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1. Introduction

In many industrial contexts, such as aerospace applications or car design, numerical prediction techniques are being
increasingly used because they limit the need for physical prototypes to a minimum. In these industries and in the specific
case of acoustic problems, engineers are often interested in the response of systems in frequency bands. The efficient
calculation of the acoustic behavior of systems is the topic of this paper.

Some numerical techniques to predict the acoustic behavior of systems in frequency bands require calculations at many
different fixed frequencies. This natural and straightforward approach, even with an efficient numerical tool, can easily lead
to prohibitive computation times and huge needs in terms of data storage. This is particularly true in the context of
medium-frequency bands because in these ranges the response is very sensitive to the frequency, which requires a very fine
frequency resolution and makes the problem even worse. Therefore, for medium-frequency acoustic problems, there is
a clear need to improve the efficiency of the prediction techniques for frequency bands. Some techniques have already been
developed in order to do that [1–3].

In this paper, we propose an alternative approach to the development of a medium-frequency prediction techniques in
frequency bands which leads to a separated representation of the unknown field. This approach uses the Variational Theory
. Barbarulo), ladeveze@lmt.ens-cachan.fr (P. Ladevèze), riou@lmt.ens-cachan.fr (H. Riou),
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of Complex Rays (VTCR) in combination with Proper Generalized Decomposition (PGD) [4,5] a promising model order
reduction technique. The VTCR was introduced in [6] and belongs to the Trefftz family of methods which uses exact
solutions of the governing differential equations for the expansion of the field variables.

The decisive advantage of all Trefftz methods is that since they use exact solutions of the governing equations, no refined
spatial discretization inside the domain is necessary. Therefore, the model's size and the computational effort may be
considerably less than with element-based methods. The VTCR differs from other Trefftz methods (such as the partition of
unity method [7], the ultra-weak variational method [8], the least-squares method [9], the discontinuous enrichment
method [10], the element-free Galerkin method [11], the wave boundary element method [12] or the wave-based method
[13,14]) by the way it handles the transmission conditions at the inter-element boundaries and by the types of shape
functions it uses. It has already been shown to be capable of finding accurate solutions of vibration problems involving 3D
plate assemblies [15], plates with heterogeneities [16] and shell structures [17] as well as solutions of acoustic problems [18].
The VTCR is based on an original variational formulation of the problem which was developed in order to allow the
approximations within elements Ωe to be a priori independent of one another. Thus, in each element, any type of shape
function can be used, as long as it verifies the governing Helmholtz equation. This property gives the approach great
flexibility and, consequently, makes it very efficient because shape functions with a strong physical meaning related to the
desired solution can be introduced without difficulty. Concerning PGD, this has been found to be an efficient technique for
the resolution of multiparametric problems (problems which depend on many parameters such as the space and time
problems, and the space and uncertain problems), which is what we need in order to deal with the difficulties of having to
solve an acoustic problem for multiple frequencies. Therefore, even though PGD is compatible with any wave approach, a
combination of PGD and the VTCR is an obvious choice when it comes to the resolution of problems in mid-frequency bands.

The VTCR has already been adapted to the handling of frequency bands in [19,20]. The authors proposed new algorithms
for the calculation of multiple-frequency solutions, either by using a set of parameters to derive a discrete approximation of
the frequency-dependent quantities within the VTCR matrix or by expanding the VTCR matrix and the right-hand side of the
system to be solved into Taylor series with respect to the frequency. The objective of the third technique we are proposing
here is to open a new path with regard to frequency band analysis.

The paper is structured as follows: Section 2 presents the problem being considered, which is a 2D acoustic problem
driven by the Helmholtz equation. Section 3 reviews the principles of the VTCR, which leads to a discretized version of the
problem. Section 4 introduces the use of PGD for frequency-dependent acoustic problems expressed in VTCR form. Section 5
illustrates the strategy in the case of a 2D acoustic problem. Conclusions and perspectives are presented in Section 6.

2. The reference problem

Let us consider the general 2D interior dynamics problem of a bounded acoustic domain Ω, filled with a fluid
characterized by sound velocity c0 and density ρ0, to be studied in the frequency interval I¼ �ω0�Δω=2;ω0þΔω=2½, where
ω0 denotes the central frequency and Δω the bandwidth of the frequency band being considered. The problem is to find
pðx;ωÞ, ðx;ωÞAΩ� I such that

Δpþk2p¼ 0 over Ω� I

p¼ pd over ∂pΩ� I
LvðpÞ ¼ vd over ∂vΩ� I

p�ZLvðpÞ ¼ hd over ∂ZΩ� I

����������
(1)

where Δ is the Laplacian operator, k¼ ð1� iηÞω=c0 is the wavenumber (η being the absorption coefficient), pd a prescribed
pressure, vd a prescribed velocity, Z a given impedance and hd a given function. Operator Lvð□Þ is defined by
Lvð□Þ ¼ ði=ρ0ωÞð∂□=∂nÞ ¼ ði=ρ0ωÞnT∇ð□Þ, n being the outward normal and ∇ the gradient operator. ∂pΩ, ∂vΩ and ∂ZΩ are the
parts of the boundary ∂Ω of Ω where the pressure, the velocity and a Robin condition are respectively prescribed. The
uniqueness of the solution of this reference problem is ensured by a strictly positive η.

If we introduce a partition of Ω into nel non-overlapping elements Ωe, the following additional equations must be verified
in order to ensure the continuity of the solution and its normal derivative along Γe;e0 ¼Ωe \ Ωe0 :

pe�pe0 ¼ 0 along Γe;e0 � I

LvðpeÞþLvðpe0 Þ ¼ 0 along Γe;e0 � I

����� (2)
3. The VTCR variational formulation of the reference problem

The VTCR variational formulation of reference problem (1), (2) requires the definition of the functional space of the
functions which satisfy the homogeneous Helmholtz governing equation, i.e. the first equation in (1):

Se ¼ fpe;Δpeþk2pe ¼ 0 over Ωe � Ig (3)
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Under some nonrestrictive geometric assumptions concerning Ωe, for the 2D case which we are considering, these functions
can be represented by waves propagating in all possible 2D directions (see [21,22]):

peðx;ωÞASe 3 peðx;ωÞ ¼
Z 2π

θ ¼ 0
Xeðθ;ωÞeikeðθ;ωÞ�x dθ (4)

where the wave vector is kT
e ¼ kð cos θ; sin θÞ. Xeðθ;ωÞ, the amplitudes of the waves propagating in Ωe, are the unknowns of

the problem.
Thus, the VTCR formulation of Problem (1), (2) is: find ðp1;…;pe;…; pnel

ÞAS1 � Se �⋯� Snel such that

∑
Ωe

Re
Z
∂pΩe

ðpe�pd;eÞLv½δpe� dsþ
Z
∂vΩe

ðLv½pe��vd;e Þδpe ds
(

þ 1
2

Z
∂ZΩe

1�ZeLvð Þ pe
� ��hd;e

� �
Lv½δpe� þ ðLv�1=ZeÞ½pe�þhd;e=Ze

� �
δpe

h i
ds

þ ∑
Γe;e0

1
2

Z
Γee0

pe�pe0
� �

Lv½δpe�δpe0 � þLv½peþpe0 � δpeþδpe0
� �� �

ds

)
¼ 0

8ðδp1; δp2;…; δpnel
ÞAS1 � Se �⋯� Snel (5)

where pd;e, vd;e and hd;e are the data we introduced in Section 2, except that now they are restricted to the boundary of Ωe.
The overline represents the complex conjugate operation. In [23], this formulation was shown to be equivalent to the
reference problem, provided there is damping.

All that is necessary in order to develop a VTCR approximation of Problem (1) and (2) is for (5) to be satisfied for a finite-
dimension subspace Se;h of Se. Various options exist for the determination of Se;h, i.e. for the approximation of Xeðθ;ωÞ.
An overview of different choices which have been tested in 2D acoustics can be found in [23]. Here, we chose a Fourier series
expansion of the wave amplitudes limited to the first 2Neþ1 terms:

Xeðθ;ωÞ ¼ ∑
Ne

n ¼ �Ne

Xn
e ðωÞeinθ (6)

where Ne is sufficiently large to lead to a good approximate solution (the number of shape functions selected is related to
their energy, see the criteria in [23]). In other words, the approximate solution consists of an expansion of pe over a finite-
dimension subspace of Ωe generated by functions Φn

e ðx;ωÞ:

peðx;ωÞC ∑
Ne

n ¼ �Ne

Xn
e ðωÞΦn

e ðx;ωÞ (7)

where Φn
e ðx;ωÞ ¼

R 2π
θ ¼ 0 e

inθeikeðθ;ωÞ�x dθ. At a given frequency ω, the VTCR amplitude factors Xn
e ðωÞ are the unknown DOFs of

the VTCR solution of Problem (1) and (2), and are related to the amplitudes of the waves which propagate in Ωe. Substituting
approximate solution (7) into variational formulation (5) leads to the matrix system:

KðωÞXðωÞ ¼ FðωÞ (8)

where K and F denote respectively the projections of the bilinear and linear forms of (5) onto the space generated by
functions Φe

n
, and X is the vector of the unknown contribution factors Xn

e ; e¼ 1…nel; n¼ �Ne…Ne. Let us denote
N¼∑e2Neþ1 its size. It is important to note that matrix K has rather restricting numerical properties. Indeed, its
coefficients are frequency-dependent, complex quantities, and it has no symmetry whatsoever. However, since the VTCR
uses propagative waves instead of polynomial functions in the approximate functional spaces, the size of this matrix is very
small compared to element-based methods.

4. The use of PGD to solve VTCR problems in frequency bands

Problem (8) is clearly defined in a multidimensional space (the 2D polar wave propagation direction and the frequency).
Even if the VTCR leads to a small problem (see Section 3), this problem can lead to a great many computations in the case of
a large acoustic system and a wide frequency band. This calls for the development of efficient techniques for the resolution
of (8) in a frequency band. This problem was already investigated in the VTCR context in [19,20], and algorithms were
proposed for the calculation of solutions for multiple frequencies either by using a set of parameters to derive a discrete
approximation of the frequency-dependent quantities within the VTCR matrix or by expanding the VTCR matrix and the
right-hand side of the system into Taylor series with respect to the frequency.

Here, in order to avoid having to solve large, complex systems of equations for wide frequency bands, we propose
another technique based on model order reduction through a separated representation of the data. Such a representation
was proposed many years ago by Ladevèze for the resolution of complex nonlinear thermomechanical problems (see [4]).

Under the name “radial approximation”, it became one of the main components of the powerful nonincremental and
nonlinear LArge Time INcrement (LATIN) solver [4]. More recently, a general separated representation was used in [24] to
3



find approximate solutions of multidimensional partial differential equations. The separated representation was also used in
[25] for the resolution of stochastic equations in which the deterministic variables and the stochastic variables were
separated, very much like in [26] for the radial space–time approximation of complex multiscale problems and in [27] for
finding guaranteed error bounds.

Today, the common name used for techniques involving a separated representation of the variables is Proper Generalized
Decomposition (PGD). PGD belongs to the family of Reduced-Order Modeling (ROM) techniques, along with the ROM-POD
method [28] and the reduced-basis element method [29], but in the case of PGD the construction of the representation takes
into account the nature of the problem directly. The general form of a PGD separated representation of a function u of Q
variables is uðx1;…; xQ ÞCuMðx1;…; xQ Þ ¼∑M

m ¼ 1u
1
mðx1Þ �⋯� uN

mðxQ Þ, M being the order of the approximation. Many
applications of PGD, covering several domains, have already been presented: for example advanced nonlinear solvers
using separated space–time representations; multidimensional models; the separation of physical spaces; parametric
models; real-time simulations; the quantification of uncertainties and stochastic parametric analysis, etc. [30,31] give
reviews of recent works on PGD. In this paper, we apply PGD to the frequency band analysis of acoustic problems.

As stated above, the innovative aspect of our approach is that it takes advantage of the PGD separated representation to
solve Problem (8) in the frequency range I ¼ �ω0�Δω=2;ω0þΔω=2½. Then, one tries to find an optimum approximation of
XðωÞ (8) in the form

XðωÞCXMðωÞ ¼ ∑
M

m ¼ 1
XmλmðωÞ (9)

where XMðωÞ (like XðωÞ) is a vector defined on CN � T (T being the space of frequency dependent functions whose square
integration on I is finite), Xm are vectors of CN and λmðωÞ functions of T . As explained in Section 3, XMðωÞ is related to the
wave propagation in all possible 2D directions. Here, the proposed separation of the variables concerns the angular
propagation direction and the frequency. Of course, none of these functions is known a priori. The question is thus to find
the optimal decomposition and to calculate its terms.

Many algorithms can be found in the literature to calculate quantities Xm and λmðωÞ. Some of these algorithms are
reviewed and an extensive theoretical survey is presented in [25,32]. They are based on a Galerkin or a Minimal Residual
formulation of the problem being considered and lead to progressive or simultaneous constructions of the decomposition.
Most of these algorithms have been shown to have good convergence properties, even in the case of difficult numerical
examples. Nouy [32] proposed an application of Petrov–Galerkin's algorithm to the PGD model reduction technique which
improves the convergence properties of the decomposition while preserving the computational advantages of Galerkin PGD.

However, in our case, as mentioned before, matrix KðωÞ (see (8)) has complex coefficients and no symmetry. Therefore,
among all the possible PGD algorithms, our natural choice was the Petrov–Galerkin model reduction technique, which can
be viewed as a PGD method in which the orthogonality of the residuals with respect to another set of space and frequency
functions is imposed, and no artificial symmetrization of the problem is required.

The Petrov–Galerkin-based PGD algorithm requires the definition of the variational formulation of the problem being
considered. In our case, (8) can be expressed as: find XðωÞ such that

KðXðωÞ;YðωÞÞ ¼F ðYðωÞÞ 8YðωÞACN � T (10)

where KðXðωÞ;YðωÞÞ ¼ R ω0 þΔω=2
ω0 �Δω=2 YðωÞTKðωÞXðωÞ dω and F ðYÞ ¼ Rω0 þΔω=2

ω0 �Δω=2 YT ðωÞFðωÞ dω. In order to develop the algorithm, let
us assume that the pairs fðXm; λmÞgm ¼ 1…M�1 are known from the previous iteration and that we are now seeking the
enrichment pair ðXM ; λMÞ. The method for calculating these terms consists in using the following two orthogonality criteria:

KðXM�1þXMλMðωÞ;Y0γðωÞÞ ¼F ðY0γðωÞÞ 8Y0ACN (11)

KðXM�1þXMλMðωÞ;Yγ0ðωÞÞ ¼F ðYγ0ðωÞÞ 8γ0ðωÞAT (12)

YACN and γðωÞAT correspond to another pair of a constant vector and a frequency-dependent function respectively. Of
course, additional equations must be added to (11) and (12) in order to define functions ðY; γÞ. We use the following
equations:

KðX0λMðωÞ;YγðωÞÞ ¼ 〈〈X0λMðωÞ;XMλMðωÞ〉〉 8X0ACN (13)

KðXMλ
0ðωÞ;YγðωÞÞ ¼ 〈〈XMλ

0ðωÞ;XMλMðωÞ〉〉 8λ0ðωÞAT (14)

〈〈�; �〉〉 denotes the inner product defined by 〈〈XλðωÞ;YγðωÞ〉〉¼ R ω0 þΔω=2
ω0 �Δω=2 γðωÞYTHðωÞXλðωÞ dω, with HðωÞ ¼ ~H ~hðωÞ. ~H is a

constant matrix equal to the mean value of matrix KðωÞ over the frequency band. ~hðωÞ is a frequency-dependent function
which corresponds to the mean value of the coefficients of the diagonal of KðωÞ. With that particular choice, which is in
relation with the physics of the problem, the following separation property holds:

〈〈XλðωÞ;YγðωÞ〉〉¼ ðXT ~HYÞ
Z ω0 þΔω=2

ω0 �Δω=2
λðωÞ ~hðωÞγðωÞ dω (15)

This property is useful in terms of optimal convergence (see [4,32]). Then, the idea of the algorithm is to derive the pairs
ðXM ; λMÞ and ðY; γÞ which verify Eqs. (11)–(14) simultaneously. In order to do that, these equations are solved with a power
4



iterations algorithm until convergence, i.e. until each function has reached a fixed value. If ðXðqÞ
M ; λðqÞM Þ denotes the pair ðXM ; λMÞ

calculated at the current iteration with the index (q�1) from the previous iteration, we use the following stopping criterion:Z ω0 þΔω=2

ω0 �Δω=2
ðXðqÞ

M λðqÞM ðωÞ�Xðq�1Þ
M λðq�1Þ

M ðωÞÞT ðXðqÞ
M λðqÞM ðωÞ�Xðq�1Þ

M λðq�1Þ
M ðωÞÞ dωoδq (16)

where δq is related to the accuracy of this procedure.
After ðXM ; λMÞ has converged, the procedure must be repeated until the convergence of the global enrichment procedure

XðωÞCXMðωÞ ¼∑M
m ¼ 1XmλmðωÞ. In our numerical applications, the stopping criterion was

εM XM
� �

¼
R ω0 þΔω=2
ω0 �Δω=2 ðKðωÞXMðωÞ�FðωÞÞT ðKðωÞXMðωÞ�FðωÞÞ dωR ω0 þΔω=2

ω0 �Δω=2 FðωÞT FðωÞ dω
oδM (17)

where δM is related to the accuracy of the PGD separated representation of the solution of Problem (8). Therefore, we
introduce the following iterative algorithm:

Algorithm 1. Petrov–Galerkin approach PGD for broad band problems.

for m¼1 to mmax do

Initialization of λðωÞ and γðωÞ;
for q¼ 1 to qmax do

Compute :

XðqÞ
m using ð11Þ and YðqÞ

m using ð13Þ;
Normalize XðqÞ

m and YðqÞ
m ;

Compute λðqÞm ðωÞ using ð12Þ and γðqÞm ðωÞ using ð14Þ;
if convergence ð16Þ then
⌊ break

6666666666664
Set XmðωÞ ¼Xm�1ðωÞþXðqmax Þ

m λðqmax Þ
m ðωÞ;

if convergence ð17Þ then
⌊ break

66666666666666666666666664
The normalization of XðqÞ
m and YðqÞ

m is done with an Euclidean norm. It is important to note that several consistent
initialization choices can lead to convergence, but a proper choice could make the convergence faster. This is why it is
recommended to choose an initialization which is somewhat related to the problem. In the present work, we used:

λðωÞ ¼ γðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKðωÞXm�1ðωÞ�FðωÞÞT ðKðωÞXm�1ðωÞ�FðωÞÞ

q
(18)

The most time-consuming part of the method is the resolution of (11) and (13), which are matrix problems. Eqs. (12) and
(14) are scalar equations and can be solved easily and inexpensively. Thus, the proposed strategy requires the resolution of
only 2�M � Q matrix problems (M being the number of functional pairs and Q the total number of internal power-type
iterations required to obtain an approximate solution to the desired accuracy levels δq and δM). In comparison, a standard
incremental strategy which calculates the solution one frequency at a time requires the resolution of NI matrix problems
(NI being the number of frequencies considered for I), which, depending on the accuracy, can be extremely costly, especially
in the medium-frequency range where the response is very sensitive to the data and requires a very refined frequency
discretization.

5. Numerical example

In order to test Algorithm 1, we studied an L-shaped acoustic cavity (see Fig. 1) filled with a fluid (ρ0 ¼ 1:25 kg=m3,
c0 ¼ 340 m=s, ωη¼ 0:0005) and subjected to boundary conditions in the form of a pressure pd¼1 Pa and a velocity vd¼0 m/s.
Three bandwidths (Δω1 ¼ 2π � 100 rad=s, Δω2 ¼ 2π � 200 rad=s Δω3 ¼ 2π � 400 rad=s) around the same central frequency
ω0 ¼ 2π � 1200 rad=s were considered.
Fig. 1. Benchmark L-shaped acoustic cavity.
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As described in Section 3, this problem was solved using the VTCR. In order to do that, domain Ω was divided into 3
subdomains Ω1, Ω2 and Ω3 (see Fig. 1). An approximation of order Ne¼70 (7) was used in each subdomain. It should be
noted that PGD approach requires matrices K to have a constant size at each frequency but the order of the approximation
(and therefore the size of the matrix K) is frequency dependent. Thanks to the Fourier approximation nested function
property, it is possible to add virtual DoFs by adding zero energy contribution functions to the approximation. In this way all
matrices can be equally sized, considering the maximum number of DoFs in the band, without any degradation of its
numerical properties at lower frequencies. The reference solutions for the three frequency bands considered were obtained
with the VTCR using these parameters along with a very refined frequency discretization. Since our objective is to test
Algorithm 1 which is based on the VTCR formulation (8), the use of a different reference, i.e. non-VTCR, would include other
approximation errors, whose quantification is outside of the scope of this paper.

The iterative search for each pair of functions (Xm, λm) in Algorithm 1 is controlled by two parameters: δq, the stopping
criterion (16), and qmax, the maximum number of iterations. Figs. 2–4 show the error εMðXMÞ (17) as a function of the
number of pairs of the decomposition for different values of these parameters and for the three frequency bands Δω1, Δω2

and Δω3. All the curves have similar behaviors for the different frequency bands. The weak convergence that can be noted in
these figures is a standard characteristic in PGD approaches and does not affect the quality of the solution [32].

The figures on the left show that a proper criterion δq ¼ 0:01 suffices to guarantee a satisfactory convergence rate. The
figures on the right show that choosing a proper qmax also leads to convergence. This suggests that one should choose
a relatively small qmax and stop the iterations even if the convergence criterion (16) has not been entirely satisfied for all the
frequency bands. Evidence of the effectiveness of this strategy is shown in Fig. 5, which depicts a convergence comparison
for the most severe case Δω3 ¼ 2π � 400 rad=s between an algorithm stopped at a chosen value of the convergence criterion
Fig. 2. The relative error εMðXMÞ (17) for different δq with qmax ¼1 (a) and for different qmax with δq ¼ 0 (b). Δω1 ¼ 2π � 100 rad=s.

Fig. 3. The relative error εMðXMÞ (17) for different δq with qmax ¼1 (a) and for different qmax with δq ¼ 0 (b). Δω2 ¼ 2π � 200 rad=s.

Fig. 4. The relative error εMðXMÞ (17) for different δq with qmax ¼1 (a) and for different qmax with δq ¼ 0 (b). Δω3 ¼ 2π � 400 rad=s.
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Fig. 5. The relative error εMðXMÞ (17) for δq ¼ 0:0001 and qmax ¼ 8. Δω1 ¼ 2π � 400 rad=s.

Fig. 6. Energy of the solution on the entire domain of the various approximations with different expansion orders M.
(δq ¼ 0:0001 with qmax ¼1) and the same algorithm stopped after a small specified number of iterations (qmax ¼ 8 with
δq ¼ 0). The convergence achieved with the two calculations was very similar. It took the algorithm 30 iterations to reach the
required convergence criterion (δq ¼ 0:0001). This was necessary to reach full converge of the pairs, but had no decisive
influence on the relative error εMðXMÞ (17). Conversely, setting a small number of iterations (qmax ¼ 8) precluded full
convergence of the pairs, but still gave a satisfactory relative error εMðXMÞ (17). Therefore, it is computationally more
efficient not to seek full convergence, but to stop the iterations after a smaller number of iterations qmax, thus saving on the
number of iterations for each pair and, consequently, on the overall computation time.

Fig. 6 shows, for the most computationally intensive frequency band (Δω3 ¼ 2π � 400 rad=s), a comparison of the
frequency response functions obtained with our different approximations of the reference problem for various M PGD pairs.
The PGD solution was calculated with a coarse frequency discretization (one test point every 3 Hz), and the required
integrals are calculated with numerical Riemann integration. The PGD algorithm is stopped with a stoping criterion in terms
of iteration qmax ¼ 8. These frequency response functions represent the global energy of the structure. As one can see, for the
frequency band considered, Approximation (9) reproduces the reference solution very well. Of course, the quality of the
approximation is less good for M small (although the general trend of the reference FRF is respected), but becomes better
when M increases. This confirms what could be anticipated from Fig. 5. With 10 PGD pairs the response is on top of the
reference but the peaks, only 15 PGD pairs are needed to represent the global energy completely throughout the band.

Fig. 7 shows the approximate solution of the problem for ω¼ ω0�Δω3=2, ω¼ω0 and ω¼ω0þΔω3=2 in the case of
frequency band Δω3 ¼ 2π � 400 rad=s. The reference solution is also shown on the same figure. All the solutions are very
similar, which illustrates the effectiveness of the proposed algorithm.

Figs. 5–7 illustrate the potential of Algorithm 1, which manages to recover the reference solution over a very large
frequency band with only a few terms in Representation (9) and fewer frequency test points than the reference. From a
computational point of view the trade off between the number of test points and the resolution of the full system should be
considered. Frequency by frequency VTCR needs a fine frequency mesh to construct K matrices and then solve the full
system once for frequency. On the other hand PGD-VTRC allows us to reduce the number of K matrices to construct but the
full system has to be solved several times in order to build the desired approximation over the band. The PGD-VTCR trade off
is convenient in most cases since, as shown in [33], the construction of a K matrix represents a major part of the total
computational cost (99 percent of total solver cost) while the solution of the full system is irrelevant compared to matrix
construction (less than 1 percent of total solver cost). This is particularly true since PGD solves the full system over
7



Fig. 8. The relative error εMðXMÞ (17) for the second numerical example with Δω¼ 2π � 250 rad=s and ω0 ¼ 2π � 5275 rad=s.
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Fig. 9. Energy of the solution on the entire domain of approximations for the higher frequency band (M¼50), compared to VTCR reference.

Fig. 7. Comparison of the approximate and reference real pressure fields for ω¼ω0�Δω3=2 (a), ω¼ω0 (b) and ω¼ω0þΔω3=2 (c).
a frequency band performing the integrated K matrix inversion only once while a standard VTCR would require one
inversion for each frequency step.

In order to show the potential of the algorithm at higher frequencies a second numerical example is considered. The
same geometry depicted in Fig. 1 is considered. The boundary conditions are kept the same apart from the upper side of the
L shaped cavity where an impedance Z ¼ 50–250i Pa s=m is prescribed. The role of this impedance is to push a mid-
frequency behavior inside the cavity. The considered frequency band is Δω¼ 2π � 250 rad=s around the central frequency
ω0 ¼ 2π � 5275 rad=s. Using the strategy proposed in the previous example, a qmax ¼ 8 is chosen and one test point every
3 Hz is taken into account to build the PGD approximation. Convergence for this new numerical example is shown in Fig. 8.
Again one can see that the relative error decreases which attests for the convergence of the method.

The convergence of the technique at higher frequencies is confirmed by the global energy comparison between a VTCR
reference and an approximation with M PGD pairs such that εMðXMÞC103 in Fig. 9. As one can see, the strategy is able to
recover the reference curve despite the complexity of the response in this frequency band.
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Fig. 10. Comparison of the approximate and reference real pressure fields for ω¼ω0�Δω3=2 (a), ω¼ω0 (b) and ω¼ω0þΔω3=2 (c).
Fig. 10 shows the approximate solution and the reference solution for this selected higher frequency band. As one can see
the solutions are very similar.

6. Conclusion

In this paper a new version of the VTCR for the resolution of medium-frequency problems in frequency bands is
proposed. It is based on its combination with the PGD. It leads to a decomposition of the solution into a basis of constant
vectors and a set of frequency-dependent functions. The proposed decomposition is obtained using a power iterations
algorithm. Two numerical examples showed the applicability of the method and the convergence of the algorithm. Since
VTCR and PGD have been coupled for the first time in this study, the focus has been set mainly on its feasibility, rather than
on its performance or limitations. In particular further analyses have to be performed to asset if PGD-VTCR advantages are
kept in the presence of complex physical behavior. After these promising results, the method should be extended to more
complex cases and compared with established calculation tools.
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