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The Variational Theory of Complex Rays: An answer to the resolution
of mid-frequency 3D engineering problems

H. Riou, P. Ladeveze*!, L. Kovalevsky

LMT-Cachan (ENS Cachan/CNRS/Paris 6 University, PRES UniverSud Paris) 61 avenue du Président Wilson, F-94230 Cachan, France

The Variational Theory of Complex Rays (VTRC) is an approach to the simulation of mid-
frequency phenomena whose wavelengths are relatively small compared to the
dimensions of the domain. This is a wave-based computational technique which
involves a nonclassical variational formulation. This paper focuses on the development
of the approach for 3D engineering problems and shows that it is a mature technique.
[llustrations are given to show the capabilities of this method.

1. Introduction

Due to regulatory requirements and growing customer expectations, the vibrational and acoustical behavior of
structures has become an important issue in engineering design. Virtual prototypes are being increasingly used in order to
reduce the number of (expensive) experimental tests. This requires efficient and accurate numerical prediction techniques.

Today, most engineering problems are solved using the Finite Element Method (FEM). However, because the FEM seeks
an approximate solution by using continuous, piecewise polynomial functions, it is incapable of handling problems
involving rapidly oscillating functions other than by using highly refined meshes. High-order finite elements can be used
as an alternative to a very fine mesh. However, due to the pollution effect, the number of degrees of freedom must still be
appropriately increased for the standard FEM to maintain the desired level of accuracy. Thus, in practice, the FEM is limited
to low-frequency applications. Although various techniques have been proposed in order to overcome this limitation
(see [1-7]). Indeed, these techniques have been shown to reduce computation costs compared to standard finite elements,
but the frequency ranges which they are capable of addressing are still lower than that would be desirable.

Another often used prediction technique is the Boundary Element Method (BEM). Since the BEM is based on a boundary
integral formulation of the problem, only the boundary of the domain being considered needs to be discretized. Within the
boundary elements which compose the model, the variables are expressed in terms of simple polynomial shape functions.
Unlike the FEM, the enforcement of the boundary conditions results in only a small system of equations to be solved for
the nodal values at the discretized boundary. Once these nodal values have been determined, the field variables within the
domain can be reconstructed in a postprocessing step using the boundary integral formulation. Since only the boundary
needs to be discretized, the BEM is exempt from some of the limitations of the FEM mentioned previously. Besides, many
works have been dedicated to the rapid evaluation of the necessary integrals (see [8,9]). However, these methods are
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penalized by system matrices which are fully populated, frequency-dependent, complex and sometimes nonsymmetric,
leading to calculations which are computationally intensive.

Another approach called Statistical Energy Analysis (SEA) (see [11,10]) involves the description of the energy exchanged
among various systems and leads to the dynamic response of each system averaged over time and space. However,
because it is characterized by a single energy level, SEA cannot account for the spatial variation of the response within each
system and is subject to some restrictions (see [12]). Extensions of SEA have been developed (see [13-17]), but still
produce information which is less local than would be desirable in the mid-frequency regime.

Today, there are also computational strategies dedicated to the resolution of mid-frequency problems, known as Trefftz
methods (see [18]), which differ from the FEM in that the shape functions are often exact solutions of the governing
differential equations. These approaches include, for example, a particular use of the partition of unity method [19-21], the
ultra-weak variational method [22], the least-squares method [23], the discontinuous enrichment method [24], the
element-free Galerkin method [25], the wave boundary element method [26], and the wave-based method [27]. All of
these numerical techniques use oscillating functions to solve the problem. They differ primarily in the treatment of the
transmission conditions among the substructures and boundary conditions, and in the types of shape functions used. The
Variational Theory of Complex Rays (VTCR), which is the subject of this paper and was first introduced in Ref. [28], belongs
to that category.

In [29,30], the VTCR was used to predict the vibrational response of a 3D plate assembly. In [31], plates with
heterogeneities were taken into account. In [32], the approach was extended to shell structures. Vibration analysis over a
range of frequencies was presented in [33]. The use of the VTCR for transient dynamic problems was addressed in [34]. The
extension to linear acoustic problems was introduced in [35] and an adaptive version was developed in [36]. Many
examples have shown that this approach is capable of producing accurate solutions using only limited numbers of DOFs.
More recently, a new discretization of the repartition of the waves based on Fourier series has led to the development of an
efficient semi-analytical method for calculating the operator [37].

After a general presentation of the basic concepts of the VTCR in Section 2, the paper focuses on the development of the
VTCR for 3D engineering problems and shows that it is a competitive numerical prediction tool for the analysis of 3D
structures made of plates (see Section 3) or shells (see Section 4), as well as for 3D acoustic problems (see Section 5).
Conclusions are drawn in Section 6.

2. Basic concepts of the VTCR

Let us consider a general steady-state dynamic problem in £, a d-dimensional domain with boundary 0. The problem
to be solved can be expressed as: find u such that

Lw)=0 inQ (1)

Bu)=b over oQ (2)

where b denotes a prescribed function associated with prescribed sources located at the boundary of ©; £ is a differential
operator associated with the governing equation; and B is a differential operator associated with the boundary conditions
(and also, if Q is partitioned into subregions, with the continuity across the interfaces between these subregions).

The first characteristic feature of the VTCR is that it uses a global formulation of boundary conditions (2) in terms of
both primal and dual quantities. Thus, Problems (1) and (2) are expressed as: find u € S,4 such that

(u,0u)g = (b,0u) Vou € Syq (3)

where (e,0); and (b,e) are respectively a bilinear form and a linear form equivalent to (2), and Sqq is the space of the
functions which satisfy (1). Formulation (3) is written in such a way that approximations which are a priori independent of
one another can be used in the different subregions of Q.

Then, all that is required to build a VTCR approximation is the definition of a subspace S; of S,q. The approximate
formulation can be written as: find u? € Si; such that

(u®,0u%); = (b,0u®) Vou® e S, 4)

The second characteristic feature of the VTCR is the description of the space S, using two-scale approximations with a
strong mechanical content: the solution of (1) is considered to be the superposition of an infinite number of plane waves
which satisfy the governing equation exactly. Then, the construction of space S5, is the result of an approximation of the
distribution of the amplitudes of the waves, which can be chosen among different options in order to benefit from physical
and numerical advantages.

Once the discretization of each subregion of Q has been chosen, the VTCR leads to a linear system of equations

KA—F (5)

where matrix K corresponds to the discretization of the bilinear form of weak formulation (4), A is the vector of the
unknown quantities which approximate the distribution of the wave amplitudes, and F corresponds to the discretization of
the linear form of (4) projected onto S5;. The approximate VTCR solution of Problem (1) and (2) is obtained by selecting
from Sg, the functions whose amplitudes are A.



Several remarks can be made:

e Weak formulation: The VTCR is based on a specific weak formulation of the problem which was developed in order to
enable the approximations within the subregions to be a priori independent of one another and which takes into
account both the boundary conditions and the continuity across the interfaces, thus eliminating the need for a special
treatment to guarantee interelement continuity. Any type of shape function can be used within each subregion, which
gives this approach great flexibility and robustness.

e Injected waves: Space S;; is spanned by propagative and evanescent waves which are viewed as two-scale approximations.
Only the slowly varying scale (which corresponds to the amplitudes of the waves) is discretized. The rapidly varying scale
(which corresponds to the spatial shape of the waves) is taken into account analytically in Formulation (4). These two scales
give the approximation a strong physical content and several computational advantages.

e Dimension of subspace Si;: The number of waves to be used in S;; was studied in [30] for plates, in [32] for shells and in
[37] for acoustics. Each of these studies showed that the VTCR, along with all other Trefftz methods, converges rapidly
when the number of wave DOFs increases. Heuristic criteria and energy criteria for determining a priori the number of
propagative waves required for an accurate numerical solution were presented in the last two references. Each of these
criteria involves a relation between that number of waves and the ratio between the wavelength and the characteristic
length of the domain being studied. Concerning evanescent waves, [30] showed that these are essential, but that not
many of them are needed. If they are related to higher wavelengths than the propagative waves (e.g. in the case of pure
acoustics problems), they are not even introduced at all.

e Properties of matrix K: Matrix K in (5) is complex, nonsymmetric and frequency-dependent. However, since the shape
functions are defined over acoustic subregions €., K is populated by blocks. Each block Kj;; associated with subregion
Q; is fully populated, but the off-diagonal submatrix K;;; between subregions ©; and €; is zero if these subregions are
not connected.

e Accuracy of derived variables: In the FEM, the primary response variables are usually approximated by simple
polynomial shape functions. Therefore, the quantities formed by derivation of these variables (such as stresses and
strains, acoustic velocities, etc.) are less accurate than the variables themselves. In the VTCR, there is no loss of accuracy
because the derivatives of the wave functions are also wave functions.

e Treatment of problems with complex geometries: The VICR can handle complex geometries, whose effects are included in (3),
but sometimes a proper definition of S, (and, thus, of S&;) requires a specific discretization of € in the subregions €2,.

e Computational performance: The calculation of the matrix coefficients involves the integration of highly oscillatory
functions. Special care must be taken in carrying out these integrations in order to ensure good convergence. Semi-
analytical methods can be used in the case of meshes composed of straight lines. Numerical integration schemes can be
used for curved boundaries. Graphics Processing Units (GPUs) or parallel computer systems with multiple servers can
also be used to accelerate many of the computations without resorting to low-level programming.

e Handling of internal sources: The presence of an internal source in (1) can be taken into account simply by adding a
particular solution in approximation spaces Sqq (see [29] for further details and some numerical examples).

3. 3D assemblies of plates
3.1. Problem description

In order to simplify the presentation of the VTCR for 3D plate assemblies, the problem will be formulated for an
assembly of two plates, but this can be easily generalized. Let us consider two isotropic homogeneous plates whose
reference surfaces are Q and Q" with boundaries 0Q and 9Q’ respectively. In each plate, the quantities of interest are the
normal displacements w and w’ and the moment operators M and M'. Fig. 1 presents the geometry of the problem along
with the prescribed displacements wy, rotations w,y4, bending moments My and shear forces K, of Q and the corresponding
quantities of €'. Using Kirchhoff-Love’s plate theory, the steady-state out-of-plane displacements w in Q at circular

M', K’

Fig. 1. Definition of the reference problem for an assembly of two plates.



frequency w are governed by the following partial differential equations:

(A+ipER®>
AAW*‘IZ(]—VZ) =pho*w in Q (6)
W3
M= 5 (1+iKpsXw) in Q (7)

where E, v, h, Kps, p, n and X denote respectively Young’s modulus, Poisson’s coefficient, the plate’s thickness, Hooke’s
plane stress tensor, the density, the damping coefficient and the curvature operator. Egs. (6) and (7) are the governing
equation and the constitutive relation of plate Q. Similar equations exist for plate Q'.

Let S,4 be the space defined by

Saa = {(W,M) € W x M/(w,M) satisfy (6) and (7)} (8)

where W and M are the sets of the finite-energy displacements and moments. The problem of Fig. 1 can be expressed as:
find (w,M) € Sog and (w',M’) € S, ; which satisfy the boundary conditions:

w=wy (resp. W =w,) along d,,Q (resp. dy, Q")
W =Wng (Tesp. W, =w,;) along dy,,Q (resp. dy,, Q")
nMn = M, (resp. ’M'n’ = M) along 9y, (resp. oy, Q")

Ky =ndiv(M)+(nMn), =K, along d¢,Q

(resp. K, =K)) (resp. o, Q)
[tMn] =0 (resp. [tM'n’ ] =0) at the corner of 9Q (resp. (39
w=w along 0Q NoQ’
wn,=w, alongdQnNaQ
nMn+n'M'n’ =0 along 0Q N aQ’
Ky,+K,=0 along dQ N o (9)
Problem (9) can also be written as: find (w,M) € Soqy and (W',M’) € S, such that
Re{iw([ QnéMn(w,n—wnd)* daQ—[ QéKn(w—wd)* doQ
Y Owyg Owy

+ / (MMn—M)ow*, do— / (Kn—K)ow* dog
oM, Q@ ’ i, Q

+ / oMW, —w,,)* doQ — / 5K, (W —wy)* doe
dw, @ ! s

'nd

+ / MM’ —M)w', % doQ' — (K, —K,)ow™* doQ’
om, @ ' 2
- > [tMa]éw*— > [tMn Jow*
dQcorners 9Q' corners

+ / . ’ % [(MMn—n'M'n')(W,,—W,)*—6(Kn—K;, )(w—w')*] doQ
JoR2NoQ

+/ / %[(nMn+ MD)W, + W, )*—(Kn 4+ K )o(w+w')*] daQ) }
202NdQ

=0 V(6W,0M) € Sqq, V(SW,6M)) € S, (10)

where o* and Re{e} denote the conjugate part and the real part of the complex quantity e. Eqs. (8) and (9) correspond to
(1) and (2) for an assembly of two plates, and Formulation (10) corresponds to (3). Complete details about Formulation
(10), especially its equivalence with (8) and (9), can be found in Ref. [29].

3.2. Approximate solution using plane waves
Among the several possible ways to generate the space S;; in which to seek an approximate solution (see (4)), the

expansion proposed in Ref. [29] seems promising. One assumes that the solution is correctly represented by a specific set
of propagative and evanescent waves. Thus, S%, is generated by a set of functions of the form e*, where i is the complex



Fig. 2. Interior, edge and corner waves which satisfy (11) for a homogeneous rectangular plate. The nature of the wave depends on the real and
imaginary parts of the coordinates of k in function e*x,

50 mm
325,5mm

E=2,1GPa
v=0.3
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p=7800kg/m’
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Fig. 3. Definition of the example problem of Section 3.3: an assembly of 12 plates subjected to a shear force F distributed linearly along an edge.

imaginary unit, K is the wave vector and X is the spatial location. This type of function satisfies (6) and (7) if, and only if
41 120-vH)pw?

T 1+in h2E
See Ref. [29] for more details. Depending on the real and imaginary parts of the coordinates of k, different types of waves

satisfy (11): interior waves, edge waves or corner waves (see [29]). Fig. 2 gives a representation of such waves for a
homogeneous rectangular plate. Then, S, is spanned by the entire set of the interior, edge and corner waves

(11)

4,= span { elKintj X @ikedgenX @ilcomerX

. 12
Jelnind.h € [1; Neggel. I € [1;ncorner]} (12)

where Njn, Negge aNd Neomer are the numbers of waves of each type which are being considered in the approximate solution.
The choice of these numbers depends on the problem and on the level of accuracy desired.

3.3. Numerical example

Fig. 3 shows the geometry and the mechanical properties of the structure being studied, which is a typical stringer as
can be found in a car chassis. The reference solution was calculated using the FEM program MSC Nastran with about seven
CQUA4 elements per wavelength. In each plate, the VTCR solution was calculated with 32 interior waves (distributed
regularly in all the possible 2-D propagation directions of the reference surface), nine edge waves per edge and no corner
waves. The results obtained with the two methods are shown in Fig. 4.

One can see that the VTCR solution and the FEM solution are very similar. The spatial distributions and the amplitudes
of the vibrational behavior are nearly the same. Moreover, the maximum relative differences between the VTCR and FEM
effective displacements (l/mes(Q,»))fQi|W| dQ in each plate Q; (i=1..12) are 0.1, 0.03 and 0.07 at 400 Hz, 800 Hz and
1500 Hz respectively. However, significantly fewer degrees of freedom were necessary with the VTCR, especially at higher
frequencies (about two hundred times fewer at 1500 Hz). This example clearly demonstrates the benefits of the VTCR in
dealing with 3D plate assemblies.

4. 3D shell assemblies
4.1. Problem description
Again, in order to simplify the presentation, the problem will be formulated for an assembly of two shells, but could

be easily generalized to a larger number. Let us consider two isotropic homogeneous shells whose reference surfaces are
@ and Q" with boundaries 92 and 9Q’ respectively. In each shell, the quantities of interest are the displacement vector
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Fig. 4. Comparison of the normal displacements (in m) obtained using the VTCR (left) and the FEM program MSC Nastran (right) for the problem of Fig. 3.
The numbers of DOFs used and the circular frequencies considered are given next to each plot.

Fig. 5. Problem definition of the 3D assembly of two shells.

u=(v,w) (vand w being the tangential and normal displacements), the moments (associated with operator M) and the
resultants (associated with operator N). Both shells are assumed to be slightly curved. The action of the environment on Q
consists of a prescribed displacement uy along 9,2 and a force density Fy along o, (see Fig. 5). Similar quantities are
defined for Q'.

The formulation uses Koiter’s linear shell theory (see Refs. [38,39]). The displacement class is restricted to
u=v+wes;+zf with f=—-V(w)—Bv, z being the thickness, e; the normal to the reference surface and B the curvature
tensor (Kirchhoff’s kinematic assumption). The transverse strain energy is neglected.



For structure Q, let us define the space S;q = {(V,w,N,M) € V x W x N x M} (V, W, N and M being the finite-energy sets

of the corresponding physical quantities) such that
div N-B(div M) = —pw?hv in Q
div(div M) +Tr(NB) = —pw?hw in Q
3
M= %(1 +inKepX(u) in Q
N= h(] +i17)ch “/(ll) in Q

X(u) = €(B)—[Be(v+wes)ym
y(u) = €(V+wes)

(13)

where Kcp is Hooke’s plane stress operator, € is the gradient operator, p is the density, # is the damping coefficient and h is
the thickness of the shell. S, is defined in the same way. Thus, the problem to be solved can be expressed as: find

(V,w,N,M) € Soq and (v, w',N',M') € S, which verify the boundary conditions

v=v,; along dy,Q Vv =v, along av;’Q’

w=w, along d,,Q w =w; alongdy, Q'

W,n =Wy along dy,, R wW.,n=w,, along aw/ndQ’

N, =Nn-BMn =N, N, =Nn'-BM'n' =N,
along on, Q2 along aN&Q’
»=(divM)n+@Mt), =K, K, = (divM)n'+@'Mt), =K,
in o, Q2 in 6,%9’

Mp=nMn=M; indy,Q M;=n'M'n’ =M, in aMrdQ/

[nMt] =0 [WMt]=0
at the corners of 0Q at the corners of 0Q’

v=Vv along o2 noQ’
w=w along 0Q N oY’
w,=w,, alongoQnNoL
Nn-BMn=N'n'-BM'n’ along 0Q NoQ'’
(div M)n+(nMt),

= (divM)n’'+(m'M't), along 3Q N oY’
nMn=n'M'n’ along 0Q N oY’

Problem (14) can also be written as: find (v,w,N,M) € S, and (v',w',N' M) € S, such that
Red —iw — / SN, - (V—vg)* doQ— / (Na—Ny) - 5v* doQ
0, 2 on, @

+/ oMy, - (W, —Wpg)* daQ+/ (Mn—My) - ow,}; doQ
Ow, ,Q

Wng g

_ / SKn(w—wy)* doQ— / (Kn—K )owW* doQ
e @

- / SN, - (V—v)* do@— [ (N.—N}) - ov* doe
) oy @
d d
+ / M, - (W n—W,p)* dOQ + / (M, M) - 5w doc
0, Q

; O
Ynd d

9

_ / SK, (W —w)* dog— / (K, —K)ow™* dog’
Q o @
d

“a

— 3 [nMtJowr— Y [n'MtJow*

0Q corners 0Q' corners

+ /1 %[—(5Nn—5N;,)(v—v’)*+(5Mn—51\/1/n)(w,”—w/,,,)*

—(0Kn—0K,)(w—w')*] daQ+/ % [~ (Np +N})(6V+V)*
r

+ My +Mp)(0W,n+0W )" — (K, + K (dw+w)*] doQ) }
= 0 V(0v,0w,0N,0M) € S,y and (oV, 0w, 0N, 0M’) € S,



Fig. 6. Interior, edge and corner waves which satisfy (16) for a homogeneous cylinder. The nature of the wave depends on the real and imaginary parts of
the coordinates of k in function e,

Eqgs. (13) and (14) correspond to (1) and (2) for an assembly of two shells, and Formulation (15) corresponds to (3).
Complete details about Formulation (15), especially its equivalence with (13) and (14), can be found in Ref. [32].

4.2. Approximate solution using plane waves

Again, among the several possible ways to generate the space S5; in which to seek an approximate solution (see (4)), the
expansion proposed in Ref. [32] seems promising. One assumes that S, is correctly represented by a specific set of
propagative and evanescent waves expressed as e, In order to find the equation that the wave vector k must verify, one
can perform an asymptotic expansion of (13) with respect to the small parameter /h/R, where R is the smallest radius of
curvature of the shell being considered (which is assumed to be only slightly curved). Then, one can easily prove that the
wave vector must verify

o L 120-v)p? s 1201V qpppney? (16)
I+in  Eh? h?

where R is a rotation matrix in the coordinate system of the shell’s reference surface. Of course, in the case of a plate, i.e.
if B=0, (16) boils down to (11). Otherwise, the additional portion of Eq. (16) is necessary in order to calculate waves in
shells because it is used to represent some well-known characteristics of propagative waves in certain directions at certain
frequencies (see [32] for details).

Again, (16) can be satisfied by interior waves, edge waves or corner waves depending on the real and imaginary parts of
the coordinates of k. Fig. 6 illustrates these different types of waves in the case of a homogeneous cylinder. Then, S5, is
spanned by the entire set of the interior, edge and corner waves

sgd — Span{eikimj-x'eikedge,h -x,eikcorner,!-x
Jjelinpdh e [1§nedge]-l € [1; Neorner]} (17)

where ninp, Negge and Neomer are the numbers of waves of each type which are being considered in the approximate solution.
Again, the choice of these numbers depends on the problem and on the level of accuracy desired.

4.3. Numerical example

Fig. 7 shows the geometry of a 3D assembly of two cylindrical shells and one plate. The mechanical properties are
E=75GPa, 7 =0.0001,v=0.3, p=2750 kg/m?, =27 - 1000 rad/s, F; = 1 N/m. The cylinder’s height L, and its curvature
are both equal to 1 m and its thickness is h=0.01 m.

We used the solution obtained with the FEM program MSC Nastran as the reference solution. The mesh seed used in the
program was set to create 10 QUADR shell elements per wavelength and the solution was obtained with about 1,200,000
DOFs. For the VTCR solution, the structure was divided into three parts (shell ©, shell 23, and plate Q,, see Fig. 7).
The model involved 264 DOFs (corresponding in each substructure to 24 interior waves, five edge waves per edge and no
corner waves). One can verify in Fig. 8 that the result given by the VTCR is quite good and very similar to that given by the
FEM regarding the distribution and amplitudes of the displacements).

In order to compare the solutions in terms of an effective quantity, we calculated the effective displacement
(1/mes)(€2)) [, vl dQ in each substructure €;, i=1..3. The comparison is shown in Table 1. One can see that the VTCR
gave accurate results at a very low cost. The VTCR can calculate any number of homogeneous substructures (plates, shells, etc.)
without difficulty.



Fig. 7. Definition of the example problem of Section 4.3: an assembly of two cylindrical shells and one plate.
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Fig. 8. Comparison of the displacements (in m) obtained using the VTCR (left with 264 DOFs) and the FEM program MSC Nastran (right with about
1,200,000 DOFs) for the problem of Section 4.3 illustrated in Fig. 7.

Table 1

Comparison of the effective displacements in substructures ©;, i =1..3 of the problem of Fig. 7, whose solutions are given in Fig. 8.

DOFs VTCR FEM (MSC Nastran)
264 1,200,000
Effective displacement (m)
Shell 1.78 x 1078 1.62x10°8
Plate Q, 257 x 1078 252 %1078
Shell Q3 1.01x 1078 1.09 x 1078

5. 3D acoustic problems

5.1. Problem description

Let us consider a general steady-state interior dynamic problem in a 3D acoustic cavity Q filled with a fluid
characterized by its sound velocity c, its density p and its damping coefficient #. The problem of the steady-state dynamic
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behavior of Q at a fixed circular frequency  is: find the pressure p € H'(Q) such that

Ap+k’p=0 in Q
p—Z-L,(p)=hy; over 9;Q2
D=DPa
where k=w/c is

over 0pQ2
Ly(p)=vq

(18)
over 0,02
the wavenumber, Z is an impedance coefficient and L,(C0) an operator defined as
L,(O)=(i/pw)@0/0n) = (i/pw)n - V(O), n being the outward normal to 9. hy, pg and v4 denote respectively a prescribed
excitation over 9z, a prescribed pressure over 0,Q and a prescribed velocity over 9,
The continuity conditions over I'gp are

Let us partition Q into n. non-overlapping subcavities Qr and use the notations I'r =0Qr and ['rp = 0Q N0
Pg=DPp

Lv(pE) = *Lv(pE)
The problem defined by (18) and (19) is illustrated in Fig. 9

The VTCR formulation is obtained by rewriting boundary value problem (18) and (19) in a weak form. Let S,.; denote the space
The VTCR formulation of Problem (

(19)
of the functions which satisfy the Helmholtz equation (the first equation of Problem (18)) everywhere in subcavity Qg

ad =1DE € Hl(QE)|APE+kzPE =0} (20)
18) and (19) is
Find {(p1.P2. .. ..Pn,) € Saq X Stq x -+~ x Sia} such that
Ml
(35 Lo

(Pe—ZLo(Pe)—hag) - Lo(3pp)* +(

h
—Ly(pp)—
Mgy

) (SPE doQg
2

. (Pe—DPap) - Lv(Opg)* doQg
P E

nel
/  (Lo(pe)—vap)* - op dOQ;
Opseg

EF <E

+ 3 / ((Pe—Pe) - Lu(OPg—0pp)* + Lu(Pg+Pp)* - (9pg+Opg)) doQ

} 0
¥{(0p1,0p2, - - -,0Dn,) € St % Sag X -

x Spd} (21)

Egs. (18) and (19) correspond to (1) and (2) for acoustic problems, and Formulation (21) corresponds to (3). Complete
details about Formulation (21), especially its equivalence with (18) and (19), can be found in Ref. [37]
5.2. Approximate solution using plane waves

Again, there are several possible ways to generate the space S

directions must be carried out efficiently

i in which to seek an approximate solution (see (4))
In the cases of plates and shells of Sections 3 and 4, although the structure was defined in 3D, the waves propagated in 2D
i.e. in the plate’s or the shell’s reference surface. Here, the difficulty comes from the fact that waves can propagate in all 3D

directions. Taking into account all possible directions can lead to a huge problem. Therefore, the discretization of these

In order to do that, a direct and straightforward extension of what was proposed for 2D acoustics in Ref. [37] seems
promising. The pressure field is sought as an integral distribution of plane waves, also known as Herglotz wave functions

10



: L]
e

1 oo

Indexl—°°°

| e e e
SIS

oo eeeele

oo |e|s|e

Fig. 10. Illustration of the shape functions @}"(x) used in (23) to define Sf,'d“. For each index | and each momentum m, the real and imaginary parts are
plotted on top and bottom.

which satisfy the homogeneous Helmholtz equation. In the 3D case, this plane wave distribution is defined over the unit
sphere:

PEX) = / / Ax0,0) - MO 40 sin ¢ dp (22)
0=-nJp=0

where Ar denotes the amplitude of the plane waves in the 3D spherical direction (6,¢). One can easily prove that (22)
satisfies (20) and, therefore, that pg(x) belongs to Sﬁd.

In order to preserve all possible wave directions, avoid too refined a quadrature of the unit sphere and benefit from the
advantages of the Fourier decomposition introduced in Ref. [37], function Ag(0,¢) is described using a truncated Laplace
series, which is a 3D extension of a Fourier series. Then, the discrete space Sﬁj’ of (21) can be expressed as

Ska— span{ / / Y™(0,0)e™®?X d0 sin ¢ dp,m=—I,...,LI=0, ... ,LE}
0=-m =0

=span{®"(x),m=—1,...,LI=0,...,Lg} (23)

where Kk(0,¢p) is the wave vector of the plane wave propagating in the spherical direction (6,¢) and Y'(0,¢p)=
V2 - (I—=m)!/(I+m)! - P['(cos 0) - e™¢ is the spherical harmonic of nonnegative index | and momentum m, and Lg the
maximum index retained in the discrete space S‘;;," of dimension (Lg+1)?. In the last expression, P{"(X):((—l)’“/21~
lz)(17x2)m/2(am+’(xz71)’/axm+’) denotes the Legendre polynomial and parameter m varies from —I to I The set
{Y{”(G,(p)}‘m‘ ~ 1< o COnstitutes a complete orthogonal coordinate system for the unit sphere with regard to the classical
L? scalar product.

Fig. 10 illustrates the corresponding shape functions @;"(x) in a 3D cubic zone. The choice of the number of these shape
functions depends on the problem and on the level of accuracy desired.

5.3. Numerical example

The example considered (see Fig. 11) is a Z-shaped cavity filled with air (p =1.25 kg/m3, ¢ =340 m/s, 1 =0.0001).
The boundary conditions consisted of a unit external pressure, a prescribed impedance Z=425Pas/m or a rigid-wall
condition as indicated in the figure. The circular frequencies considered were w =27 - 500 Hz, 1000 Hz and 1500 Hz. For
each frequency, a reference solution (in the form of a pressure distribution p,) was calculated using the FEM program
COMSOL. In order to achieve an appropriate quality of results, the mesh seed used in the program was set to create 14 3D
TETRA elements per wavelength, leading to three models with 7,160, 57,230 and 192,420 DOFs respectively for the three
frequencies.

For the VTCR solution, the structure was divided into three subcavities Q;, 2, and Q3 (see Fig. 11). Fig. 12 shows for
each frequency the real part of the VTCR pressure, the number of DOFs used and the corresponding relative error
JolPvicR—Pref| A2/ [olPref| A2 where p,¢ is the solution given by the FEM. One can see that in all three cases the solutions

11
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Fig. 11. Problem definition for the Z-shaped cavity filled with air of Section 5.3.

w=21.500Hz w=21.1000Hz w=27.1500Hz
DOFs:500 DOFs:1000 DOFs:1500
Relative error :0.0024 Relative error:0.081 Relative error:0.093

e

Fig. 12. The real part of the VTCR pressure for the problem of Section 5.3 illustrated in Fig. 11. The circular frequency considered, the number of DOFs and

the relative error are indicated in each case.
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Fig. 13. Comparison of the FRFs given by the FEM and the VTCR for the problem of Section 5.3 illustrated in Fig. 11. The corresponding numbers of DOFs
are indicated on the vertical scale on the right. For the FEM, 14 elements per wavelength were used. For the VTCR, the number of shape functions was

chosen so that the relative error compared to the FEM would be less than 10~> for each frequency.

given by the VTCR and the FEM are very similar, but with the VTCR the solution was obtained using far fewer DOFs (over
100 times fewer at w =27 - 150 Hz).

Fig. 13 shows another interesting comparison concerning the global Frequency Response Functions (FRFs) in energy for
the FEM and the VTCR. In addition, the number of DOFs used is indicated on the vertical scale on the right. Again, in the
case of the FEM, 14 elements per wavelength were used in order to ensure the accuracy of the solution (especially for the
3D calculations). In the case of the VTCR, the number of shape functions was chosen so that the relative error compared to
the FEM would be less than 10~> for each frequency. One can see that the two FRFs thus predicted are very similar, which
is normal since the number of DOFs for the VTCR was chosen specifically so the error between the two curves would be
very small. However, as mentioned before, the number of DOFs needed for the VTCR was considerably smaller than for the
FEM. Furthermore, it is clear that the need for large numbers of DOFs increases faster for the FEM than for the VTCR. Again,
this leads to the conclusion that the VTCR is a competitive numerical technique for the analysis of 3D acoustic problems.



6. Conclusion

This paper presents an overview of the development of the VTCR for the resolution of mid-frequency 3D engineering
problems. First, the paper reviews the basic concepts and main characteristics of the VTCR, a new variational formulation
in which approximations within subregions are defined a priori independently of one another, and a two-scale
approximation with a strong mechanical content is used to derive the approximation spaces. Following that introduction,
the details of the resolution of problems involving 3D assemblies of plates or shells as well as acoustic problems are given.

For all these problems, the discussion of the VTCR approach follows the same outline: the problem is defined, the
expansion of the field variables is presented and a numerical example is given. Such a systematic presentation was
possible because the VTCR is a general-purpose predictive numerical technique for mid-frequency problems. Throughout
these numerical examples, we show that the VTCR is capable of finding an accurate solution with great numerical benefits
compared to classical deterministic numerical techniques, such as the FEM.

Some possible subjects for additional work are the investigation of vibroacoustic problems and the development of an
efficient and robust numerical strategy for large calculations in a frequency range.
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