-
tion of this problem which, from now on, we will call the ‘‘central
problem’’.



5. The technical point: the resolution of the central problem

In the previous section, we introduced a method for the deter-
mination of strict upper bound of the error in calculated outputs
of interest. This method requires the resolution of the maximiza-
tion problem of (25), called the central problem. In the linear
framework, as previously illustrated in [16] in visco-elasticity, this
maximization problem can be solved explicitly using the global
measure of the dissipation CRE. The framework of nonlinear mate-
rials, which is the subject of this paper, requires the introduction of
a specific numerical method. The purpose of this section is first to
study this central problem, its parameters and their magnitude,
and then to propose a numerical method for its resolution, in the
framework of standard plasticity model with isotropic hardening.

5.1. The functional of the central problem in plasticity with isotropic
hardening

This functional is defined explicitly and divided into three parts
which will be considered separately.

One has:

Property 3. �hðgÞ has the following upper bound:

�hðgÞ 6 � min
ð _p� ;R�Þ2Q ½0;T�

Z T

0

Z t

0
‘ð _p�;R�Þf gdsdt

T

� 	
;

where:

� Q ½0;T� 
 ð _p;RÞ j p 2 L2ð½0; T�Þ; _p P 0;R ¼ R0 þ k:p
n o

.

� ‘ð _p�;R�Þ 
 ‘1ð _p�;R�Þ þ ‘2ð _p�;R�Þ þ ‘3ðR�Þ.

� ‘1ð _p�;R�Þ 
 �kR� � _�p;h þ r̂h
2l � ðT�sÞ þ D _�p � d~̂�

j

p;h

 !

þ _p� � rh þ Drþ d~̂rh

� �
k þ R� �


_ph þ

PrD;h
ðr̂D;hÞ

2l:ðT�sÞ þ PrD;h
ðD _�pÞ

�PrD;h
ðd~̂�

j

p;hÞ
�
þ _p�: krD;hk

�
þPrD;h

ðDrÞ þ PrD;h
ðd ~̂rhÞÞ.

� ‘2ð _p�;R�Þ 
 R� � _p�þ Tr r̂h � _̂�p;h

h i
� _p� �


krD;hk þ PrD;h

ðDrÞ

þPrD;h
ðd ~̂rhÞ

�
� R� � _ph þ PrD;h

ðD _�Þ � PrD;h
ðd~̂�

j

p;hÞ
!

þTr _̂�p;h � d~̂rh � r̂h � d~̂�
j

p;h

" #
þ D _p� � d~̂Rh � DR� � d~̂p

j

h

!
.

� ‘3ðR�Þ 

ðR��kr�DkÞðR1�kr̂D;hkÞ

2l:ðT�sÞ þ ðkr
�
Dk�kr̂D;hkÞ2

4l � ðT�sÞ with kr�Dk ¼min R�;R1f g

using the notations:

� Dr ¼ r̂h � rh
D _�p ¼ _̂�p;h � _�p;h

�
and DR� ¼ R� � Rh

D _p� ¼ _p� � _ph

�

� 8T 2 S½0;T�jkTk– 0,
PTð�Þ ¼ Tr �:T½ �ffiffiffiffiffiffiffiffiffiffiffi

Tr T:T½ �
p and P?Tð�Þ ¼ �� PTð�Þ: T

kTk

� R1 
 kr̂D;hk þ 2l � ðT � sÞ � _ph þ PrD;h
ðD _�Þ � PrD;h

ðd~̂�
j

p;hÞ
!

.

Proof.

lð _p�;R�; kr�DkÞ ¼ R� _p� þ r̂h : _̂�p;h � r� : _̂�p;h � r̂h : _��p � d ~̂rh

: _��p þ r� : d~̂�
j

p;h þ d ~̂rh : _̂�p;h � r̂h

: d~̂�
j

p;h �
r�D : r̂D;h

2l � ðT � sÞ þ
kr�Dk

2 þ kr̂D;hk2

4l � ðT � sÞ : ð27Þ

By minimizing the terms, which involves a tensor direction, one
gets:
7

lð _p�;R�; kr�DkÞ 
 R� _p� þ r̂h : _̂�p;h

� kr�Dk _̂�p;h þ
r̂D;h

2l � ðT � sÞ � d~̂�
j

p;h

 !
þ _p� r̂D;h þ d ~̂rD;h

� ������
�����

þ d ~̂rh : _̂�p;h � r̂h : d~̂�
j

p;h þ
kr�Dk

2 þ kr̂D;hk2

4l � ðT � sÞ ; ð28Þ

¼ l1ð _p�;R�;kr�DkÞþR� _p�þr̂h : _̂�p;hþd ~̂rh : _̂�p;h�r̂h :d~̂�
j

p;h

þkr
�
Dk

2þkr̂D;hk2

4l:ðT�sÞ �kr�Dk _phþPrD;h
ðD _�pÞþ

Pr̂D;h
ðrD;hÞ

2l:ðT�sÞ�PrD;h
ðd~̂�

j

p;hÞ
!

� _p� krD;hkþPrD;h
ðDrÞþPrD;h

ðd ~̂rD;hÞ
� �

: ð29Þ

Let us note that minkr�Dk6kR� l1ð _p�;R�; kr�DkÞ
� �

is equal to:

l1ð _p�;R�Þ 
 l1ð _p�;R�;R�Þ;

lð _p�;R�; kr�DkÞ ¼ l1ð _p�;R�Þ þ R� _p� þ r̂h : _̂�p;h þ d ~̂rh : _̂�p;h � r̂D;h

: d~̂�
j

p;h � R� _ph þ PrD;h
ðD _�pÞ � PrD;h

ðd~̂�
j

p;hÞ
 !

� _p� krD;hk þ PrD;h
ðDrÞ þ PrD;h

ðd ~̂rD;hÞ
� �

þ l3ðR�; kr�DkÞ ð30Þ

with l3ðR�; kr�DkÞ ¼ ðR
� � kr�DkÞ _ph þ PrD;h

ðD _�pÞ � PrD;h
ðd~̂�

j

p;hÞ
!

þðkr
�
Dk � kr̂D;hkÞ2

4l:ðT � sÞ þ
kr�Dk kr̂hk � PrD;h

ðr̂hÞ
� �

2lðT � sÞ .

Consequently,

l3ðR�Þ ¼ min
kr�Dk6R�

l3ðR�; kr�DkÞ
� �

can be obtained for

kr�Dk¼R�

orkr�Dk¼kr̂D;hkþ2l � ðT�sÞ � _phþPrD;h
ðD _�pÞ�PrD;h

ðd~̂�
j

p;hÞ
!
¼R1:

Then,

l3ðR�Þ ¼
ðR� � R1ÞðR1 � kr̂D;hkÞ

2l:ðT � sÞ þ ðR1 � kr̂D;hkÞ2

4l � ðT � sÞ if R1 6 R�

and l3ðR�Þ ¼
ðR� � kr̂D;hkÞ2

4l � ðT � sÞ if R1 > R�: ð31Þ

In order to get l2ð _p�;R�Þ, one adds the quantity:

z 

Z T

0

Z t

0
d~̂RhD _p� � d~̂p

j

h
DR�

( )
dsdt

T
ð32Þ

with D _p� ¼ _p� � _ph dR� ¼ R� � Rh.
This quantity is equal to zero because d~̂RhjT ¼ 0 and DR�j0 ¼ 0:

z ¼
Z T

0

d~̂RhDR�

k

 !
;t

8<
:

9=
;dt ¼ 0: � ð33Þ
5.2. Analysis of the order of magnitude of functional ‘

This analysis is presented in Appendix A. The different contribu-
tions to the error are studied, and the main conclusions are that in
order to obtain sharp bounds.

� the extractors and the D terms must be small to get sharp
bounds, which can always be achieved by an appropriate choice
of the sizing parameter k;



Table 1
The values of the lower and upper bounds as functions of parameter k (k > 0 or k < 0).

k
max d~rR;ij

rh;ij

��� ���� �
;max d~�

j

R;ij
_�h;ij

�����
�����

 !!
Lower bound of �g (�10�3) Upper bound of g (�10�3) ah þ ahh ð�10�3Þ Da%

h ð%Þ

102
1:9610�1;1:31
� �

(�1:9710�1;�1:66) (2:1810�2;3:78) 5:25 51:80

101
1:9610�2;1:3110�1
� �

(�2:18;�1:46) (6:5910�1;3;53) 5:22 47:73

100
1:9610�3;1:3110�2
� �

(�2:20101;�1:44) (6:64;3:51) 5:22 47:41

10�1
1:9610�4;1:3110�3
� �

(�2:20102;�1:44) (6:65101;3:50) 5:22 47:34

10�2
1:9610�5;1:3110�4
� �

(�2:20103;�1:44) (6:66102;3:50) 5:21 47:33

10�3
1:9610�6;1:3110�5
� �

(�2:20104;�1:44) (6:66103;3:50) 5:21 47:33

�102
1:9610�1;1:31
� �

(6:3010�1;�4:15) (�5:0410�2;6:09) 5:16 99:22

�100
1:9610�3;1:3110�2
� �

(6:30101;�4:15) (�5:04;6:09) 5:16 99:22

�10�2
1:9610�5;1:3110�4
� �

(6:30103;�4:15) (�5:04102;6:09) 5:16 99:22

Fig. 6. The geometric approach used for the resolution of the central problem.
� many terms of the functional can be neglected.

5.3. Resolution of the central problem

Using the solutions ðr̂h;
_̂�hÞ; ðrh; _�hÞ and ðdr̂h; d�̂

j

hÞ, the problem
can be written as a minimization problem over Q ½0;T�:

�r ¼ min
ð _p� ;R�Þ�2Q ½0;T�

Z T

0

Z t

0
DR�D _p� þ D _p�:I þ DR� � J þ Kf gdsdt

T

� 	
:

Coefficients I ;J and K are known and are small, which leads to the
following local equations:

R T
t DR� ds

T

� �
þ Q P 0;

_p� P 0;R T
t DR�f g ds

T þ Q
� �

� _p� ¼ 0;

R� ¼ R0 þ k � p�;

p�ðt ¼ 0Þ ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð34Þ

where Q ¼ T�t
T I þ

R T
t

T�s
T k:J

� �
ds.

In order to solve this problem inexpensively, let us build the
solution geometrically. First, let us define �Zjt as:

�Zjt ¼
Z T

t
k � phf gds� Q jt :

Function
R T

t k:p�f g is the convex hull, which is such that:
8

R� � R0 ¼ 0 at t ¼ T;

d
dt

R� � R0½ � ¼ 0 at t ¼ 0: ð35Þ

Obviously, the corresponding curve closely matches that which cor-
responds to

R T
t k � p�f gds. This approach is illustrated in Fig. 6.

Remark 3. If the discretization of Q is piecewise linear within
½0; T� ¼ [16i6n ti�1; ti½ �f g, the _p� solution is a combination of Dirac
distributions corresponding to the times ti (1 6 i 6 n) of the
discretization.
Remark 4. It is easy to take the complete expression lð _p�;R�Þ into
account. In this case, Q depends on ð _p�;R�Þ and one has

Qð0;R�Þ 6 Qðþ1;R�Þ <1:
Remark 5. Again in the case in which Q is piecewise linear, one
starts with Qð0;RhÞ, then introduces the solution as a sum of Dirac
distributions Qð _p�1;R

�
1Þ, and iterates if necessary.
6. First illustration

The reference problem and the output of interest are the same
as in the previous example. The output of interest takes the value

ah ¼ 4:19 10�3:

Using the notations introduced in (12), one can define an upper
bound of the local error denoted Dah:



Fig. 7. The quadratic behavior of the upper and lower bounds; the calculated values are represented by diamonds and the solid lines are quadratic interpolations of
�hðg; k ¼ 1Þ.

Fig. 8. The parameters of aðtÞ and the values chosen for each bound.
jah þ ahh � aexj 6 Dah:

This bounding can be applied directly to the exact value of the out-
put of interest, leading to its extremum:

aex ¼ ðah þ ahhÞ þ Dah:

Let us introduce the nondimensional error measure:

Da%
h ¼

Dah

ah þ ahh
:

Table 1 shows the evolution of the bounds for different values of
parameters (g; k). First, one can observe the significant role played
by the sign of parameter k. This can be explained by considering
the stress direction. The zone of interest is located in a bending
zone. In particular, one can extract the range of each component
of the stress field in that zone:

�0:26 6 rh;xx 6 0:84; 1:10 6 rh;yy 6 1:74 and � 0:06 6 rh;xy

6 0:39:

The prestress extractor in the zone of interest takes the values:

k ¼ 1 : d~rR;h;xx ¼ 0; d~rR;h;yy ¼ 0:25 and d~rR;h;xy ¼ 0;
k ¼ �1 : d~rR;h;xx ¼ 0; d~rR;h;yy ¼ �0:25 and d~rR;h;xy ¼ 0:

�

Remark 6. On this example (Table 1), for negative values of
parameter k, the behavior of the mirror problem is elastic and
corresponding bounds are not sharp. For positive values of
parameter k, the best values of the parameter are chosen to
optimize the bounds.
Remark 7. Parameters g and g0 were chosen by means of a qua-
dratic fitting method. Near the optimum values, �hjk cst has qua-
dratic behavior, as illustrated in Fig. 7. In this figure, the lower
and upper bounds were plotted using a constant extraction param-
eter k equal to 1. The calculated points are represented by dia-
monds and a quadratic interpolation of �hðg; k ¼ 1Þ is also shown.
In practice, based on this behavior, we implemented a procedure
which enables the optimum parameters to be calculated inexpen-
sively. Usually, only five computations are necessary to obtain an
optimum parameter a� or aþ.
Remark 8. In practice, the properties of the mirror problem are
similar to those of the adjoint problem, its equivalent in the linear
case. The method we presented here had been previously imple-
mented in the case of linear problems, for which the bounds can
be calculated explicitly by means of the dissipation error. This
has already be done for viscoelasticity [27,17,18,28] and for
dynamics [20,29]. In the linear case, it was shown that the more
9

accurate the resolution of the adjoint problem, the tighter the
bounds. We showed that the same property also holds in the non-
linear case.
7. A proposal for improvement and conclusion

By analogy with the approach of [27], one could introduce a
weighting function aðtÞ. Indeed, the temporal evolution of the glo-
bal term introduced in the bounding procedure (see (23)) is quite
homogeneous. Conversely, the behavior of the quantity which is
associated with the error in the output of interest is local in time.
If one introduces a function aðtÞ in order to balance the global
quantities, the bounding relation becomes

kðaex�ahÞ6
1
g

Z
X

max
ð _e�p ;s�Þ2C

½0;T�

Z T

0
g � Tr ð _��p� _̂�p;hÞd ~̂rh�ðr� � r̂hÞd~̂�

j

p;h

" #( )
dt

((

�
Z T

0
aðtÞ

Z t

o
Tr ðr� �r�hÞð _��p� _̂�p;hÞ
h in ods

T

�

þ 1
2T

Tr ðr� �rhÞK�1ðr� �rhÞ
h i�	

dt
		

dV : ð36Þ

The choice of a piecewise constant aðtÞ leads to a new associ-
ated central problem which is similar to the previous one. The res-
olution of this problem could be obtained through an extension of
the geometric approach. This function aðtÞ must be such that the
evolution of the associated global term is comparable with that
of the local term. We chose a simple piecewise constant function
whose two values a1 and a2 are inspired by the quadratic behavior
of the bounds, as in Fig. 8.

With this definition of aðtÞ, the bounding results were:

ah þ ahh ¼ 4:07� 10�3 and Da%
h ¼ 27:31%:

The work presented in this paper is based on the general method
introduced in [15,16] for the calculation of strict error bounds of
outputs of interest in quasi-static or dynamic problems involving
any elastic-(visco) plastic material under small-displacement and
convexity assumptions. Applications of this theoretical approach
had been previously presented for viscoelastic materials [27,20].



This work is a first attempt at using this general framework to
derive guaranteed error bounds for plasticity problems. This pro-
posed method was found to be promising. It could be improved
[17,18,20] by refining the calculation of the mirror problem in or-
der to obtain more accurate bounds. Finally, it could be extend to
nonlinear quantity of interest, such as the maximum Von Mises
equivalent stress or the cumulated plastic strain. For linear prob-
lems including viscoelastic ones such a result has already been ob-
tained introducing Dirac distributions for the extractors.

Appendix A. Analysis of the functional of the central problem

This appendix focuses on some technical points relative to the
central problem. The analysis relies on the decomposition of func-
tional ‘ into several parts ‘1; ‘2 and ‘3. These terms are then studied
separately. The study is done in the very interesting case where the
d terms D are small.

A.1. Analysis of term l1ð _p�;R�Þ

‘1ð _p�;R�Þ 
 � R� � _�p;h þ
r̂D;h

2l � ðT � sÞ þ D _�p � d~̂�
j

p;h

!�����
þ _p� � rD;h þ DrD þ d ~̂rD;h

� ����
þ R� � _ph þ

PrD;h
ðr̂D;hÞ

2l � ðT � sÞ þ PrD;h
ðD _�pÞ � PrD;h

ðd~̂�
j

p;hÞ
!

þ _p� � krD;hk þ PrD;h
ðDrÞ þ PrD;h

ðd ~̂rhÞ
� �

:

‘1ð _p�;R�Þ can also be written as

‘1ð _p�;R�Þ ¼ �
N
D
; ðA:1Þ

where

N ¼ R� _�p;h þ
rD;h

2l � ðT�sÞ þ Q
� �

þ _p� � rD;h þ R
� ���� ���2

� R� _ph þ
krD;hk

2l � ðT�sÞ þ PrD;h
ðQÞ

� �
þ _p� � ðkrD;hk þ RÞ

� �2
;

D ¼ R� _�p;h þ
rD;h

2l � ðT�sÞ þ Q
� �

þ _p� � ðrD;h þ RÞ
��� ���
þ R� _ph þ

krD;hk
2l � ðT�sÞ þ PrD;h

ðQÞ
� �

þ _p� � ðkrD;hk þ RÞ
� �

:

8>>>>>>>>><
>>>>>>>>>:
The numerator N is equal to

N ¼ ðR� � P?rD;h
ðQÞ þ _p�P?rD;h

ðRÞÞ2;

which is equivalent to

N ¼ R� � P?rD;h
ðD _�pÞ þ

P?rD;h
ðDrDÞ

2l � ðT � sÞ

!
þ _p�P?rD;h

ðDrDÞ

þ _p�P?rD;h
ðd ~̂rhÞ �R� � P?rD;h

ðD~̂�
j

p;hÞ
" #!2

: ðA:2Þ

Using (A.15), one gets:

_p� � P?rD;h
ðd ~̂rhÞ � R� � P?rD;h

ðd~̂�
j

p;hÞ

� D _p� � P?rD;h
ðd ~̂rhÞ � DR� � P?rD;h

ðd~̂�
j

p;hÞ: ðA:3Þ

Therefore, ‘1ð _p�;R�Þ is very small. The FE solution ‘1ð _ph;RhÞ gives a
very good approximation of its value. This is what we use in prac-
tice, even though it would not be difficult to use the exact term
‘1ð _p�;R�Þ.
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A.2. Analysis of the central problem when the d terms equal zero

The central problem consists in minimizing �rð _p�;R�Þ over Q ½0;T�

with

‘ð _p�;R�Þ¼ ‘1ð _p�;R�Þþ‘3ðR�ÞþR� � _p� þ r̂h : �̂p;h

�R� _phþPrD;h
ðD _�pÞ

� �
�ðkrhkþPrD;h

ðDrÞÞ � _p� ¼ ‘1ð _p�;R�Þ

þ‘3ðR�ÞþDrD :D _�p�ðRh�krD;hkÞ : _̂�p;hþDR� � D _p�

þðRh�krD;hkÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
P0

� _p� �D _p�PrD;h
ðDrDÞ�DR�PrD;h

ðD _�pÞ ðA:4Þ

Term ‘3, which represents an elastic energy, is small. Over ½0; T�,
there are two main possibilities:

ðiÞ _p� > 0 and R� ¼ kr�Dk; then; ‘3 is positive:
ðiiÞ _p� ¼ 0 and R1 ¼ krD;hk þ Oð�ðkrD;hkÞÞ: ðA:5Þ

In the latter case of (A.5), ‘3 can be written as:

‘3 ¼ DR� þ ðRh � kr�DkÞ
� �

� R1 � kr̂D;hk
2l � ðT � sÞ þ

kr�Dk � kr̂D;hk
� �2

4l � ðT � sÞ

¼ DR�
kr�Dk � kr̂D;hk
2l � ðT � sÞ þ

ðRh � kr�DkÞðR1 � kr̂D;hkÞ
2l � ðT � sÞ

þ
kr�Dk � kr̂D;hk
� �2

4l:ðT � sÞ : ðA:6Þ

The positive part of ‘ð _p�;R�Þ corresponds to a negative contribution
to the error. Then, ‘ leads to

D _p ¼ Oð�Þ;
DR ¼ Oð�Þ ðA:7Þ

and, therefore, to a value of �r which is Oð�2Þ.

A.3. Analysis of the central problem when the D terms equal zero

In this case, the central problem consists in minimizing
��rð _p�;R�Þ over Q ½0;T� with

‘ð _p�;R�Þ ¼ ‘1ð _p�;R�Þ þ ‘3ðR�Þ þ R� � _p� þ krD;hk _ph � _p�krD;hk

� R� � _ph � _p� � PrD;h
ðd ~̂rD;hÞ þ R� � PrD;h

ðd~̂�
j

p;hÞ

þ _p� � PrD ;hðd ~̂rD;hÞ � krD;hk:PrD;h
ðd~̂�

j

p;hÞ þ D _p�d~̂R

� DR�d
_̂~p

h
¼ ‘1ð _p�;R�Þ þ ‘3ðR�Þ þ DR�D _p� þ ðRh � krD;hkÞ _p�

þ D _p�ðd~̂Rh � PrD;h
ðd ~̂rD;hÞÞ þ DR�ðPrD;h

ðd~̂�
j

p;hÞ � d ~̂p
j

Þ

þ ðRh � krD;hkÞPrD;h
ðd~̂�

j

Þ: ðA:8Þ

The analysis of l3 is similar to that of Paragraph A.2. One can also

note that PrD;h
ðd~̂�

j

p;hÞ � d~̂p
j

h
> 0 and PrD;h

ðd~̂�
j

p;hÞ � d~̂p
j

h
¼ Oð�0Þ. Let us

analyze the term

x ¼ ðRh � krD;hkÞ _p� þ _p�ðd~̂Rh � PrD;h
ðd ~̂rhÞÞ � _phðd~̂Rh � PrD;h

ðd ~̂rD;hÞÞ

for the two main patterns

� ðRh � krD;hkÞ > 0 and _ph ¼ 0
x ¼ ðRh � krD;hk þ d~̂Rh � PrD;h
ðd ~̂rD;hÞÞ _p�: ðA:9Þ
Since the perturbation d~̂Rh � PrD;h
ðd ~̂rD;hÞ is small, x is positive over

½0; T�.
Therefore, in this case, r ¼ Oð�02Þ.
� ðRh � krD;hkÞ ¼ 0



x ¼ ðRh � krD;hk þ d~̂Rh � PrD;h
ðd ~̂rD;hÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P0

_p� � _phðd~̂Rh

� PrD;h
ðd ~̂rD;hÞÞ: ðA:10Þ
Consequently, ðD _p�;DR�Þ � Oð�0Þ Then, x ¼ D _p�ðd~̂Rh � PrD;h
ðd ~̂rD;hÞÞ.

This term is still small and is Oð�0ðPrD;h
ðd ~̂rD;hÞ

2ÞÞ.

A.4. Orders of magnitude of the D and d terms

D terms Since they represent an error from the reference prob-
lem, the D terms are intrinsically very small quantities. One can
also write:

Dr � oð�Þ � krD;hk;

D _�p � oð�Þ � krD;hk
k � T

: ðA:11Þ

If the behavior is elastic (i.e. krD;hk � Rh < 0), the second expres-
sion becomes

D _�p � oð�Þ � krD;hk
2lT

:

d terms The d terms require a more detailed analysis. By con-
struction, the mirror solution based on the two extractors is de-
fined as a perturbation. Parameter k is what enables this
property to be verified. In practice, one chooses k such that each
component of d~rR (respectively d~�

j

R) is about 102 times smaller
than rh (respectively _�h). Therefore, dr is relatively small:

dr ¼ Oð�0Þ ¼ oðrhÞ:

Furthermore, the d terms inherently satisfy the constitutive relation
~B. Therefore, one has:

d�
j

p ¼ ð _ph þ d p
j
Þ � rD;h þ drD

krD;h þ drDk
� _�p;h ðA:12Þ

with d p
j
ðkrD;h þ drDk � ðRh þ dRÞÞ ¼ 0

dRjs ¼ sup
s06s

krD;hjT�s0 þ drDjs0 k � RhjT�s0 ;0
� �

:

Consequently:

d�
j

p ¼ d p
j rD;h þ drD

krD;h þ drDk
þ _ph

rD;h þ drD

krD;h þ drDk
� rD;h

krD;hk

 �
; ðA:13Þ

which leads to:

PrD;h
ðd�

j

pÞ ¼ d p
j
þoð�0Þ; ðA:14Þ

P?rD;h
ðd�

j

pÞ ¼
_ph

krD;hk
P?rD;h

ðdrDÞ þ oð�0Þ; ðA:15Þ

and dRjs ¼ sup
s06s

krD;hjT�s0 k � RhjT�s0 þ PrD;h
ðdrDjs0 Þ þ Oð�0Þ;0

n o
:ðA:16Þ

Moreover, with regard to ð _ph;RhÞ, one can identify two main pat-
terns over ½0; T�:

� Rh � krD;hk � oð�:krD;hk; kdrDkÞ and Rh � krD;hk > 0; _ph ¼ 0;

� Rh � krD;hk ¼ 0; _ph � o
� � krD;hk

T � k
; kd _�pk

 �
: ðA:17Þ

The portion of ½0; T� where the FE solution is not described by either
of the two patterns is very small. Then, one has:
11
� d�
j

p ¼ 0 for Rh � krD;hk > 0;

� PrD;h
ðd�

j

pÞ � d p
j
¼ o �0

drD

2l

 �
for Rh � krD;hk ¼ 0: ðA:18Þ

For the second pattern, the plastic strain can be expressed as
dp ¼ sups06s kPrD;h

ðdrDjs0 Þ þ Oð�0Þk;0
n o

, which leads to small
quantities.

In the general case, the D terms are often small. Although the
mirror problem is applicable to any type of extractor, it is usually
better to work with small quantities. In this case, the choice of
parameter k enables this property to be always satisfied.
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