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A Trefftz approach for medium-frequency vibrations of orthotropic 

structures
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The Variational Theory of Complex Rays (VTCR) was developed in order to calculate the vibrational

response of structures in the medium-frequency range. It leads to a numerical approximation of this

response through the resolution of a small system of equations which, contrary to element-based

methods, does not result from a refined spatial discretization. This strategy has already been validated

for assemblies of isotropic plates. In this paper, we extend it to the case of orthotropic planar structure.

The method is illustrated through various orthotropic plate vibration problems under several types of

harmonic loading in the medium-frequency range.

1. Introduction

Undoubtedly, the modeling and analysis of the vibrational

response of structures are among the key issues in the design of

many industrial systems. Today, even for complex structures, there

remain no major difficulties in the low-frequency range, at least

concerning modeling and analysis (see [1]). However, the modeling

and analysis of medium-frequency vibrations, on which this paper

focuses, continue to cause problems. Attempting to extend low-

frequency methods to this case is difficult because the length of

variation of the phenomena being studied is very small compared

to the characteristic dimension of the structure and, therefore, the

finite element calculation would require a prohibitive number of

degrees of freedom. This difficulty has led to the development of

a number of improved finite element approaches (see [2–11]).

Today, there are also dedicated computational strategies for the

resolution of medium-frequency problems, known as Trefftz

methods [12], which differ from element-based methods in that

they use shape functions which are exact solutions of the

governing differential equations. These approaches include, for

example, a special use of the partition of unity method [13,14],

the ultra-weak variational method [15–17], the least-squares

method [18,17], the discontinuous enrichment method [19–21],

the wave boundary element method [22,23], and the wave-based

method [24–26]. All these numerical techniques undertake to solve

the problem using oscillating functions, the main differences being

in the treatment of the transmission conditions between substruc-

tures and the boundary conditions. The Variational Theory of

Complex Rays (VTCR), which is the subject of this paper, is one

of these dedicated Trefftz methods.

The VTCR is a predictive tool specifically designed to deal with

medium-frequency problems which was introduced in [27]. Its

first characteristic is that it uses a special weak formulation of

the problemwhich makes the approximations within the substruc-

tures a priori independent of one another. Thus, any type of shape

function can be used in a substructure provided that it satisfies the

governing equations. This gives the approach great flexibility and,

consequently, makes it very efficient because any type of approxi-

mation function can be used without any difficulty. The second

characteristic is the introduction of an approximation with a strong

mechanical content: the solution is described as the superposition

of an infinite number of plane waves which satisfy the governing

equations exactly. All the wave directions are taken into account

and their amplitudes are the unknowns of the problem.

Previous works have already validated this strategy for 2D

assemblies of isotropic plates (see [28]) and for 3D isotropic assem-

blies (see [29]), but many industrial structures contain composite

materials which are not isotropic. Therefore, this paper goes one

step further in the development of the VTCR by enabling the

designer to take the properties of these materials into account.

However, we will assume that the composite material can be

described as an orthotropic material. The paper is structured as
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follows: Section 2 presents the reference problem and its solution

using the VTCR; Section 3 illustrates the strategy in the case of a

vibrating orthotropic plate; finally, conclusions are drawn in

Section 4.

2. Basic aspects of the VTCR

2.1. The reference problem

The reference problem being considered is the steady-state

vibration of an assembly of plates at a fixed circular frequency x.

In order to simplify the presentation, let us assume that the struc-

ture consists of two coplanar plates, but this can be easily general-

ized to an assembly of any number of plates of any geometry.

These plates are assumed to be thin, homogeneous, orthotropic

and governed by the elastic Kirchhoff–Love theory. We are to study

the steady-state vibrations of such an assembly. Classically, all

quantities are defined as complex quantities, i.e. an amplitude

QðxÞ is associated with QðxÞeixt . Let S1 and S2 denote the mean sur-

faces of the two plates and @S1 and @S2 their boundaries. Their

thickness, stiffness tensor (including damping) and density are

designated respectively by he;De and qe; e 2 1;2f g. The boundary

conditions are a prescribed deflection wd
e along @wSe, a prescribed

slope wd
ne along @wnSe, a bending moment Md

e along @MSe and a

shear force Kd
e along @KSe, with e 2 1;2f g. The quantities of interest

are the displacements we and the moment operators Me.

The reference problem is: find ðwe;MeÞ 2 W �M (set of the

finite-energy fields) such that:

divðdivMeÞ þ pe ¼ �qehex2we in Se; e 2 1;2f g

Me ¼ DeXðweÞ in Se; e 2 1;2f g

�

�

�

�

ð1Þ

we ¼ wd
e along @wSe; e 2 1;2f g

we;ne ¼ wd
ne along @nwSe; e 2 1;2f g

neMene ¼Md
e along @MSe; e 2 1;2f g

Ke ¼ nedivðMeÞ þ ðneMeneÞ;t ¼ Kd
e along @KSe; e 2 1;2f g

½½teMene�� ¼ 0 at the corner of @Se; e 2 1;2f g

w1 ¼ w2 along @S1 \ @S2

w1;n1 ¼ w2;n2 along @S1 \ @S2

n1M1n1 þn2M2n2 ¼ 0 along @S1 \ @S2

K1 þ K2 ¼ 0 along @S1 \ @S2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð2Þ

where pe is a prescribed pressure applied over Se; n1 the outward

normal to Se and te the tangent to @Se. ½½��� denotes the value of

the jump of quantity � and X is the curvature operator. If De are

positive definite and the damping factors ge of each plate are posi-

tive, the solution of the reference problem is unique.

2.2. The variational formulation associated with the VTCR

The VTCR uses a global formulation of Problem (1) and (2) in

terms of both displacements and forces along with the boundary

conditions and transmission conditions. First, one must define

Sad
e , the functional space that satisfies the governing Eqs. (1):

ðwe;MeÞ 2 Sad
e ()

ðwe;MeÞ 2 W �M

divðdivMeÞ þ pe ¼ �qehex2we in Se; e 2 1;2f g

Me ¼ DeXðweÞ in Se; e 2 1;2f g

�

�

�

�

�

�

�

ð3Þ

Similarly, let Sad
e;0 be the functional space which satisfies the

homogeneous governing equations (the same equations as (3), but

without pe). Then, the VTCR formulation of Problem (1) and (2) is:

find ðw1;M1Þ 2 Sad
1 and ðw2; M2Þ 2 Sad

2 such that:
Z

@wwn S1

n1dM1n1 w1;n1 �wd
n1

� ��
d@S1�

Z

@wS1

dK1ðw1�wd
1Þ

�
d@S1

þ

Z

@MS1

n1M1n1�Md
1

� �

dw�
1;n1

d@S1�

Z

@K S1

ðK1�Kd
1Þdw

�
1d@S1

þ

Z

@wwn S2

n2dM2n2 w2;n2 �wd
n2

� ��
d@S2�

Z

@wS2

dK2ðw2�wd
2Þ

�
d@S2

þ

Z

@MS2

n2M2n2�Md
2

� �

dw�
2;n2

d@S2�

Z

@K S2

ðK2�Kd
2Þdw

�
2d@S2

�
X

@S1corners

½½t1M1n1��dw
�
1�

X

@S2corners

½½t2M2n2��dw
�
2

þ

Z

@S1\@S2

1

2
d n1M1n1�n2M2n2ð Þðw1;n1 �w2;n2 Þ

��dðK1�K2Þðw1�w2Þ
�� �

dC

þ

Z

@S1\@S2

1

2
n1M1n1þn2M2n2ð Þdðw1;n1 þw2;n2 Þ

��ðK1þK2Þdðw1þw2Þ
�� �

dC¼0

8ðdw1;dM1Þ 2Sad
1;0;8ðdw2;dM2Þ 2Sad

2;0 ð4Þ

where �
� denotes the complex conjugate of �. (4) can be shortened

to: find s ¼ ðw;MÞ 2 Sad such that:

aðs; dsÞ ¼ lðdsÞ 8ds 2 Sad
0 ð5Þ

In order to find an approximate solution of (1), (2), the basic idea is

to seek a solution of (5) in a space Sh;ad � Sad (and, consequently,

Sh;ad
0 � Sad

0 ) of finite dimension: find sh ¼ ðwh;MhÞ 2 Sh;ad such that:

aðsh; dshÞ ¼ lðdshÞ 8dsh 2 Sh;ad
0 ð6Þ

2.3. Construction of admissible fields

In order to define the Sh;ad term in (6), we must find the exact

solutions of the governing Eqs. (1). In the case of orthotropic plates,

assuming that the principal directions of orthotropy coincide with

the x and y coordinates of the plate’s mean surface, (1) leads to:

Dex
@4we

@x4
þ 2He

@4we

@x2@y2
þ Dey

@4we

@y4
� qehex

2we ¼ pe ð7Þ

where Dex ¼
Eex

1�mexmey

h3e
12
; Dey ¼

Eey
1�mexmey

h3e
12

and He ¼ Dexy þ 2Des with

Dexy ¼
Eexmey

1�mexmey

h3e
12

and Des ¼ Ge
h3e
12
, and where Eex; Eey, mex; mey and Ge

are the classical elastic constants of the orthotropic material of plate

Se (see [30]). Absorption in the plate is represented through damp-

ing factors gex; gey and ge : Eex ¼ ð1þ igexÞEex0; Eey ¼ ð1þ igeyÞEey0

and Ge ¼ ð1þ igeÞGe0.

In each substructure Xe; we is sought in the form we ¼ w0
e þwp

e ,

where wp
e is a known particular solution of (7) while w0

e 2 Sead;0 is

taken as a sum of Herglotz wave functions, i.e. an integral superpo-

sition of propagative or evanescent plane waves of the form:

w0
e ðxÞ :¼

Z

C

Ap
eðhÞe

ikp
e ðhÞ�ðx�x

p
e Þ dhþ

X

b

Z

C

Ab
eðhÞe

ikb
e ðhÞ�ðx�xbe Þ dh: ð8Þ

Any Herglotz wave function is a solution of homogeneous Eq. (7).

Keeping the terminology from previous works on the VCTR, func-

tions Ap
e and Ab

e are called the amplitude portrait of we.

In (8), C is the unit circle, xp
e is a reference point in Xe; xb

e is a

reference point along edge b;Ap
eðhÞ is the amplitude of the propaga-

tive plane wave in direction h which contributes to we, and Ab
eðhÞ is

the amplitude of the evanescent plane wave in direction h which

contributes to we. The wave vectors k
p
eðhÞ and k

b
eðhÞ are defined by:

k
p
eðhÞ ¼ kxe cosðhÞex þ kye sinðhÞey ð9Þ

k
b
eðhÞ ¼ � ikne

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos2ðh=2Þ
q

nb þ kte cosðh=2Þtb ð10Þ
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where kxe ¼
qhx2

Dex

� �1=4

, kye ¼
qhx2

Dey

� �1=4

; ex and ey are the directions of

orthotropy of plate Xe, and nb and tb are respectively the outward

normal and the tangent of edge b. The values of kn and kt are deter-

mined by the equations:

kne ¼ kxeex � nb þ kyeey � nb kte ¼ kxeex � tb þ kyeey � tb ð11Þ

In order to discretize and get the VCTR formulation (6), each ampli-

tude portrait A�

e (where � is either p or b) is discretized as a sum of

N�

e Dirac distributions supported at angular locations hn. Then, w
h
e is

the superposition of a finite number of plane waves:

wh
eðxÞ :¼ wp

e þ
X

Np
e

n¼1

ap
ne

ikp
e ðh

p
nÞ�ðx�x

p
e Þ þ

X

b

X

Nb
e

n¼1

abne
ikb

e ðh
b
nÞ�ðx�xbe Þ ð12Þ

where a�

n are the unknowns of the problem and h�n ¼ n 2p
N�

e
.

The discretization parameter N�

e (and, therefore, DimðSh;ad
e;0 Þ) can

be set a priori using a heuristic geometrical criterion [31] which

says that it is proportional to the ratio of the characteristic dimen-

sion R�

e of the domain Xe (for propagative waves) or the edge b (for

evanescent waves) to the wavelength:

N�

e ¼ a
kR

�

e

2p

" #

ð13Þ

where a is a proportionality coefficient, k the biggest value between

kxe and kye, and the brackets denote the integer part.

2.4. The discretized forme of the VTCR

With each plate Xe discretized according to (12), the VTCR

formulation (6) leads to a linear system of equations in the

complex domain:

Aa ¼ b ð14Þ

Matrix A corresponds to the discretization of the bilinear form of

weak formulation (6), a is the vector of the unknown quantities

which approximate the distribution of the wave amplitudes and b

corresponds to the discretization of the linear form of (6). The

integrations that we have to do in the variational formulation (6)

have an analytical expression for straight edge. As a consequence,

if the edge of the domain S can be decomposed in straight lines,

the assembling process of the VTCR is not computationally costly.

If the edges are curved, a first strategy is to decompose each edge

into straight segments. However if the radius of curvature is small,

a numerical integration has to be done, but it is restricted to the

very few curved edges, which does not impair the computational

efficiency of the VTCR.

Like any other Trefftz method, the obtained linear system could

be badly conditioned. Therefore, one has to avoid the use of a direct

solver. One solution is to calculate a low order pseudo inverse, but

it requires the singular value decomposition of the matrix A. An

other solution, is to use an LSQR iterative solver. In practice the

two methods give similar result, with an advantage for the itera-

tive solver in terms of speed. In this next section, the numerical

results are obtain using a LSQR. As soon as a is known, the VTCR

approximate solution of Problem (1) and (2) is given by Eq. (12).

3. Numerical results

The purpose of this section is to assess the performance of the

VTCR in the resolution of composite plate vibration problems. In

order to do that, let us consider the following two problems: (a)

a plane wave traveling through a composite plate and (b) the vibra-

tion of a plate under a point force. In both cases, the exact solution

is known. The convergence can be measured using the relative

error:

e ¼

R

X
jw�wexjdx
R

X
jwexjdx

ð15Þ

where w is the calculated solution and wex the exact solution.

In the first example, the plate is modeled using one single

domain for the VTCR, whereas in the second example the plate is

modeled using either 1, 4 or 8 sub-domains. The number of DOFs

of the VTCR is simply the sum of the number of waves used in each

element. Let us recall that one could reduce this number by using

condensation, but we did not do that in order to make a fair

comparison.

3.1. The case of a plane wave traveling through a composite plate

Let us consider a plane wave traveling through a rectangular

plate S of dimensions 3 m � 2 m. The principal directions of

orthotropy are parallel to the sides and the material properties

are Ex0 ¼ 125 GPa, Ey0 ¼ 60 GPa, gx ¼ 0:001, gy ¼ 0:005; mx ¼ 0:3;

my ¼ 0:144 and G ¼ 72 GPa. The density is q ¼ 700 kg=m3 and the

thickness is h ¼ 0:01 m. The boundary conditions in terms of the

prescribed deflection and slope are such that the exact solution

is a plane wave traveling in the direction u ¼ 2340
8001

p. This particular
direction was chosen because it does not coincide with any of the

shape functions used. In this example, one should remark that one

has to solve the homogeneous Eq. (1) or (7) (i.e. the term pe is zero)

and therefore there is no particular solution.

We considered three circular frequencies: x ¼ 10;000 rad=s,

x ¼ 70;000 rad=s and x ¼ 130;000 rad=s. Fig. 1 shows the exact

solution of the problem for each frequency.

Fig. 2 shows the evolution of Error (15) as a function of the

number of degree of freedom. The number of shape functions

was set using Eq. (13) with a varying from 0.1 to 3. One can see

that at all the frequencies considered the VTCR led to an error of

10�5 or less, which shows its efficiency on that kind of problem.

3.2. Vibrations of a composite plate subjected to a harmonic point load

The second example also concerns a rectangular plate, of

dimensions ½0; Lx� � ½0; Ly�, with Lx ¼ 3 m and Ly ¼ 2 m, which is

simply supported along all four edges. The principal directions of

orthotropy are parallel to the sides. For this problem, the material

properties are Ex0 ¼ 125 GPa, Ey0 ¼ 60 GPa, mx ¼ 0:3; my ¼ 0:144;

G ¼ 70 GPa, q ¼ 700 kg m�3, h ¼ 0:01 m and gx ¼ gy ¼ 0:0001. This

plate is subjected to a harmonic point load of intensity F ¼ 1000 N

applied at xF ¼ 1:2 m and yF ¼ 0:7 m. The circular frequencies

considered are x ¼ 2p� 100 rad s�1, 2p� 500 rad s�1 and 2p�
900 rad s�1.

The exact solution of this problem can be calculated using

Navier’s method:

wexðx; y;xÞ ¼
X

1

m¼1

X

1

n¼1

4F=ðLxLyÞ sinðmpxF=LxÞ sinðnpyF=LyÞ
qh x2

mn �x2
� �

� sinðmpx=LxÞ sinðnpy=LyÞ ð16Þ

with x2
mn ¼ 1

qh ðDxm4p4L�4
x þ 2Hm2n2p4L�2

x L�2
y þ Dyn4p4L�4

y Þ. The

solutions corresponding to the three frequencies considered are

shown in Fig. 3.

Using the VTCR, the displacement field was approximated by

using Eq. (12), in which the particular solution wp was obtained

using the Green function. The converged VTCR solutions when

using one single domain with a ¼ 2 in (13) are shown in Fig. 4.

One can see that these solutions are similar to the exact solutions

of Fig. 3: all the vibration peaks coincide and the magnitudes of the

displacements are the same.
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In order to assess the performance of the VTCR, let us compare

these results to those obtained by the finite element method using

Kirchhoff quadrilateral elements [32]. Fig. 5 shows the FEM and

VTCR errors (15) as functions of the number of DOFs for each

solution and at each frequency. The VTCR values were obtained

using Criterion (13) with a varying from 0:1 to 5 using either

1, 4 or 8 identical sub-domains. The FEM values were obtained

using meshes with 3–18 Kirchhoff quadrilateral elements per

wavelength.

One can see that when using one single sub-domain the perfor-

mance of the VTCR is significantly better than that of the FEM. At

the three frequencies considered, the VTCR converged using con-

siderably fewer DOFs than the FEM (about 100 times fewer for

the same error at all the frequencies considered). However, one

could also remark than the VTCR is more efficient when taking

fewer sub-domains.

One can observe that the frequencies considered were relatively

low compared to the first example. In this example, the frequency

Fig. 1. The exact solution of the orthotropic plate vibration problem of Section 3.1 for x ¼ 10;000 rad/s (a), x ¼ 70; 000 rad/s (b) and x ¼ 130; 000 rad/s (c).
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Fig. 2. Performance of the VTCR for the orthotropic plate vibration problem of Section 3.1.

Fig. 3. The exact solutions of the orthotropic plate vibration problem of Section 3.2 for x ¼ 2p� 100 rad s�1 (a), 2p� 500 rad s�1 (b) and 2p� 900 rad s�1(c).
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limit was set by the finite element calculation: at higher frequen-

cies, the FE problemwould have been too large for a standard desk-

top computer.

4. Conclusion

The prediction of the vibrational behavior of planar orthotropic

structures (such as composite panel) is needed in many industrial

applications. Harmonic analysis in the medium-frequency range

using the standard FEM is difficult because it requires a highly

refined mesh. This paper introduced a means of predicting this

behavior through the VTCR using plane waves as shape functions.

The efficiency of this strategy had already been proven for similar

problems involving isotropic plate assemblies. Here, we extended

it to orthotropic plates. The numerical tests performed on two dif-

ferent sample problems show that the VTCR leads to accurate

numerical solutions using far fewer DOFs than the standard FEM.

Our future works will concern the extension of the VTCR to

vibro-acoustic coupling.
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