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1. Introduction non-iterative process; those can be broadly categorized into differ-
The constant increase in computer resources and the consider-
able progress made in the field of modeling have enabled the
simulation of very complex systems. Finite Element Modeling
(FEM), in particular, provides for industry a systematic analysis
tool, adapted to a wide range of problems. Of course, mastering
the models is an essential requirement and in most cases, experi-
mental validation is the best way to ensure that the response of
the model is consistent with that of the actual structure.

This work focuses on validation or model updating; more pre-
cisely, its purpose is to derive a robust strategy, based on the Con-
stitutive Relation Error (CRE) method for comparing a (possibly time
dependent) FE model to a set of experimental measurements, per-
formed in situ on a structure in its functional environment. The
underlying objective using in situ measurements for validation, is
to be able to qualify the models while avoiding duplicative exper-
imental campaigns, which in addition to being expensive, only par-
tially represent the operational conditions experienced by the
actual structure (boundary conditions, level of excitation, etc.).
Extensive literature reviews of validation/model updating ap-
proaches are provided in references [1–3]. The different methods
described therein may be divided into two families.‘Direct’
methods propose to correct the FE matrices at once, through a
ent classes. Optimal Matrix Updates methods form a first class and
aim at determining stiffness and mass matrices satisfying a set of
measurements as well as verifying some mathematical properties
[4–9]. Control-based Eigenstructure Assignment Techniques form a
second class of methods and seek to determine the pseudo-control
that would be required to produce the measured modal properties
using the initial structural model [10–12]. The pseudo-control is
then translated into matrix adjustments and applied to the initial
FEM. A third class of non-iterative model registration methods uses
the Minimum Rank Perturbation Theory where the update to each
matrix is of minimum rank, equal to the number of experimentally
measured modes that the modified model is to match [13–16].
Although this approach has proven computationally efficient for
structural health monitoring and modal correlation, it does not al-
low to question the physical parameters of a given family of mod-
els and can lead to corrections which lack physical meaning.

The need to preserve the physical meaning of the corrections
has led to the emergence of ‘indirect’ or parametric methods. The
approach consists of building a cost function which represents
the correlation between the numerical model and the test data;
the changes in the stiffness and mass matrices are based on varia-
tions of the model’s physical parameters. In contrast with direct
methods, special attention must be paid to the preliminary selec-
tion of the parameters to update (as stressed e.g. in [17]); the scat-
ter in the solution is intrinsic to the inverse problem for which
multiple solutions may coexist [18,19]. Several types of cost func-
tions can be used. They can be classified into three categories
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Fig. 1. Reference problem.
involving respectively input residuals [20,21], output residuals
[22,23] and energy-based residuals.

The validation method developed at LMT-CACHAN belongs to this
last category. This approach consists of minimizing a parameter-
dependent cost function based on the concept of Constitutive Rela-
tion Error, which is a meaningful energy-based indicator. This
posteriori estimator has been initially introduced for the purpose
of verification, to assess the quality of finite element calculations
[24]. Its application to model registration problems was initiated
for free vibration problems using natural frequencies and modes
[25] and has undergone many developments using the Drucker er-
ror at first [26,27] and the dissipation error for the emphasizis of
damping phenomena [28]. Since then, the efficiency of the method
has been proved in transient dynamics using heavily corrupted
measurements [29] and in the non linear case for visco-plasticity
and rupture model updating using dynamic tests [30]. More recent
work aimed at introducing stochastic information into the models
to be updated [31,32]. Through a number of examples, involving
both synthetic and experimental data, it was shown that the ap-
proach, which is purely mechanical, is perfectly consistent. Let us
note that many other authors have relied on the good convexity
properties of the CRE (or similar) residual for solving inverse prob-
lems in mechanics [19,33,34] including several applications for
identifying distributed variables in linear elasticity [35–38], but
also in other fields such as electrostatics [39] or acoustics [40].

This paper presents an extension of the CRE-based updating
method for comparing a set of in situ measurements to a family
of time-dependent FE models submitted to non-stationary excita-
tions. As part of a collaboration with ASTRIUM-ST our objective is
the validation of the European ARIANE 5 launcher’s model using
operational data and the fact that the excitation forces applying
to a spacecraft during a flight can not be considered as ‘perfectly
well-known inputs’ is worth mentioning. Dealing with partially un-
known inputs can be problematic for the resolution of the inverse
problem and the strategy we describe in this paper allows one to
get around this difficulty. We will define a residual, called Modified
CRE, capable of taking into account the slowly time-varying behav-
ior of the structure as well as integrating the whole flight database
as ‘experimental reference’. This functional, built from the less reli-
able data of the mechanical problem, enables one to consider the
uncertainties related to the model, the measurements and the in-
puts simultaneously. Hereafter, we present an iterative algorithm
which consists in selecting the erroneous FEM parameters and cor-
recting them to decrease the distance between tests and calcula-
tions. At the end of the algorithm, erroneous parameters sets as
well as an estimate of the partially unknown excitation forces
are obtained within confidence intervals associated with a given
level of relative error. Since our ambition is to update models of
industrial size, we finally propose an innovative strategy to com-
pute (at low numerical cost) the elements of the second order Tay-
lor expansion of the cost function with respect to the uncertain
parameters of the problem. This last improvement enables a con-
siderable saving of computations to perform minimization and
helps determine the confidence intervals.

In a first example, we illustrate using synthetic data how sup-
plying the gradient and Hessian improves the minimization algo-
rithm without deteriorating the quality of the confidence
intervals. A second illustration implements measurements from
an ARIANE 5 flight to update a unidimensional space launcher model.

2. The CRE-based updating method

2.1. Reference problem\

Let us consider a structure, within a domain X, at time t in [ti, tf]
as shown on Fig. 1. Displacements ud are prescribed on the
2

boundary @uX, surface loads fd are imposed on @fX, whereas body
forces f are acting throughout the volume X.

The reference problem consists in finding the displacements
uðm; tÞ 2 U ½ti ;tf � and stresses rðm; tÞ 2 S½ti ;tf � satisfying:

� initial conditions
� kinematic boundary conditions
8m 2 @uX; ui ¼ ud
i ð1Þ
� equilibrium equations
8m 2 @f X; rij � nj ¼ f d
i ð2Þ

8m 2 X; q
d2ui

dt2 �
@rij

@mj
þ f i ¼ 0 ð3Þ
� constitutive equations
8m 2 X; r ¼ K : eðuÞ þD : _eðuÞ ð4Þ
Following a Kelvin–Voigt approach, we define the classical Hooke
tensor K and introduce dissipation by means of tensor D. Subse-
quently, re and rd will denote respectively the elastic and dissipa-
tive parts of the stress tensor so that r = re + rd.
Remark 1. At this point, it is important to note that the parame-
ters defining the model behavior of the domain may not be con-
stant over time. For space launch vehicles, the evolution of mass
during a flight plays a role of great significance. The stiffness of
some components containing gases at non-constant pressure
may also vary with time.

2.2. Hypothesis

The previous remark leads us to an important assumption
which will be made throughout this study: the behavior of the
structure will be considered to be vibratory and slowly time-depen-
dent. At time t, several modes may occur in an interval
Xt ¼ xmin

t xmax
t

� �
so that any vector x(t) defining the mechanical

states of the system can be written

xðtÞ ¼
Z

Xt
Xt;x eþix�t þ X�t;x e�ix�t ð5Þ

where the pair (x,Xt,x) containing frequency and complex modulus
will be assumed to vary slowly with time.

2.3. The measurements

In the framework of model updating, we now need to introduce
the measurements acquired by the sensors into the problem de-
fined above. For this purpose, let there be two new domains:

� @~uX � @X, where some components of the field u or its deriva-
tives are measured, giving access to a temporal family of Fourier
pairs that we note ðx; eUt;xÞt ,



� @~f X � @f X, on which an estimate of the excitation forces
denoted ðx; ~Ft;xÞt is accessible.

One should note that the mechanical problem is now overspec-
ified (ill-posed) on the possibly overlapping boundaries @~uX and
@~f X.

2.4. Problem reformulation: the Modified CRE

The major point of our approach then consists in relaxing the
satisfaction of the less reliable data in the definition of spaces of
admissible solutions. We separate the quantities or relations that
we consider ‘reliable’, from those considered as ‘unreliable’. Table 1
gives an example of such a separation, which can vary depending
on the problem.

A solution s ¼ ðU;re;rd; FÞ verifying the reliable quantities and
equations is declared ‘admissible’. Let Sad

t;x name the admissible
subspace of solutions. An energy residual e2

t;x is defined on the less
reliable data and writes for each (t,x)

e2
t;xðsÞ ¼ n2

t;xðsÞ þ
r

1� r
P~uU � eUt;x

��� ���2
þ P~f F � eF t;x

��� ���2� �
ð6Þ

The functional is made of two terms: the CRE n2
t;x and a distance to

the measurements. The model error n2 relies on two mechanical
concepts:

� the Constitutive Relation Error associated with elastic behavior
Table 1
Separat

Relia

Unre
n2
el ¼

1
2

Z
X
ðre �K : eðUÞÞ : K�1 : ðre �K : eðUÞÞdX ð7Þ
� the dissipation error
n2
diss ¼

1
2

Z
X
ðrd �D : _eðUÞÞ : D�1 : ðrd �D : _eðUÞÞdX ð8Þ
and is written as a linear combination of expressions (7) and (8).

P~u (resp. P~f ) are projection operators, which when applied to
vector U (resp. F) gives the value of the vector at sensors position.
k � k2 and j � j2 are energy error measures homogeneous to n2

t;xðsÞ
and equivalent in level. The coefficient r/(1 � r) is a weighting fac-
tor which enables one to assign a greater or lesser degree of confi-
dence to the measurements: r is chosen close to 1 if the
measurements are considered to be very reliable and close to 0
in the opposite case. The currently used value is 0.5.

In summary, we seek a solution that is admissible and verifies
the less reliable equations and quantities as closely as possible.
The problem to solve for each pair (t,x) then writes

ðPt;xÞ
find ŝ ¼ ðU;re;rd; FÞ 2 Sad

t;x

minimizing e2
t;xðsÞ with s 2 Sad

t;x

����� ð9Þ
ion of the quantities.

Model data and Eq. Experimental data

ble � Geometry � Identified frequencies x
� Kinematic b.c. (1) � Sensors position and

direction on @~uX
� Equilibrium Eqs. (2), (3) � Sensors position and

direction on @~f X

liable � Parameters of the constitutive
equations (4)

�Measured disp. amplitudeseUt;x

� Measured force

amplitudes eF t;x
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Once the solution ŝ is computed, the value of e2
t;xðŝÞ called Modified

CRE can be evaluated and integrated with time and frequency to in-
clude the experimental database as a whole

J ¼
Z tf

ti

Z xmax
t

xmin
t

e2
t;xðŝÞdxdt ð10Þ

The global error J measures the correlation between the model and
the test results and optimal parameters are the ones minimizing
this cost function. If the measurements contribution to error is sig-
nificant and associated with a small set of sensors, these sensors can
be considered to be defective and excluded from the calculation of
the Modified CRE.
3. Discrete formulation of the problem (Pt,x)

The updating method is developed in a FE framework which re-
quires the problem to be discretized. The way the problem (Pt,x) is
solved is detailed in this section where the subscripts t,x are
dropped for simplicity’s sake.
3.1. Modified CRE

The discretization of the problem leads to the construction of
stiffness, mass and damping matrices K, M and D as well as nodal
vectors: the kinematically admissible displacement field U (verifying
Eq. (1)) classically introduced by the FE approach and two auxiliary
displacement vectors V (resp. W) associated with the elastic (resp.
dissipative) part of the stress tensor through a change of variables.
Referring to (7) and (8) the model error can be expressed in its dis-
crete form as

n2
t;x ¼

a
2
ðU � VÞ�½K�ðU � VÞ þ b

2
ðU �WÞ�½Tx2D�ðU �WÞ ð11Þ

where T is a time parameter chosen to be proportional to 1/x. (a,b)
are constant weighting coefficients within [0;1] and A⁄ stands for
the transposed conjugate of A.

The choice of the error measures k � k2 and j � j2 is not critical but
must be dimensionally compatible with n2. Two matrices ½G~u� and
½G~f � are introduced to yield

P~uU � eU��� ���2
¼ 1

2
ðP~uU � eUÞ�½G~u�ðP~uU � eUÞ ð12Þ

P~uF � eF��� ���2 ¼ 1
2
ðP~f F � eF Þ�½G~f �ðP~f F � eF Þ ð13Þ

so that ½G~u� ¼ a½K~u� þ bTx2½D~u� and ½G~f � ¼ ½a½K~f � þ bTx2½D~f ��
�1

where the ~u and ~f subscripted quantities refer to the reduced damp-
ing and stiffness matrices at measurement locations (using classical
reduction [41,42]).
3.2. Admissible fields

The solution ŝ ¼ ðU;V ;W ; FÞ in Sad has to satisfy the equilibrium
equation

½K�V þ ix½D�W �x2½M�U ¼ F ð14Þ

The displacement vectors V and W (derived from re and rd) are
searched verifying the dynamic equilibrium and are said dynami-
cally admissible. The functional n2 measures the gap in the constitu-
tive law, in other words, a distance between the kinematically and
dynamically admissible displacement fields.



3.3. Constrained minimization problem

The Modified CRE e2
t;x residual can be minimized under admis-

sibility condition by introducing Lagrange multipliers. Let us write
the Lagrangian L(s) that will be of valuable use hereafter

LðsÞ ¼ e2
t;xðsÞ þ k�

�
½K�V þ ix½D�W �x2½M�U � F

�
ð15Þ

Expressing the stationarity of the Lagrangian with respect to the
four fields contained in s leads to the inversion of the following
system

½A� �
U

k

F

8><
>:

9>=
>; ¼

r
1�r P

�
~u½G~u�eU
0

r
1�r P

�
~f ½G~F �~f

8><
>:

9>=
>; ð16Þ

where k = a(U � V) = ib(U �W) and

A ¼

r
1�r P

�
~u½G~u�P~u ½a½K� � ib½Tx2D� �x2½M�� 0

½�x2Mþ ixDþ K� � 1
a ½K� þ x

b ½D�
h i

�P�f

0 �Pf
r

1�r P
�
~f ½G~f �P~f

2
664

3
775

ð17Þ

Pf is a projection operator which when applied to k gives the value
of the vector at nodes corresponding to an excitation area. One may
observe that choosing a = 1, b = 1 and T = 1/x leads to a Hermitian
matrix.

4. Implementation of the updating method

The initial model configuration is described by a given set of
parameters that may be uncertain such as Young’s moduli, thick-
nesses, damping parameters or quantities related to the excitation
forces. These parameters are arranged in a vector h and the corre-
sponding space is denoted H. The minimization problem writes

find ĥ 2 H minimizing

JðhÞ ¼
R tf

ti

Rxmax
t

xmin
t

e2ðŝðhÞÞdt dx

������ ð18Þ

where the solution ŝ is sought in Sad. Optimal parameters ĥ are ob-
tained recursively as the limit of a sequence (h(p))p in an iterative
localization/correction algorithm detailed below.

4.1. Activation of the procedure

Once the defective sensors have been eliminated from the cal-
culation, one has to determine whether the model needs to be
updated.

For each iteration p, we build a denominator Dp

Dp ¼
a
2
ðUðpÞ þ V ðpÞÞ�½K�ðUðpÞ þ V ðpÞÞ þ b

2
ðUðpÞ þW ðpÞÞ�½Tx2D�

� ðUðpÞ þW ðpÞÞ ð19Þ

a relative error e2
p

8p; 8h 2 H e2
pðhÞ ¼

e2ðhÞ
Dp

ð20Þ

and the updating process is launched if

e2ðs0ÞP e2
0 ð21Þ

where e2
0 is a given threshold value. One shall notice that once index

p is fixed, the denominator Dp no longer depends on h. The thresh-
old value e2

0 depends on the quality of the model chosen to describe
the structure. For a complex and rich model capable of representing
the main phenomena involved, the value can be low (typically
6 1%). For simple, less accurate models, seeking low relative error
4

levels is meaningless; e2
0 will be set in the interval [1;5%]. The

updating procedure is iterative and stops as soon as criterion (21)
is not met.

4.2. Localization step

Assuming that the global model can be divided into several sub-
structures E 2 E, the local indicator n2

E is calculated at each iteration
p for each substructure using

n2
E¼

a
2
ðUE�VEÞ�½KE�ðUE�VEÞþ

b
2
ðUE�WEÞ�½Tx2DE�ðUE�WEÞ ð22Þ

so that n2 ¼
P

n2
E . The selection of the ‘most erroneous’ substruc-

tures is based on the criterion

n2
E P hR �max

E2E
n2

E ð23Þ

with, e.g., hR = 0.8. The subset containing the substructures to be up-
dated (usually one or two actualized at every iteration) and the
associated design parameters will be denoted respectively EðpÞR and
h(p).

4.3. Correction step

We now aim at minimizing the value of J(h) with respect to a re-
duced set of parameters h(p) that has been identified in the previous
step. This problem is non-linear with respect to h(p) and we solve it
using a recursive BFGS [43–46] minimization algorithm. A classical
implementation of this algorithm consists in initializing the Hes-
sian to identity so that the first iteration is equivalent to the gradi-
ent algorithm. The subsequent iterations k will refine the
approximation Hk of the Hessian matrix r2J. The stiffness, mass
and damping matrices are reassembled and problem (Pt,x) is
solved for each variation of the parameters.

4.4. Iteration of the algorithm

Once the minimum of the cost function is reached for the subset
EðpÞR , the functional J is recomputed, a new subset Eðpþ1Þ

R can be iden-
tified and the associated parameters corrected. At each iteration,
new erroneous substructures can appear as a result of the sub-
structures from the previous stages being corrected.

4.5. End of the procedure

If the relative error falls below the required criterion e2
0, the

updating process terminates. As a result of this process, one thus
obtains a sequence of subspaces EðpÞR

� 	
p

associated with corrected
design parameters ðĥðpÞÞp and the BFGS algorithm offers an estimate
of the Hessian matrix ðHðpÞÞp of the cost function.

The approximation of residual J by its second order Taylor poly-
nomial about the particular operating point ĥ

ðpÞ
leads to

JðhÞ 	 bJ ðpÞ þ dhT � rJðpÞ þ 1
2

dhT � ½ĤðpÞ� � dh ð24Þ

with dh ¼ h� ĥ
ðpÞ

. One can easily solve the following inequality

JðhÞ 6 Dp � e2
0 ) h 2 Ip ð25Þ

and give, for each iteration p, the value of the parameter h inside an
interval Ip associated with the chosen threshold value. From an
updating point of view, the intervals Ip have more sense than the
optimal parameter values ĥ

ðpÞ
because any perturbation introduced

into the measurements would affect the optimal sequence ðĥðpÞÞp.
Providing optimal parameters inside confidence intervals is an ori-
ginal and effective way to deal with the Lack Of Knowledge associ-
ated with the numerical model as well as excitation levels.



4.6. Inverse problem regularization: discussion

The major drawback minimizing quadratic cost functions (as in
Eqs. (12) and (13)) is generally bad stability properties, in the sense
that small data errors induce large errors in the solution. The sub-
ject of regularization, which consists of defining techniques for
restoring stability, is covered by a large literature (see e.g.
[18,47]). In this subsection, we explain how our approach leads
to a regularization of the inverse problem.

A classical strategy for regularizing inverse problems is the so-
called Tikhonov regularization where stability is ensured by adding
to the cost function J(h) a distance to a reference configuration. No
such term is introduced in this paper but the iterative strategy we
adopt for correcting the erroneous substructures (a small set of
these for each iteration, see localization step Section 4.2) naturally
favors an optimal configuration close to the initial one. Let us still
notice that the CRE functional n2 introduced while reformulating
the ill-posed problem Section 3, can be interpreted as an energy-
based penalty term. The ratio r

1�r plays the role of a classical pen-
alty parameter and can be adjusted by the L-curve method [48].

One should finally remark that the overall stability of our ap-
proach is also enhanced by having a threshold criterion e2

0; the
minimization algorithm will be stopped before seeking optimal
parameters among unreasonable values or configurations. The con-
fidence intervals give an idea of the disturbance on optimal param-
eters and provide insight into the trust that should be put in the
final results.

5. Numerical applications

In this section, two applications of the method described above
are presented.
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5.1. Pressure vessel model updating

Since the algorithm described in Section 4 was derived to deal
with industrial models, the question of the effectiveness of this iter-
ative process must be addressed. The most numerically expensive
step of every iteration is the non-linear minimization of function
J(h) with respect to the most erroneous parameters. Each time J needs
to be evaluated, the solution ŝ has to be found and the system (16)
inverted. The size of this system is around twice the number of DOFs
describing the numerical model and the repetitive inversions re-
quired to perform model updating may be problematic for industrial
applications. Other authors [49] have proposed a reduction tech-
nique to decrease the cost associated with the correction of large size
models. In this paper, we will focus on reducing the number of
J-evaluations which are necessary for the BFGS algorithm to reach
the minimum. Our improvement, illustrated on the test case
described hereafter consists of providing the algorithm with an
analytical expression of the gradient and Hessian matrix of J.
5.1.1. Description of the problem
Let us consider a pressurized vessel divided into nine sub-struc-

tures as described in Fig. 2. The two upper nodes are blocked and
one of the lateral nodes is retrained in displacement along the z
axis. 4% hysteretic damping is introduced in the model using a
Kelvin–Voigt description. In addition to the aluminum shell struc-
ture, we add concentrated masses at each node to model the solid
combustible whose mass mc is distributed on the vessel’s inner
walls. The time evolution of mc can be seen on Fig. 2. An excitation
force F is applied at the bottom of the structure in all directions.

The simulation results of 51 DOFs for a reference configuration
(E = 70 GPa) are compared to a modified configuration where the
F
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Table 2
BFGS algorithm - Stop criterion e1 ¼

ffiffiffiffiffiffiffiffiffiffi
J=D1

p
¼ 0:005%.

Iteration p = 1 Variant 1 Variant 2 Variant 3

Gradient computation Numerical Analytical Analytical
Hessian initialization Identity Identity Analytical
Nb. of iterations k 9 12 4
Nb. of J evaluations 39 20 5

kHk �r2JkF=kr2JkF
25.1 % 0.006% 0.005%
Young’s modulus of two substructures (Ring 4 and Lower Dome)
are changed to E0 = 80.5 GPa. Fig. 3 illustrates results given by the
first iteration of the algorithm where one can see that erroneous
substructures are clearly identified.

For this first calculus, referred to as Variant 1, the gradient rJ is
numerically computed and the Hessian is initialized to identity.

The sequence hð1Þk

� 	
k

is depicted in red on Fig. 3 and an optimal

solution ĥ
ð1Þ

is reached after 9 iterations. The results of this first cal-
culus are summarized in Table 2 where one can notice that the
routine computing the cost function J has been called 39 times.

5.1.2. Analytical expression of gradient rJ
Let us first remark that the Modified CRE and Lagrangian L (de-

fined Eq. 15) are equal on the subspace Sad (where the dynamic
equilibrium is verified)

8s 2 Sad; LðsÞ ¼ e2ðsÞ ð26Þ
Then, for every corrected parameter hi 2 h

8s 2 Sad;
dLðsÞ
dhi

¼ de2ðsÞ
dhi

ð27Þ

which still holds for ŝ 2 Sad minimizing e2(s). The dependance of the
Lagrangian to the parameters hi is implicit; its derivative conse-
quently reads

8s 2 Sad;
dLðsÞ
dhi

¼ dLðsÞ
ds

ds
dhi
þ @LðsÞ

@hi
ð28Þ

Then, observing that the solution ŝ achieves the stationarity of the
Lagrangian

dLðŝÞ
ds
¼ 0 ð29Þ

one can write

de2ðŝÞ
dhi

¼ @LðŝÞ
@hi

ð30Þ

The partial derivatives of L are computed referring to expression
(15) with a = b = 1 to yield

@LðŝÞ
@hi

¼ 1
2

k�
@½K�
@hi

kþ Tx2

2
k�
@½D�
@hi

kþ k�
@½K�
@hi

V þ ix
@½D�
@hi

W
� �

ð31Þ
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The integration of this last expression over time and frequency
leads to the gradient of the global cost function.

The gradient finally reads as a function of the solution ŝ and of
the derivatives of matrices K and D with respect to the corrected
parameters hi. For complex parameters (such as thicknesses or
geometry parameters), those derivatives may not be so simple to
evaluate, but in any cases, especially for updating parameters with
linear dependence to FE matrices, the expression (31) avoids the
numerical computation of the gradient as in common practice. In
a second version of the calculation, referred to as Variant 2, we sup-
ply BFGS with the analytical gradient. Yielding results are collected
in Table 2 for comparison.

5.1.3. Analytical expression of the Hessian r2J
A second improvement of the correction step can be achieved

by computing the Hessian analytically. Expression (28) first needs
to be differentiated with respect to hj

d
dhj

@LðŝÞ
@hi


 �
¼ d

ds
@LðŝÞ
@hi


 �
� dŝ
dhj
þ @

2LðŝÞ
@hj@hi

ð32Þ

Since an analytical expression for @LðŝÞ
@hi

is available, writing d
ds

@LðŝÞ
@hi

� 	
and @2LðŝÞ

@hj@hi
is an easy task. The only ‘problematic’ term is dŝ

dhj
. However,

it can be evaluated using its definition. The solution ŝ is computed
by inverting the system (16), recalled beneath in its simplified
form

½A� fŝg ¼ fBg ð33Þ
dŝ
dhj

may be given by differentiating this system with respect to hj

½A�f dŝ
dhj
g ¼ f@B

@hj
g � @A

@hj

� 

fŝg ð34Þ
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At this point, ŝ has already been computed so that the right-hand
side of the previous equation is entirely determined. The coeffi-
cients of the Hessian matrix are obtained after integrating expres-
sion (32) over time and frequency.

To summarize our initiative, the calculations necessary to eval-
uate the Hessian matrix require the right-hand side of Eq. (34) to
be formed and the matrix A to be inverted once again, at each iter-
ation p, for every time-step t and frequency f. Knowing that a
Cholesky decomposition of matrix A is available (since it was
needed for solving Eq. (16)), evaluating dŝ

dhj
does not introduce addi-

tional time-consuming computations. However, since BFGS has the
particularity of approximating the Hessian, this one can simply be
initialized to its analytical value. This last strategy is implemented
as Variant 3 and the corresponding results are reported in Table 2.
5.1.4. Synthesis
Our first improvement using an analytical expression of the gra-

dient has led to a considerable saving of time by avoiding a numer-
ical estimation. The number of iterations necessary to reach the
minimum is similar for a given relative error threshold, but the
number of calls to the cost function has decreased significantly.
The routine of evaluating J still needs to be called by BFGS, but this
time only to refine the estimation of the Hessian matrix Hk. One
can finally remark that the numerical Hessian provided at the
end of the algorithm in Variant 2 is of much better quality than
Table 3
Influence of a 5% noise on updating results (stop criterion and intervals in grey).

Corrected parameters ELower Dom ERing 4 Relative error e

Simulated measurements without noise

Solution ĥ
ð1Þ 70.0 70.0 0.0048 %

Interval I(1) min 69.7 70.3 Threshold e0

max 69.3 70.7 0.005 %

Simulated measurements with noise

Solution ĥ
ð2Þ 70.0 70.1 0.46 %

Interval I(2) min 68.9 71.3 Threshold e0

max 68.1 72.1 0.5 %
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in Variant 1 (the relative difference in Table 2 refers to the Frobe-
nius norm k � kF).

Our second improvement (Variant 3) which consists in initializ-
ing the Hessian to its analytical value is also worthwhile and in-
volves ‘numerical efforts’ only for the first iteration k = 0 of every
step p. In the cases where no updating is required (i.e. low error le-
vel), the Hessian matrix calculated at the first iteration will provide
direct access to the confidence intervals.

The results collected in Table 2 are obtained with an extremely
low relative stop criterion (e0 = 0.005%) since ‘simulated measure-
ments’ were compared to the model used for generating them. Ta-
ble 3 presents the more realistic values that can be expected for
real tests by adding a 5% white noise one the measurements before
running Variant 3.

5.2. Simple ARIANE 5 model correction from flight data
5.2.1. The measurements
The data to be operated in this analysis are taken from an ARIANE

5 flight (references not mentioned for confidentiality). The launcher
is instrumented by more than 80 sensors but since the model to be
updated is uniaxial (see subSection 5.2.2), only three of these sen-
sors will be exploited as shown in Fig. 4:

� one pressure sensor at node 1 inside the combustion channel
whose sample frequency is 1125 Hz,
� two accelerometers at node 1 and 2 measuring acceleration in

the vertical direction with a sample frequency equal to 446 Hz.

In order to characterize the vibratory and slowly time dependant
behavior of the structure, in accordance with the hypothesis for-
mulated in (5), the time signals must be processed in two steps.
First, a time–frequency spectrogram is computed using a Gabor
transform [50] (Gaussian-like sliding windows chosen to optimize
the time/frequency resolution). Then, a peak detection [51] of the
spectrogram is performed, leading to the determination of eXt;f used
as experimental reference. Fig. 5 shows the results we obtain by
post-processing the pressure signal at section 1.
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Table 4
Updating algorithm results (3% relative error stop criterion).

Procedure Activation Initial relative error e = 6.81%

Iteration p = 1 Erroneous stiffness parameters identified
Corrected parameters hBooster hStop Relative error

Solution ĥ
ð1Þ �0.103 �0.240 3.08%

Interval I(1) min �0.134 �0.291 Threshold e0

max �0.031 �0.141 3.20 %

Iteration p = 2 Erroneous damping parameters identified
Corrected parameters gBooster gStop Relative error

Solution ĥ
ð2Þ 0.082 0.061 2.87%

Interval I(2) min 0.069 0.042 Threshold e0

max 0.090 0.078 3 %
One may note that the time–frequency spectral density of this
signal is structured around four major frequencies (f0,2f0,3f0,4f0).
These frequencies correspond to acoustic modes of the gas inside
8

the combustion channel of the booster. The existence of disconti-
nuity areas and local peaks in the time–frequency plane is worth
mentioning; those typical areas correspond to an interaction
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between acoustic modes and vortex shedding characterized by
Strouhal lines. For more details about those thrust oscillations,
the interested reader may refer to [52,53]. These pressure oscilla-
tions determine the loading applied to the rest of the structure
and govern the global vibratory response. This action is modeled
by three nodal forces F1, F2 and F3 applying on the Booster and Noz-
zle (see Fig. 6).

Important remark
One shall notice on Fig. 4 and 5 that the pressure sensor pre-

cludes access to excitation beyond 5.5t0. Over the corresponding
time span, the excitation forces applied to the structure are
unknown.
5.2.2. The model
A simplified uniaxial model composed of five substructures is

considered (see Fig. 6). In spite of its apparent simplicity, such a
model is capable of representing the main phenomena since thrust
oscillations induce a vertical loading on the launcher. Note that the
slenderness of the booster is taken into account by adding 60 extra
DOFs on this component. Some time dependencies such as masses
evolution are also modeled and damping is introduced in the mod-
el of each component writing DE ¼ gE

x KE.
5.2.3. Updating results
Table 4 summarizes the results for the two iterations of the

updating algorithm. The first iteration highlights modeling errors
related to the booster and stop stiffnesses. Two dimmensionless
parameters hE are defined such that KE ¼ ð1þ hEÞ � K0

E where K0
E

stands for the initial stiffness matrix of component E. Optimal
parameters ĥ are sought using the BFGS algorithm and confidence
9

intervals are computed thanks to the Hessian matrix for a 3.2% rel-
ative error threshold.
Reference configuration
Booster
 61 DOFs
 varying mass and stiffness

Central Body
 2 DOFs
 varying mass, constant stiffness

DIAS
 2 DOFs
 no mass, constant stiffness

Stop
 2DOFs
 no mass, constant stiffness

Nozzle
 1 DOFs
 nodal mass
5 substructures
 64 DOFs
 gE = 0.05
The second iteration identifies hysteretic damping parameters
gBooster and gStop as being erroneous and proposes new values and
intervals. The process is stopped after two iterations since the error
level falls below the 3% threshold value.

5.2.4. Estimation of partially unknown excitations
For each time step and frequency, a 3% interval can be com-

puted for the excitation level. Fig. 7 presents the input levels which
are obtained at node 1 for the full atmospheric flight. Knowing that
efforts applying after 5.5t0 are inaccessible by the pressure sensor,
the levels depicted (with blue circles) in the time interval
[5.5t0;7t0] are published here for the first time.

5.2.5. Simulation of the corrected model
Finally, as a verification of our results, a time simulation of the

updated model is carried out using a Newmark scheme.
Fig. 8 compares the actual and simulated signals for accelera-

tion at node 1. The same time–frequency analysis is performed
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Fig. 8. Response of the actual structure (left) vs. model simulation (right).
for both signals to highlight the vibratory behavior. Actual and syn-
thetic time histories may look different at first sight; the simple
model, even corrected is not able to reproduce the spectral density
of the actual structure response for high frequencies (greater than
4f0) which is no surprise regarding the low modal density of our 64
DOFs model. The spectral spread is not consistent either with the
actual measurements which again shows the limits of our model
with respect to the many complex phenomena involved. Neverthe-
less, for low frequencies within [0;4f0], the acceleration levels and
times of occurrence predicted by the corrected model are in good
accordance with the measured signal. This particularly means that
the updated damping levels are relevant which is worth mention-
ing. Thus, despite its simplicity, the updated model proves quite
predictive regarding the low frequencies of the thrust oscillations
(f0, 2f0 and 3f0) which can be of interest for preliminary design
and dynamic environment studies. However, the authors want to
stress that updating this particular model is not an end in itself;
it helped us illustrating the method on actual measurements for
a non trivial case but the robustness and reliability of the approach
makes it a dedicated tool for correcting models of industrial size.
6. Conclusion

In this paper, we have derived a robust updating algorithm sui-
ted for time-dependent industrial models along with in situ mea-
surements. The method consists of minimizing an energy
residual based on the concept of Constitutive Relation Error which
leads to a reduction of the Lack Of Knowledge associated with the
model and the partially unknown excitations.

The first numerical example illustrated our algorithm using
synthetic measurements. Improvements were described to make
it capable of handling models with a large number of degrees of
freedom with reasonable computation time. We highlighted ana-
lytical expressions for the gradient and Hessian of the cost function
which can be supplied to the BFGS minimization algorithm. The
key point of our approach then consists in providing optimal
parameters within confidence intervals associated with the low
relative error values by taking advantage of the productions of
10
the BFGS algorithm. The influence of noise on measurements has
finally been studied and two typical error levels have been intro-
duced for both ‘healthy’ and ‘noisy’ configurations.

The second example in turn, based on ARIANE 5’s flight data, en-
abled us to illustrate the potentiality of the method using actual
measurements. The updating algorithm was used to correct the
parameters of a simple launcher model and enabled us to estimate
some relevant partially unknown excitation levels.
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