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Introduction

Motivations

In this paper, we study the convergence (to their population counterparts) of empirical probability measures supported on a finite metric space with respect to entropy-regularized transportation costs. Transport distances are widely employed for comparing probability measures since they capture in a instinctive manner the geometry of distributions (see e.g [START_REF] Villani | Topics in optimal transportation[END_REF] for a general presentation on the subject). In particular, the Wasserstein distance is well adapted to deal with discrete probability measures (supported on a finite set), as its computation reduces to solve a linear program. Moreover, since data in the form of histograms may be represented as discrete measures, the Wasserstein distance has been shown to be a relevant statistical measure in various fields such as clustering of discrete distributions [START_REF] Ye | Fast discrete distribution clustering using Wasserstein barycenter with sparse support[END_REF], nonparametric Bayesian modelling [START_REF] Nguyen | Convergence of latent mixing measures in finite and infinite mixture models[END_REF], fingerprints comparison [START_REF] Sommerfeld | Inference for empirical wasserstein distances on finite spaces[END_REF], unsupervised learning [1] and principal component analysis [START_REF] Bigot | Geodesic pca in the Wasserstein space by convex pca[END_REF][START_REF] Seguy | Principal geodesic analysis for probability measures under the optimal transport metric[END_REF][START_REF] Cazelles | Geodesic pca versus log-pca of histograms in the wasserstein space[END_REF].

However, the computational cost to evaluate a transport distance is generally of order O(N 3 log N ) for discrete probability distributions with a support of size N . To overcome the computational cost to evaluate a transport distance, Cuturi [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] has proposed to add an entropic regularization term to the linear program corresponding to a standard optimal transport problem, leading to the notion of Sinkhorn divergence between probability distributions. Initially, the purpose of transport plan regularization was to efficiently compute a divergence term close to the Wasserstein distance between two probability measures, through an iterative scaling algorithm where each iteration costs O(N 2 ). This proposal has recently gained popularity in machine learning and statistics, as it makes feasible the use of smoothed optimal transportation distance for data analysis. It has found various applications such as generative models [START_REF] Genevay | Sinkhorn-autodiff: Tractable Wasserstein learning of generative models[END_REF] and more generally for high dimensional data analysis in multi-label learning [START_REF] Frogner | Learning with a Wasserstein loss[END_REF], dictionnary learning [START_REF] Rolet | Fast dictionary learning with a smoothed Wasserstein loss[END_REF], image processing [START_REF] Cuturi | A smoothed dual approach for variational Wasserstein problems[END_REF][START_REF] Rabin | Convex color image segmentation with optimal transport distances[END_REF], text mining via bag-of-words comparison [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF], averaging of neuroimaging data [START_REF] Gramfort | Fast optimal transport averaging of neuroimaging data[END_REF].

The goal of this paper is to analyze the potential benefits of the Sinkhorn divergence and its centered version [START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF][START_REF] Genevay | Sinkhorn-autodiff: Tractable Wasserstein learning of generative models[END_REF] for statistical inference from empirical probability measures. We derive novel results on the asymptotic distribution of such divergences for data sampled from (unknown) distributions supported on a finite metric space. The main application is to obtain new test statistics (for one or two samples problems) for the comparison of multivariate probability distributions.

Previous work and main contributions

The derivation of distributional limits of an empirical measure towards its population counterpart in p-Wasserstein distance W p (µ, ν) is well understood for probability measures µ and ν supported on R [START_REF] Freitag | On Hadamard differentiability in k-sample semiparametric models-with applications to the assessment of structural relationships[END_REF][START_REF] Del Barrio | Tests of goodness of fit based on the L 2 -Wasserstein distance[END_REF][START_REF] Del Barrio | Asymptotics for L 2 functionals of the empirical quantile process, with applications to tests of fit based on weighted Wasserstein distances[END_REF]. These results have then been extended for specific parametric distributions supported on R d belonging to an elliptic class, see [START_REF] Rippl | Limit laws of the empirical Wasserstein distance: Gaussian distributions[END_REF] and references therein. Recently, a central limit theorem has been established in [START_REF] Del Barrio | Central limit theorems for empirical transportation cost in general dimension[END_REF] for empirical transportation cost, and data sampled from absolutely continuous measures on R d , for any d ≥ 1. The case of discrete measures supported on a finite metric space has also been considered in [START_REF] Sommerfeld | Inference for empirical wasserstein distances on finite spaces[END_REF] with the proof of the convergence (in the spirit of the central limit theorem) of empirical Wasserstein distances toward the optimal value of a linear program. Additionally, Klatt et al. [START_REF] Klatt | Empirical regularized optimal transport: Statistical theory and applications[END_REF] analyzed, in parallel with our results, the distributional limit of regularized optimal transport divergences between empirical distributions. The authors of [START_REF] Ramdas | On wasserstein two-sample testing and related families of nonparametric tests[END_REF] also studied the link between nonparametric tests and the Wasserstein distance, with an emphasis on distributions with support in R.

However, apart from the one-dimensional case (d = 1), and the work of [START_REF] Klatt | Empirical regularized optimal transport: Statistical theory and applications[END_REF], these results lead to test statistics whose numerical implementation become prohibitive for empirical measures supported on R d with d ≥ 2. The computational cost required to evaluate a transport distance is indeed only easily tractable in R. It is therefore of interest to propose test statistics based on fast Sinkhorn divergences [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. In this context, this paper focuses on the study of inference from discrete distributions in terms of entropically regularized transport costs, the link with the inference through unregularized transport, and the construction of tests statistics that are well suited to investigate the equality of two distributions. The results are inspired by the work in [START_REF] Sommerfeld | Inference for empirical wasserstein distances on finite spaces[END_REF] on the asymptotic distribution of empirical Wasserstein distance on finite space using unregularized transportation costs.

Our main contributions may be summarized as follows. First, for data sampled from one or two unknown measures µ and ν supported on a finite space, we derive central limit theorems for the Sinkhorn divergence between their empirical counterpart. These results allow to build new test statistics for measuring the discrepancies between multivariate probability distributions. Notice however that the Sinkhorn divergence denoted W p p,ε (µ, ν) (where ε > 0 is a regularization parameter) is not a distance since W p p,ε (µ, µ) = 0. This is a serious drawback for testing the hypothesis of equality between distributions. Thus, as introduced in [START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF][START_REF] Genevay | Sinkhorn-autodiff: Tractable Wasserstein learning of generative models[END_REF], we further consider the centered version of the Sinkhorn divergence W p p,ε (µ, ν), referred to as Sinkhorn loss, which satisfies W p p,ε (µ, µ) = 0. This study thus constitutes an important novel contribution with respect to the work of [START_REF] Klatt | Empirical regularized optimal transport: Statistical theory and applications[END_REF]. We present new results on the asymptotic distributions of the Sinkhorn loss between empirical measures. Interestingly, under the hypothesis that µ = ν, such statistics do not converge to a Gaussian random variable but to a mixture of chi-squared distributed random variables. To illustrate the applicability of the method to the analysis of real data, we propose a bootstrap procedure to estimate unknown quantities of interest on the distribution of these statistics such as their non-asymptotic variance and quantiles. Simulated and real datasets are used to illustrate our approach.

Overview of the paper

In Section 2, we briefly recall the optimal transport problem between probability measures, and we introduce the notions of Sinkhorn divergence and Sinkhorn loss. Then, we derive the asymptotic distributions for the empirical Sinkhorn divergence and the empirical Sinkhorn loss. We also give the behavior of such statistics when the regularization parameter ε tends to zero at a rate depending on the number of available observations. A bootstrap procedure is discussed in Section 3. Numerical experiments are reported in Section 4 for synthetic data and in Section 5 for real data.

Distributional limits for entropy-regularized optimal transport

In this section, we give results on the asymptotic distributions of the empirical Sinkhorn divergence and the empirical Sinkhorn loss. The proofs rely on the use of the delta-method and on the property that W p p,ε (µ, ν) is a differentiable function with respect to µ and ν.

Notation and definitions

We first introduce various notation and definitions that will be used throughout the paper.

Optimal transport, Sinkhorn divergence and Sinkhorn loss

Let (X , d) be a complete metric space with d : X × X → R + . We denote by P p (X ) the set of Borel probability measures µ supported on X with finite moment of order p ≥ 1, in the sense that X d p (x, y)dµ(x) is finite for some (and thus for all) y ∈ X . The p-Wasserstein distance between two measures µ and ν in P p (X ) is defined by

W p (µ, ν) = inf π∈Π(µ,ν) X 2 d p (x, y)dπ(x, y) 1/p (2.1)
where the infimum is taken over the set Π(µ, ν) of probability measures π on the product space X × X with respective marginals µ and ν.

In this work, we consider the specific case where X = {x 1 , . . . , x N } is a finite metric space of size N . In this setting, a measure µ ∈ P p (X ) is discrete, and we write µ = N i=1 a i δ x i where (a 1 , . . . , a N ) is a vector of positive weights belonging to the simplex Σ N := {a = (a i ) i=1,...,N ∈ R N + such that N i=1 a i = 1} and δ x i is a Dirac measure at location x i . Therefore, computing the p-Wasserstein distance between discrete probability measures supported on X amounts to solve a linear program constraint whose solution is constraint to belong to the convex set Π(µ, ν). However, the cost of this convex minimization becomes prohibitive for moderate to large values of N . Regularizing a complex problem with an entropy term is a classical approach in optimization to reduce its complexity [START_REF] Wilson | The use of entropy maximising models, in the theory of trip distribution, mode split and route split[END_REF]. This is the approach followed in [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] by adding an entropy regularization to the transport matrix, which yields the strictly convex (primal) problem (2.2) presented below.

As the space X is fixed, a probability measure supported on X is entirely characterized by a vector of weights in the simplex. By a slight abuse of notation, we thus identify a measure µ ∈ P p (X ) by its vector of weights a = (a 1 , . . . , a n ) ∈ Σ N (and we sometimes write a = µ). Definition 2.1 (Sinkhorn divergence). Let ε > 0 be a regularization parameter. The Sinkhorn divergence [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF] between two probability measures µ = N i=1 a i δ x i and ν = N i=1 b i δ x i in P p (X ) is defined by

W p p,ε (a, b) = min T ∈U (a,b) T, C + εH(T |a ⊗ b), with a and b in Σ N , (2.2) 
where •, • denotes the usual inner product between matrices, a⊗b denotes the tensor product (x i , x j ) → a i b j and

-U (a, b) = {T ∈ R N ×N + |T 1 N = a, T T 1 N =
b} is the set of transport matrices with marginals a and b (with 1 N denoting the vector of R N with all entries equal to one) ,

-C ∈ R N ×N +
is the pairwise cost matrix associated to the metric space (X, d) whose (i, j)-th

entry is c ij = d(x i , x j ) p , -the regularization function H(T |a ⊗ b) = i,j log t ij a i b j t ij is the relative entropy for a transport matrix T ∈ U (a, b).
Remark 1. This entire section is also valid for symmetric positive cost matrices C for which

C(x i , x i ) = 0.
The dual version of problem (2.2) is introduced in the following definition.

Definition 2.2 (Dual problem)

. Following [START_REF] Cuturi | Fast computation of Wasserstein barycenters[END_REF], the dual version of the minimization problem (2.2) is given by

W p p,ε (a, b) = max α,β∈R N α T a + β T b -ε i,j e -1 ε (c ij -α i -β j ) -1 a i b j . (2.3)
We denote by S ε (a, b) the set of optimal solutions of the maximization problem (2.3).

It is now well known that there exists an explicit relationship between the optimal solutions of primal (2.2) and dual (2.3) problems. These solutions can be computed through an iterative method called Sinkhorn's algorithm [START_REF] Cuturi | Fast computation of Wasserstein barycenters[END_REF] that is described below and which explicitly gives this relationship. 

T * ε = diag(u)K diag(v), and α * ε = -ε log(u), β * ε = -ε log(v).
Moreover, such a pair (u, v) is unique up to scalar multiplication (or equivalently (α * ε , β * ε ) is unique up to translation), and it can be recovered as a fixed point of the Sinkhorn map

(u, v) ∈ R N × R N → (a/(Kv), b/(K T u)).
(2.4)

where K T is the transpose of K and / stands for the component-wise division.

Remark 2. When the cost matrix C is defined as c ij = x i -x j 2 and the grid points x i are uniformly spread, the matrix vector products involving K = exp(-C/ε) within the Sinkhorn algorithm can be efficiently performed via separated one dimensional convolutions [START_REF] Solomon | Convolutional wasserstein distances: Efficient optimal transportation on geometric domains[END_REF] without storing C .

As discussed in the introduction, an important issue regarding the use of Sinkhorn divergence for testing the equality of two distributions is that it leads to a biased statistics in the sense that W p p,ε (a, b) is not equal to zero under the null hypothesis a = b. A possible alternative to avoid this issue is to consider the so-called notion of Sinkhorn loss [START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF][START_REF] Genevay | Sinkhorn-autodiff: Tractable Wasserstein learning of generative models[END_REF] as defined below. Definition 2.3 (Sinkhorn loss). Let ε > 0 be a regularization parameter. The Sinkhorn loss between two probability measures µ = N i=1 a i δ x i and ν = N i=1 b i δ x i in P p (X ) is defined by

W p p,ε (a, b) := W p p,ε (a, b) - 1 2 W p p,ε (a, a) + W p p,ε (b, b) , ( 2.5) 
The Sinkhorn loss is not a distance between probability distributions, but it satisfies various interesting properties for the purpose of this paper, that are summarized below.

Proposition 2.2. The Sinkhorn loss satisfies the following three key properties (see Theorem 1 in [START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF]):

(i) W p p,ε (a, b) ≥ 0, (ii) W p p,ε (a, b) = 0 ⇔ a = b, (iii) W p p,ε (a, b) -→ ε→0 W p p (a, b). From Proposition 2.2, we have that a = b is equivalent to W p p,ε (a, b) = 0, therefore the function (a, b) → W p p,ε (a, b)
reaches its global minimum at a = b, implying that the gradient of the Sinkhorn loss is zero when a = b which is summarized in the following corollary.

Corollary 2.4. For any a ∈ Σ N , the gradient of the Sinkhorn loss satisfies ∇W p p,ε (a, a) = 0.

Statistical notations

We denote by L -→ the convergence in distribution of a random variable and

P -→ the conver- gence in probability. The notation G L ∼ a means that G is a random variable taking its values in X with law a = (a 1 , . . . , a n ) ∈ Σ N (namely that P(G = x i ) = a i for each 1 ≤ i ≤ N ).
Likewise G L ∼ H stands for the equality in distribution of the random variables G and H. Let a, b ∈ Σ N and ân and bm be the empirical measures respectively generated by iid samples

X 1 , . . . , X n L ∼ a and Y 1 , . . . , Y m L ∼ b, that is ân = (â x n ) x∈X , where âx i n = 1 n n j=1 1 {X j =x i } = 1 n #{j : X j = x i } for all 1 ≤ i ≤ N. (2.6)
We also define the multinomial covariance matrix

Σ(a) =       a x 1 (1 -a x 1 ) -a x 1 a x 2 • • • -a x 1 a x N -a x 1 a x 2 a x 2 (1 -a x 2 ) • • • -a x 2 a x N . . . . . . . . . . . . -a x 1 a x N -a x 2 a x N • • • a x N (1 -a x N )      
and the independent Gaussian random vectors G ∼ N (0, Σ(a)) and H ∼ N (0, Σ(b)). As classically done in statistics, we say that

H 0 : a = b is the null hypothesis, H 1 : a = b is the alternative hypothesis.

Remark 3. As stated in Proposition 2.1, the dual variables

(α * ε , β * ε ) solutions of (2.
3) for a and b in the simplex are unique up to a scalar addition. Hence for any t ∈ R,

G, α * ε + t1 N L ∼ G, α * ε ,
since G is centered in 0 and 1 N Σ(a)1 N = 0 for a in the simplex.

Notations for differentiation

For a sufficiently smooth function f : (x, y) ∈ R N × R N -→ R, we denote by ∇f and ∇ 2 f the gradient and the hessian of the function f . In particular, the gradient of f at the point

(x, y) ∈ R N × R N in the direction (h 1 , h 2 ) ∈ R N × R N is denoted by ∇f (x, y)(h 1 , h 2 )
(this notation also holds for the hessian). Moreover, the first-order partial derivative with respect to the first variable x (resp. y) is given by

∂ 1 f (resp. ∂ 2 f ). Equivalently, the second-order partial derivative is denoted ∂ 2 ij f , with i ∈ {1, 2}, j ∈ {1, 2}.

Distributional limits for the empirical Sinkhorn divergence

Convergence in distribution

The following theorem is our main result on distributional limits of empirical Sinkhorn divergences.

Theorem 2.5. Let K = exp(-C/ε) be the matrix obtained by elementwise exponential of

-C/ε. For a, b ∈ Σ N , let (α ε , β ε ) ∈ S ε (a, b
) be an optimal solution of the dual problem (2.3) and ân , bm be the empirical measures defined in (2.6). Then, the following central limit theorems hold for empirical Sinkhorn divergences.

1. One sample. As n → +∞, one has that

√ n(W p p,ε (â n , b) -W p p,ε (a, b)) L -→ G, α ε . (2.7)
2. Two samples. For ρ n,m = (nm/(n + m)) and m/(n+m) → γ ∈ (0, 1) as min(n, m) → +∞, one has that

ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)) L -→ √ γ G, α ε + 1 -γ H, β ε . (2.8)
Proof. Following the proof of Theorem 1 in [START_REF] Sommerfeld | Inference for empirical wasserstein distances on finite spaces[END_REF], we have that (see e.g. Theorem 14.6 in [START_REF] Wasserman | All of statistics: a concise course in statistical inference[END_REF])

√ n(â n -a) L -→ G, where G L ∼ N (0, Σ(a)),
since nâ n is a sample of a multinomial probability measure with probability a. For the two samples case, we use that

ρ n,m ((â n , bm ) -(a, b)) L -→ ( √ γG, 1 -γH),
where ρ n,m and γ are the quantities defined in the statement of Theorem 2.5. We now recall that W p p,ε is differentiable and its gradient reads (see Proposition 2 in [START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF])

∇W p p,ε (a, b)(h 1 , h 2 ) = α ε , h 1 + β ε , h 2 ,
for (α ε , β ε ) ∈ S ε . Therefore, by applying the delta-method, we obtain that:

√ n(W p p,ε (â n , b) -W p p,ε (a, b)) L -→ G, α ε , as n → +∞, (2.9) 
while, for n and m tending to infinity such that n ∧ m → ∞ and m/(n + m) → γ ∈ (0, 1), we obtain that

ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)) L -→ √ γ G, α ε + 1 -γ H, β ε . (2.10)
This completes the proof of Theorem 2.5.

Convergence in probability

Distributional limits of empirical Sinkhorn divergences may also be characterized by a convergence in probability by the following result which directly follows from the Delta method (see e.g. Theorem 3.9.4 in [START_REF] Van Der | Weak convergence and empirical processes[END_REF]).

Theorem 2.6. The following asymptotic results hold for empirical Sinkhorn divergences, for any

(α ε , β ε ) ∈ S ε (a, b).
1. One sample. As n → +∞, one has that

√ n W p p,ε (â n , b) -W p p,ε (a, b) -ân -a, α ε P -→ 0.
2. Two samples -For ρ n,m = (nm/(n + m)) and m/(n+m) → γ ∈ (0, 1) as min(n, m) → +∞, one has that

ρ n,m W p p,ε (â n , bm ) -W p p,ε (a, b) -( ân -a, α ε + bm -b, β ε ) P -→ 0. Proof. As the map (h 1 , h 2 ) → ∇W p p,ε (a, b)(h 1 , h 2 )
is defined, linear and continuous on R N × R N , Theorem 3.9.4 in [START_REF] Van Der | Weak convergence and empirical processes[END_REF] allows us to conclude.

Distributional limits for the empirical Sinkhorn loss

Convergence in distribution

The following theorems are our main results on distributional limits of the empirical Sinkhorn loss, for which we now distinguish the cases a = b (alternative hypothesis) and a = b (null hypothesis). 

√ n(W p p,ε (â n , b) -W p p,ε (a, b)) L -→ G, α a,b ε - 1 2 (α a,a ε + β a,a ε ) . (2.11)
2. Two samples. For ρ n,m = (nm/(n + m)) and m/(n+m) → γ ∈ (0, 1) as min(n, m) → +∞, one has that

ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)) L -→ √ γ G, α a,b ε - 1 2 (α a,a ε + β a,a ε ) + 1 -γ H, β a,b ε - 1 2 (α b,b ε + β b,b ε ) .
Proof. The only difference with the proof of Theorem 2.5 is the computation of the gradient of W p p,ε , which is given by

∇W p p,ε (a, b)(h 1 , h 2 ) = α a,b ε - 1 2 (α a,a ε + β a,a ε ), h 1 + β a,b ε - 1 2 (α b,b ε + β b,b ε ), h 2 .
(2.12)

The proof of Theorem 2.7 then follows from the same arguments as those used in the proof of Theorem 2.5 .

Under the null hypothesis a = b, the derivation of the distributional limit of either W p p,ε (â n , a) or W p p,ε (â n , bm ) requires further attention. Indeed, thanks to Proposition 2.2, one has that the function (a, b) → W p p,ε (a, b) reaches its global minimum at a = b, and therefore the gradient of the Sinkhorn loss satisfies ∇W p p,ε (a, a) = 0. Hence, to obtain the distributional limit of the empirical Sinkhorn loss it is necessary to apply a second-order delta method yielding an asymptotic distribution which is not Gaussian anymore. Theorem 2.8. Let a = b be a probability distribution on Σ N , and denote by ân , bm two empirical measures obtained by sampling data from a. Then, the following asymptotic results hold.

1. One sample. As n → +∞, one has that

nW p p,ε (â n , a) L -→ 1 2 N i=1 λ i χ 2 i (1) (2.13)
where λ 1 , . . . , λ N are the eigenvalues of the matrix andχ 2 1 (1), . . . , χ 2 N (1) are independent random variables with chi-squared distribution of degree 1.

Σ(a) 1/2 ∂ 2 11 W p p,ε (a, a)Σ(a) 1/2 ,

Two samples. For

m/(n + m) → γ ∈ (0, 1) as min(n, m) → +∞, one has that nm n + m W p p,ε (â n , bm ) L -→ 1 2 N i=1 λi χ 2 i (1), (2.14)
where λ1 , . . . , λN are the eigenvalues of the matrix of size (R 2N ) 2 given by

( √ γΣ(a) 1/2 , 1 -γΣ(a) 1/2 )∇ 2 W p p,ε (a, a)( √ γΣ(a) 1/2 , 1 -γΣ(a) 1/2 ),
and χ 2 1 (1), . . . , χ 2 N (1) are independent random variables with chi-squared distribution of degree 1.

Proof. From Corollary 2.4, we have that ∇W p p,ε (a, a) = 0. In order to apply a second order delta-method, the Hessian matrix ∇ 2 W p p,ε (a, b) of the Sinkhorn loss W p p,ε (a, b) needs to be non-singular in the neighborhood of a = b. Note that the Sinkhorn loss is indeed twice differentiable, see e.g. Proposition 1 in [START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF] that gives a characterization of the gradient of W p p,ε , allowing its differentiation.

In the one sample case, since W p p,ε is strictly convex in each variables (see [START_REF] Feydy | Interpolating between optimal transport and MMD using sinkhorn divergences[END_REF]), the Hessian matrix of a → W p p,ε (a, b) is non-singular on the whole space Σ N . We can thus apply Theorem 17 in [START_REF] Sourati | Asymptotic analysis of objectives based on fisher information in active learning[END_REF] which states that from second order delta-method, the distributional limits of nW p p,ε (â n , a) is given by

1 2 N (0, Σ(a)) T ∂ 2 11 W p p,ε (a, a)N (0, Σ(a))
that can be rewritten as 1 2

N i=1 λ i χ 2 i (1),
where λ 1 , . . . , λ N are the eigenvalues of the matrix Σ(a)

1/2 ∂ 2 11 W p p,ε (a, a)Σ(a) 1/2
. This concludes the distributional limit presented in relation (2.13).

In the two samples case, the Hessian matrix is given by

∇ 2 W p p,ε (a, b) = A C C B , with A = ∂ 2 11 W p p,ε (a, b), B = ∂ 2 22 W p p,ε (a, b) and C = ∂ 2 12 W p p,ε (a, b).
Since A and B are nonsingular (same arguments as in the one sample case), and C is symmetric thanks to the Schwarz's Theorem on the partial derivatives, we have that ∇ 2 W p p,ε (a, b) is non-singular (see e.g. Corollary 4.1 in [START_REF] Lu | Inverses of 2× 2 block matrices[END_REF]).

Therefore, applying Theorem 17 in [START_REF] Sourati | Asymptotic analysis of objectives based on fisher information in active learning[END_REF] as in the one sample case, we obtain the distributional limit (2.14). This completes the proof of Theorem 2.8.

Convergence in probability

Limits for empirical Sinkhorn loss can again be established from a corollary of the Deltamethod as done in Theorem 2.6. Theorem 2.9. Using the same notations as introduced in the statement of Theorem 2.7, the following asymptotic results hold for all a, b ∈ Σ N .

1. One sample. As n → +∞, one has that

√ n W p p,ε (â n , b) -W p p,ε (a, b) -ân -a, α a,b ε - 1 2 (α a,a ε + β a,a ε ) P -→ 0.
2. Two samples -For ρ n,m = (nm/(n + m)) and m/(n+m) → γ ∈ (0, 1) as min(n, m) → +∞, one has that

√ n(W p p,ε (â n , bm ) -W p p,ε (a, b)-( √ γ ân -a, α a,b ε - 1 2 (α a,a ε + β a,a ε ) + 1 -γ bm -b, β a,b ε - 1 2 (α b,b ε + β b,b ε ) )) P -→ 0.
Note that in the case a = b, this simplifies into

√ nW p p,ε (â n , a) P -→ 0 ρ n,m W p p,ε (â n , bm ) P -→ 0.

Link with unregularized optimal transport

A natural question that arises is the behavior of distributional limits when we let ε tends to 0 at an appropriate rate depending on the sample size. Under such conditions, we recover the distributional limit given by Theorem 1 in Sommerfeld and Munk [START_REF] Sommerfeld | Inference for empirical wasserstein distances on finite spaces[END_REF] in the setting of unregularized optimal transport.

Theorem 2.10. Suppose that X ⊂ R q , and consider the cost matrix C such that c ij = x i -x j p where • stands for the Euclidean norm. We recall that S 0 (a, b) ⊂ R N × R N is the set of optimal solutions of the dual problem (2.3) for ε = 0.

1. One sample. Suppose that (ε n ) n≥1 is a sequence of positive reals tending to zero such that lim

n→+∞ √ nε n log(1/ε n ) = 0. (2.15)
Then, we have that 

√ n(W p p,εn (â n , b) -W p p,εn (a, b)) L -→ max (α,β)∈S 0 (a,b) G, α . ( 2 
√ ρ n,m ε n,m log(1/ε n,m ) = 0, (2.17)
for ρ n,m = (nm/(n + m)) and m/(n + m) → γ ∈ (0, 1). Then, one has that

ρ n,m (W p p,εn,m (â n , bm )-W p p,εn,m (a, b)) L -→ max (α,β)∈S 0 (a,b) √ γ G, α + 1 -γ H, β . (2.18)
Proof. We will only prove the one sample case as both proofs work similarly. For that purpose, let us consider the decomposition

√ n(W p p,ε (â n , b)-W p p,ε (a, b)) = √ n(W p p,ε (â n , b) -W p p (â n , b)) (2.19) + √ n(W p p (â n , b) -W p p (a, b)) + √ n(W p p (a, b) -W p p,ε (a, b)).
From Theorem 1 in [START_REF] Sommerfeld | Inference for empirical wasserstein distances on finite spaces[END_REF], we have that

√ n(W p p (â n , b) -W p p (a, b)) L -→ max (α,β)∈S 0 (a,b) G, α . (2.20)
Since X is a finite set, it follows that the cost c is a L-Lipschitz function separately in x ∈ X and y ∈ X with respect to the Euclidean distance. Therefore, it satisfies the assumptions of Theorem 1 in [START_REF] Genevay | Sample complexity of sinkhorn divergences[END_REF] that gives a bound on the error between the Sinkorn divergence and the unregularized transport for a given pair of distributions. It follows that for any a, b ∈ Σ N (possibly random),

0 ≤ W p p,ε (a, b) -W p p (a, b) ≤ 2εq log e 2 L diam(X ) ε √ q
where q is the dimension of the support space, and diam(X ) is the diameter of X (i.e. diam(X ) = sup x,y∈X x -y ) which is always finite in the discrete case. Then, as soon as the sequence (ε n ) n≥1 satisfies (2.15), we obtain that sup 

(a,b)∈Σ N ×Σ N √ n(W p p,εn (a, b) -W p p (a, b)) ---→ n→∞ 0. ( 2 

Use of the bootstrap for statistical inference

The results obtained in Section 2 on the distribution of the empirical Sinkhorn divergence and Sinkhorn loss are only asymptotic. It is thus of interest to estimate their non-asymptotic distribution using a bootstrap procedure. The bootstrap consists in drawing new samples from an empirical distribution Pn that has been obtained from an unknown distribution P. Therefore, conditionally on Pn , it allows to obtain new observations (considered as approximately sampled from P) that can be used to approximate the distribution of a test statistics using Monte-Carlo experiments. We refer to [START_REF] Efron | An Introduction to the Bootstrap[END_REF] for a general introduction to the bootstrap procedure.

We can apply the delta-method to prove the consistency of the bootstrap in our setting using the bounded Lipschitz metric as defined below. Definition 3.1. The Bounded Lipschitz (BL) metric between two probability measures µ, ν supported on Ω is defined by

d BL (µ, ν) = sup h∈BL 1 (Ω) Ω hd(µ -ν)
where BL 1 (Ω) is the set of real functions Ω → R such that h ∞ + h Lip ≤ 1.

Our main result on the consistency of bootstrap samples can then be stated. Notice that similar results for the Sinkhorn divergence are obtained straightforward using the same arguments. 

One sample case:

√

n(W p p,ε (â * n , b) -W p p,ε (â n , b)) converges in distribution (conditionally on X 1 , . . . , X n ) to G, α a,b ε -1 2 (α a,a ε + β a,a ε )
for the BL metric, in the sense that

sup h∈BL 1 (R) |E[h( √ n(W p p,ε (â * n , b) -W p p,ε (â n , b)))|X 1 , . . . , X n ]- E[h G, α a,b ε - 1 2 (α a,a ε + β a,a ε ) ]| P -→ 0.

Two samples case:

ρ n,m (W p p,ε (â * n , b * m ) -W p p,ε (â n , bm )) converges in distribution (condi- tionally on X 1 , . . . , X n , Y 1 , . . . , Y m ) to √ γ G, α a,b ε - 1 2 (α a,a ε + β a,a ε ) + 1 -γ H, β a,b ε - 1 2 (α b,b ε + β b,b ε )
for the BL metric, in the sense that

sup h∈BL 1 (R) |E[h(ρ n,m (W p p,ε (â * n , b * m ) -W p p,ε (â n , bm )))|X 1 , . . . , X n , Y 1 , . . . , Y m ] -E[h( √ γ G, α a,b ε - 1 2 (α a,a ε + β a,a ε ) + 1 -γ H, β a,b ε - 1 2 (α b,b ε + β b,b ε ) )]| P -→ 0
Proof. We only prove the one sample case since the convergence for the two samples case can be shown with similar arguments. We know that √ n(â n -a) tends in distribution to G ∼ N (0, Σ(a)). Moreover √ n(â * n -ân ) converges (conditionally on X 1 , . . . , X n ) in distribution to G by Theorem 3.6.1 in [START_REF] Van Der | Weak convergence and empirical processes[END_REF]. Then, applying Theorem 3.9.11 in [START_REF] Van Der | Weak convergence and empirical processes[END_REF] on the consistency of the delta-method combined with the bootstrap allows us to obtain the statement of the present Theorem 3.2 in the case a = b.

As explained in [START_REF] Chen | Inference on functionals under first order degeneracy[END_REF], the standard bootstrap fails under first order degeneracy, meaning for the null hypothesis case a = b. However, the authors propose a corrected version -called the Babu correction-of the bootstrap in their Theorem 3.2 given for the one sample case by sup

h∈BL 1 (R) |E[h(n{W p p,ε (â * n , a) -W p p,ε (â n , a) -∂ 1 W p p,ε (â n , a)(â * n -ân , a)}))|X 1 , . . . , X n ]- -E[h(∂ 2 11 W p p,ε (a, a)(G, a)]| P -→ 0,
and for the two samples case by sup

h∈BL 1 (R) |E[h(n{W p p,ε (â * n , b * m ) -W p p,ε (â n , bm )∇W p p,ε (â n , bm )(â * n -ân , b * m -bm )}))|X 1 , . . . , X n ]- -E[h(∇ 2 W p p,ε (a, a)( √ γG, 1 -γG)]| P -→ 0.
Note that most of the requirements to apply this theorem are trivial since the distributions are defined on a subset of R N and the function (a, b) → W p p,ε (a, b) is twice differentiable on all Σ N × Σ N . One of the assumptions (Assumption 3.3 in [START_REF] Chen | Inference on functionals under first order degeneracy[END_REF]) on the second derivative nevertheless requires a finer study left for future work.

As

∂ 1 W p p,ε (â n , a)(â * n -ân , a) = α ân,a , â * n -ân ∇W p p,ε (â n , bm )(â * n -ân , b * m -bm ) = α ân, bm , â * n -ân + β ân, bm , b * m -bm
we can reformulate the Babu bootstrap as follows.

1. One sample case. For (α ân,a

ε , β ân,a ε ) ∈ S ε (â n , a), we have that n W p p,ε (â * n , a) -W p p,ε (â n , a) -α ân,a , â * n -ân (3.1) converges in distribution (conditionally on X 1 , . . . , X n ,) to ∂ 2 11 W p p,ε (a, a)(G, a)
for the BL metric.

2. Two samples case. For (α ân, bm ε , β ân, bm ε ) ∈ S ε (â n , bm ) and m/(n + m) → γ ∈ (0, 1), the quantity

nm n + m W p p,ε (â * n , b * m ) -W p p,ε (â n , bm ) -( α ân, bm , â * n -ân + β ân, bm , b * m -bm ) (3.2)
converges in distribution (conditionally on X 1 , . . . , X n , Y 1 , . . . , Y m ) to

∇ 2 W p p,ε (a, a)( √ γG, 1 -γG)
for the BL metric.

Numerical experiments with synthetic data

We propose to illustrate Theorem 2.7, Theorem 2.8 and Theorem 3.2 with simulated data consisting of random measures supported on a l × l square grid of regularly spaced points (x i ) i=1,...,N in R 2 (with N = l 2 ) for l ranging from 5 to 20. We use the squared Euclidean distance as the cost function C which therefore scales with the size of the grid. The range of interesting values for ε is thus closely linked to the size of the grid (as it can be seen in the expression of K = exp(-C/ε). Hence, ε = 100 for a 5 × 5 grid corresponds to more regularization than ε = 100 for a 20 × 20 grid. We ran our experiments on Matlab using the accelerated version [START_REF] Thibault | Overrelaxed sinkhorn-knopp algorithm for regularized optimal transport[END_REF] 1 of the Sinkhorn transport algorithm [START_REF] Cuturi | Sinkhorn distances: Lightspeed computation of optimal transport[END_REF]. Furthermore, we considered the numerical logarithmic stabilization described in [START_REF] Schmitz | Wasserstein dictionary learning: Optimal transport-based unsupervised non-linear dictionary learning[END_REF] which allows to handle small values of ε.

Convergence in distribution

We first illustrate the convergence in distribution of the empirical Sinkhorn loss (as stated in Theorem 2.7) for the hypothesis a = b with either one sample or two samples. We consider the case where a is the uniform distribution on a square grid and

b ∝ 1 N + θ(1, 2, . . . , N )
is a distribution with linear trend depending on a slope parameter θ ≥ 0 that is fixed to 0.5, see Figure 1. 

√ n(W p p,ε (â n , b) -W p p,ε (a, b)) (resp. G, α a,b ε -1/2(α a,a ε + β a,a ε ) ).

Hypothesis a = b -Two samples

We consider the same setting as before, excepting that data are now both sampled from distributions a and b. Hence, we run M = 10 3 experiments to obtain a kernel density estimation of the distribution of

ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)),
that is compared to the density of the Gaussian variable 

√ γ G, α a,b ε - 1 2 (α a,a ε + β a,a ε ) + 1 -γ H, β a,b ε - 1 2 (α b,b ε + β b,b ε ) , n =
(resp. G, α a,b ε -1/2(α a,a ε + β a,a ε ) ).
for different values of n and m. The results are reported in Figure 5. The convergence does not seem as good as in the one sample case, this must be due to the randomness coming from both ân and bm . We also report in Figure 6 results on the consistency of the bootstrap procedure under the hypothesis H 1 with two samples. From the distributions a and b, we generate two random distributions ân and bm . The value of the realization ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)) is represented by the red vertical lines in Figure 6. Then, we generate from ân and bm , two sequences of M = 10 3 bootstrap samples of random measures denoted by â * n and b * m . We use again a kernel density estimate (with a data-driven bandwith) to compare the green distribution of 6. The green vertical lines in Figure 6 represent a confidence interval of level 95%. We can draw the same conclusion as in the one sample case. All these experiments thus perfectly illustrate the Theorem 2.7.

ρ n,m (W p p,ε (â * n , b * m ) -W p p,ε (â n , bm )) to the red distribution of ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)) displayed in Figure

Hypothesis a = b -One sample.

As in the previous cases, we consider a to be the uniform distribution on a square grid. We recall that the distributional limit in the right hand side of (2.13) is the following mixture of random variables with chi-squared distribution of degree 1

1 2 N i=1 λ i χ 2 i (1) for λ 1 , . . . , λ N the eigenvalues of Σ(a) 1/2 ∂ 2 11 W p p,ε (a, a)Σ(a) 1/2 .
It appears to be difficult to compute the density of this distributional limit or to draw samples from it, since computing the Hessian matrix ∂ 2 11 W p p,ε (a, a) is a delicate task. We thus leave this problem open for future work. Therefore, we can only rely on the non-asymptotic distribution of nW p p,ε (â n , a) and this justifies the use of the bootstrap procedure described in Section 3. Hence, we also display the bootstrap statistic in Figure 7. It appears that the shape of the non-asymptotic density of nW p p,ε (â n , a) (red curves in Figure 7) looks chi-squared distributed. In particular, it only takes positive values. The bootstrap distribution in green also recovers the most significant mass location of the red density. We still consider a = b to be the uniform distribution on a square grid and we sample two measures from a denoted ân , bm . We then compute the non-asymptotic distribution of (nm/(m + n))W p p,ε (â n , bm ) which, from Theorem 2.8, must converge to

1 2 N i=1 λi χ 2 i (1) with { λi } i the eigenvalues of diag( √ γΣ(a) 1/2 , 1 -γΣ(a) 1/2 )∇ 2 W p p,ε (a, a) diag( √ γΣ(a) 1/2 , 1 -γΣ(a) 1/2 ).
The results are displayed in red in Figure 8, together with the bootstrap distribution (in green)

ρ 2 n,m (W p p,ε (â * n , b * m ) -W p p,ε (â n , bm ) -α ân, bm , â * n -ân -β ân, bm , b * m -bm ).
We obtain similar results to the one sample case.

Estimation of test power using the bootstrap

One sample -distribution with linear trend and varying slope parameter. We illustrate the consistency and usefulness of the bootstrap procedure by studying the statistical power (that is P(Reject H 0 |H 1 is true)) of statistical tests (at level 5%) based on the empirical Sinkhorn loss. For this purpose, we choose a to be uniform and b to be a distribution with linear trend whose slope parameter θ is ranging from 0 to 0.1 on a 5 × 5 grid. We assume that we observe a single realization of an empirical measure bm sampled from b with m = 10 This experiments is repeated 100 times, in order to estimate the power (at level α) of a test based on nW p p,ε (a, bm ) by comparing the resulting sequence of p-values to the value α. The results are reported in Figure 9 (left).

It can be seen that the resulting testing procedures are good discriminants for the three values of the regularization parameters ε that we considered. As soon as the slope θ increases then b sufficiently differs from a, and the probability of rejecting H 0 thus increases. We have also chosen to report results obtained with the Sinkhorn loss corresponding to optimal transport regularized by the entropy H(T ) = ij t ij log(t ij ) instead of the relative entropy 9 (right)). Indeed, we remark that in the case of the relative entropy, the power of the test seems to highly depend on the value of ε. More precisely, for a fixed value of the slope parameter θ (or distribution b), the test power is larger as ε increases. On the other hand, when using the Sinkhorn loss computed with the entropy, the power of the test seems to be the same for any value of ε. Notice that both ā20 and w17 are discrete empirical measures admitting a zero mass for many locations x i . We use the two samples testing procedure described previously, and a bootstrap approach to estimate the distribution of the test statistics

H(T |a ⊗ b) = i,j log t ij a i b j t ij (see Figure
ρ 2 n,m W p p,ε (ā 20 , w17 ).
Notice also that n and m respectively correspond to the number of observations for the empirical Autumn distribution ā20 and the empirical Winter distribution w17 , which is the total number of pixels times the number of images. Therefore, n = 20 * 768 * 576 = 8847360 and m = 17 * 768 * 576 = 7520256. We report the results of the testing procedure for ε = 10, 100 by displaying in Figure 11 an estimation of M = 100 observations of the bootstrap statistic's density

ρ 2 n,m W p p,ε (â * n , ŵ * m ) -W p p,ε (ā 20 , w17 ) -( α ā20 , w17 , â * n -ā20 + β ā20 , w17 , ŵ * m -w17 ) ,
where â * n and ŵ * m are respectively bootstrap samples of ā20 and w17 , and (α ā20 , w17 , β ā20 , w17 ) are the optimal dual variables associated to (ā 20 , w17 ) in problem (2.3). We also run the exact same experiments for a smaller grid (size 8 3 = 512) and a higher number of observations (M = 1000). The results are displayed in Figure 12. The distributions

H(T

ρ 2 n,m (W p p,ε (â * n , ŵ * m ) -W p p,ε (ā 20 , w17 ) -( α ā20 , w17 , â * n -ā20 + β ā20 , w17 , ŵ * m - w17 
)) are much more centered around 0 (we gain a factor 10). However, we obtain the same conclusion as before, with a test statistic equal to 9.39 × 10 6 for ε = 10 and 8.50 × 10 6 for ε = 100. 

Testing the hypothesis of equal distribution when splitting the Autumn dataset

We propose now to investigate the equality of distributions within the same dataset of Autumn histograms. To this end, we arbitrarily split the Autumn dataset into two subsets of 10 images and we compute their mean distribution .

Similarly to the Winter VS Autumn case, we also run the same Autumn VS Autumn experiments for a grid of size 8 3 = 512 and M = 1000 observations. The results are displayed in Figure 14 for test statistics equal to 14.07 × 10 5 for ε = 10 and 3.41 × 10 5 for ε = 100.

Future works

As remarked in [START_REF] Sommerfeld | Inference for empirical wasserstein distances on finite spaces[END_REF], there exists a vast literature for two-sample testing using univariate data. However, in a multivariate setting, it is difficult to consider that there exist standard methods to test the equality of two distributions. We thus intend to further investigate the benefits of the use of the empirical Sinkhorn loss to propose novel testing procedures able to . compare multivariate distributions for real data analysis. A first perspective is to apply the methodology developed in this paper to more than two samples using the notion of smoothed Wasserstein barycenters (see e.g. [START_REF] Cuturi | A smoothed dual approach for variational Wasserstein problems[END_REF] and references therein) for the analysis of variance of multiple and multivariate random measures (MANOVA). However, as pointed out in [START_REF] Cuturi | A smoothed dual approach for variational Wasserstein problems[END_REF], a critical issue in this setting will be the choice of the regularization parameter ε, as it has a large influence on the shape of the estimated Wasserstein barycenter. Another interesting extension of the results presented in this paper would be to obtain the eigenvalues of the Hessian matrix of the Sinkhorn loss, in order to compute the distributional limit under the null hypothesis of equality of distributions.
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 27 Let a = b be two probability distributions in Σ N . Let us denote by ân , bm their empirical counterparts and by (α a,b ε , β a,b ε ) ∈ S ε (a, b) the dual variables which are the optimal solutions of the dual problem (2.3). Then, the following asymptotic results hold. 1. One sample. As n → +∞, one has that
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 32 Let a = b be in the simplex Σ N . For X 1 , . . . , X n L ∼ a and Y 1 , . . . , Y m L ∼ b, let â * n (resp. b * m ) be a bootstrap empirical distribution sampled from ân (resp. bm ) of size n (resp. m).
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 11 Hypothesis a = b -One sample.

Figure 1 :Figure 2 :

 12 Figure 1: Example of a distribution b with linear trend (with slope parameter θ = 0.5 on a 20 × 20 grid). We generate M = 10 3 empirical distributions ân (such that nâ n follows a multinomial distribution with parameter a) for different values of n and grid size. In this way, we obtain M realizations of √ n(W p p,ε (â n , b) -W p p,ε (a, b)), and we use a kernel density estimate (with a data-driven bandwidth) to compare the distribution of these realizations to the density of the Gaussian distribution G, α a,b ε -1/2(α a,a ε + β a,a ε ) . The results are reported in Figure 2 (grid 5 × 5) and Figure 3 (grid 20 × 20). It can be seen that the convergence of the empirical Sinkhorn loss to its asymptotic distribution (n → ∞) is relatively fast. Let us now shed some light on the bootstrap procedure. The results on bootstrap experiments are reported in Figure 4. From the uniform distribution a, we generate only one random distribution ân . The value of the realization √ n(W p p,ε (â n , b) -W p p,ε (a, b)) is represented by the red vertical lines in Figure 4. Besides, we generate from ân , a sequence of M = 10 3 bootstrap samples of random measures denoted by â * n (such that nâ * n follows a multinomial distribution with parameter ân ). We use again a kernel density estimate (with a data-driven bandwidth) to compare the distribution of √ n(W p p,ε (â * n , b) -W p p,ε (â n , b)) to the distribution of √ n(W p p,ε (â n , b) -W p p,ε (a, b)) displayed in Figure 2 and Figure 3. The green vertical lines in Figure 4 represent a confidence interval of level 95%. The observation represented by the red vertical line is mostly located within this confidence interval, and the density estimated by bootstrap decently captures the shape of the non-asymptotic distribution of Sinkhorn losses.
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 24101003 Figure 3: Case a = b with one sample. Illustration of the convergence in distribution of empirical Sinkhorn loss for a 20 × 20 grid, ε = 10, 100 and n ranging from 10 2 to 10 4 . Densities in red (resp. light blue) represent the distribution of √ n(W p p,ε (â n , b) -W p p,ε (a, b)) (resp. G, α a,b ε -1/2(α a,a ε + β a,a ε ) ).

n = 10 2 n = 10 3 n = 10 4 Grid 5 × 5 n = 10 2 n = 10 3 n = 10 4 Grid 20 × 20 Figure 4 :

 23455420204 Figure 4: Case a = b with one sample. Illustration of the bootstrap with ε = 10, grids of size 5×5 and 20×20 to approximate the non-asymptotic distribution of empirical Sinkhorn losses. Densities in red (resp. light blue) represent the distribution of √ n(W p p,ε (â n , b) -W p p,ε (a, b)) (resp. G, α a,b ε -1/2(α a,a ε +β a,a ε ) ). The green density represents the distribution of the random variable √ n(W p p,ε (â * n , b) -W p p,ε (â n , b)) in Theorem 3.2.
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 14 Hypothesis a = b -Two samples.

n = m = 10 3 n 5 ε = 10 ε = 100 Figure 5 :

 35101005 Figure 5: Case a = b with two samples. Illustration of the convergence in distribution of empirical Sinkhorn loss for a 5 × 5 grid, for ε = 10, 100, n = m and n ranging from 10 3 to 10 5 . Densities in red (resp. blue) represent the distribution of ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)) (resp. √ γ G, α a,b ε -1 2 (α a,a ε + β a,a ε ) + √ 1 -γ H, β a,b ε -1 2 (α b,b ε + β b,b ε ) with γ = 1/2).

5 ε = 10 ε = 100 Figure 6 :

 5101006 Figure 6: Case a = b with two samples. Illustration of the bootstrap with ε = 10 for the grid of size 5 × 5 and ε = 100 for the grid 20 × 20 to approximate the non-asymptotic distribution of empirical Sinkhorn divergences. Densities in red (resp. blue) represent the distribution of ρ n,m (W p p,ε (â n , bm ) -W p p,ε (a, b)) (resp. √ γ G, α a,b ε -1 2 (α a,a ε + β a,a ε ) + √ 1 -γ H, β a,b ε -1 2 (α b,b ε + β b,b ε ) ). The green density is the distribution of the random variable ρ n,m (W p p,ε (â * n , b * m ) -W p p,ε (â n , bm )) in Theorem 3.2.

n = 10 3 n 20 Figure 8 :

 3208 Figure 8: Case a = b with two samples. Illustration of the bootstrap with ε = 1, 10, 100 and two grids of size 5×5 (left) and 20×20 (right) to approximate the non-asymptotic distribution of the empirical Sinkhorn loss. Densities in red represent the distribution of ρ 2 n,m W p p,ε (â n , bm ). The green density represents the distribution of the random variable ρ 2 n,m (W p p,ε (â * n , b * m ) -W p p,ε (â n , bm ) -α ân, bm , â * n -ân -β ân, bm , b * m -bm ) in (3.2).

Figure 9 :

 9 Figure 9: Test power (probability of rejecting H 0 knowing that H 1 is true) on a 5 × 5 grid in the one sample case, as a function of the slope parameter θ ranging from 0 to 0.15 for ε = 1 (blue), ε = 5 (orange) and ε = 10 (yellow), with n = 10 3 . (left) H(T |a ⊗ b) = Relative entropy, (right) H(T ) = Entropy.
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 1011 Figure 10: Samples of 768 × 576 colored images from autumn (first row) and winter (second row).

Figure 12 :

 12 Figure 12: Testing equality of color distributions between Autumn and Winter for a grid of size 8 3 = 512. Green densities represent the distribution of the bootstrap statistics ρ 2 n,m (W p p,ε (â * n , ŵ * m ) -W p p,ε (ā 20 , w17 ) -( α ā20 , w17 , â * n -ā20 + β ā20 , w17 , ŵ * m -w17 )) (vertical bars represent a confidence interval of level 95%) for (a) ε = 10 and (b) ε = 100. The value of ρ 2 n,m W p p,ε (ā 20 , w17 ) is outside the support of the green density for each value of ε, and it is thus not represented.

Figure 13 :

 13 Figure 13: Testing equality of color distributions when splitting the autumn dataset into two for a grid of size 16 3 = 512. Green densities represent the distribution of the bootstrap statistics ρ 2 n,m (W p p,ε (â * n , b * m )-W p p,ε (ā 1→10 , ā11→20 )-( α ā1→11 ,ā 11→20 , â * n -ā 1→11 + β ā1→11 ,ā 11→20 , b * m -ā11→20 )) (vertical bars represent a confidence interval of level 95%) for (a) ε = 10 and (b) ε = 100. The value of ρ 2 n,m W p p,ε (ā 1→10 , ā11→20 ) is outside the support of the green density for each value of ε, and it is thus not represented..

Figure 14 :

 14 Figure 14: Testing equality of color distributions when splitting the autumn dataset into two for a grid of size 8 3 = 512. Green densities represent the distribution of the bootstrap statisticsρ 2 n,m (W p p,ε (â * n , b * m ) -W p p,ε (ā 1→10 , ā11→20 ) -( α ā1→11 ,ā 11→20 , â * n -ā1→11 + β ā1→11 ,ā 11→20 , b * m -ā11→20)) (vertical bars represent a confidence interval of level 95%) for (a) ε = 10 and (b) ε = 100. The value of ρ 2 n,m W p p,ε (ā 1→10 , ā11→20 ) is outside the support of the green density for each value of ε, and it is thus not represented..

Proposition 2.1 (

  Sinkhorn's algorithm). Recall that K = exp(-C/ε) is the elementwise exponential of the matrix cost C divided by -ε. Then, there exists a pair a vectors (u, v) ∈

	R N + × R N + such that the optimal solutions T * ε and (α * ε , β * ε ) of problems (2.2) and (2.3) are
	respectively given by

  |a ⊗ b) = Relative entropy

																H(T ) = Entropy		
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Analysis of real data

We consider a dataset of colored images representing landscapes and foliage taken during Autumn (20 images) and Winter (17 images), see Figure 10 for examples. These images, provided by [START_REF] Olmos | A biologically inspired algorithm for the recovery of shading and reflectance images[END_REF], are available at http://tabby.vision.mcgill.ca/html/welcome.html. Each image is transformed into a color histogram on a three-dimensional grid (RGB colors) of size N 3 = 16 3 = 4096 of equi-spaced points. We will denote by a 1 , . . . , a 20 the autumn histograms and w 1 , . . . , w 17 the winter histograms. To compute the cost matrix C, we again use the squared Euclidean distance between the spatial integer locations x i ∈ [0; 255] 3 .

Testing the hypothesis of equal color distribution between seasons

We first test the null hypothesis that the color distribution of the images in Autumn is the same as the color distribution of the images in Winter. To this end, we consider the mean histogram of the dataset for each season, that we denote ā20 = 1 20